Dal libro di testo Mazzoli- Nigro Voci Fondamenti di Fisica II edizione Capitolo 6 (4) N.: 6.2, 6.7, 6.12, 6.14,

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Dal libro di testo Mazzoli- Nigro Voci Fondamenti di Fisica II edizione Capitolo 6 (4) N.: 6.2, 6.7, 6.12, 6.14,"

Transcript

1 Elenco degli esercizi che saranno presi in considerazione per la II prova di esonero di Fisica Generale per Edile Architettura Anno Accademico 2010/11. Dal libro di testo Mazzoli- Nigro Voci Fondamenti di Fisica II edizione Capitolo 6 (4) N.: 6.2, 6.7, 6.12, 6.14, Capitolo 7 (10) N.: 7.7, 7.8, 7.10, 7.11, 7.16, 7.17, 7.19, 7.27, 7.31, 7.48 Capitolo 8 (6) N.: 8.1, 8.4, 8.6, , 8.15 Capitolo 9 (1) N.: 9.3 Capitolo 12 (4) N.: 12.1, 12.2, 12.4, 12.6 Capitolo 13 (13) N.: 13.10, 13.27, 13.28, 13.29, , 13.33, 13.34, 13.35, 13.36, 13.37, 13.38, 13.39, Capitolo 14 (13) N.: 14.3, 14.7, 14.9, 14.11, 14.12, 14,15, 14.17, 14.18, 14.20, 14,21, 14.24, 14.25, URTI (11) 1. Una palla d acciaio di massa kg è agganciata ad una corda lunga 68.7 cm fissata all altra estremità e viene abbandonata quando la corda è orizzontale. Giunta nel punto più basso della traiettoria, la palla colpisce un blocco d acciaio di 2.63 kg inizialmente fermo su una superficie orizzontale priva di attrito. L urto è elastico. Si calcoli la velocità della palla e quella del blocco subito dopo l urto. Cosa cambia se l urto è totalmente anelastico?. 2. Un proiettile di massa 20 g è sparato orizzontalmente contro un blocco di legno di 2.5 kg fermo su una superficie orizzontale. Il coefficiente di attrito dinamico tra il blocco e il piano orizzontale è 0,20. Il proiettile rimane conficcato nel blocco che, dopo l'urto, percorre un tratto di 2.5 m prima di fermarsi. 1) Come classificheresti, dal punto di vista dell'energia, questo urto? Quali forze sono responsabili dell eventuale perdita di energia durante l urto? 2) Durante l'urto tra blocco e proiettile sono presenti delle forze esterne? Quali? 3) Nell urto si conserva la quantità di moto? 4) Qual è la velocità, in m/s, del blocco subito dopo che il proiettile si è conficcato? 5) Qual era la velocità, in m/s, del proiettile prima dell'urto? Motivare le risposte.

2 3. Durante una partita a biliardo, un giocatore vuole mettere la palla dell avversario nella buca di sinistra, vedi figura. Se l angolo verso la buca di sinistra è di 35, di quale angolo θ viene deflessa la palla del giocatore? Assumere che l attrito e l effetto siano trascurabili, che l urto sia perfettamente elastico e che le due palle abbiano la stessa massa. y V 1i 35 θ V 2f x V 1f 4. Un blocco di massa m 1 =2.0 kg scivola su di un piano privo di attrito alla velocità di 10 m/s. Davanti a questo blocco, sulla stessa linea e nello stesso verso, si muove a 3.0 m/s un secondo blocco, di massa m 2 =5.0kg. Una molla priva di massa, con costante elastica k=1120 N/m, è attaccata sul retro di m 2. Qual è la massima compressione della molla quando i due blocchi si urtano? Quali sono le velocità finali dei due corpi dopo l urto. N. 5 Una particella di massa m e velocità v o =7m/s colpisce una seconda particella di uguale massa ed inizialmente ferma. Dopo l urto la prima particella si muove lungo una direzione che forma un angolo di 35 rispetto alla direzione iniziale, assunta come asse x con velocità v 1 =5.2 m/s. Determinare il modulo e la direzione della velocità v 2 della seconda particella e stabilire se l urto è elastico.

3 N. 6 In un esperimento tipo pendolo balistico il proiettile ha massa m=0.1 kg e velocità 200 m/s e penetra nel corpo in un tempo τ=5x10-4 s; la massa totale dopo l urto è 10 kg. Calcolare a) di quanto si alza il pendolo; b) il valore della forza media sul proiettile durante l urto; c) il valore della tensione nella fune subito prima e subito dopo l urto 7. Due sfere metalliche, sospese a cavetti verticali come in figura, sono inizialmente a contatto. La sfera 1 con massa m 1 =30g, viene lasciata libera dopo essere stata tirata verso sinistra fino all altezza h1=8.0 cm. Ritornata cadendo alla posizione iniziale, subisce un urto elastico contro la sfera 2, di massa m2=75 gr. 1. Qual è la velocità della sfera 1 subito dopo l urto? 2. a che altezza arriverà la sfera 1 dopo l urto? 3. e la sfera 2? 4. Durante l urto c è la presenza di forze esterne? Che effetto hanno sull urto? 8. Un corpo in moto, con massa 2.0 kg, dopo un urto elastico con un altro corpo fermo prosegue nella direzione primitiva ma con un quarto della sua velocità iniziale. a) Qual è la massa del corpo investito? b) Qual è la velocità del centro di massa dei due corpi se la velocità iniziale del primo era di 4.0 m/s? 9. Una palla con massa di 200 gr, colpisce perpendicolarmente una parete alla velocità di 8 m/s e rimbalza all indietro sulla stessa traiettoria con appena il 39% dell'energia cinetica iniziale (l energia cinetica subito dopo l urto è il 39% di quella prima dell urto). L urto è elastico, anelastico o completamente anelastico? Qual è la velocità della palla immediatamente dopo l'urto con la parete? Qual è stata l'intensità dell'impulso applicato dalla palla sulla parete? E quello della parete sulla palla? Se la durata del contatto della palla con la parete è stato di 8 ms (millisecondi), qual è stata l'intensità della forza media esercitata dalla parete sulla palla? Nell'urto della palla con la parete, la quantità di moto si conserva? 10.Una molecola di gas di velocità v 1 =300 m/s urta elasticamente un'altra molecola identica ferma. Dopo l'urto la prima molecola si muove sulla retta che forma l'angolo θ 1 =30, rispetto alla direzione iniziale. Determinare le velocità finali delle molecole. y y v 1 1 v' 1 Cognome 1 e Nome 2 x Matricola x v' 2 2

4 11. Un proiettile di massa m = 10 g colpisce, restandovi conficcato, un blocco di massa M = 990 g che sta fermo su una superficie orizzontale liscia ed è fissato ad una molla come mostrato in figura. L'urto è tale da comprimere la molla di Δx = 10 cm. Una precedente calibrazione della molla ha indicato che occorre una forza F = 12 N per comprimere la molla di 3 cm. Calcolare: a) la massima energia potenziale acquistata dalla molla; b) la velocità V del blocco dopo l'urto; c) la velocità iniziale v del proiettile d) la frazione di energia cinetica dissipata nell'urto.

