DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE"

Transcript

1 DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DI UN GRUPPO DI OSSERVAZIONI O DI ESPERIMENTI, SI PERVIENE A CERTE CONCLUSIONI, LA CUI VALIDITA PER UN COLLETTIVO Più AMPIO E ESPRESSA IN TERMINI PROBABILISTICI.

2 PROBLEMI INFERENZIALI STIMA E VERIFICA DELLE IPOTESI Il problema di ifereza può essere impostato i modi diversi: Stima sulla base dell evideza empirica si assega al parametro di iteresse: u valore (stima putuale) u isieme di valori (stima per itervallo) Test delle ipotesi si formulao ipotesi alterative sul valore del parametro di iteresse e si valuta quale `e maggiormete supportata dall evideza empirica

3 STIMA PUNTUALE Stima putuale Il parametro icogito viee stimato mediate u opportua fuzioe dei dati campioari, detta stimatore. Solitamete si usa: la media campioaria per stimare la media della popolazioe la variaza campioaria per stimare la variaza della popolazioe la frequeza relativa di successo per stimare la probabilità di successo

4 STIMATORE E STIMA La stima è il valore che lo stimatore assume el campioe osservato. Lo stimatore è ua v.c., la stima è ua costate. Metre siamo i grado di valutare la qualità dello stimatore i base alle sue caratteristiche ell uiverso dei campioi, o possiamo dire ulla della stima otteuta i corrispodeza del sigolo campioe osservato. No siamo i grado, sulla base della sola stima (u umero), di valutare l errore dovuto al campioameto.

5 GLI STIMATORI Def : ua statistica è ua qualuque fuzioe T = f (,, ) della v.c. (,, ) descritta dalla -upla campioaria ( x,,x ) Def : uo stimatore è ua statistica T le cui determiazioi servoo a forire delle stime del parametro igoto della v.c. i cui soo state effettuate le prove. Es.: Sia E u eveto di probabilità scoosciuta. Per stimare questa prob. vegoo effettuate = prove beroulliae che foriscoo i valori x e x. Allora la v.c. ( + ) è ua statistica, metre la v.c. : ( è uo stimatore i quato si pesa che le sue determiazioi diao stime di )

6 Proprietà degli STIMATORI Vediamo ora quali soo le proprietà che u geerico stimatore T = f (,, ) per u parametro icogito della v.c. deve possedere perché le sue stime siao affidabili. ) CORRETTEZZA Si dice che lo stimatore T = f (,, ) è corretto o o distorto per il parametro se la media di T coicide co qualuque sia il suo valore compreso ello spazio parametrico. Cioè: E( T ) =.

7 La stima forita da uo stimatore corretto può dirsi corretta i media. Se o vale la relazioe vista sopra allora lo stimatore è detto distorto, e la sua distorsioe rispetto a viee misurata dalla quatità: [ E(T ) ]. Se però al crescere di il valore di tede a 0, allora T viee detto stimatore asitoticamete corretto

8 Dimostriamo che lo stimatore proposto per la media è corretto : i i, i i i i E E E ) ( ) ( Poiché le margiali,, di (,, ) soo idetiche alla v.c., risulta: i i i E E ) ( ) ( Per cui lo stimatore è corretto per la media

9 Si può dimostrare ivece che lo stimatore proposto per la variaza o è corretto. Lo stimatore corretto è il seguete:, ) ( i i S Siccome si può sempre scrivere:, ) ( S S i i segue che: S E E S quidi lo stimatore è asitoticamete corretto per i quato: per S S E

10 ) CONSISTENZA Questa proprietà idica la capacità di T di forire stime migliori per al crescere della umerosità campioaria. Uo stimatore si dice cosistete per se: lim P T Se lo stimatore è corretto o asitoticamete corretto, u modo per verificare la cosisteza è quello di osservare il valore : E T Se per si verifica che 0 allora lo stimatore T è detto cosistete

11 3) EFFICIENZA Questa proprietà viee itrodotta per poter scegliere tra più stimatori corretti e cosisteti Esistoo diversi criteri per effettuare la scelta; il più usato è quelle che si basa sul criterio della variaza: fra più stimatori corretti e cosisteti per viee preferito quello co la variaza miore (cioè il più efficiete ). Se la v.c. è ormale (cioè ua v.c. simmetrica) (=> media mediaa x 0.5 ) si hao a disposizioe due stimatori idoei: lo stimatore Media campioaria e lo stimatore Mediaa campioaria 0.5. Per tali stimatori si ha: Var( Var( ) 0.5 ).57

12 Stima per itervallo Il parametro viee stimato mediate u itervallo (detto itervallo di cofideza) i cui estremi dipedoo dal campioe estratto (soo casuali). U itervallo di cofideza è quidi u isieme di valori plausibili per il parametro icogito sulla base dell evideza empirica. Se il campioe è rappresetativo (ovviamete è impossibile saperlo), allora l itervallo cotiee il valore del parametro da stimare.

13 Stima per itervallo Gli estremi dell itervallo vegoo idividuati i modo tale che la probabilità di estrarre u campioe che forisce u risultato corretto (leggi l itervallo cotiee il valore del parametro) sia fissata pari a α (livello di cofideza). Attezioe: il livello di cofideza rappreseta il grado di affidabilità della procedura, o il grado di affidabilità del risultato corrispodete al sigolo campioe estratto. Geeralmete si usa come livello di cofideza il 95% (α =5%).

14

15 Stima per itervallo Esempio: si cosideri u processo idustriale di riempimeto di scatole di cereali e sia assuma che il peso delle scatole sia ~N(μ;5). Dato u campioe casuale di =5 scatole co peso medio 36.3 grammi si vuole costruire u itervallo di cofideza al 95% per μ. Per la proprietà della distribuzioe ormale e della media campioaria risulta che quidi u itervallo di cofideza all ( α)% per μ e dato da Nel caso specifico si ottiee 354. μ z z P z z

16 Osserviamo che per alcui campioi la stima per itervalli di μ e corretta, metre per altri o lo e. Stima per itervallo Ipotizziamo che μ sia uguale a 368. Per compredere a fodo il sigificato della stima per itervallo e le sue proprietà è utile fare riferimeto all ipotetico isieme di tutti i possibili campioi di ampiezza che è possibile otteere.

