temperatura; Trasporto di massa, calore e quantità di moto, relazioni di bilancio; La viscosità; Cenni di

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "temperatura; Trasporto di massa, calore e quantità di moto, relazioni di bilancio; La viscosità; Cenni di"

Transcript

1 FISICA-TECNICA Ki Gllucci Progr del corso Dinic dei fluidi: Regii di oo; Moo szionrio di un fluido idele; Moo szionrio di un fluido rele; Il eore di Bernoulli; Perdie di crico coninue e loclizze. Miscele di gs e vpori: Digr del vpore d'cqu e dell'ri uid; Digri psicroerici; Esepi pplicivi e clcoli. Trsissione del clore: Meccnisi fondenli di rsissione del clore; Conduzione eric; Legge di Fourier, equzione generlizz dell conduzione; Conducibilià dei erili;conduzione in regie szionrio in geoeri onodiensionle: sruure copose; Irrggieno erico; Richii sull'energi rggine; Definizione di corpo nero e leggi relive;corpi grigi; Scbi di clore r corpi grigi; Convezione eric Progr del corso Richii di fisic (e eic: L sruur dell eri; Grndezze e unià di isur; Couniczione dei risuli ed errori di isur; Anlisi diensionle Inroduzione i fenoeni di rsporo: Generlià; Il conceo di flusso; Definizione di eperur; Trsporo di ss, clore e qunià di oo, relzioni di bilncio; L viscosià; Cenni di reologi; Fluidi newonini e fluidi non newonini: odello Hershel-Bulkle; Coporeno pseudoplsico e dilne. Fluidi ioropici. Sic dei fluidi: Principio di Pscl; Legge di Sevino; Principio di Archiede; Misur delle pressioni. Eleeni di oo dei fluidi: Conceo di sro liie idrodinico e erico; Meodo dell'nlisi diensionle; Principio di siiliudine; Meccnisi cobini di scbio erico; Deerinzione del coefficiene di scbio erico conveivo per ubi e pisre: esepi nuerici; Adduzione; Isoleno erico; Scbiori di clore: ipi, efficienz; Sisei peri: bilncio dell'energi; enlpi. Esercizi svoli in clsse (porre sepre un clcolrice Modlià di ese Prov scri esercizi dond eoric Prov orle ( fcoliv

2 Richii di fisic (e eic Poenze di dieci: n n n n n n Le sesse regole vlgono per bsi diverse d Prefissi del Sise Inernzionle n Prefisso Sibolo Noe Equivlene decile 4 o Y Qudrilione ze Z Trilirdo 8 e E Trilione 5 pe P Bilirdo er T Bilione 9 gig G Milirdo 6 eg M Milione kilo o chilo k Mille eo h Ceno dec d Dieci deci d Decio, ceni c Cenesio, illi Millesio, 6 icro µ Milionesio, 9 nno n Milirdesio, pico p Bilionesio, 5 feo f Bilirdesio, 8 o Trilionesio, zepo z Trilirdesio, 4 oco Qudrilionesio, Prefissi Per le grndezze fisiche è frequene l uso di prefissi un unià di isur piuoso che un poenz di =c= c c=,= - ceni- signific illi- signific eg- signific 6 Ordini di grndezz In fisic e in ingegneri, ci si riferisce spesso d un poenz di coe d un ordine di grndezz, pplicndo ques locuzione in senso pprossio (si us cioè ogni qul vol non si conosce il vlore preciso di un cer grndezz o si vuole dre un si d esepio: ~. 7 secondi in un nno; l ss del Sole è ~. 5 vole l ss dell Terr; il diero di un nucleo è ~ -4

3 Esponeni frzionri Un esponene inero rppresen l poenz ll qule il nuero è elevo, un esponene frzionrio h il significo di un rdice N N Si noi che il nuerore di un esponene frzionrio rppresen ncor un poenz ll qule è elevo il nuero e il denoinore rppresen sepre un rdice Esercizi , ,,48..., Esercizi , , , s =...s k =...c c=... k =... Sibologi eic l vrizione dell grndezz finle inizile vlore ssoluo di soori N... i N i

4 Grndezze fisiche fondenli SI le grndezze fisiche non hnno solo un vlore espresso d un nuero nche delle diensioni o unià Nel Sise Inernzionle SI le grndezze fondenli sono: Grndezz fisic Sibolo dell grndezz fisic Noe dell'unià SI Sibolo dell'unià SI lunghezz l ero ss M chilogro kg inervllo di epo secondo s Inensià di correne I, i pere A eperur ssolu T kelvin K qunià di sosnz n ole ol inensià luinos I v cndel cd Grndezz fisic Sibolo Equivlenz in erini di unià fondenli SI re A volue V velocià v s velocià ngolre s ; rd s ccelerzione s oeno orcene N = kg s nuero d'ond n densià kg volue specifico kg volue olre V ol cpcià eric, enropi C, S J K = kg s K clore olre, enropi olre C, S J K ol = kg s K ol clore specifico, enropi specific c, s J K kg = s K energi olre E J ol = kg s ol energi specific e J kg = s densià di energi U J = kg s conduivià eric W K = kg s K viscosià cineic, s viscosià dinic N s = P s (= kg s Unià derive Grndezz fisic Sibolo dell grndezz fisic Noe dell'unià SI Sibolo dell'unià SI Equivlenz in erini di unià fondenli SI Noi e siboli specili frequenz f, herz Hz s forz F newon N kg s pressione, p pscl P N = kg s energi, lvoro, clore E, Q joule J N = kg s poenz, P, W w W J s = kg s cric eleric q coulob C A s poenzile elerico, V, E vol V J C = kg s A eperur T grdo Celsius C K [] ngolo pino, rdine rd = Densià l cobinzione delle grndezze fisiche fondenli serve descrivere concei fisici e proprieà, d es. l densià = ss/volue è un proprieà inensiv dell eri ri =,kg/ cqu =kg/ lluinio =7kg/ V ( kg / piobo =kg/

5 Equzioni b b b c b b c 4 Grfici Tore l iner or rppresen il % di un grndezz e gli spicchi le rispeive frzioni di un pricolre eleeno; dà solo inforzioni quliive Isogri l scl vericle d un inforzione quniiv; l direzione orizzonle indic le clssi rppresene Sviluppi binoili b b b b b b b b b b b ;... b b b b ; b 4 b 6 b 4 b b n n n n ( n n n ( n ( n n n n b n b b b... b n n! n i i b ( n i! i! Coordine cresine orogonli Un coppi di ssi coordini e un scl L sse X è l sciss e rppresen l vribile indipendene L sse Y è l ordin e rppresen l vribile dipendene (Y è funzione di X Un puno generico è do dll coppi (, L origine degli ssi è d dl puno (, i