5 Corpi rigidi (8) 1. Un corpo rigido è formato da tre asticelle sottili identiche di lunghezza L = 0.6 m, unite tra loro in modo da assumere la forma di una H come mostrato in figura. L insieme è libero di ruotare attorno ad un asse orizzontale fisso, che coincide con una delle gambe della H. Partendo da una situazione di riposo in cui il piano della H è orizzontale, il sistema è lasciato libero di cadere. Qual è la velocità angolare del corpo quando il piano della H arriva in posizione verticale? 2. Due corpi sono appesi mediante fili ideali a due pulegge (carrucole) solidali tra loro e girevoli attorno ad un asse comune, come illustrato in figura. Il momento d inerzia complessivo del sistema delle due pulegge è I = 40 kg m2 ed i raggi dei dischi sono R1 = 0.4 m e R2 = 1.2 m. I fili non slittano sulle pulegge. Se m1 = 24 kg e il sistema è inizialmente fermo, si trovi m2 affinchè il sistema rimanga in equilibrio. A m1 viene aggiunta una massa m3 = 12 kg, si trovino l accelerazione angolare delle pulegge e le tensioni dei fili. m 1 m 2 3. Nella figura un blocco scivola giù su una superficie priva di attrito mentre una sfera rotola senza strisciare su un piano scabro ed inclinato dello stesso angolo. I due corpi hanno la stessa massa, partono da fermi dal punto A e passano dopo un certo tempo per il medesimo punto B. (a) Nella discesa il lavoro svolto sul blocco dalla forza di gravità è maggiore, minore o uguale a quello svolto sulla sfera? (b) Per quale dei due corpi si conserva l energia meccanica totale? In B quale corpo ha (c) maggiore energia cinetica? (d) maggiore energia cinetica traslazionale? (e) maggiore velocità? 4. Tre sottili asticelle omogenee di uguali masse (M = 2 kg) ed uguali lunghezze (L = 50 cm) sono connesse rigidamente fra di loro, in modo tale che gli estremi sono ai vertici di un esagono regolare. L estremo di un asticella è vincolato ad un perno orizzontale così che il sistema può ruotare sul piano verticale (vedi figura). Calcolare: il momento d inerzia del sistema rispetto al perno; la velocità angolare ω assunta dal sistema dopo una rotazione di un angolo θ = 900 se esso viene lasciato libero, fermo, con il baricentro alla stessa altezza del perno.

6 5. Su un piano orizzontale liscio è poggiata una massa m 1 = 10 kg. Essa viene messa in movimento dalla discesa, sotto l azione del peso, di una massa m 2 = 4 kg che è collegata alla prima da un filo che si avvolge su una puleggia di raggio r=20 cm e momento di inerzia, rispetto al proprio asse, di 2 kgm 2. Calcolare l accelerazione della massa m 1 e i valori delle tensioni nei due rami della corda. m 1 m 2 6. Un disco omogeneo di raggio 10 cm e massa 2 kg è montato in modo da poter ruotare liberamente attorno ad un asse orizzontale passante per un punto del bordo del disco. a) determinare il momento di inerzia del disco rispetto all'asse di rotazione b) Se il disco viene lasciato libero, partendo da fermo, da una posizione in cui il suo centro si trova alla stessa altezza dell'asse di rotazione, trovare la velocità angolare e la velocità del suo centro quando questo passa per la sua posizione più bassa; c) Determinare infine l'accelerazione angolare del disco nell'istante in cui viene lasciato libero. O C 7. Un corpo rigido a forma di T è costituito da un asta di massa 1 kg e lunghezza 1m a cui è attaccata rigidamente ad uno dei suoi estremi una seconda asta di lunghezza 25 cm e massa 250 g. L altro estremo della sbarra è incernierato ad un asse orizzontale, ortogonale al corpo rigido, privo di attrito. Calcolare: a) il momento di inerzia del corpo rigido rispetto all asse di rotazione. b) La posizione del Centro di Massa del corpo. Il corpo rigido viene abbandonato da fermo quando la posizione della sbarra più lunga è orizzontale. Quando la sbarra più lunga raggiunge la posizione verticale urta elasticamente un blocco di massa 0.5 kg che inizia a muoversi su di un piano orizzontale liscio. Calcolare: c) La velocità del blocco dopo l urto; d) l ampiezza delle oscillazioni del pendolo e) la loro durata (supponendo che siano piccole); f) la variazione di quantità di moto subita dal sistema blocco più corpo rigido.

7 8. Un corpo rigido è costituito da un asta omogenea di sezione costante, massa m=800g e lunghezza L=32 cm, con una estremità saldata al bordo di un disco di raggio R = 4cm e massa pari a 200 g come mostrato in figura. Il sistema può ruotare liberamente attorno ad un asse fisso orizzontale passante per l estremo O dell asta. a) Calcolare la distanza del centro di massa del sistema dall asse di rotazione passante per O. b) Calcolare il momento di inerzia del sistema rispetto all asse di rotazione ( c) Calcolare il periodo delle piccole oscillazioni d) Il sistema viene lasciato con velocità nulla quando l asta forma un angolo di 10 rispetto alla verticale passante per O. Calcolare la velocità angolare quando l asta arriva in posizione verticale. O θ

8 Termodinamica (solo Edile-Architettura) (8) 1. Una macchina termica trasforma 1.00 mol di un gas biatomico ideale lungo il ciclo mostrato in figura. Il processo 1 2 si svolge a pressione costante, il processo 2 3 si svolge a volume costante e il processo 3 1 è adiabatico. La temperatura nello stato 1, T 1, è 600 K. La pressione nello stato 1 è bar, mentre quella nello stato 3 è bar. a) Determinare la temperatura T 2 e T 3, la pressione P 2 e il volume nei punti 1,2,3. b) Il calore Q scambiato, il lavoro W effettuato e la variazione di energia interna in ciascuna delle tre trasformazioni. c) La variazione di entropia in ciascuna delle trasformazioni. (R=8.314 J/(molK) 2. Un cilindro a pareti adiabatiche è chiuso da uno stantuffo di massa trascurabile, pure adiabatico di sezione S = 1 dm 2. Il cilindro disposto verticalmente contiene n = 0.5 moli di gas ideale monoatomico a temperatura T o = 300 K e a pressione p o = 1 atm. Sullo stantuffo viene poggiato un corpo di massa M = 120 kg, dopo una serie di oscillazioni lo stantuffo si ferma in una nuova posizione. Calcolare: a) i parametri del gas nello stato finale; b) la variazione di entropia del gas; la variazione di entropia dell'universo 3. Un vaso di massa 150 g di rame contiene 220 g di acqua, entrambi alla temperatura di 20 C. un cilindro di 300 g di rame molto caldo viene immerso nell'acqua facendola bollire e 5 g di acqua vengono trasformati in vapore. La temperatura finale del sistema è di 100 C. Quanto calore è stato trasferito all'acqua? E al vaso? Qual era la temperatura iniziale del cilindro? Di quanto è variata l'entropia dell'universo? Si suppongano trascurabili le perdite di calore verso l'ambiente e il calore specifico del rame 386 J/kgK, quello dell'acqua 4190 J/kgK il calore latente di evaporazione dell'acqua pari a 2256 kj/kg. 4. Alla pressione atmosferica l etanolo bolle alla temperatura di 78 C, congela a 114 C e possiede un calore latente di evaporazione di 879 kj/kg, un calore latente di fusione di 109 kj/kg e un calore specifico di 2.43 kj/(kg K). Quanto calore deve cedere un campione di massa 0,510 kg, inizialmente in fase aeriforme alla temperatura di 78 C, per diventare solido alla temperatura di 114 C? Qual è la variazione di entropia subita dal campione in questo processo? 5. Una persona prepara del te freddo mescolando 520 gr di tè caldo (sostanzialmente acqua) con una eguale quantità di ghiaccio a 0. Quali sono la temperatura finale e la massa di ghiaccio eventualmente restante se la temperatura del tè caldo è di a) 90 b) 70? Calcolare nel secondo caso la variazione di entropia dell'universo. Il calore latente di fusione del ghiaccio è 333x10 3 J/kg, il calore specifico dell'acqua è 4190 J/(kg C).