17 Stima per itervallo Nella pratica estraiamo u solo campioe e siccome o coosciamo la media della popolazioe o possiamo stabilire se le coclusioi a cui perveiamo soo corrette o meo. Tuttavia possiamo affermare di avere ua fiducia all ( α)% che la media appartega all itervallo stimato. Quidi, l itervallo di cofideza all ( α)% della media co σ oto si ottiee utilizzado l equazioe z z

18 Stima per itervallo I alcui casi risulta desiderabile u grado di certezza maggiore, ad es. del 99%, ed i altri casi possiamo accettare u grado miore di sicurezza, ad es. del 90%. Il valore Z α/ di Z che viee scelto per costruire u itervallo di cofideza e chiamato valore critico. A ciascu livello di cofideza ( α) corrispode u diverso valore critico. U livello di cofideza maggiore si ottiee quidi a prezzo di u ampliameto dell itervallo di cofideza otteuto: esiste u trade-off tra ampiezza e cofideza.

19 Verifica delle ipotesi Test Statistici I test statistici mettoo a disposizioe delle strategie per decidere se accettare o rifiutare u ipotesi (statistica). Il test è ua procedura ifereziale per valutare la coformità probabilistica tra u campioe e la popolazioe da cui si presume che il campioe sia stato estratto. Co u test statistico si vuole verificare se le differeze risultati tra il campioe e la popolazioe siao sigificative oppure siao dovute all errore campioario. Può essere utile sapere se u campioe proviee da ua certa popolazioe oppure se è ettamete diversa da questa. Per fare u test statistico, è ecessario prima defiire l ipotesi che dovrà essere verificata.

20 Verifica delle ipotesi Le IPOTESI predoo il ome di: H 0 : IPOTESI NULLA; quello che ci si aspetta che accada sulla base di quello che già si sa; è quella che riflette la situazioe precedete a quella del test. H : IPOTESI ALTERNATIVA; è quella cotro la quale si verifica l ipotesi ulla, quella che se viee accettata comporta i geere ua modifica dello stato esistete.

21 Verifica delle ipotesi Le ipotesi sul valore del parametro possoo essere: semplici: è specificato u solo valore (per es. μ = μ 0 ) composte: soo specificati più valori uidirezioali (per es. μ > μ 0 ) bidirezioali (per es. μ μ 0 ) L ipotesi ulla è solitamete semplice, metre l ipotesi alterativa è composta.

22 Il test Verifica delle ipotesi Sulla base dell evideza empirica derivate da u campioe di osservazioi si deve decidere se accettare o rifiutare H 0. Il test è ua regola di decisioe defiita a priori, che, per ogi possibile campioe, idica quale decisioe predere (se accettare o rifiutare). Il problema cosiste el costruire ua regola di decisioe ottimale, ossia che ci iduca quato più raramete possibile i errore.

23 La regola di decisioe Verifica delle ipotesi La regola di decisioe cosiste quidi el suddividere lo spazio campioario C i due regioi C 0 regioe di accettazioe C regioe di rifiuto i modo tale che, se il campioe estratto () è i C 0 l ipotesi ulla viee accettata, metre se il campioe cade i C essa viee rifiutata.

24 Verifica delle ipotesi

25

26 Verifica delle ipotesi Gli errori del I tipo soo quelli più gravi da commettere. Ifatti, sapedo H 0 è quella che riflette la situazioe precedete l esecuzioe del test, quella che lascia le cose come stao o acora quella che descrive le cose che sembrao o dovrebbero essere cosiderate ormali, rifiutarla i favore di ua ipotesi alterativa che o è vera, può comportare la messa i pratica di iterveti che poi si possoo rivelare iutili, daosi o costosi. Metre accettare u ipotesi che è falsa (errore del II tipo), i geere lascia le cose come stao o modifica lo stato esistete.

27 COME FARE IL TEST Usualmete Verifica delle ipotesi. si fissa la probabilità dell errore di primo tipo α (livello di sigificatività);. si sceglie la regola di decisioe che, a parità di α, miimizza, la probabilità di commettere u errore del secodo tipo β; 3.Si estrae il campioe casuale e si calcola la statistica test; 4. Si cofrota la statistica test co la distribuzioe teorica e si decide se accettare o meo l ipotesi ulla

28 Verifica delle ipotesi POTENZA DEL TEST La poteza del test β è data da β = P( C H ) ossia è la capacità del test di idividuare l ipotesi alterativa quado è vera. β miimo β massimo Si ricerca quidi quella suddivisioe dello spazio campioario che rede massima la poteza del test.

Il test parametrico si costruisce in tre passi:

Il test parametrico si costruisce in tre passi: R. Lombardo I. Cammiatiello Dipartimeto di Ecoomia Secoda Uiversità degli studi Napoli Facoltà di Ecoomia Ifereza Statistica La Verifica delle Ipotesi Obiettivo Verifica (test) di u ipotesi statistica

Dettagli

LA VERIFICA DELLE IPOTESI SUI PARAMETRI

LA VERIFICA DELLE IPOTESI SUI PARAMETRI LA VERIFICA DELLE IPOTESI SUI PARAMETRI E u problema di ifereza per molti aspetti collegato a quello della stima. Rispode ad u esigeza di carattere pratico che spesso si preseta i molti campi dell attività

Dettagli

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15 Corso di Laurea Magistrale i Igegeria Iformatica A.A. 014/15 Complemeti di Probabilità e Statistica Prova scritta del del 3-0-15 Puteggi: 1. 3+3+4;. +3 ; 3. 1.5 5 ; 4. 1 + 1 + 1 + 1 + 3.5. Totale = 30.