6 Posizione dei puni (, nel pino X-Y Y (7, 6 (, 5 (-, 4 (, O (5, (-7, - X (4, -6 Sisei di coordine ridiensionli (,,z sise desrorso Z O X Y Qudrni Le due ree che individuno il pino cresino suddividono le pino in quro zone disine chie I, II, III, IV qudrne. A second del qudrne in cui ci si rov il puno è individuo d un coppi di nueri doi di segno: I qudrne (+,+, II qudrne (-,+, III qudrne (-,-, IV qudrne (+,-. Osservzione : non è ssoluene indispensbile che si usi l sess unià di isur su enrbi gli ssi coordini. Non è rro rovre in problei di nur fisic l uso di unià di isur differeni sui due ssi. Disnz r due puni eore di Pigor: c b c presi due puni di coordine (, e (, l disnz r due puni srà: c ( ( b

7 Trigonoeri sin cos n c b c b sin cos Coordine cilindriche Le coordine cilindriche sono un sise di coordine nello spzio deerine d re preri,,,. De O l'origine del sise, e deo P un generico puno nello spzio, e deo Q l su proiezione sul pino, il prero indic l lunghezz di PQ, indic l lunghezz di OQ enre indic l'ngolo fr l'sse e OQ. Per pssre dl sise cilindrico quello rengolre: cos z sin Invece per pssre dlle coordine cresine (,,z lle coordine cilindriche (,, si possono sfrure le segueni relzioni c rcg(/ z b Coordine polri Le due coordine polri r e possono essere converie nelle coordine cresine e uilizzndo le forule delle funzioni rigonoeriche seno e coseno: r r r cos sin enre le due coordine cresine e possono essere converie nell coordin polre r con l forul rcn Coordine sferiche Le coordine sferiche sono un sise di coordine nello spzio deerine d re preri,,,. De O l'origine del sise, e deo P un generico puno nello spzio, il prero indic l disnz fr P e O, è l'ngolo fr PO e l'sse z, enre è l'ngolo fr l'sse e l proiezione di PO sul pino. Si può pssre dlle coordine sferiche (,, lle coordine cresine (,,z edine quese relzioni z s in Invece per pssre dlle coordine cresine (,,z lle coordine sferiche (,, si possono sfrure le relzioni sin cos cos sin rcg(/ rc cos z z z

8 Esercizi Per clcolre seno, coseno e ngene Quli sono le coordine cilindriche del puno che h coordine cresine ( / ; /,5 Quli sono le coordine cresine di un puno che h coordine sferiche (,,6 Rppresenzione di un funzione Per ezzo di un bell Per ezzo di un grfico Per ezzo di un equzione L funzione polinoio di prio grdo rppresen un re: p dove è l pendenz e p l inerce Ad esepio rppresenre le ree =+; =- Funzione Relzione funzionle r le vribili fisiche f ( (d es. lo spzio è funzione di (d es. il epo ossi per ciscun vlore di, vribile indipendene, sppio deerinre il corrispondene vlore di, vribile dipendene. Logrii L funzione logrio in bse è l funzione invers rispeo ll funzione esponenzile in bse ; Si dice, cioè, logrio in bse di un nuero è l'esponene d dre d per oenere ( viene chio rgoeno del logrio. In lre prole, se segue che: log

9 Proprieà dei log I logrii più couni sono: Il logrio nurle, descrio per l pri vol d Nepero, è il logrio in bse e, dove e è ugule,788 : ln Il logrio in bse si indic con Log o nche sepliceene con log (nozione nglosssone /5 A A A Digri seilogriici Se un vribile dipendene f( vri diversi ordini di grndezz con l vribile indipendene, per vere un rppresenzione grfic degu si deve pssre d un digr seilogriico, in cui l scl orizzonle è linere e quell vericle è logriic; Un funzione esponenzile A e -/ srà rppreseno d un re di pendenz log e/ Digri logriici F ( r G r,e+5,e+4,e+,e+,e+,e+,e+7,e+8,e+9 r F Pendenz=-

10 Anlisi diensionle Disciplin che si occup dello sudio delle diensioni delle grndezze fisiche. L nlisi diensionle si pplic nell eori dei odelli l fine di liire il nuero delle grndezze occorreni per descrivere un do fenoeno fisico Per ciscun delle grndezze fondenli si inroduce un'eiche di riconoscieno, deo sibolo diensionle, che, rcchius fr prenesi qudre, indic l cosidde diensione dell grndezz sess. Regole priche per l'nlisi diensionle Le diensioni vengono re proprio coe qunià lgebriche nel clcolo leerle. I nueri puri, gli ngoli e ue le grndezze diensionli si possono sosiuire con un nell'nlisi diensionle. Le grndezze fisiche possono essere soe o sore solo se hnno le sesse diensioni, ovvero solo se sono oogenee. I due ebri di un'uguglinz devono vere le sesse diensioni. Se non vi è possibilià di equivoco, in un'nlisi diensionle possono oeersi le prenesi qudre per lleggerire l nozione. Le diensioni di un grndezz deriv si ricvno dll relzione che leg ques lle grndezze fondenli. Esepi: Se due grndezze fisiche hnno le sesse diensioni si dicono oogenee. Alcune grndezze fisiche, ipicene quelle definie coe rpporo fr due grndezze oogenee sono prive di diensioni; si prl in queso cso di grndezze fisiche diensionli. Esepi: Gli ngoli, che nel SI si isurno in rdini, sibolo rd, sono grndezze diensionli. Le funzioni gonioeriche: sen, cos, g, ecc., sono grndezze definie coe rpporo r due segeni, perno sono diensionli Teore di Buckinh Il Teore di Buckingh d le bsi per lo srueno principle dell'nlisi diensionle. Queso eore descrive coe ogni equzione fisicene significiv che coinvolge n vribili può essere equivleneene riscri coe un equzione di n preri diensionli, dove è il nuero di diensioni fondenli use. Per di più, e in odo più rilevne, por un eodo per clcolre quesi preri diensionli dlle vribili de, nche se l for dell'equzione è ncor sconosciu.