9 6. In un cilindro, munito di un pistone a tenuta, sono contenuti 20 grammi di idrogeno (molecola H 2, massa molecolare M=2 u) alla pressione atmosferica (1.01x10 5 Pa). Il gas viene riscaldato a pressione costante dalla temperatura di 30 C alla temperatura di 40 C, tenendolo a contatto con un serbatoio di calore alla temperatura di 50 C. Supponendo che durante la trasformazione il gas si comporti come un gas perfetto, determinare: P g) Il numero di moli. e =1atm h) Il lavoro fatto dal gas. i) La variazione di energia interna. j) La variazione di entropia del gas e! dell universo. 50 C 7. Se 800 cal di calore passano da un serbatoio di calore a 500 K ad un altro serbatoio di calore a 300 K attraverso una sbarretta di metallo conduttrice, trovare la variazione di entropia a) del serbatoio caldo b) del serbatoio freddo c) della sbarretta di metallo d) dell universo e) Determinare infine la quantità di energia che si è degradata nella trasformazione. Spiegare cosa si intende per energia degradata. 8. Una mole di gas ideale biatomico, inizialmente in equilibrio alla pressione p 1 e volume V 1 =12x10-3 m 3, si espande adiabaticamente contro la pressione esterna costante p 2 =1.013 bar fino la volume V 2 =25x10-3 m 3. Il gas viene poi compresso isotermicamente e reversibilmente e in tale processo cede il calore Q 23 = J. Infine il gas ritorna allo stato iniziale mediante una trasformazione reversibile in cui compie il lavoro W 31 =6500 J. Calcolare i valore di T 1, V 3,Q 31 e la variazione di entropia dell universo in un ciclo.

Capitolo 7 (10) N.: 7.7, 7.8, 7.10, 7.11, 7.16, 7.17, 7.19, 7.27, 7.31, 7.48

Capitolo 7 (10) N.: 7.7, 7.8, 7.10, 7.11, 7.16, 7.17, 7.19, 7.27, 7.31, 7.48 Elenco degli esercizi che saranno presi in considerazione per la II prova di esonero di Fisica Generale per Edile AL Anno Accademico 2010/11. Dal libro di testo Mazzoli- Nigro Voci Fondamenti di Fisica

Dettagli

una parete di altezza h = 2 m dopo un intervallo di

una parete di altezza h = 2 m dopo un intervallo di 17 settembre 2013 Prova scritta di Fisica Generale per Edile (esercizi 1, 2,3) Prova scritta di Fisica Generale per Edile-Architettura (esercizi 1,2,4) Come fare lo scritto: Giustificare partendo da leggi

Dettagli

UNIVERSITÀ DI CATANIA - FACOLTÀ DI INGEGNERIA D.M.F.C.I. C.L. INGEGNERIA ELETTRONICA (A-Z) A.A. 2008/2009

UNIVERSITÀ DI CATANIA - FACOLTÀ DI INGEGNERIA D.M.F.C.I. C.L. INGEGNERIA ELETTRONICA (A-Z) A.A. 2008/2009 COMPITO DI FISICA SPERIMENTALE I DEL 05/12/2008 1. Un proiettile di massa M=10 kg, nel vertice della sua traiettoria parabolica esplode in due frammenti di massa m 1 e m 2 che vengono proiettati nella

Dettagli

Esercizio 1 L/3. mg CM Mg. La sommatoria delle forze e dei momenti deve essere uguale a 0 M A. ω è il verso di rotazione con cui studio il sistema

Esercizio 1 L/3. mg CM Mg. La sommatoria delle forze e dei momenti deve essere uguale a 0 M A. ω è il verso di rotazione con cui studio il sistema Esercizio 1 Una trave omogenea di lunghezza L e di massa M è appoggiata in posizione orizzontale su due fulcri lisci posti alle sue estremità. Una massa m è appoggiata sulla trave ad una distanza L/3 da

Dettagli

[3] Un asta omogenea di sezione trascurabile, di massa M = 2.0 kg e lunghezza l = 50 cm, può ruotare senza attrito in un piano verticale x y attorno a

[3] Un asta omogenea di sezione trascurabile, di massa M = 2.0 kg e lunghezza l = 50 cm, può ruotare senza attrito in un piano verticale x y attorno a [1] Un asta rigida omogenea di lunghezza l = 1.20 m e massa m = 2.5 kg reca ai due estremi due corpi puntiformi di massa pari a 0.2 kg ciascuno. Tale sistema è in rotazione in un piano orizzontale attorno

Dettagli

Anno Accademico Fisica I 12 CFU Esercitazione n.8: Dinamica dei corpi rigidi

Anno Accademico Fisica I 12 CFU Esercitazione n.8: Dinamica dei corpi rigidi Anno Accademico 2015-2016 Fisica I 12 CFU Esercitazione n.8: Dinamica dei corpi rigidi Esercizio n.1 Una carrucola, costituita da due dischi sovrapposti e solidali fra loro di massa M = 20 kg e m = 15

Dettagli

Anno Accademico Fisica I 12 CFU Esercitazione n.7: Dinamica dei corpi rigidi

Anno Accademico Fisica I 12 CFU Esercitazione n.7: Dinamica dei corpi rigidi Anno Accademico 2016-2017 Fisica I 12 CFU Esercitazione n.7: Dinamica dei corpi rigidi Esercizio n.1 Una carrucola, costituita da due dischi sovrapposti e solidali fra loro di massa M = 20 kg e m = 15

Dettagli

direzione x. [x = 970,89 m ; θ = ]

direzione x. [x = 970,89 m ; θ = ] Prof. Roberto Capone Corso di Fisica e Geologia Mod. FISICA Esempi Prove scritte La velocità angolare di una ruota diminuisce uniformemente da 24000 giri al minuto a 18000 giri al minuto in 10 secondi.