Dettagli

Metodi statistici per l analisi dei dati

Metodi statistici per l analisi dei dati Metodi statistici per l aalisi dei dati due ttameti Motivazioi ttameti Obbiettivo: Cofrotare due diverse codizioi (ache defiiti ttameti) per cui soo stati codotti gli esperimeti. due ttameti Esempio itroduttivo

Dettagli

CONCETTI BASE DI STATISTICA

CONCETTI BASE DI STATISTICA CONCETTI BASE DI STATISTICA DEFINIZIONI Probabilità U umero reale compreso tra 0 e, associato a u eveto casuale. Esso può essere correlato co la frequeza relativa o col grado di credibilità co cui u eveto

Dettagli

Metodi statistici per l'analisi dei dati

Metodi statistici per l'analisi dei dati Metodi statistici per l aalisi dei dati due Motivazioi Obbiettivo: Cofrotare due diverse codizioi (ache defiiti ) per cui soo stati codotti gli esperimeti. Metodi tatistici per l Aalisi dei Dati due Esempio

Dettagli

Test non parametrici. sono uguali a quelle teoriche. (probabilità attesa), si calcola la. , cioè che le frequenze empiriche

Test non parametrici. sono uguali a quelle teoriche. (probabilità attesa), si calcola la. , cioè che le frequenze empiriche est o parametrici Il test di Studet per uo o per due campioi, il test F di Fisher per l'aalisi della variaza, la correlazioe, la regressioe, isieme ad altri test di statistica multivariata soo parte dei

Dettagli

Analisi statistica dell Output

Analisi statistica dell Output Aalisi statistica dell Output IL Simulatore è u adeguata rappresetazioe della Realtà! E adesso? Come va iterpretato l Output? Quado le Osservazioi soo sigificative? Quati Ru del Simulatore è corretto effettuare?

Dettagli

Selezione avversa e razionamento del credito

Selezione avversa e razionamento del credito Selezioe avversa e razioameto del credito Massimo A. De Fracesco Dipartimeto di Ecoomia politica e statistica, Uiversità di Siea May 3, 013 1 Itroduzioe I questa lezioe presetiamo u semplice modello del

Dettagli

Le carte di controllo

Le carte di controllo Le carte di cotrollo Dott.ssa Bruella Caroleo 07 dicembre 007 Variabilità ei processi produttivi Le caratteristiche di qualsiasi processo produttivo soo caratterizzate da variabilità Le cause di variabilità

Dettagli

1 Metodo della massima verosimiglianza

1 Metodo della massima verosimiglianza Metodo della massima verosimigliaza Estraedo u campioe costituito da variabili casuali X i i.i.d. da ua popolazioe X co fuzioe di probabilità/desità f(x, θ), si costruisce la fuzioe di verosimigliaza che

Dettagli

Verifica d Ipotesi. Se invece che chiederci quale è il valore di una media in una popolazione (stima. o falsa? o falsa?

Verifica d Ipotesi. Se invece che chiederci quale è il valore di una media in una popolazione (stima. o falsa? o falsa? Verifica d Iotesi Se ivece che chiederci quale è il valore ua mea i ua oolazioe (stima utuale Se ivece e itervallo che chiederci cofideza) quale è il avessimo valore u idea ua mea su quello i ua che oolazioe

Dettagli

Campionamento stratificato. Esempio

Campionamento stratificato. Esempio ez. 3 8/0/05 Metodi Statiici per il Marketig - F. Bartolucci Uiversità di Urbio Campioameto ratificato Ua tecica molto diffusa per sfruttare l iformazioe coteuta i ua variabile ausiliaria (o evetualmete

Dettagli

Statistica di base. Luca Mari, versione 31.12.13

Statistica di base. Luca Mari, versione 31.12.13 Statistica di base Luca Mari, versioe 31.12.13 Coteuti Moda...1 Distribuzioi cumulate...2 Mediaa, quartili, percetili...3 Sigificatività empirica degli idici ordiali...3 Media...4 Acora sulla media...4

Dettagli

Il confronto tra DUE campioni indipendenti

Il confronto tra DUE campioni indipendenti Il cofroto tra DUE camioi idiedeti Il cofroto tra DUE camioi idiedeti Cofroto tra due medie I questi casi siamo iteressati a cofrotare il valore medio di due camioi i cui i le osservazioi i u camioe soo

Dettagli

1. Distribuzioni campionarie legate alla distribuzione normale. 3. Intervallo bilatero di confidenza bilatero per la frazione p di una popolazione

1. Distribuzioni campionarie legate alla distribuzione normale. 3. Intervallo bilatero di confidenza bilatero per la frazione p di una popolazione Questi esempi vi potrao essere utili come riferimeto ella ricerca di itervalli di cofideza e test di ipotesi statistiche. Per gli aggiorameti potete visitare i siti www.boch.et o www.feaor.com. Per dubbi

Dettagli

Approfondimenti di statistica e geostatistica

Approfondimenti di statistica e geostatistica Approfodimeti di statistica e geostatistica APAT Agezia per la Protezioe dell Ambiete e per i Servizi Tecici Cos è la geostatistica? Applicazioe dell aalisi di Rischio ai siti Cotamiati Geostatistica La

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO Calcolo combiatorio è il termie che deota tradizioalmete la braca della matematica che studia i modi per raggruppare e/o ordiare secodo date regole gli elemeti di u isieme fiito

Dettagli

IMPLICAZIONE TRA VARIABILI BINARIE: L Implicazione di Gras

IMPLICAZIONE TRA VARIABILI BINARIE: L Implicazione di Gras IMPLICAZIONE TRA VARIABILI BINARIE: L Implicazioe di Gras Date due variabili biarie a e b, i quale misura posso assicurare che i ua popolazioe da ogi osservazioe di a segue ecessariamete quella di b? E

Dettagli

Campi vettoriali conservativi e solenoidali

Campi vettoriali conservativi e solenoidali Campi vettoriali coservativi e soleoidali Sia (x,y,z) u campo vettoriale defiito i ua regioe di spazio Ω, e sia u cammio, di estremi A e B, defiito i Ω. Sia r (u) ua parametrizzazioe di, fuzioe della variabile

Dettagli

3.4 Tecniche per valutare uno stimatore

3.4 Tecniche per valutare uno stimatore 3.4 Teciche per valutare uo stimatore 3.4. Il liguaggio delle decisioi statistiche, stimatori corretti e stimatori cosisteti La teoria delle decisioi forisce u liguaggio appropriato per discutere sulla

Dettagli

LA DERIVATA DI UNA FUNZIONE

LA DERIVATA DI UNA FUNZIONE LA DERIVATA DI UNA FUNZIONE OBIETTIVO: Defiire lo strumeto matematico ce cosete di studiare la cresceza e la decresceza di ua fuzioe Si comicia col defiire cosa vuol dire ce ua fuzioe è crescete. Defiizioe:

Dettagli

1 Successioni 1 1.1 Limite di una successione... 2. 2 Serie 3 2.1 La serie armonica... 6 2.2 La serie geometrica... 6

1 Successioni 1 1.1 Limite di una successione... 2. 2 Serie 3 2.1 La serie armonica... 6 2.2 La serie geometrica... 6 SUCCESSIONI Successioi e serie Idice Successioi. Limite di ua successioe........................................... Serie 3. La serie armoica................................................ 6. La serie

Dettagli

Statistica descrittiva

Statistica descrittiva Statistica descrittiva idici idici (o misure) di posizioe media campioaria di osservazioi x, x,..., x x i x= per campioi x ì ripetuti ciascuo co frequeza f i x= x i f i Posto y i =a x i b : y=a x mediaa

Dettagli

Capitolo Terzo. rappresenta la rata di ammortamento del debito di un capitale unitario. Si tratta di risolvere un equazione lineare nell incognita R.