11 Esercizi Clcolre l disnz r i puni (-4,5 e (,- Trovre le soluzioni dell seguene equzione 5 Converire l qunià,7. in e in k Verificre diensionlene l legge di grvizione universle ( F r G r Significo geoerico L re L ngene in P ll funzione f h pendenz d dll deriv di f in P Derive L definizione di deriv di f( rispeo è ugule l liie del rpporo increenle. = f( ' = f( =cosne '= = '= = n '=n n- =log ' ln =ln ' = '= ln =e '=e =sen '=cos =cos '=-sen =g =rcsen ' cos =rccos =rcg ' ' '

12 = f( ' = f( =[f(] n '=n[f(] n- f'( =ln[f(] '( =e f( '=e f( f'( =f(+g( '=f'(+g'( =f(g( '=f'(g(+f(g '( g '( g ' g g '( Esercizi Trccire un digr seilog di / versus nell inervllo d = = dove =cosne=in Trccire un digr log-log di (/ in funzione del epo nell inervllo d = = Esercizi Clcolre l deriv delle funzioni f ( 4( e g ( 4 ln(cos Inegrli L operzione invers dell derivzione si chi inegrzione f ( di d In pricolre l inegrle definio r gli esrei e b dell funzione f( è l re soes ll curv r i due esrei ' f f ( f ( ( f ( ( f (

13 b f ( d I ( b I ( I ( Esercizi Risolvere i segueni inegrli e d d 6 sin d cos d e d / (sin d n d b

TRASFORMAZIONI GEOMETRICHE Una trasformazione geometrica del piano in sé è una corrispondenza biunivoca tra i punti del piano: ( ) , :,

TRASFORMAZIONI GEOMETRICHE Una trasformazione geometrica del piano in sé è una corrispondenza biunivoca tra i punti del piano: ( ) , :, TRASFORMAZIONI GEOMETRICHE Un rsforzione geoeric del pino in sé è un corrispondenz iunivoc r i puni del pino P P, P P P è l igine di P rispeo ll rsforzione. Ad ogni puno P(,) corrisponde uno ed un solo

Dettagli

COMPORTAMENTO SISMICO DELLE STRUTTURE

COMPORTAMENTO SISMICO DELLE STRUTTURE COMPORTAMENTO SISMICO DELLE STRUTTURE Durane un erreoo, le oscillazioni del erreno di fondazione provocano nelle sovrasani sruure delle oscillazioni forzae. Quando il erreoo si arresa, i ovieni della sruura

Dettagli

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile Corso di Anlisi Mtemtic Clcolo integrle per funzioni di un vribile Lure in Informtic e Comuniczione Digitle A.A. 2013/2014 Università di Bri ICD (Bri) Anlisi Mtemtic 1 / 40 1 L integrle come limite di

Dettagli

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone 3 Questionrio Quesito 1 Provre che un sfer è equivlente i /3 del cilindro circoscritto. r 4 3 Il volume dell sfer è 3 r Il volume del cilindro

Dettagli

3. Funzioni iniettive, suriettive e biiettive (Ref p.14)

3. Funzioni iniettive, suriettive e biiettive (Ref p.14) . Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

x = AP = AC PC = R (θ sen θ) y = PB = PQ + BQ = R (1 cos θ).

x = AP = AC PC = R (θ sen θ) y = PB = PQ + BQ = R (1 cos θ). L iloide L urv no oggi ome iloide fu onsider per primo d Glileo, he in un primo momeno ongeurò he l re dell figur rhius fosse re vole quell del erhio he l gener Più rdi, forse us di qulhe esperimeno ml

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Mtemtic clsse quint -Gli integrli Quest oper è distriuit con: Licenz Cretive Commons Attriuzione - Non commercile - Non opere derivte. Itli Ing. Alessndro Pochì Appunti di lezione svolti ll

Dettagli

METODO VOLTAMPEROMETRICO

METODO VOLTAMPEROMETRICO METODO OLTAMPEOMETCO Tle etodo consente di isrre indirettente n resistenz elettric ed ipieg l definizione stess di resistenz : doe rppresent l tensione i cpi dell resistenz e l corrente che l ttrers coe

Dettagli

Definizioni fondamentali

Definizioni fondamentali Definizioni fondmentli Sistem scisse su un rett 1 Un rett si ce orientt qundo su ess è fissto un verso percorrenz Dti due punti qulsisi A e B un rett orientt r, il segmento AB che può essere percorso d

Dettagli

Le operazioni fondamentali in N Basic Arithmetic Operations in N

Le operazioni fondamentali in N Basic Arithmetic Operations in N Operzioi fodetli i - 1 Le operzioi fodetli i Bsic Arithetic Opertios i I geerle u operzioe è u procedieto che due o più ueri, dti i u certo ordie e detti terii dell'operzioe, e ssoci u ltro, detto risultto

Dettagli

ANALISI REALE E COMPLESSA a.a. 2007-2008

ANALISI REALE E COMPLESSA a.a. 2007-2008 ANALISI REALE E COMPLESSA.. 2007-2008 1 Successioni e serie di funzioni 1.1 Introduzione In questo cpitolo studimo l convergenz di successioni del tipo n f n, dove le f n sono tutte funzioni vlori reli

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

Titolazione Acido Debole Base Forte. La reazione che avviene nella titolazione di un acido debole HA con una base forte NaOH è:

Titolazione Acido Debole Base Forte. La reazione che avviene nella titolazione di un acido debole HA con una base forte NaOH è: Titolzione Acido Debole Bse Forte L rezione che vviene nell titolzione di un cido debole HA con un bse forte NOH è: HA(q) NOH(q) N (q) A (q) HO Per quest rezione l costnte di equilibrio è: 1 = = >>1 w

Dettagli

Problemi di massimo e minimo in Geometria Solida Problemi su poliedri. Indice dei problemi risolti

Problemi di massimo e minimo in Geometria Solida Problemi su poliedri. Indice dei problemi risolti Problemi di mssimo e minimo in Geometri olid Problemi su poliedri Indice dei problemi risolti In generle, un problem si riferisce un figur con crtteristice specifice (p.es., il numero dei lti dell bse)

Dettagli

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE Soluzioni di quesiti e prolemi trtti dl Corso Bse Blu di Mtemti volume 5 [] (Es. n. 8 pg. 9 V) Dell prol f ( ) si hnno le seguenti informzioni, tutte

Dettagli

Macchine elettriche in corrente continua

Macchine elettriche in corrente continua cchine elettriche in corrente continu Generlità Può essere definit mcchin un dispositivo che convert energi d un form un ltr. Le mcchine elettriche in prticolre convertono energi elettric in energi meccnic

Dettagli

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1 M.Blconi e R.Fontn, Disense di conomi: 3) quilirio del consumtore L scelt di equilirio del consumtore ntegrzione del C. 21 del testo di Mnkiw 1 Prte 1 l vincolo di ilncio Suonimo che il reddito di un consumtore

Dettagli

Appunti di Analisi matematica 1. Paolo Acquistapace

Appunti di Analisi matematica 1. Paolo Acquistapace Appunti di Anlisi mtemtic Polo Acquistpce 23 febbrio 205 Indice Numeri 4. Alfbeto greco................................. 4.2 Insiemi..................................... 4.3 Funzioni....................................