Dettagli

sfera omogenea di massa M e raggio R il momento d inerzia rispetto ad un asse passante per il suo centro di massa vale I = 2 5 MR2 ).

sfera omogenea di massa M e raggio R il momento d inerzia rispetto ad un asse passante per il suo centro di massa vale I = 2 5 MR2 ). ESERCIZI 1) Un razzo viene lanciato verticalmente dalla Terra e sale con accelerazione a = 20 m/s 2. Dopo 100 s il combustibile si esaurisce e il razzo continua a salire fino ad un altezza massima h. a)

Dettagli

M? La forza d attrito coinvolta è quella tra i due blocchi occorre quindi visualizzare la reazione normale al piano di contatto Il diagramma delle

M? La forza d attrito coinvolta è quella tra i due blocchi occorre quindi visualizzare la reazione normale al piano di contatto Il diagramma delle 6.25 (6.29 VI ed) vedi dispense cap3-mazzoldi-dinamica-part2 Dueblocchisonocomeinfiguraconm=16kg, M=88kgeconcoeff. d attrito statico tra i due blocchi pari a = 0.38. La superficie su cui poggia M è priva

Dettagli

Secondo Appello Estivo del corso di Fisica del

Secondo Appello Estivo del corso di Fisica del Secondo Appello Estivo del corso di Fisica del 25.7.2012 Corso di laurea in Informatica A.A. 2011-2012 (Prof. Paolo Camarri) Cognome: Nome: Matricola: Anno di immatricolazione: Problema n.1 Una semisfera

Dettagli

21 gennaio 2015 Prova scritta di Fisica Generale per Edile anni precedenti all aa 1013/14 (esercizi 1, 2,3) Prova scritta di Fisica Generale per Edile

21 gennaio 2015 Prova scritta di Fisica Generale per Edile anni precedenti all aa 1013/14 (esercizi 1, 2,3) Prova scritta di Fisica Generale per Edile 20 febbraio 2015 Prova scritta di Fisica Generale per Edile anni precedenti all aa 1013/14 (esercizi 1, 2,3) Prova scritta di Fisica Generale per Edile aa 1013/14 ed Edile-rchitettura (esercizi 2,3,4)

Dettagli

Esercizi sul corpo rigido.

Esercizi sul corpo rigido. Esercizi sul corpo rigido. Precisazioni: tutte le figure geometriche si intendono omogenee, se non è specificato diversamente tutti i vincoli si intendono lisci salvo diversamente specificato. Abbreviazioni:

Dettagli

Compito di Fisica Generale (Meccanica) 25/01/2011

Compito di Fisica Generale (Meccanica) 25/01/2011 Compito di Fisica Generale (Meccanica) 25/01/2011 1) Un punto materiale di massa m è vincolato a muoversi su di una guida orizzontale. Il punto è attaccato ad una molla di costante elastica k. La guida

Dettagli

m1. 75 gm m gm h. 28 cm Calcolo le velocità iniziali prima dell'urto prendendo positiva quella della massa 1: k 1

m1. 75 gm m gm h. 28 cm Calcolo le velocità iniziali prima dell'urto prendendo positiva quella della massa 1: k 1 7 Una molla ideale di costante elastica k 48 N/m, inizialmente compressa di una quantità d 5 cm rispetto alla sua posizione a riposo, spinge una massa m 75 g inizialmente ferma, su un piano orizzontale

Dettagli

Università degli Studi di Enna KORE Facoltà di Ingegneria e Architettura. 5 febbraio 2015 Prof.ssa M. Gulino

Università degli Studi di Enna KORE Facoltà di Ingegneria e Architettura. 5 febbraio 2015 Prof.ssa M. Gulino (parte II) C.d.L. Ing. Aerospaziale e delle Infrastrutture Aeronautiche 5 febbraio 2015 Prof.ssa M. Gulino Due sfere si avvicinano a uguali velocità scalari e si scontrano frontalmente in un urto elastico.

Dettagli

COMPITO DI FISICA SPERIMENTALE I DEL

COMPITO DI FISICA SPERIMENTALE I DEL COMPITO DI FISICA SPERIMENTALE I DEL 30/11/2007 1. Una slitta di massa M=150 kg, sul cui tetto è fissato un cannoncino di massa m=50 kg inclinato di un angolo α=30 rispetto all orizzontale, può scivolare

Dettagli

Esercizi e problemi supplementari sulla dinamica dei sistemi di punti materiali

Esercizi e problemi supplementari sulla dinamica dei sistemi di punti materiali Esercizi e problemi supplementari sulla dinamica dei sistemi di punti materiali A) Applicazione del teorema dell impulso + conservazione quantità di moto Problema n. 1: Un blocco A di massa m = 4 kg è

Dettagli

Esercitazione 13/5/2016

Esercitazione 13/5/2016 Esercitazione 3/5/206 Esercizio Un anello di massa m e raggio r rotola senza strisciare su un piano orizzontale con velocità v CM costante. Ad un certo istante inizia a salire lungo un piano inclinato.

Dettagli

Esercitazione 7. Soluzione. Il sistema è isolato, quindi l energia totale si conserva. Applicando il primo principio della termodinamica si ottiene:

Esercitazione 7. Soluzione. Il sistema è isolato, quindi l energia totale si conserva. Applicando il primo principio della termodinamica si ottiene: Esercitazione 7 Esercizio 1 Una massa m g = 20 g di ghiaccio a 0 C è contenuta in un recipiente termicamente isolato. Successivamente viene aggiunta una massa m a = 80 di acqua a 80 C. Quale sarà, all

Dettagli

Problemi aggiuntivi sulla Dinamica dei Sistemi di punti materiali: A) Impulso + conservazione quantità di moto

Problemi aggiuntivi sulla Dinamica dei Sistemi di punti materiali: A) Impulso + conservazione quantità di moto Problemi aggiuntivi sulla Dinamica dei Sistemi di punti materiali: A) Impulso + conservazione quantità di moto Problema n. 1: Un carro armato, posto in quiete su un piano orizzontale, spara una granata

Dettagli

Università degli studi di Palermo Corso di Laurea in Ingegneria Informatica Docente: Prof.ssa D. Persano Adorno

Università degli studi di Palermo Corso di Laurea in Ingegneria Informatica Docente: Prof.ssa D. Persano Adorno Esame di Fisica Generale (per laureandi) 19 giugno 2006 Problema 1: Un blocco di massa m 1 =2 kg ed un blocco di massa m 2 =6 kg sono collegati da una fune leggera tramite una puleggia a forma di disco

Dettagli

Prova scritta di Fisica Generale I Corso di studio in Astronomia 16 luglio 2013

Prova scritta di Fisica Generale I Corso di studio in Astronomia 16 luglio 2013 Prova scritta di Fisica Generale I Corso di studio in Astronomia 16 luglio 013 Problema 1 Un cubo di legno di densità ρ = 800 kg/m 3 e lato a = 50 cm è inizialmente in quiete, appoggiato su un piano orizzontale.

Dettagli

Risoluzione problema 1

Risoluzione problema 1 UNIVERSITÀ DEGLI STUDI DI PDOV FCOLTÀ DI INGEGNERI Ing. MeccanicaMat. Pari. 015/016 1 prile 016 Una massa m 1 =.5 kg si muove nel tratto liscio di un piano orizzontale con velocita v 0 = 4m/s. Essa urta

Dettagli

Problemi di dinamica del punto materiale

Problemi di dinamica del punto materiale Problemi di dinamica del punto materiale 1. Un corpo di massa M = 200 kg viene lanciato con velocità v 0 = 36 km/ora su un piano inclinato di un angolo θ = 30 o rispetto all orizzontale. Nel salire, il

Dettagli

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero Facoltà di Farmacia - Anno Accademico 2009-2010 A 18 febbraio 2010 primo esonero Corso di Laurea: Laurea Specialistica in FARMACIA Nome: Cognome: Matricola Aula: Canale: Docente: Riportare sul presente

Dettagli

Cognome...Nome...matricola...

Cognome...Nome...matricola... Cognome......Nome......matricola...... Facoltà di Ingegneria. Padova Luglio Corso di Laurea in Ingegneria Meccanica II a Squadra. II ppello Fisica Problema - Meccanica ( Punti ****) Un asta sottile e omogenea

Dettagli

Problemi e domande d esame tratte dalle prove di accertamento in itinere degli anni precedenti

Problemi e domande d esame tratte dalle prove di accertamento in itinere degli anni precedenti Problemi e domande d esame tratte dalle prove di accertamento in itinere degli anni precedenti Problema 1 Un disco omogeneo di massa m=2 kg e raggio R= 0.3 m ruota in un piano orizzontale intorno all asse

Dettagli

Dinamica del punto materiale: problemi con gli oscillatori.