Capitolo Terzo. rappresenta la rata di ammortamento del debito di un capitale unitario. Si tratta di risolvere un equazione lineare nell incognita R. 70 Capitolo Terzo i cui α i rappreseta la rata di ammortameto del debito di u capitale uitario. Si tratta di risolvere u equazioe lieare ell icogita R. SIANO NOTI IL MONTANTE IL TASSO E IL NUMERO DELLE

Dettagli

Matematica II: Calcolo delle Probabilità e Statistica Matematica

Matematica II: Calcolo delle Probabilità e Statistica Matematica Matematica II: Calcolo delle Probabilità e Statistica Matematica ELT A-Z Docete: dott. F. Zucca Esercitazioe # 4 1 Distribuzioe Espoeziale Esercizio 1 Suppoiamo che la durata della vita di ogi membro di

Dettagli

Interesse e formule relative.

Interesse e formule relative. Elisa Battistoi, Adrea Frozetti Collado Iteresse e formule relative Esercizio Determiare quale somma sarà dispoibile fra 7 ai ivestedo oggi 0000 ad u tasso auale semplice del 5% Soluzioe Il diagramma del

Dettagli

INFERENZA SU UNA O DUE MEDIE CON IL TEST

INFERENZA SU UNA O DUE MEDIE CON IL TEST CAPITOLO VI INFERENZA SU UNA O DUE MEDIE CON IL TEST t DI STUDENT 6.. Dalla popolazioe ifiita al campioe piccolo: la distribuzioe t di studet 6.. Cofroto tra ua media osservata e ua media attesa co calcolo

Dettagli

Statistica I, Laurea triennale in Ing. Gestionale, a.a. 2011/12 Registro delle lezioni

Statistica I, Laurea triennale in Ing. Gestionale, a.a. 2011/12 Registro delle lezioni Statistica I, Laurea trieale i Ig. Gestioale, a.a. 2011/12 Registro delle lezioi Lezioe 1 (28/9, ore 11:30). Vedere la registrazioe di Barsati, dispoibile alla pagia http://users.dma.uipi.it/barsati/statistica_2011/idex.html.

Dettagli

Random walk classico. Simulazione di un random walk

Random walk classico. Simulazione di un random walk Radom walk classico Il radom walk classico) è il processo stocastico defiito da co prob. S = S0 X k, co X k = k= co prob. e le X soo tra di loro idipedeti. k Si tratta di u processo a icremeti idipedeti

Dettagli

8. Quale pesa di più?

8. Quale pesa di più? 8. Quale pesa di più? Negli ultimi ai hao suscitato particolare iteresse alcui problemi sulla pesatura di moete o di pallie. Il primo problema di questo tipo sembra proposto da Tartaglia el 1556. Da allora

Dettagli

Serie numeriche e serie di potenze

Serie numeriche e serie di potenze Serie umeriche e serie di poteze Sommare u umero fiito di umeri reali è seza dubbio u operazioe che o può riservare molte sorprese Cosa succede però se e sommiamo u umero ifiito? Prima di dare delle defiizioi

Dettagli

PARAMETRI DEL MOTO SISMICO

PARAMETRI DEL MOTO SISMICO PARAMETRI DEL MOTO SISMICO Attività microsismica: caratterizzata da vibrazioi di debole ampiezza e periodi molto gradi tali da o essere percepiti dai più comui strumeti di registrazioe (importate soprattutto

Dettagli

Analisi Fattoriale Discriminante

Analisi Fattoriale Discriminante Aalisi Fattoriale Discrimiate Bibliografia Lucidi (materiale reperibile via Iteret) Lauro C.N. Uiversità di Napoli Gherghi M. Uiversità di Napoli D Ambra L. Uiversità di Napoli Keeth M. Portier Uiversity

Dettagli

Capitolo uno STATISTICA DESCRITTIVA BIVARIATA

Capitolo uno STATISTICA DESCRITTIVA BIVARIATA Capitolo uo STATISTICA DESCRITTIVA BIVARIATA La statistica bidimesioale o bivariata si occupa dello studio del grado di dipedeza di due caratteri distiti della stessa uità statistica. E possibile, ad esempio,

Dettagli

Un problema! La letteratura riporta che i pazienti affetti da cancro. = mesi

Un problema! La letteratura riporta che i pazienti affetti da cancro. = mesi CONFRONTO TRA DUE MEDIE U problema! La letteratura riporta che i pazieti affetti da cacro hao ua sopravviveza media di 38.3 mesi e deviazioe stadard di 43.3 mesi: µ 38.3mesi σ 43.3mesi (la distribuzioe

Dettagli

Introduzione alla Statistica descrittiva. Definizioni preliminari. Definizioni preliminari. Fasi di un indagine statistica. Tabelle statistiche

Introduzione alla Statistica descrittiva. Definizioni preliminari. Definizioni preliminari. Fasi di un indagine statistica. Tabelle statistiche Itroduzioe alla Statistica descrittiva Defiizioi prelimiari È la scieza che studia i feomei collettivi o di massa. U feomeo è detto collettivo o di massa quado è determiato solo attraverso ua molteplicità

Dettagli

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia)

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia) Itroduzioe all assicurazioe. (Dispesa per il corso di Microecoomia) Massimo A. De Fracesco Uiversità di Siea December 18, 2013 1 ichiami su utilità attesa e avversioe al rischio Prima di cosiderare il

Dettagli

Appunti su rendite e ammortamenti

Appunti su rendite e ammortamenti Corso di Matematica I Facoltà di Ecoomia Dipartimeto di Matematica Applicata Uiversità Ca Foscari di Veezia Fuari Stefaia, fuari@uive.it Apputi su redite e ammortameti 1. Redite Per redita si itede u isieme

Dettagli

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia per manager. Prima versione, marzo 2013; versione aggiornata, marzo 2014)