Dettagli

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it)

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it) I rdicli Cludio CANCELLI (www.cludioccelli.it) Ed..0 www.cludioccelli.it Dec. 0 I rdicli INDICE DEI CONTENUTI. I RADICALI... INDICE DI RADICE PARI...4 INDICE DI RADICE DISPARI...5 RADICALI SIMILI...6 PROPRIETA

Dettagli

Esercizi sulle serie di Fourier

Esercizi sulle serie di Fourier Esercizi sulle serie di Fourier Corso di Fisic Mtemtic,.. 3- Diprtimento di Mtemtic, Università di Milno Novembre 3 Sviluppo in serie di Fourier (esponenzile) In questi esercizi, si richiede di sviluppre

Dettagli

Il condensatore. Carica del condensatore: tempo caratteristico

Il condensatore. Carica del condensatore: tempo caratteristico Il condensaore IASSUNTO: apacia ondensaori a geomeria piana, cilindrica, sferica La cosane dielerica ε r ondensaore ceramico, a cara, eleroliico Il condensaore come elemeno di circuio: ondensaori in serie

Dettagli

La probabilità di avere non più di un maschio, significa la probabilità di averne 0 o 1: ( 0) P( 1)

La probabilità di avere non più di un maschio, significa la probabilità di averne 0 o 1: ( 0) P( 1) Esercizi sulle distribuzioni binoiale e poissoniana Esercizio n. Una coppia ha tre figli. Calcolare la probabilità che abbia non più di un aschio se la probabilità di avere un aschio od una feina è sepre

Dettagli

Dai numeri naturali ai numeri reali

Dai numeri naturali ai numeri reali .1 Introduzione Dai nueri naturali ai nueri reali In questa unità didattica vogliao riprendere rapidaente le nostre conoscenze sugli insiei nuerici (N, Z e Q), e successivaente apliarle a coprendere i

Dettagli

Numeri razionali COGNOME... NOME... Classe... Data...

Numeri razionali COGNOME... NOME... Classe... Data... I numeri rzionli Cpitolo Numeri rzionli Verifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

13. EQUAZIONI ALGEBRICHE

13. EQUAZIONI ALGEBRICHE G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi. EQUAZIONI ALGEBRICHE. Prinipi di equivlenz Si die identità un'uguglinz tr due espressioni ontenenti un o più

Dettagli

Studio di funzione. Pertanto nello studio di tali funzioni si esamino:

Studio di funzione. Pertanto nello studio di tali funzioni si esamino: Prof. Emnul ANDRISANI Studio di funzion Funzioni rzionli intr n n o... n n Crttristich: sono funzioni continu drivbili in tutto il cmpo rl D R quindi non sistono sintoti vrticli D R quindi non sistono

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

Lezione n.7. Variabili di stato

Lezione n.7. Variabili di stato Lezione n.7 Variabili di sao 1. Variabili di sao 2. Funzione impulsiva di Dirac 3. Generaori impulsivi per variabili di sao disconinue 3.1 ondizioni iniziali e generaori impulsivi In quesa lezione inrodurremo

Dettagli

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE Eserizi dell lezione sull Geomeri Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ES ERCIZI SULL' IPERBOLE ESERCIZI SULLA CIRCONFERENZA. Determinre l equzione dell ironferenz

Dettagli

Misure elettriche circuiti a corrente continua

Misure elettriche circuiti a corrente continua Misure elettriche circuiti a corrente continua Legge di oh Dato un conduttore che connette i terinali di una sorgente di forza elettrootrice si osserva nel conduttore stesso un passaggio di corrente elettrica

Dettagli

LE INTERSEZIONI Dispense didattiche di TOPOGRAFIA

LE INTERSEZIONI Dispense didattiche di TOPOGRAFIA lsse qurt Docente: In. Ntt MODULO I: IL RILIEVO TOOGRFIO UD I: L INQUDRMENTO ON LE RETI - INTERSEZIONI LE INTERSEZIONI Dispense didttiche di TOOGRFI r M unto di ollins O s θ 00 O d O d 00 θ θ ω ' ω θ c'

Dettagli

EQUILIBRI IN SOLUZIONE ACQUOSA

EQUILIBRI IN SOLUZIONE ACQUOSA Dispense CHIMICA GENERALE E ORGANICA (STAL) 010/11 Prof. P. Crloni EQUILIBRI IN SOLUZIONE ACQUOSA Qundo si prl di rezioni di equilirio dei composti inorgnici, un considerzione prticolre viene rivolt lle

Dettagli

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso.

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso. I vettor B Un segmento orentto è un segmento su cu è stto fssto un verso B d percorrenz, d verso oppure d verso. A A Il segmento orentto d verso è ndcto con l smolo. Due segment orentt che hnno l stess

Dettagli

Vietata la pubblicazione, la riproduzione e la divulgazione a scopo di lucro.

Vietata la pubblicazione, la riproduzione e la divulgazione a scopo di lucro. Viett l pubbliczione, l riprouzione e l ivulgzione scopo i lucro. GA00001 Qul è l mpiezz ell ngolo che si ottiene ) 95 b) 275 c) 265 ) 5 b sottreno 85 un ngolo giro? GA00002 Due ngoli ll circonferenz che

Dettagli

Struttura dei tassi per scadenza

Struttura dei tassi per scadenza Sruura dei assi per scadenza /45-Unià 7. Definizione del modello ramie gli -coupon bonds preseni sul mercao Ipoesi di parenza Sul mercao sono preseni all isane ZCB che scadono fra,2,,n periodi Periodo:

Dettagli

Nota metodologica Strategia di campionamento e livello di precisione dei risultati

Nota metodologica Strategia di campionamento e livello di precisione dei risultati Nota etodologica Strategia di capionaento e livello di precisione dei risultati 1. Obiettivi conoscitivi La popolaione di interesse dell indagine in oggetto, ossia l insiee delle unità statistiche intorno

Dettagli

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010 Corso di ordinmnto - Sssion suppltiv -.s. 9- PROBLEMA ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE SUPPLETIA Tm di: MATEMATICA. s. 9- Dt un circonrnz di cntro O rggio unitrio, si prndno

Dettagli

Una voce poco fa / Barbiere di Siviglia

Una voce poco fa / Barbiere di Siviglia Una voce oco a / Barbiere di Siviglia Andante 4 3 RÔ tr tr tr 4 3 RÔ & K r # Gioachino Rossini # n 6 # R R n # n R R R R # n 8 # R R n # R R n R R & & 12 r r r # # # R Una voce oco a qui nel cor mi ri

Dettagli

Esercizio 1 ( es 1 lez 11) La matrice è diagonalizzabile: verificare, trovando la matrice diagonalizzante, che A è simile a A.