Dinamica del punto materiale: problemi con gli oscillatori. Dinamica del punto materiale: problemi con gli oscillatori. Problema: Una molla ideale di costante elastica k = 300 Nm 1 e lunghezza a riposo l 0 = 1 m pende verticalmente avendo un estremità fissata ad

Dettagli

FISICA GENERALE Ingegneria edile/architettura

FISICA GENERALE Ingegneria edile/architettura FISICA GENERALE Ingegneria edile/architettura Tutor: Enrico Arnone Dipartimento di Chimica Fisica e Inorganica arnone@fci.unibo.it http://www2.fci.unibo.it/~arnone/teaching/teaching.html Bologna 3 Giugno

Dettagli

Anno Accademico Fisica I 12 CFU Esercitazione n.5 Urti

Anno Accademico Fisica I 12 CFU Esercitazione n.5 Urti Anno Accademico 2016-2017 Fisica I 12 CFU Esercitazione n.5 Urti Esercizio n.1 In un piano una particella A si muove con una velocità di 5 m/s diretta lungo la bisettrice del I e III quadrante e con il

Dettagli

Esercitazioni di fisica

Esercitazioni di fisica Esercitazioni di fisica Alessandro Berra 25 marzo 2014 1 Leggi di conservazione 1 Una palla da ping-pong di massa 35 g viene lanciata verso l alto con velocità iniziale v=17 m/s e raggiunge un altezza

Dettagli

m = 53, g L = 1,4 m r = 25 cm

m = 53, g L = 1,4 m r = 25 cm Un pendolo conico è formato da un sassolino di 53 g attaccato ad un filo lungo 1,4 m. Il sassolino gira lungo una circonferenza di raggio uguale 25 cm. Qual è: (a) la velocità del sassolino; (b) la sua

Dettagli

Compito di Fisica Generale (Meccanica) 16/01/2015

Compito di Fisica Generale (Meccanica) 16/01/2015 Compito di Fisica Generale (Meccanica) 16/01/2015 1) Un cannone spara un proiettile di massa m con un alzo pari a. Si calcoli in funzione dell angolo ed in presenza dell attrito dell aria ( schematizzato

Dettagli

Università degli Studi di Roma La Sapienza Corso di Laurea in Ingegneria Energetica. Esame di Fisica I Prova scritta del 20 luglio 2016.

Università degli Studi di Roma La Sapienza Corso di Laurea in Ingegneria Energetica. Esame di Fisica I Prova scritta del 20 luglio 2016. Università degli Studi di Roma La Sapienza Corso di Laurea in Ingegneria Energetica Esame di Fisica I Prova scritta del 20 luglio 2016 Compito A 1. Una bicicletta, con ruote di diametro D, procedesuuna

Dettagli

Corso di Laurea in Farmacia Fisica Prova in itinere del 4 dicembre 2013

Corso di Laurea in Farmacia Fisica Prova in itinere del 4 dicembre 2013 Corso di Laurea in Farmacia Fisica Prova in itinere del 4 dicembre 2013 TURNO 1 COMPITO A Un'automobile di massa m=1500 kg viaggia ad una velocità costante v 1 di 35 Km/h. Ad un certo punto inizia ad accelerare

Dettagli

5) Due blocchi di massa m 1 = 3 kg e m 2 = 2 kg, sono posti su un piano inclinato scabro che forma un angolo con l orizzontale e sono collegati rigida

5) Due blocchi di massa m 1 = 3 kg e m 2 = 2 kg, sono posti su un piano inclinato scabro che forma un angolo con l orizzontale e sono collegati rigida 1) Due blocchi di massa m 1 = 2 kg e m 2 = 1 kg, sono posti su un piano orizzontale privo di attrito a contatto fra di loro,: una forza orizzontale F = 6 N è applicata al blocco di massa m 1 e spinge l

Dettagli

Esercizi Quantità di moto ed Urti

Esercizi Quantità di moto ed Urti Esercizi Quantità di moto ed Urti 1. (Esame Luglio 2014) Due sfere metalliche, sospese a cavetti verticali, sono inizialmente a contatto. La sfera 1, con massa m 1 =30 g, viene lasciata libera dopo essere

Dettagli

ESERCIZI PER L ATTIVITA DI RECUPERO CLASSE III FISICA

ESERCIZI PER L ATTIVITA DI RECUPERO CLASSE III FISICA ESERCIZI PER L ATTIVITA DI RECUPERO CLASSE III FISICA 1) Descrivi, per quanto possibile, il moto rappresentato in ciascuno dei seguenti grafici: s a v t t t S(m) 2) Il moto di un punto è rappresentato

Dettagli

Prova scritta di Fisica Generale I Corso di laurea in Ing. Chim-Mecc 10 Luglio 1996

Prova scritta di Fisica Generale I Corso di laurea in Ing. Chim-Mecc 10 Luglio 1996 10 Luglio 1996 1) Due palline di massa = 100g ed M 2 =4 sono appese ad un soffitto mediante due aste di massa trascurabile. Le due aste e le due palline sono di dimensioni tali che, se lasciate libere

Dettagli

CLASSE 3 D. CORSO DI FISICA prof. Calogero Contrino IL QUADERNO DELL ESTATE

CLASSE 3 D. CORSO DI FISICA prof. Calogero Contrino IL QUADERNO DELL ESTATE LICEO SCIENTIFICO GIUDICI SAETTA E LIVATINO RAVANUSA ANNO SCOLASTICO 2013-2014 CLASSE 3 D CORSO DI FISICA prof. Calogero Contrino IL QUADERNO DELL ESTATE 20 esercizi per restare in forma 1) Un corpo di

Dettagli

l 1 l 2 Uncorpo viene lanciato su per un piano scabro inclinato di 45 rispetto all orizzontale

l 1 l 2 Uncorpo viene lanciato su per un piano scabro inclinato di 45 rispetto all orizzontale 1. Uncorpo viene lanciato su per un piano scabro inclinato di 45 rispetto all orizzontale (µ d = 1/2). Detto T S il tempo necessario al punto per raggiungere la quota massima e T D il tempo che, a partire

Dettagli

l'attrito dinamico di ciascuno dei tre blocchi sia pari a.

l'attrito dinamico di ciascuno dei tre blocchi sia pari a. Esercizio 1 Tre blocchi di massa rispettivamente Kg, Kg e Kg poggiano su un piano orizzontale e sono uniti da due funi (vedi figura). Sul blocco agisce una forza orizzontale pari a N. Si determini l'accelerazione

Dettagli

Esame 28 Giugno 2017

Esame 28 Giugno 2017 Esame 28 Giugno 2017 Roberto Bonciani e Paolo Dore Corso di Fisica Generale 1 Dipartimento di atematica Università degli Studi di Roma La Sapienza Anno Accademico 2016-2017 Esame - Fisica Generale I 28

Dettagli

DINAMICA - FORZE E ATTRITO

DINAMICA - FORZE E ATTRITO DINAMICA - FORZE E ATTRITO 1 Un treno viaggia con accelerazione costante in modulo pari ad a. a. In uno dei vagoni, una massa m pende dal soffitto attaccata ad una corda. Trovare l angolo tra la corda

Dettagli

Fisica Generale I (primo e secondo modulo) A.A , 15 luglio 2009

Fisica Generale I (primo e secondo modulo) A.A , 15 luglio 2009 Fisica Generale I (primo e secondo modulo) A.A. 2008-09, 15 luglio 2009 Esercizi di meccanica relativi al primo modulo del corso di Fisica Generale I, anche equivalente ai corsi di Fisica Generale 1 e

Dettagli

Fisica. Esercizi. Mauro Saita Versione provvisoria, febbraio 2013.