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia per manager. Prima versione, marzo 2013; versione aggiornata, marzo 2014) Itroduzioe all assicurazioe. (Dispesa per il corso di Microecoomia per maager. Prima versioe, marzo 2013; versioe aggiorata, marzo 2014) Massimo A. De Fracesco Uiversità di Siea March 14, 2014 1 Prezzo

Dettagli

Modelli multiperiodali discreti. Strategie di investimento

Modelli multiperiodali discreti. Strategie di investimento Modelli multiperiodali discreti Cosideriamo ora modelli discreti cioè co u umero fiito di stati del modo multiperiodali, cioè apputo co più periodi. Il prototipo di questa classe di modelli è il modello

Dettagli

CAPITOLO UNDICESIMO VARIABILI CASUALI 1. INTRODUZIONE

CAPITOLO UNDICESIMO VARIABILI CASUALI 1. INTRODUZIONE CAPITOLO UNDICESIMO VARIABILI CASUALI SOMMARIO:. Itroduzioe. -. Variabili casuali discrete. - 3. La variabile casuale di Beroulli. - 4. La variabile casuale biomiale. -. La variabile casuale di Poisso.

Dettagli

Tutti i diritti di sfruttamento economico dell opera appartengono alla Esselibri S.p.A. (art. 64, D.Lgs. 10-2-2005, n. 30)

Tutti i diritti di sfruttamento economico dell opera appartengono alla Esselibri S.p.A. (art. 64, D.Lgs. 10-2-2005, n. 30) Copyright 2005 Esselibri S.p.A. Via F. Russo, 33/D 8023 Napoli Azieda co sistema qualità certificato ISO 400: 2003 Tutti i diritti riservati. È vietata la riproduzioe ache parziale e co qualsiasi mezzo

Dettagli

Sintassi dello studio di funzione

Sintassi dello studio di funzione Sitassi dello studio di fuzioe Lavoriamo a perfezioare quato sapete siora. D ora iazi pretederò che i risultati che otteete li SCRIVIATE i forma corretta dal puto di vista grammaticale. N( x) Data la fuzioe:

Dettagli

Capitolo 2 CALCOLO DELLE PROBABILITÀ

Capitolo 2 CALCOLO DELLE PROBABILITÀ CORSO DI LAUREA IN ECONOMIA AZIENDALE (Note didattiche) Bruo Chiadotto Fabrizio Cipollii Capitolo CALCOLO DELLE PROBABILITÀ Il calcolo delle probabilità, ato el cotesto dei giochi d azzardo si è sviluppato

Dettagli

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere Eserciio 1 7 puti. Dato il campo vettoriale v, + 1,, i si determii ua fuioe f > i modo tale che il campo vettoriale f v sia irrotaioale, cioè abbia le derivate icrociate uguali; ii si spieghi se i risultati

Dettagli

CORSO DI LAUREA IN ECONOMIA AZIENDALE Metodi Statistici per le decisioni d impresa (Note didattiche) Bruno Chiandotto

CORSO DI LAUREA IN ECONOMIA AZIENDALE Metodi Statistici per le decisioni d impresa (Note didattiche) Bruno Chiandotto CORSO DI LAUREA IN ECONOMIA AZIENDALE Metodi Statistici per le decisioi d impresa (Note didattiche) Bruo Chiadotto CALCOLO DELLE PROBABILITA Il calcolo delle probabilità, ato el cotesto dei giochi d azzardo

Dettagli

STIMA DEI DANNI 1) Che cosa si intende per danno economico?

STIMA DEI DANNI 1) Che cosa si intende per danno economico? STIMA DEI DANNI 1) Che cosa si itede per dao ecoomico? Per dao ecoomico si itede la perdita o la dimiuzioe di valore che u bee subisce a seguito di u siistro ( eveto o prevedibile) o da u fatto doloso

Dettagli

ESERCIZI DI STATISTICA DESCRITTIVA ALCUNI TRATTI DA PROVE D ESAME DA REALIZZARE ANCHE CON L AUSILIO DI UN FOGLIO DI CALCOLO. Angela Donatiello 1

ESERCIZI DI STATISTICA DESCRITTIVA ALCUNI TRATTI DA PROVE D ESAME DA REALIZZARE ANCHE CON L AUSILIO DI UN FOGLIO DI CALCOLO. Angela Donatiello 1 ESERCIZI DI STATISTICA DESCRITTIVA ALCUNI TRATTI DA PROVE D ESAME DA REALIZZARE ANCHE CON L AUSILIO DI UN FOGLIO DI CALCOLO Agela Doatiello 1 Esercizio. E stato tabulato il peso di ua certa popolazioe

Dettagli

Distribuzione di un carattere

Distribuzione di un carattere Distribuzioe di u carattere Dopo le fasi di acquisizioe e di registrazioe dei dati, si passa al loro cotrollo e quidi alle loro elaborazioe. Si defiisce distribuzioe uitaria semplice di u carattere l elecazioe

Dettagli

Elementi di matematica finanziaria

Elementi di matematica finanziaria Elemeti di matematica fiaziaria 18.X.2005 La matematica fiaziaria e l estimo Nell ambito di umerosi procedimeti di stima si rede ecessario operare co valori che presetao scadeze temporali differeziate

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE Ua fuzioe reale di ua variabile reale f di domiio A è ua legge che ad ogi x A associa u umero reale che deotiamo co f(x). Se A = N, la f è detta successioe di umeri reali. Se co si

Dettagli

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1 SUCCESSIONI e LIMITI DI SUCCESSIONI c Paola Gervasio - Aalisi Matematica 1 - A.A. 15/16 Successioi cap3b.pdf 1 Successioi Def. Ua successioe è ua fuzioe reale (Y = R) a variabile aturale, ovvero X = N:

Dettagli

STATISTICA ECONOMICA STATISTICA PER L ECONOMIA

STATISTICA ECONOMICA STATISTICA PER L ECONOMIA STATISTICA ECONOMICA STATISTICA PER L ECONOMIA aa 2009-2010 Operazioi statistiche elemetari Spesso ci si preseta il problema del cofroto tra dati Ad esempio, possiamo voler cofrotare feomei [ecoomici]