Esercizio 1 ( es 1 lez 11) La matrice è diagonalizzabile: verificare, trovando la matrice diagonalizzante, che A è simile a A. Eserciio ( es le La marice è diagonaliabile: verificare, rovando la marice diagonaliane, che è simile a. Esisono re auovalori: mol.alg(- dim V - ; mol.alg( dim V ; mol.alg(- dim V -. Esise una marice simile

Dettagli

VALORE EFFICACE DEL VOLTAGGIO

VALORE EFFICACE DEL VOLTAGGIO Fisica generale, a.a. /4 TUTOATO 8: ALO EFFC &CCUT N A.C. ALOE EFFCE DEL OLTAGGO 8.. La leura con un mulimero digiale del volaggio ai morsei di un generaore fornisce + in coninua e 5.5 in alernaa. Tra

Dettagli

Comparazione delle performance di 6 cloni di Gamay ad altitudine elevata

Comparazione delle performance di 6 cloni di Gamay ad altitudine elevata Comprzione delle performnce di 6 cloni di Gmy d ltitudine elevt 1 / 46 Motivzioni Selezione clonle IAR-4 Lo IAR-4 è stto selezionto in mbiente montno d un prticolre popolzione di mterile stndrd, dll qule

Dettagli

TEMPORIZZATORE CON Ic NE 555 ( a cura del prof A. GARRO ) SCHEMA A BLOCCHI : NE555 1 T. reset (4) VCC R6 10K. C5 10uF

TEMPORIZZATORE CON Ic NE 555 ( a cura del prof A. GARRO ) SCHEMA A BLOCCHI : NE555 1 T. reset (4) VCC R6 10K. C5 10uF TEMPOIZZATOE CON Ic NE 555 ( a cura del prof A GAO ) SCHEMA A BLOCCHI : M (8) NE555 00K C7 00uF STAT S 4 K C6 0uF (6) (5) () TH C T A B 0 0 Q S Q rese T DIS (7) OUT () 0 T T09*()*C7 (sec) GND () (4) 6

Dettagli

Cuscinetti ad una corona di sfere a contatto obliquo

Cuscinetti ad una corona di sfere a contatto obliquo Cuscinetti d un coron di sfere conttto obliquo Cuscinetti d un coron di sfere conttto obliquo 232 Definizione ed ttitudini 232 Serie 233 Vrinti 233 Tollernze e giochi 234 Elementi di clcolo 236 Crtteristiche

Dettagli

Esempio Data la matrice E estraiamo due minori di ordine 3 differenti:

Esempio Data la matrice E estraiamo due minori di ordine 3 differenti: Minori di un mtrice Si A K m,n, si definisce minore di ordine p con p N, p

Dettagli

Elettronica I Grandezze elettriche e unità di misura

Elettronica I Grandezze elettriche e unità di misura Elettronica I Grandezze elettriche e unità di misura Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

Le spese di ricerca e sviluppo: gestione contabile ed iscrizione in bilancio *

Le spese di ricerca e sviluppo: gestione contabile ed iscrizione in bilancio * www.solmp.it Le : gestione contbile ed iscrizione in bilncio * Piero Pisoni, Fbrizio Bv, Dontell Busso e Alin Devlle ** 1. Premess Le sono esminte nei seguenti spetti: Il presente elborto è trtto d: definizione

Dettagli

Variazioni di sviluppo del lobo frontale nell'uomo

Variazioni di sviluppo del lobo frontale nell'uomo Istituto di Antropologi dell Regi Università di Rom Vrizioni di sviluppo del lobo frontle nell'uomo pel Dott. SERGIO SERGI Libero docente ed iuto ll cttedr di Antropologi. Il problem dei rpporti di sviluppo

Dettagli

10 Progetto con modelli tirante-puntone

10 Progetto con modelli tirante-puntone 0 Progetto con modelli tirnte-puntone 0. Introduzione I modelli tirnte-puntone (S&T Strut nd Tie) sono utilizzti per l progettzione delle membrture in c.. che non possono essere schemtizzte come solidi

Dettagli

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione RELAZIONI E FUNZIONI Relzioni inrie Dti ue insiemi non vuoti e (he possono eventulmente oiniere), si ie relzione tr e un qulsisi legge he ssoi elementi elementi. L insieme A è etto insieme i prtenz. L

Dettagli

07 GUIDA ALLA PROGETTAZIONE. Guida alla progettazione

07 GUIDA ALLA PROGETTAZIONE. Guida alla progettazione 07 Guid ll progettzione Scelt tubzioni e giunti 2 tubi di misur [mm] Dimetro tubzioni unità esterne (A) Giunti 12Hp 1Hp 1Hp Selezionre il dimetro delle unità esterne dll seguente tbell Giunto Y tr unità

Dettagli

ISTRUZIONI OPERATIVE PER GLI INTERVENTI SULLE TARIFFE INCENTIVANTI RELATIVE AGLI IMPIANTI FOTOVOLTAICI ai sensi dell art. 26 della Legge 116/2014

ISTRUZIONI OPERATIVE PER GLI INTERVENTI SULLE TARIFFE INCENTIVANTI RELATIVE AGLI IMPIANTI FOTOVOLTAICI ai sensi dell art. 26 della Legge 116/2014 ISTRUZIONI OPERATIVE PER GLI INTERVENTI SULLE TARIFFE INCENTIVANTI RELATIVE AGLI IMPIANTI FOTOVOLTAICI i sensi dell rt. 26 dell Legge 116/2014 (c.d. Legge Copetitività ) Ro, 3 novebre 2014 Indice 1. Contesto

Dettagli

GLI INDICI DEI COSTI DI COSTRUZIONE DI UN FABBRICATO RESIDENZIALE

GLI INDICI DEI COSTI DI COSTRUZIONE DI UN FABBRICATO RESIDENZIALE 21 arzo 2013 GLI INDICI DEI COSTI DI COSTRUZIONE DI UN FABBRICATO RESIDENZIALE La nuova base 2010 A partire dal ese di arzo 2013, l Istituto nazionale di statistica avvia la pubblicazione dei nuovi indici