Fisica. Esercizi. Mauro Saita   Versione provvisoria, febbraio 2013. Fisica. Esercizi Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, febbraio 2013. Indice 1 Principi di conservazione. 1 1.1 Il pendolo di Newton................................ 1 1.2 Prove

Dettagli

Esercizio 1 Meccanica del Punto

Esercizio 1 Meccanica del Punto Esercizio 1 Meccanica del Punto Una molla di costante elastica k e lunghezza a riposo L 0 è appesa al soffitto di una stanza di altezza H. All altra estremità della molla è attaccata una pallina di massa

Dettagli

CORPO RIGIDO - ROTAZIONI/DINAMICA

CORPO RIGIDO - ROTAZIONI/DINAMICA CORPO RIGIDO - ROTAZIONI/DINAMICA 1 Due corpi di massa m 1 e m 2 sono appesi agli estremi della corda di una carrucola cilindrica di massa M e raggio R. La corda non scivola rispetto alla carrucola. Determinare

Dettagli

Modello di Prova Scritta Fisica I. Corso di Laurea in Ottica ed Optometria

Modello di Prova Scritta Fisica I. Corso di Laurea in Ottica ed Optometria Modello di 1) Dati i vettori aa = 3xx + 2yy + zz e bb = xx + zz determinare cc = 3aa + bb dd = aa 4bb aa bb aa xxbb. Determinare altresì il modulo del vettore cc. 2) Un blocco di 5.00 kg viene lanciato

Dettagli

Compito di Fisica Generale (Meccanica) 13/01/2014

Compito di Fisica Generale (Meccanica) 13/01/2014 Compito di Fisica Generale (Meccanica) 13/01/2014 1) Un punto materiale inizialmente in moto rettilineo uniforme è soggetto alla sola forza di Coriolis. Supponendo che il punto si trovi inizialmente nella

Dettagli

Esercizi sulla Dinamica del punto materiale. I. Leggi di Newton, ovvero equazioni del moto

Esercizi sulla Dinamica del punto materiale. I. Leggi di Newton, ovvero equazioni del moto Esercizi sulla Dinamica del punto materiale. I. Leggi di Newton, ovvero equazioni del moto Principi della dinamica. Aspetti generali 1. Un aereo di massa 25. 10 3 kg viaggia orizzontalmente ad una velocità

Dettagli

Compito di Fisica Generale (Meccanica) 17/01/2013

Compito di Fisica Generale (Meccanica) 17/01/2013 Compito di Fisica Generale (Meccanica) 17/01/2013 1) Un proiettile massa m è connesso ad una molla di costante elastica k e di lunghezza a riposo nulla. Supponendo che il proiettile venga lanciato a t=0

Dettagli

8) Un blocco di massa m1=2 Kg scivola su un piano orizzontale liscio con velocità di 10 m/ s. Subito di fronte ad esso un blocco di massa m2=5 Kg si

8) Un blocco di massa m1=2 Kg scivola su un piano orizzontale liscio con velocità di 10 m/ s. Subito di fronte ad esso un blocco di massa m2=5 Kg si 15/12/2014 1) Un corpo cade dallʼaltezza h=10m soggetto alla sola forza di gravità. La velocità iniziale del corpo è nulla. Calcolare la velocità del corpo quando h=3m. 2) Un disco di hockey di massa 0.4

Dettagli

Esercizi Terzo Principio della Dinamica

Esercizi Terzo Principio della Dinamica Esercizi Terzo Principio della Dinamica Esercitazioni di Fisica LA per ingegneri - A.A. 2007-2008 Esercizio 1 Una ruota di massa m = 5kg (modellare la ruota come un disco) è inizialmente in quiete alla

Dettagli

4. Dinamica - Parte 1

4. Dinamica - Parte 1 4. Dinamica - Parte 1 4.1 In 90 giorni una cometa descrive con velocità costante in modulo un arco di circonferenza di ampiezza α = 30 e di 1unghezza 1 = 10 8 km, rispetto ad un riferimento solidale con

Dettagli

Esame di Meccanica Razionale (Dinamica) Allievi Ing. Edile II Anno Prova intermedia del 23 novembre 2012 durata della prova: 2h

Esame di Meccanica Razionale (Dinamica) Allievi Ing. Edile II Anno Prova intermedia del 23 novembre 2012 durata della prova: 2h Prova intermedia del 23 novembre 2012 durata della prova: 2h CINEMTIC E CLCL DI QUNTITÀ MECCNICHE Nelsistemadifiguraildiscodicentro ruoy ta intorno al suo centro; il secondo disco rotola senza strisciare

Dettagli

Tutorato di Fisica 1 - AA 2014/15

Tutorato di Fisica 1 - AA 2014/15 Tutorato di Fisica - AA 04/5 Emanuele Fabbiani 8 febbraio 05 Quantità di moto e urti. Esercizio Un carrello di massa M = 0 kg è fermo sulle rotaie. Un uomo di massa m = 60 kg corre alla velocità v i =

Dettagli

Dottorato in Fisica XIV ciclo n.s. 21 gennaio 2013 Prova scritta n.1

Dottorato in Fisica XIV ciclo n.s. 21 gennaio 2013 Prova scritta n.1 Dottorato in Fisica XIV ciclo n.s. 1 gennaio 013 Prova scritta n.1 Compito 1. I processi oscillatori in fisica. Conseguenze della corrente di spostamento nelle equazioni di Maxwell. Un cilindro di raggio

Dettagli

CAPITOLO 7: ESEMPI PRATICI: 7.1 Esempi di dinamica.

CAPITOLO 7: ESEMPI PRATICI: 7.1 Esempi di dinamica. CAPITOLO 7: ESEMPI PRATICI: 7.1 Esempi di dinamica. Questo capitolo vuole fornire una serie di esempi pratici dei concetti illustrati nei capitoli precedenti con qualche approfondimento. Vediamo subito

Dettagli

Corso di laurea in Comunicazioni Digitali Compitino di Fisica 15 Novembre 2002

Corso di laurea in Comunicazioni Digitali Compitino di Fisica 15 Novembre 2002 Corso di laurea in Comunicazioni Digitali Compitino di Fisica 15 Novembre 2002 Nome: Matricola: Posizione: 1) Specificare l unità di misura del calore scambiato e dare le sue dimensioni A 2) Dati i vettori

Dettagli

Esercizi. Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio

Esercizi. Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio Esercizi Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio Per ciascun esercizio disegnare su ciascun corpo del sistema il diagramma delle forze, individuando e nominando ciascuna forza.

Dettagli

Esercizi. Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio

Esercizi. Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio Esercizi Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio Per ciascun esercizio disegnare su ciascun corpo del sistema il diagramma delle forze, individuando e nominando ciascuna forza.