Dettagli

Economia Internazionale - Soluzioni alla IV Esercitazione

Economia Internazionale - Soluzioni alla IV Esercitazione Ecoomia Iterazioale - Soluzioi alla IV Esercitazioe 25/03/5 Esercizio a) Cosa soo le ecoomie di scala? Come cambia la curva di oerta i preseza di ecoomie di scala? Perchè queste oroo u icetivo al commercio

Dettagli

APPUNTI DI ECONOMIA ELEMENTARE. (tratti da A. MONTE Elementi di Impianti Industriali Cortina)

APPUNTI DI ECONOMIA ELEMENTARE. (tratti da A. MONTE Elementi di Impianti Industriali Cortina) ITIS OMAR Dipartimeto di Meccaica APPUNTI DI ECONOMIA ELEMENTARE (tratti da A. MONTE Elemeti di Impiati Idustriali Cortia) Si defiisce iteresse il dearo pagato per l'uso di u capitale otteuto i prestito

Dettagli

EQUAZIONI ALLE RICORRENZE

EQUAZIONI ALLE RICORRENZE Esercizi di Fodameti di Iformatica 1 EQUAZIONI ALLE RICORRENZE 1.1. Metodo di ufoldig 1.1.1. Richiami di teoria Il metodo detto di ufoldig utilizza lo sviluppo dell equazioe alle ricorreze fio ad u certo

Dettagli

Metodi Iterativi Generalità e convergenza Metodi di base Cenni sui metodi basati sul gradiente Cenni sui metodi multigriglia

Metodi Iterativi Generalità e convergenza Metodi di base Cenni sui metodi basati sul gradiente Cenni sui metodi multigriglia Itroduzioe Metodi diretti Elimiazioe di Gauss Decomposizioe LU Casi particolari Metodi Iterativi Geeralità e covergeza Metodi di base Cei sui metodi basati sul gradiete Cei sui metodi multigriglia 1 Itroduzioe

Dettagli

INVENTORY CONTROL. Ing. Lorenzo Tiacci

INVENTORY CONTROL. Ing. Lorenzo Tiacci INVENTORY CONTRO Ig. orezo Tiacci Testo di riferimeto: Ivetory Maagemet ad Productio Plaig ad Cotrol - Third Ed. E.A. Silver, D.F. Pyke, R. Peterso Wiley, 998 Idice. POITICA (s, ) (order poit, order quatity)

Dettagli

Capitolo 8 Le funzioni e le successioni

Capitolo 8 Le funzioni e le successioni Capitolo 8 Le fuzioi e le successioi Prof. A. Fasao Fuzioe, domiio e codomiio Defiizioe Si chiama fuzioe o applicazioe dall isieme A all isieme B ua relazioe che fa corrispodere ad ogi elemeto di A u solo

Dettagli

5 ln n + ln. 4 ln n + ln. 6 ln n + ln

5 ln n + ln. 4 ln n + ln. 6 ln n + ln DOMINIO FUNZIONE Determiare il domiio della fuzioe f = l e e + e + e Deve essere e e + e + e >, posto e = t si ha t e + t + e = per t = e e per t = / Il campo di esisteza è:, l, + Determiare il domiio

Dettagli

Complementi di Matematica e Statistica

Complementi di Matematica e Statistica Uiversità di Bologa Sede di Forlì Ao Accademico 009-00 Complemeti di Matematica e Statistica (Alessadro Lubisco) Aalisi delle compoeti pricipali INDICE Idice... i Aalisi delle compoeti pricipali... Premessa...

Dettagli

Capitolo Decimo SERIE DI FUNZIONI

Capitolo Decimo SERIE DI FUNZIONI Capitolo Decimo SERIE DI FUNZIONI SUCCESSIONI DI FUNZIONI I cocetti di successioe e di serie possoo essere estesi i modo molto aturale al caso delle fuzioi DEFINIZIONE Sia E u sottoisieme di  e, per ogi

Dettagli

1. Considerazioni generali

1. Considerazioni generali . osiderazioi geerali Il processaeto di ob su acchie parallele è iportate sia dal puto di vista teorico che pratico. Dal puto di vista teorico questo caso è ua geeralizzazioe dello schedulig su acchia

Dettagli

METODO DELLE PIOGGE PER IL CALCOLO DEI VOLUMI DI INVASO PER L INVARIANZA IDRAULICA

METODO DELLE PIOGGE PER IL CALCOLO DEI VOLUMI DI INVASO PER L INVARIANZA IDRAULICA METODO DELLE PIOGGE PER IL CALCOLO DEI OLUMI DI INASO PER L INARIANZA IDRAULICA 1. Premessa I queste brevi ote si preseta il metodo semplificato delle piogge illustradoe l implemetazioe i u foglio di calcolo

Dettagli

Le onde elettromagnetiche. Origine e natura, spettro delle onde e.m., la polarizzazione

Le onde elettromagnetiche. Origine e natura, spettro delle onde e.m., la polarizzazione Le ode elettromagetiche Origie e atura, spettro delle ode e.m., la polarizzazioe Origie e atura delle ode elettromagetiche: Ua carica elettrica che oscilla geera u campo elettrico E che oscilla e a questo

Dettagli

STIMA DEL FONDO RUSTCO

STIMA DEL FONDO RUSTCO STIMA DEL FONDO RUSTCO 1) Quali soo gli aspetti ecoomici che possoo essere presi i cosiderazioe ella stima dei fodi rustici? La stima di u fodo rustico può essere fatta applicado i segueti aspetti ecoomici:

Dettagli

Appunti di matematica Percorso

Appunti di matematica Percorso Biaca Arrigoi Apputi di matematica Percorso Statistica e probabilità EDIZIONE RIFORMA Biaca Arrigoi Apputi di matematica Percorso Statistica e probabilità EDIZIONE RIFORMA iteret: www.cedamscuola.it e-mail:

Dettagli

Esempio. Le variabili casuali/3. X = x i è un evento. Si supponga che che le seguenti coppie di lettere siano equiprobabili

Esempio. Le variabili casuali/3. X = x i è un evento. Si supponga che che le seguenti coppie di lettere siano equiprobabili E u prodotto dell esperimeto Le variabili casuali/3 La variabile casuale è ua fuzioe che associa ad ogi eveto dell'uiverso degli eveti uo ed u solo umero reale. Esempio Si suppoga che che le segueti coppie

Dettagli

Soluzione La media aritmetica dei due numeri positivi a e b è data da M

Soluzione La media aritmetica dei due numeri positivi a e b è data da M Matematica per la uova maturità scietifica A. Berardo M. Pedoe 6 Questioario Quesito Se a e b soo umeri positivi assegati quale è la loro media aritmetica? Quale la media geometrica? Quale delle due è