Dettagli

Lezione 11. Inflazione, produzione e crescita della moneta

Lezione 11. Inflazione, produzione e crescita della moneta Lezione 11 (BAG cap. 10) Inflazione, produzione e crescia della monea Corso di Macroeconomia Prof. Guido Ascari, Universià di Pavia Tre relazioni ra produzione, disoccupazione e inflazione Legge di Okun

Dettagli

Impianti di Condizionamento: Impianti a tutt'aria e misti

Impianti di Condizionamento: Impianti a tutt'aria e misti Facoltà di Ingegneria - Polo di Rieti Corso di " Ipianti Tecnici per l'edilizia" Ipianti di Condizionaento: Ipianti a tutt'aria e isti Prof. Ing. Marco Roagna INTRODUZIONE Una volta noti i carichi sensibili

Dettagli

PRINCIPIO DI INDUZIONE. k =. 2. k 2 n(n + 1)(2n + 1) 6

PRINCIPIO DI INDUZIONE. k =. 2. k 2 n(n + 1)(2n + 1) 6 PRINCIPIO DI INDUZIONE LORENZO BRASCO Esercizio. Diostrare che per ogni n si ha nn. 2 Esercizio 2. Diostrare che per ogni n si ha 2 2 nn 2n. Soluzione Procediao per induzione: la 2 è ovviaente vera per

Dettagli

LA FUNZIONE ESPONENZIALE E IL LOGARITMO

LA FUNZIONE ESPONENZIALE E IL LOGARITMO LA FUNZIONE ESPONENZIALE E IL LOGARITMO APPUNTI PER IL CORSO DI ANALISI MATEMATICA I G. MAUCERI Indice 1. Introduzione 1 2. La funzione esponenziale 2 3. Il numero e di Nepero 9 4. L irrazionalità di e

Dettagli

MODELLI PER LA STRUTTURA A TERMINE DEI TASSI

MODELLI PER LA STRUTTURA A TERMINE DEI TASSI Alma Maer Sudiorum Universià di Bologna FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea in Maemaica Maeria di Tesi: Maemaica per le applicazioni economiche e finanziarie MODELLI PER

Dettagli

Leica Lino L360, L2P5, L2+, L2, P5, P3

Leica Lino L360, L2P5, L2+, L2, P5, P3 Leica Lino L360, L25, L2+, L2, 5, 3 Manuale d'uso Versione 757665g Italiano Congratulazioni per aver acquistato Leica Lino. Le ore di sicurezza sono allegate al Manuale d'uso. Leggere attentaente le ore

Dettagli

Domanda n. del Pensione n. cat. abitante a Prov. CAP. via n. DICHIARA, sotto la propria responsabilità, che per gli anni:

Domanda n. del Pensione n. cat. abitante a Prov. CAP. via n. DICHIARA, sotto la propria responsabilità, che per gli anni: Mod. RED Sede di Domnd n. del Pensione n. ct. nto il stto civile bitnte Prov. CAP vi n. DICHIARA, sotto l propri responsbilità, che per gli nni: A B (brrre l csell reltiv ll propri situzione) NON POSSIEDE

Dettagli

TELEGESTIONE E CONTROLLO DI QUALUNQUE TIPO DI CALDAIE E BRUCIATORI PER QUALUNQUE TIPO DI IMPIANTO

TELEGESTIONE E CONTROLLO DI QUALUNQUE TIPO DI CALDAIE E BRUCIATORI PER QUALUNQUE TIPO DI IMPIANTO NUMERO 2 del 23.04.08 COSER COSER IME Applicazioni Apparecchiature Numero 2 del 23-04-08 APPLICAZIONI APPARECCHIAURE E IMPIANI LE VARIE SOLUZIONI SARANNO ELENCAE NEL MODO PIÙ SINEICO POSSIBILE. ROVAA LA

Dettagli

/ * " 6 7 -" 1< " *,Ê ½, /, "6, /, Ê, 9Ê -" 1/ " - ÜÜÜ Ìi «V Ì

/ *  6 7 - 1<  *,Ê ½, /, 6, /, Ê, 9Ê - 1/  - ÜÜÜ Ìi «V Ì LA TRASMISSIONE DEL CALORE GENERALITÀ 16a Allorché si abbiano due corpi a differenti temperature, la temperatura del corpo più caldo diminuisce, mentre la temperatura di quello più freddo aumenta. La progressiva

Dettagli

Esponenziali elogaritmi

Esponenziali elogaritmi Esponenziali elogaritmi Potenze ad esponente reale Ricordiamo che per un qualsiasi numero razionale m n prendere n>0) si pone a m n = n a m (in cui si può sempre a patto che a sia un numero reale positivo.

Dettagli

Epigrafe. Premessa. D.Lgs. 29 dicembre 2006, n. 311 (1).

Epigrafe. Premessa. D.Lgs. 29 dicembre 2006, n. 311 (1). D.Lgs. 29-12-2006 n. 311 Disposizioni correttive ed integrtive l D.Lgs. 19 gosto 2005, n. 192, recnte ttuzione dell direttiv 2002/91/CE, reltiv l rendimento energetico nell'edilizi. Pubblicto nell Gzz.

Dettagli

63- Nel Sistema Internazionale SI, l unità di misura del calore latente di fusione è A) J / kg B) kcal / m 2 C) kcal / ( C) D) kcal * ( C) E) kj

63- Nel Sistema Internazionale SI, l unità di misura del calore latente di fusione è A) J / kg B) kcal / m 2 C) kcal / ( C) D) kcal * ( C) E) kj 61- Quand è che volumi uguali di gas perfetti diversi possono contenere lo stesso numero di molecole? A) Quando hanno uguale pressione e temperatura diversa B) Quando hanno uguale temperatura e pressione

Dettagli

r~~f~~. --r-~r-r ---- _[::=_~- r-l

r~~f~~. --r-~r-r ---- _[::=_~- r-l In tutti i problei si userà coe velocità del suono in aria il valore 340 /s (valido per una teperatura dell'aria di circa 18 C), salvo diversa indicazione. La propagazione ondosa La figura seguente ostra

Dettagli

INTERCONNESSIONE CONNETTIVITÀ

INTERCONNESSIONE CONNETTIVITÀ EMC VMA AX 10K EMC VMAX 10K fornisce e un'rchitettu ur scle-out multi-controlller Tier 1 rele e che nsolidmento ed efficienz. EMC VMAX 10 0K utilizz l stess s grntisce lle ziende con stemi VMAX 20 0K e