Dettagli

IV ESERCITAZIONE. Esercizio 1. Soluzione

IV ESERCITAZIONE. Esercizio 1. Soluzione Esercizio 1 IV ESERCITAZIONE Un blocco di massa m = 2 kg è posto su un piano orizzontale scabro. Una forza avente direzione orizzontale e modulo costante F = 20 N agisce sul blocco, inizialmente fermo,

Dettagli

POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a I a prova in itinere, 10 maggio 2013

POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a I a prova in itinere, 10 maggio 2013 POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a. 2012-13 I a prova in itinere, 10 maggio 2013 Giustificare le risposte e scrivere in modo chiaro e leggibile.

Dettagli

VII ESERCITAZIONE - 29 Novembre 2013

VII ESERCITAZIONE - 29 Novembre 2013 VII ESERCITAZIONE - 9 Novembre 013 I. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria.

Dettagli

URTI: Collisioni/scontro fra due corpi puntiformi (o particelle).

URTI: Collisioni/scontro fra due corpi puntiformi (o particelle). URTI: Collisioni/scontro fra due corpi puntiformi (o particelle). I fenomeni di collisione avvengono quando due corpi, provenendo da punti lontani l uno dall altro, entrano in interazione reciproca, e

Dettagli

I prova intercorso di Fisica CL in Biotecnologie 7 Maggio 2014 Risolvere i seguenti esercizi su questo foglio. NON consegnare altri fogli.

I prova intercorso di Fisica CL in Biotecnologie 7 Maggio 2014 Risolvere i seguenti esercizi su questo foglio. NON consegnare altri fogli. I prova intercorso di Fisica CL in Biotecnologie 7 Maggio 2014 Risolvere i seguenti esercizi su questo foglio. NON consegnare altri fogli. Esercizio 1: Un corpo viene lanciato, con una velocità iniziale

Dettagli

Si consideri un punto materiale in moto su una traiettoria curvilinea e soggetto ad una forza non costante. F i F 2 F N

Si consideri un punto materiale in moto su una traiettoria curvilinea e soggetto ad una forza non costante. F i F 2 F N Lavoro ed energia 1 Si consideri un punto materiale in moto su una traiettoria curvilinea e soggetto ad una forza non costante. F i F 2 F N 2 vettorizzare una traiettoria Si divide la traiettoria s in

Dettagli

POLITECNICO DI MILANO Fondamenti di Fisica Sperimentale, a. a I appello, 12 luglio 2016

POLITECNICO DI MILANO Fondamenti di Fisica Sperimentale, a. a I appello, 12 luglio 2016 POLITECNICO DI MILANO Fondamenti di Fisica Sperimentale, a. a. 015-16 I appello, 1 luglio 016 Giustificare le risposte e scrivere in modo chiaro e leggibile. Scrivere in stampatello nome, cognome, matricola

Dettagli

3. Si dica per quali valori di p e q la seguente legge e` dimensionalmente corretta:

3. Si dica per quali valori di p e q la seguente legge e` dimensionalmente corretta: Esercizi su analisi dimensionale: 1. La legge oraria del moto di una particella e` x(t)=a t 2 +b t 4, dove x e` la posizione della particella e t il tempo. Si determini le dimensioni delle costanti a e

Dettagli

Fisica 1 (Esame Completo) Ing. Informatica/Elettrica/Elettronica 24/07/2017. Nome: Cognome: CdL: Mat.

Fisica 1 (Esame Completo) Ing. Informatica/Elettrica/Elettronica 24/07/2017. Nome: Cognome: CdL: Mat. Fisica 1 (Esame Completo) Ing. Informatica/Elettrica/Elettronica 24/07/2017 Fila A Nome: Cognome: CdL: Mat. PROBLEMA 1. Un bambino spara orizzontalmente con la sua pistola ad acqua da un altezza di 1,6

Dettagli

Esercizio 1. Risoluzione

Esercizio 1. Risoluzione Esercizio 1 Un blocco di 10 Kg è appoggiato su un piano ruvido, inclinato di un angolo α=30 rispetto ad un piano orizzontale, ed alto al massimo 6 m. Determinare la forza F (aggiuntiva alla forza d attrito)

Dettagli

Corsi di Laurea per le Professioni Sanitarie. Cognome Nome Corso di Laurea Data

Corsi di Laurea per le Professioni Sanitarie. Cognome Nome Corso di Laurea Data CLPS12006 Corsi di Laurea per le Professioni Sanitarie Cognome Nome Corso di Laurea Data 1) Essendo la densità di un materiale 10.22 g cm -3, 40 mm 3 di quel materiale pesano a) 4*10-3 N b) 4 N c) 0.25

Dettagli

Prova scritta di Fisica Generale I Corso di Laurea in Astronomia 23 giugno 2015

Prova scritta di Fisica Generale I Corso di Laurea in Astronomia 23 giugno 2015 Prova scritta di Fisica Generale I Corso di Laurea in Astronomia 3 giugno 015 Problema 1 Si consideri un sistema costituito da un cilindro omogeneo di raggio R 1 = 10 cm e altezza h = 0 cm, inserito all

Dettagli

Soluzioni della prova scritta Fisica Generale 1

Soluzioni della prova scritta Fisica Generale 1 Corso di Laurea in Ingegneria Biomedica, dell Informazione, Elettronica e Informatica Canale 2 (S. Amerio, L. Martucci) Padova, 26 giugno 20 Soluzioni della prova scritta Fisica Generale Problema Una palla

Dettagli

Università degli Studi di Roma La Sapienza Corso di Laurea in Ingegneria Energetica. Esame di Fisica I Prova scritta del 9 giugno 2016.

Università degli Studi di Roma La Sapienza Corso di Laurea in Ingegneria Energetica. Esame di Fisica I Prova scritta del 9 giugno 2016. Università degli Studi di Roma La Sapienza Corso di Laurea in Ingegneria Energetica Esame di Fisica I Prova scritta del 9 giugno 2016 Compito A 1. Un trapezista di un circo (da assimilare a un punto materiale)

Dettagli

Lezione 4 Energia potenziale e conservazione dell energia

Lezione 4 Energia potenziale e conservazione dell energia Lezione 4 Energia potenziale e conservazione dell energia 4. Energia potenziale e conservazione dell energia Energia potenziale di: Forza peso sulla superficie terrestre Serway, Cap 7 U = mgh di un corpo

Dettagli

I PROVA INTERCORSO FISICA INGEGNERIA MECCANICA (N-Z)

I PROVA INTERCORSO FISICA INGEGNERIA MECCANICA (N-Z) I PROVA INTERCORSO FISICA INGEGNERIA MECCANICA (N-Z) 05-11-2015 Una pallina da tennis viene lanciata con velocità V0 = 40 m/s ed angolo rispetto all orizzontale = /3. Il campo da tennis è lungo 30 m e

Dettagli

Esercizio Soluzione: Esercizio Soluzione: Esercizio Soluzione: Esercizio

Esercizio Soluzione: Esercizio Soluzione: Esercizio Soluzione: Esercizio Un ragazzo di massa 50 kg si lascia scendere da una pertica alta 12 m e arriva a terra con una velocità di 6 m/s. Supponendo che la velocità iniziale sia nulla: 1. si calcoli di quanto variano l energia

Dettagli

M p. θ max. P v P. Esercizi di Meccanica (M6) Consegna: giovedì 3 giugno.