Dettagli

LA GESTIONE DELLA QUALITA : IL TOTAL QUALITY MANAGEMENT

LA GESTIONE DELLA QUALITA : IL TOTAL QUALITY MANAGEMENT LA GESTIONE DELLA QUALITA : IL TOTAL QUALITY MANAGEMENT La gestioe, il cotrollo ed il migliorameto della qualità di u prodotto/servizio soo temi di grade iteresse per l azieda. Il problema della qualità

Dettagli

Problemi di Scheduling Definizioni. Problemi di Scheduling Definizioni. Problemi di Scheduling Definizioni. Problemi di Scheduling Definizioni

Problemi di Scheduling Definizioni. Problemi di Scheduling Definizioni. Problemi di Scheduling Definizioni. Problemi di Scheduling Definizioni Problemi di Schedulig Defiizioi I problemi di schedulig soo caratterizzati da tre isiemi: Attività (Task) T {T,T 2, T } macchie (Machies) P {P,P 2, P m } Risorse R {R,R 2, R s } Schedulig: assegare m Macchie

Dettagli

Matematica Finanziaria

Matematica Finanziaria Corso di Matematica Fiaziaria a.a. 202/203 Testo a cura del Prof. Sergio Biachi Programma Operazioi fiaziarie i codizioi di certezza L operazioe fiaziaria elemetare Operazioi a proti e a termie Regimi

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2006

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2006 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 006 Il cadidato risolva uo dei due problemi e 5 dei 0 quesiti i cui si articola il questioario. PRBLEMA U filo metallico di lughezza l viee utilizzato

Dettagli

APPUNTI DI MATEMATICA ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1)

APPUNTI DI MATEMATICA ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1) ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1) I umeri aturali hao u ordie; ogi umero aturale ha u successivo (otteuto aggiugedo 1), e ogi umero aturale diverso da zero ha u precedete (otteuto sottraedo 1).

Dettagli

TEORIA DEI VALORI ESTREMI E APPLICAZIONI AL CALCOLO DEL VALUE AT RISK

TEORIA DEI VALORI ESTREMI E APPLICAZIONI AL CALCOLO DEL VALUE AT RISK UNIVERSITA DI URBINO FACOLTA DI ECONOMIA TEORIA DEI VALORI ESTREMI E APPLICAZIONI AL CALCOLO DEL VALUE AT RISK Giaa Figà-Talamaca Uiversità della Calabria Vale at Risk 1 Il Vale at Risk (Valore a Rischio

Dettagli

Distribuzioni di probabilità Unità 79

Distribuzioni di probabilità Unità 79 Prerequisiti: - Primi elemeti di probabilità e statistica. - Nozioi di calcolo combiatorio. - Rappresetazioe di puti e rette i u piao cartesiao. Questa uità iteressa tutte le scuole ad eccezioe del Liceo

Dettagli

CAPITOLO 5 TEORIA DELLA SIMILITUDINE

CAPITOLO 5 TEORIA DELLA SIMILITUDINE CAPITOLO 5 TEORIA DELLA SIMILITUDINE 5.. Itroduzioe La Teoria della Similitudie ha pricipalmete due utilizzi: Estedere i risultati otteuti testado ua sigola macchia ad altre codizioi operative o a ua famiglia

Dettagli

Principi base di Ingegneria della Sicurezza

Principi base di Ingegneria della Sicurezza Pricipi base di Igegeria della Sicurezza L aalisi delle codizioi di Affidabilità del sistema si articola i: (i) idetificazioe degli sceari icidetali di riferimeto (Eveti critici Iiziatori - EI) per il

Dettagli

, l'insieme dei numeri interi relativi: 0, 1, 1, 2, 2, infinito. m dove m e n sono elementi di. Le frazioni hanno tre

, l'insieme dei numeri interi relativi: 0, 1, 1, 2, 2, infinito. m dove m e n sono elementi di. Le frazioni hanno tre Uiversità Boccoi. Ao accademico 00 00 Corso di Matematica Geerale Prof. Fabrizio Iozzi email: fabrizio.iozzi@ui-boccoi.it Lezioi / Gli isiemi umerici Gli isiemi umerici co i quali lavoreremo soo:, l'isieme

Dettagli

Una funzione è una relazione che ad ogni elemento del dominio associa uno e un solo elemento del codominio

Una funzione è una relazione che ad ogni elemento del dominio associa uno e un solo elemento del codominio Radicali Per itrodurre il cocetto di radicali che già avete icotrato alle medie quado avete imparato a calcolare la radice quadrata e cubica dei umeri iteri, abbiamo bisogo di rivedere il cocetto di uzioe

Dettagli

9. MACCHINE CON COLLETTORE A LAMELLE (A CORRENTE CONTINUA).

9. MACCHINE CON COLLETTORE A LAMELLE (A CORRENTE CONTINUA). 9. MACCHINE CON COLLETTOE A LAMELLE (A COENTE CONTINUA). 1. Geeralità e caratteristiche costruttive. Itrisecamete più complesse delle macchie sicroe e asicroe, le macchie co collettore a lamelle soo ate

Dettagli

Appunti sulla MATEMATICA FINANZIARIA

Appunti sulla MATEMATICA FINANZIARIA INTRODUZIONE Apputi sulla ATEATIA FINANZIARIA La matematica fiaziaria si occupa delle operazioi fiaziarie. Per operazioe fiaziaria si itede quella operazioe ella quale avviee uo scambio di capitali, itesi

Dettagli

A = 10 log. senϕ = n n (3)

A = 10 log. senϕ = n n (3) CORSO DI LABORATORIO DI FISICA A Misure co fibre ottiche Scopo dell esperieza è la misura dell atteuazioe e dell apertura umerica di fibre ottiche di tipo F-MLD-500. Teoria dell esperieza La fisica sulla

Dettagli

ANALISI STATISTICA DEI DATI

ANALISI STATISTICA DEI DATI AALISI STATISTICA DEI DATI STATISTICA E PROBABILITA' Misura di ua gradezza fisica Errori dovuti a: Strumeti di misura Parametri o cotrollabili da sperimetatore da valore vero gradezza varia da misura a