Dettagli

Metodi d integrazione di Montecarlo

Metodi d integrazione di Montecarlo Metodi d itegrzioe di Motecrlo Simulzioe l termie simulzioe ell su ccezioe scietific h u sigificto diverso dll ccezioe correte. Nell uso ordirio è sioimo si fizioe; ell uso scietifico è sioimo di imitzioe,

Dettagli

2. FONDAMENTI DELLA TECNOLOGIA

2. FONDAMENTI DELLA TECNOLOGIA 2. FONDAMENTI DELLA TECNOLOGIA 2.1 Principio del processo La saldatura a resistenza a pressione si fonda sulla produzione di una giunzione intima, per effetto dell energia termica e meccanica. L energia

Dettagli

TIP Aerotermi TIP. Aerotermi come apparecchi a parete e soffitto Catalogo tecnico

TIP Aerotermi TIP. Aerotermi come apparecchi a parete e soffitto Catalogo tecnico TIP Aeroteri TIP Aeroteri coe apparecchi a parete e soffitto Catalogo tecnico Indice 01 Inforazioni sul prodotto 6 Panoraica 7 Dati sul prodotto 8 Guida alla scelta: Panoraica delle versioni 9 TIP in un

Dettagli

1. L'INSIEME DEI NUMERI REALI

1. L'INSIEME DEI NUMERI REALI . L'INSIEME DEI NUMERI REALI. I pricipli isiemi di umeri Ripredimo i pricipli isiemi umerici N, l'isieme dei umeri turli 0; ; ; ; ;... L'ide ituitiv di umero turle è ssocit l prolem di cotre e ordire gli

Dettagli

Principi di ingegneria elettrica. Lezione 19 a. Conversione elettromeccanica dell'energia Trasmissione e distribuzione dell'energia elettrica

Principi di ingegneria elettrica. Lezione 19 a. Conversione elettromeccanica dell'energia Trasmissione e distribuzione dell'energia elettrica Principi di ingegneria elerica Lezione 19 a Conversione eleromeccanica dell'energia Trasmissione e disribuzione dell'energia elerica acchina elerica elemenare Una barra condurice di lunghezza l immersa

Dettagli

ESERCITAZIONI. I. 1)Una coppia ha già due figlie. Se pianificassero di avere 6 figli, con quale probabilità avranno una famiglia di tutte figlie?

ESERCITAZIONI. I. 1)Una coppia ha già due figlie. Se pianificassero di avere 6 figli, con quale probabilità avranno una famiglia di tutte figlie? ESERCITZIONI. I 1)Un coppi h già due figlie. Se pinificssero di vere 6 figli, con qule probbilità vrnno un fmigli di tutte figlie? ) 1/4 b)1/8 c)1/16 d)1/32 e)1/64 2)In un fmigli con 3 bmbini, qul e l

Dettagli

Problema n. 1: CURVA NORD

Problema n. 1: CURVA NORD Problema n. 1: CURVA NORD Sei il responsabile della gestione del settore Curva Nord dell impianto sportivo della tua città e devi organizzare tutti i servizi relativi all ingresso e all uscita degli spettatori,

Dettagli

DUVRI Documento Unico di Valutazione dei Rischi Interferenziali

DUVRI Documento Unico di Valutazione dei Rischi Interferenziali DUVRI Documento Unico di Valutazione dei Rischi Interferenziali i sensi del D.lgs. 9 aprile 2008, n. 81 e ss.mm.ii. TESTO UNICO SULL SLUTE E SICUREZZ SUL LVORO ttuazione dell'articolo 1 della legge 3 agosto

Dettagli

Corrente elettrica (regime stazionario)

Corrente elettrica (regime stazionario) Corrente elettrica (regime stazionario) Metalli Corrente elettrica Legge di Ohm Resistori Collegamento di resistori Generatori di forza elettromotrice Metalli Struttura cristallina: ripetizione di unita`

Dettagli

Precorsi 2014. Fisica. parte 1

Precorsi 2014. Fisica. parte 1 Precorsi 2014 Fisica parte 1 Programma ministeriale per il test Grandezze fisiche Una grandezza fisica è una caratteristica misurabile di un entità fisica. Sono grandezze fisiche: velocità, energia di

Dettagli

(c) dipende linearmente dalla distanza dal centro della sfera. Domanda n5: Il campo elettrico all'interno di un conduttore sferico di raggio R e'

(c) dipende linearmente dalla distanza dal centro della sfera. Domanda n5: Il campo elettrico all'interno di un conduttore sferico di raggio R e' FISICA per BIOLOGIA Esercizi: Elettricita' e Magnetismo Indicare la lettera corrispondente alla risposta corretta. Domanda n1: La carica elettrica e' quantizzata, cioe' la carica piu' piccola misurata

Dettagli

11. Attività svolta dall Agenzia, risorse e aspetti organizzativi

11. Attività svolta dall Agenzia, risorse e aspetti organizzativi 11. Attività svolt dll Agenzi, risorse e spetti orgnizztivi 11.1 Attività istituzionle svolt i sensi dell Deliberzione istitutiv In un vlutzione complessiv delle ttività svolte dll Agenzi i sensi dell

Dettagli

Associazione per l Insegnamento della Fisica Giochi di Anacleto 2014 - Soluzioni a Domande e Risposte

Associazione per l Insegnamento della Fisica Giochi di Anacleto 2014 - Soluzioni a Domande e Risposte 9ik8ujm Quesito 1 Risposta B Associazione per l Insegnamento della Fisica La formazione di una stella è dovuta alla contrazione gravitazionale di una nube di gas e polveri Da una stessa nube generalmente

Dettagli

Esercizi svolti di teoria dei segnali

Esercizi svolti di teoria dei segnali Esercizi svoli di eoria dei segnali Alessia De Rosa Mauro Barni Novembre Indice Inroduzione ii Caraerisiche dei segnali deerminai Sviluppo in Serie di Fourier di segnali periodici Trasformaa di Fourier

Dettagli

Apprendimento dei concetti relativi alle misure dirette, indirette ed alla propagazione degli errori

Apprendimento dei concetti relativi alle misure dirette, indirette ed alla propagazione degli errori U n i v e r s i t à d e g l i S t u d i d i U d i n e - Facoltà di Ingegneria Laboratorio di Fisica Generale 1 1 Il sistema massa-molla: Apprendimento dei concetti relativi alle misure dirette, indirette

Dettagli

v999999999 Italià (més grans de 25 anys) Aferrau una etiqueta identificativa Convocatòri a 2015 de codi de barres Model 1

v999999999 Italià (més grans de 25 anys) Aferrau una etiqueta identificativa Convocatòri a 2015 de codi de barres Model 1 Aferru un etiquet identifictiv v999999999 de codi de brres Itlià (més grns de 25 nys) Model 1 Not 1ª Not 2ª Aferru l cpçler d exmen un cop cbt l exercici Puntució: preguntes vertder/fls: 1 punt; preguntes