M p. θ max. P v P. Esercizi di Meccanica (M6) Consegna: giovedì 3 giugno. Esercizi di Meccanica (M6) Consegna: giovedì 3 giugno. Problema 1: Si consideri un corpo rigido formato da una sfera omogenea di raggio R e massa M 1 e da una sbarretta omogenea di lunghezza L, massa M

Dettagli

Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica

Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica Nome: N.M.: 1. Un angolo di un radiante equivale circa a: (a) 60 gradi (b) 32 gradi (c) 1 grado (d) 90 gradi (e) la domanda è assurda.

Dettagli

MECCANICA APPLICATA ALLE MACCHINE Allievi meccanici AA prova del Problema N.1. Problema N.2

MECCANICA APPLICATA ALLE MACCHINE Allievi meccanici AA prova del Problema N.1. Problema N.2 MECCANICA APPLICATA ALLE MACCHINE Allievi meccanici AA.2011-2012 prova del 01-02-2013 Problema N.1 Il sistema meccanico illustrato in figura giace nel piano verticale. L asta AB con baricentro G 2 è incernierata

Dettagli

Meccanica Applicata alle Macchine

Meccanica Applicata alle Macchine Meccanica Applicata alle Macchine 06-11-013 TEMA A 1. Un cilindro ed una sfera omogenei di uguale massa m ed uguale raggio r sono collegati tra loro da un telaio di massa trascurabile mediante coppie rotoidali

Dettagli

3. Quale lavoro bisogna compiere per fermare un auto di 1000 kg che si muove a 180 km/h?

3. Quale lavoro bisogna compiere per fermare un auto di 1000 kg che si muove a 180 km/h? Forze e Attrito 1. Un corpo del peso di 100N disposto su un piano inclinato di 30 si mette in movimento quando si applica ad esso una forza diretta orizzontalmente di 20N. Si determini il coefficiente

Dettagli

196 L Fs cos cos J 0,98. cos30 135,8 F F// F , N. mv mv

196 L Fs cos cos J 0,98. cos30 135,8 F F// F , N. mv mv Problemi sul lavoro Problema Un corpo di massa 50 kg viene trascinato a velocità costante per 0 m lungo un piano orizzontale da una forza inclinata di 45 rispetto all orizzontale, come in figura. Sapendo

Dettagli

Fisica Generale I (primo e secondo modulo) A.A , 2 settembre 2009

Fisica Generale I (primo e secondo modulo) A.A , 2 settembre 2009 Fisica Generale I (primo e secondo modulo) A.A. 2008-2009, 2 settembre 2009 Esercizi di meccanica relativi al primo modulo del corso di Fisica Generale I, anche equivalente ai corsi di Fisica Generale

Dettagli

Fisica Generale I (primo e secondo modulo) A.A , 1 Febbraio 2010

Fisica Generale I (primo e secondo modulo) A.A , 1 Febbraio 2010 Fisica Generale I (primo e secondo modulo) A.A. 2009-0, Febbraio 200 Esercizi di meccanica relativi al primo modulo del corso di Fisica Generale I, anche equivalente ai corsi di Fisica Generale e 2 per

Dettagli

Fondamenti di Meccanica Esame del

Fondamenti di Meccanica Esame del Politecnico di Milano Fondamenti di Meccanica Esame del 0.02.2009. In un piano verticale un asta omogenea AB, di lunghezza l e massa m, ha l estremo A vincolato a scorrere senza attrito su una guida verticale.

Dettagli

Esercizi di Statica. Esercitazioni di Fisica per ingegneri - A.A

Esercizi di Statica. Esercitazioni di Fisica per ingegneri - A.A Esercizio 1 Esercizi di Statica Esercitazioni di Fisica per ingegneri - A.A. 2011-2012 Un punto materiale di massa m = 0.1 kg (vedi FIG.1) è situato all estremità di una sbarretta indeformabile di peso

Dettagli

Esercizi sulla Dinamica dei Sistemi

Esercizi sulla Dinamica dei Sistemi Esercizi sulla Dinamica dei Sistemi Alcuni suggerimenti per gli esercizi: Calcolo del centro di massa di un sistema omogeneo complesso. Si considerino le simmetrie del sistema di cui bisogna calcolare

Dettagli

1) Per quale valore minimo della velocità angolare iniziale il cilindro riesce a compiere un giro completo.

1) Per quale valore minimo della velocità angolare iniziale il cilindro riesce a compiere un giro completo. Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I): 04-02-2016 Problema 1. Un punto materiale si muove nel piano su una guida descritta dall equazione y = sin kx [ = 12m, k

Dettagli

Prova Scritta del 24/02/2012

Prova Scritta del 24/02/2012 Prova Scritta del 4/0/01 Esame di FISICA (Compito A) Corso di Studi: Informatica Prof. A. Sgarlata Problema n.1 La bacchetta omogenea in figura, lunga L =.0m econmassam =1.5kg puó ruotare intorno a un

Dettagli

UNIVERSITÀ DEGLI STUDI DI GENOVA

UNIVERSITÀ DEGLI STUDI DI GENOVA UNIVERITÀ DEGLI TUDI DI GENOVA Esame di Dottorato di Ricerca in Fisica XXVII ciclo - Traccia 1 1) Due blocchi, di massa m 1 =.0 kg e m = 9.0 kg rispettivamente, ed una molla ideale di costante elastica

Dettagli

Esame di Fisica con Laboratorio Corso di Laurea in Scienze dell Architettura Università degli Studi di Udine 29 gennaio 2010 Mario Paolo Giordani

Esame di Fisica con Laboratorio Corso di Laurea in Scienze dell Architettura Università degli Studi di Udine 29 gennaio 2010 Mario Paolo Giordani Esame di Fisica con Laboratorio Corso di Laurea in Scienze dell Architettura Università degli Studi di Udine 29 gennaio 2010 Mario Paolo Giordani Soluzioni Teoria Enunciare sinteticamente chiarendo il

Dettagli

2 m 2u 2 2 u 2 = x = m/s L urto è elastico dunque si conserva sia la quantità di moto che l energia. Possiamo dunque scrivere: u 2

2 m 2u 2 2 u 2 = x = m/s L urto è elastico dunque si conserva sia la quantità di moto che l energia. Possiamo dunque scrivere: u 2 1 Problema 1 Un blocchetto di massa m 1 = 5 kg si muove su un piano orizzontale privo di attrito ed urta elasticamente un blocchetto di massa m 2 = 2 kg, inizialmente fermo. Dopo l urto, il blocchetto

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 30 gennaio 2012

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 30 gennaio 2012 CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 30 gennaio 2012 1) Un corpo di massa m = 1 kg e velocità iniziale v = 5 m/s si muove su un piano orizzontale scabro, con coefficiente di attrito

Dettagli

Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007

Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007 Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007 y Nel sistema di figura posto in un piano verticale il carrello A scorre con vinco- q, R M lo liscio lungo l asse verticale. Il

Dettagli

Cinematica in una dimensione

Cinematica in una dimensione Esercizi di ripasso La luce viaggia nel vuoto a 300000 km/s. Quanto spazio percorre in un anno (anno-luce)? Un lombrico percorre 1 cm in 3 s. Qual è la sua velocità in km/h? Un ghepardo insegue un'antilope

Dettagli

Esercizi terzo principio

Esercizi terzo principio Esercizi terzo principio Esercitazioni di Fisica LA per ingegneri - A.A. 2004-2005 Esercizio 2 Una palla da biliardo di raggio R =5cm è in quiete sul piano del tavolo da gioco. Ad un certo istante le viene

Dettagli