Dettagli

Lezione 2 - Operazioni sugli eventi. Assiomi della probabilità. -Intro ad excel OPERAZIONI SUGLI EVENTI ALETORI ASSIOMI DELLA PROBABILITÀ

Lezione 2 - Operazioni sugli eventi. Assiomi della probabilità. -Intro ad excel OPERAZIONI SUGLI EVENTI ALETORI ASSIOMI DELLA PROBABILITÀ Lezioe 2 - Operazioi sugli eveti. ssiomi della probabilità. -Itro ad excel 1 OERZIONI SUGLI EVENTI LETORI SSIOMI DELL ROILITÀ GRUO MT06 Dip. Matematica, Uiversità di Milao - robabilità e Statistica per

Dettagli

Complessità Computazionale

Complessità Computazionale Uiversità degli studi di Messia Facoltà di Igegeria Corso di Laurea i Igegeria Iformatica e delle Telecomuicazioi Fodameti di Iformatica II Prof. D. Brueo Complessità Computazioale La Nozioe di Algoritmo

Dettagli

Capitolo 6 Teoremi limite classici

Capitolo 6 Teoremi limite classici Capitolo 6 Teoremi limite classici Abstract I Teoremi limite classici, la legge dei gradi umeri e il teorema limite cetrale, costituiscoo il ucleo del Calcolo delle Probabilità, per la loro portata sia

Dettagli

Indagini sui coregoni del Lago Maggiore: Analisi sui pesci catturati nel 2010

Indagini sui coregoni del Lago Maggiore: Analisi sui pesci catturati nel 2010 Idagii sui coregoi del Lago Maggiore: Aalisi sui pesci catturati el 1 Rapporto commissioato dal Dipartimeto del territorio, Ufficio della caccia e della pesca, Via Stefao Frascii 17 51 Bellizoa Aprile

Dettagli

DIPENDENZA O CONNESSIONE. Ovvero quando la conoscenza della modalità di X presente su un unità è informativa della presenza della modalità di Y.

DIPENDENZA O CONNESSIONE. Ovvero quando la conoscenza della modalità di X presente su un unità è informativa della presenza della modalità di Y. DIPENDENZA O CONNESSIONE Due caratteri X e Y cogiutamete cosiderati si dicoo tra loro coessi quado le modalità di u carattere ifluezao il maifestarsi delle modalità dell altro. Ovvero quado la coosceza

Dettagli

Estimo rurale appunti 2005. Estimo rurale

Estimo rurale appunti 2005. Estimo rurale Estimo rurale apputi 2005 Estimo rurale L estimo rurale rietra ell ambito delle disciplie ecoomiche, ma metre l ecoomia si occupa della coosceza della realtà, esso si occupa della valutazioe dei bei. Compito

Dettagli

Foglio di esercizi N. 1 - Soluzioni

Foglio di esercizi N. 1 - Soluzioni Foglio di esercizi N. - Soluzioi. Determiare il domiio della fuzioe f) = log 3 + log 3 3)). Deve essere + log 3 3) > 0, ovvero log 3 3) >, ovvero prededo l espoeziale i base 3 di etrambi i membri) 3 >

Dettagli

Piano Lauree Scientifiche 2010-2011 Laboratorio di Autovalutazione per il miglioramento della preparazione per i corsi di laurea scientifici

Piano Lauree Scientifiche 2010-2011 Laboratorio di Autovalutazione per il miglioramento della preparazione per i corsi di laurea scientifici Piao Lauree Scietifiche 2010-2011 Laboratorio di Autovalutazioe per il migliorameto della preparazioe per i corsi di laurea scietifici Caserta, 14 febbraio 2011 Prof.ssa Maria Cocozza Quate possibilità

Dettagli

Capitolo 3 CARATTERIZZAZIONE MECCANICA DELLE FIBRE

Capitolo 3 CARATTERIZZAZIONE MECCANICA DELLE FIBRE Capitoo 3 CARATTERIZZAZIONE MECCANICA DELLE FIBRE 3.1 LA TEORIA DI WEIBULL I comportameto meccaico dee fibre di giestra e di juta è stato caratterizzato mediate o studio dea resisteza a trazioe dee fibre

Dettagli

Matematica Finanziaria

Matematica Finanziaria Corso di Matematica Fiaziaria a.a. 202/203 Testo a cura del Prof. Sergio Biachi Programma Operazioi fiaziarie i codizioi di certezza L operazioe fiaziaria elemetare Operazioi a proti e a termie Regimi

Dettagli

Esercitazione 2 Progetto e realizzazione di un semplice sintetizzatore musicale basato su FPGA

Esercitazione 2 Progetto e realizzazione di un semplice sintetizzatore musicale basato su FPGA Architetture dei sistemi itegrati digitali Alessadro Bogliolo Esercitazioe 2 Progetto e realizzazioe di u semplice sitetizzatore musicale basato su FPGA (A) Defiizioe della specifica ed esperimeti prelimiari

Dettagli

Terzo appello del. primo modulo. di ANALISI 18.07.2006

Terzo appello del. primo modulo. di ANALISI 18.07.2006 Terzo appello del primo modulo di ANALISI 18.7.26 1. Si voglioo ifilare su u filo delle perle distiguibili tra loro solo i base alla dimesioe: si hao a disposizioe perle gradi di diametro di 2 cetimetri

Dettagli

Stima di un immobile a destinazione alberghiera APPROFONDIMENTI

Stima di un immobile a destinazione alberghiera APPROFONDIMENTI APPROFONDIMENTI www.shutterstock.com/vladitto Stima di u immobile a destiazioe alberghiera di Maria Ciua (Ricercatore di Estimo Facoltà di Igegeria dell Uiversità di Palermo) I geere ell expertise immobiliare

Dettagli

PARTE QUARTA Teoria algebrica dei numeri

PARTE QUARTA Teoria algebrica dei numeri Prerequisiti: Aelli Spazi vettoriali Sia A u aello commutativo uitario PARTE QUARTA Teoria algebrica dei umeri Lezioe 7 Cei sui moduli Defiizioe 7 Si dice modulo (siistro) su A (o semplicemete, A-modulo)

Dettagli

Elementi di calcolo delle probabilità

Elementi di calcolo delle probabilità 1 Elemeti di calcolo delle probabilità 5 1. Itroduzioe La statistica è ua scieza, strumetale ad altre, cocerete la determiazioe dei metodi scietifici da seguire per raccogliere, elaborare e valutare i

Dettagli