Dettagli

Codici bifissi ed insiemi Sturmiani

Codici bifissi ed insiemi Sturmiani Università degli Studi di Plermo Fcoltà di Scienze MM. FF. NN. Corso di Lure Specilistic in Mtemtic Codici ifissi ed insiemi Sturmini Studente Frncesco Dolce Reltore Prof. Antonio Restivo Anno Accdemico

Dettagli

Energia potenziale elettrica

Energia potenziale elettrica Energia potenziale elettrica La dipendenza dalle coordinate spaziali della forza elettrica è analoga a quella gravitazionale Il lavoro per andare da un punto all'altro è indipendente dal percorso fatto

Dettagli

a Crediamo nel concetto di cucina a chilometro zero e nei prodotti di stagione, crediamo nel rispetto dell ambiente e delle tradizioni.

a Crediamo nel concetto di cucina a chilometro zero e nei prodotti di stagione, crediamo nel rispetto dell ambiente e delle tradizioni. Credimo nel concetto di cucin chilometro zero e nei prodotti di stgione, credimo nel rispetto dell mbiente e delle trdizioni. L nostr propost enogstronomic è bst sull riscopert delle ricette più semplici

Dettagli

L ELLISSOIDE TERRESTRE

L ELLISSOIDE TERRESTRE L ELLISSOIDE TERRESTRE Fin dll scond mtà dl XVII scolo (su propost di Nwton) l suprfici più dtt ssr ssunt com suprfici di rifrimnto pr l Trr è stt individut in un ELLISSOIDE DI ROTAZIONE. E l suprfici

Dettagli

A.1 Definizione e rappresentazione di un numero complesso

A.1 Definizione e rappresentazione di un numero complesso 441 APPENDICE A4 NUMERI COMPLESSI A.1 Definizione e rappresentazione di un numero complesso Si riepilogano i concetti e le operazioni elementari relativi ai numeri complessi. Sia z un numero complesso;

Dettagli

Forza centripeta e gravitazione

Forza centripeta e gravitazione pitolo 6 Foz centipet e gitzione 1. Il oto cicole Quli sono le ctteistiche del oto cicole? Un pticell si dice nit di oto cicole qundo l su tiettoi è un ciconfeenz. Lo studio di questo tipo di oto iene

Dettagli

Analisi Matematica di circuiti elettrici

Analisi Matematica di circuiti elettrici Analisi Matematica di circuiti elettrici Eserciziario A cura del Prof. Marco Chirizzi 2011/2012 Cap.5 Numeri complessi 5.1 Definizione di numero complesso Si definisce numero complesso un numero scritto

Dettagli

VERIFICA DI UN CIRCUITO RESISTIVO CONTENENTE PIÙ GENERATORI CON UN TERMINALE COMUNE E SENZA TERMINALE COMUNE.

VERIFICA DI UN CIRCUITO RESISTIVO CONTENENTE PIÙ GENERATORI CON UN TERMINALE COMUNE E SENZA TERMINALE COMUNE. FCA D UN CCUTO SSTO CONTNNT PÙ GNATO CON UN TMNAL COMUN SNZA TMNAL COMUN. Si verifino quttro iruiti on due genertori: genertori on polrità onorde e un terminle omune genertori on polrità disorde e un terminle

Dettagli

MATRICI SIMILI E MATRICI DIAGONALIZZABILI

MATRICI SIMILI E MATRICI DIAGONALIZZABILI MATRICI SIMILI E MATRICI DIAGONALIZZABILI DEFINIZIONE: Due mtici qudte A e B, dello stesso odine n, si dicono simili se esiste un mtice non singole S, tle che isulti: B S A S L mtice S si chim nche mtice

Dettagli

CompitoTotale_21Feb_tutti_2011.nb 1

CompitoTotale_21Feb_tutti_2011.nb 1 CopitoTotale_2Feb_tutti_20.nb L Sia data una distribuzione di carica positiva, disposta su una seicirconferenza di raggio R con densità lineare di carica costante l. Deterinare : al l espressione del capo

Dettagli

SVILUPPO IN SERIE DI FOURIER

SVILUPPO IN SERIE DI FOURIER SVILUPPO IN SERIE DI FOURIER Cenni Storici (Wikipedia) Jean Baptiste Joseph Fourier ( nato a Auxerre il 21 marzo 1768 e morto a Parigi il 16 maggio 1830 ) è stato un matematico e fisico, ma è conosciuto

Dettagli

YOGURT. Dosi per. 150 più secondo il. fermenti. eccezionalee. il nostroo lavorare. intestino. forma. Alla fine

YOGURT. Dosi per. 150 più secondo il. fermenti. eccezionalee. il nostroo lavorare. intestino. forma. Alla fine YOGURT FATTO IN CASAA CON YOGURTIERA Lo yogurt ftto in cs è senz ltro un modoo sno per crere un limento eccezionlee per l nostr slute. Ricco di ltticii iut intestino fermenti il nostroo lvorre meglioo

Dettagli

Potenziale Elettrico. r A. Superfici Equipotenziali. independenza dal cammino. 4pe 0 r. Fisica II CdL Chimica

Potenziale Elettrico. r A. Superfici Equipotenziali. independenza dal cammino. 4pe 0 r. Fisica II CdL Chimica Potenziale Elettrico Q V 4pe 0 R Q 4pe 0 r C R R R r r B q B r A A independenza dal cammino Superfici Equipotenziali Due modi per analizzare i problemi Con le forze o i campi (vettori) per determinare

Dettagli

LA CORRENTE ELETTRICA

LA CORRENTE ELETTRICA L CORRENTE ELETTRIC H P h Prima che si raggiunga l equilibrio c è un intervallo di tempo dove il livello del fluido non è uguale. Il verso del movimento del fluido va dal vaso a livello maggiore () verso

Dettagli

NOTA METODOLOGICA SUL MODELLO PREVISIVO EXCELSIOR PER GLI ANNI 2013-2017

NOTA METODOLOGICA SUL MODELLO PREVISIVO EXCELSIOR PER GLI ANNI 2013-2017 NOTA METODOLOGICA SUL MODELLO PREVISIVO EXCELSIOR PER GLI ANNI 2013-2017 1 SOMMARIO PREMESSA... 3 1. IL MODELLO ECONOMETRICO PER LA STIMA DEGLI STOCK SETTORIALI... 3 Foni... 3 Meodologia... 3 La formulazione

Dettagli