Prof. Emanuele ANDRISANI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Prof. Emanuele ANDRISANI"

Transcript

1 Potenze con esponente razionale Sia a > 0 e a 1. Abbiamo definito a x quando x N. Poniamo a 0 = 1 a x = a m n = n a m se x = m n Q, x > 0, m, n N a x = 1 a x se x Q, x > 0. È così definita la potenza a x, per ogni x Q. 1

2 Proprietà delle potenze con esponente razionale Sia a > 0, a 1, x, y Q; valgono le seguenti proprietà: 1. a x > 0, per ogni x Q 2. a x+y = a x a y 3. (a x ) y = a xy 4. (a b) x = a x b x 5. se a > 1 vale: 6. se 0 a 1 vale: x y a x a y x y a x a y OSSERVAZIONE a = 1 1 x = 1, per ogni x Q 2

3 Esercizio Calcolare A) 16 3 B)4 C) 1 12 D) 64 3 E)12 La risposta è alla pagina successiva. 3

4 Esercizio Calcolare A) 16 3 B)4 C) 1 12 D) 64 3 E)12 B) = = = 2 2 = 4 RISULTATO 4

5 Esercizio Semplificare A) (2 3 ) 2 3 B) (a 9 ) 2 3, a > 0 C) (c2) 5 3, 2 c > 0 La risposta è alla pagina successiva. 5

6 Esercizio Semplificare A) (2 3 ) 2 3 B) (a 9 ) 2 3, a > 0 C) (c2) 5 3, 2 c > 0 RISULTATO A) 2 2 B) a 6 C) c 5 3 6

7 Esercizio Calcolare (0, ) 1 3 La risposta è alla pagina successiva. 7

8 Esercizio Calcolare (0, ) 1 3 ( 64 ) ( = 6 ) RISULTATO = = = ( ) = 5 2 = 25 8

9 Esercizio Se c 3 2 = 27, calcolare il valore di c La risposta è alla pagina successiva. 9

10 Esercizio Se c 3 2 = 27, calcolare il valore di c RISULTATO 2 c3 = 27 c 3 = 27 2 c = = = 3 (3 2 ) 3 = 9. 10

11 Logaritmo Se a > 0, a 1 e x > 0 definiamo il logaritmo in base a di x nella maniera seguente: y R è il logaritmo in base a di x, cioè y = log a x, se y è tale che a y = x. OSSERVAZIONE: Spesso con le notazioni ln x o log x si indica il logaritmo naturale la cui base è il numero di Nepero e = Con la notazione Log x si indica invece il logaritmo decimale la cui base è il numero

12 Proprietà del logaritmo Valgono le seguenti proprietà per ogni x, y > 0, a > 0, a 1 a log a x = x, log a a x = x log a (x y) = log a x + log a y log a x y = log a x log a y log a x α = α log a x, α R log a x = log b x, b > 0, b 1 (cambiamento di base) log b a se a > 1 vale: se 0 < a < 1 vale: 0 < x y log a x log a y 0 < x y log a x log a y 12

13 Esempi log = 3 (poiché 3 3 = 1 27 ) log1 16 = 4 2 log 5 x = 2 x = 1 25 Verificare che log = 1 2 (1 + log 5 2). Si ha log = log 5 10 log 5 25 (cambio di base) = 1 2 log 5(5 2) = 1 2 (log log 5 2) = 1 2 (1 + log 5 2) 13

14 Esercizio Calcolare log 2 16 A) 4 B) 8 C) 32 D) 16 2 E) 2 16 La risposta è alla pagina successiva. 14

15 Esercizio Calcolare log 2 16 A) 4 B) 8 C) 32 D) 16 2 E) 2 16 A) log 2 16 = 4; infatti 2 4 = 16 RISULTATO 15

16 Esercizio Calcolare log 10 ( 100) A) 2 B) -2 C) 10 D) non definito E) -10 La risposta è alla pagina successiva. 16

17 Esercizio Calcolare log 10 ( 100) A) 2 B) -2 C) 10 D) non definito E) -10 RISULTATO D) Discende dalla definizione di logaritmo 17

18 Esercizio Il logaritmo di x in base 7: log 7 x = y è un numero y tale che A) y 7 = x B) x 7 = y C) 10 y = 7 D) 7 y = x E) y x = 7 La risposta è alla pagina successiva. 18

19 Esercizio Il logaritmo di x in base 7: log 7 x = y è un numero y tale che A) y 7 = x B) x 7 = y C) 10 y = 7 D) 7 y = x E) y x = 7 D) RISULTATO 19

20 Esercizio log log 10 3 = A) log 10 (4 3) B) log 10 (4 + 3) ( C) log 4 ) 10 3 D) log 10 (4 3 ) E) è un numero diverso da quelli delle precedenti risposte La risposta è alla pagina successiva. 20

21 Esercizio log log 10 3 = A) log 10 (4 3) B) log 10 (4 + 3) ( C) log 4 ) 10 3 D) log 10 (4 3 ) E) è un numero diverso da quelli delle precedenti risposte A) RISULTATO 21

22 Esercizio Calcolare log log log log 10 0, 1 La risposta è alla pagina successiva. 22

23 Esercizio Calcolare log log log log 10 0, 1 RISULTATO log log log log 10 0, 1 = log log log log = = 2 [ = log10 ( ) = log = 2 ] 23

24 Esercizio Se è log n 11 = 0, 5, calcolare il valore di n La risposta è alla pagina successiva. 24

25 Esercizio Se è log n 11 = 0, 5, calcolare il valore di n SOLUZIONE n 0,5 = 11 n 5 10 = 11 n 1 2 = 11 n = 11 2 =

26 Esercizio Quante cifre ha il numero nella rappresentazione decimale? (si tenga conto che log 10 3 = 0, ) La risposta è alla pagina successiva. 26

27 Esercizio Quante cifre ha il numero nella rappresentazione decimale? (si tenga conto che log 10 3 = 0, ) SOLUZIONE Il numero sarà un intero che avrà n cifre decimali. Allora: 10 n < 10 n (n 1) log log 10 3 < n log (n 1) 100 0, < n (n 1) 47, 77.. < n n = 48 27

Le proprietà che seguono valgono x, y > 0, a > 0 a 1, e b qualsiasi. Da queste si possono anche dedurre le seguenti uguaglianze log a 1 = 0

Le proprietà che seguono valgono x, y > 0, a > 0 a 1, e b qualsiasi. Da queste si possono anche dedurre le seguenti uguaglianze log a 1 = 0 Corso di Potenziamento a.a. 009/00 I Logaritmi Fissiamo un numero a > 0, a. Dato un numero positivo t, l equazione a x = t ammette un unica soluzione x che si chiama logaritmo in base a di t e si scrive

Dettagli

PreCorso di Matematica - PCM Corso A

PreCorso di Matematica - PCM Corso A PreCorso di Matematica - PCM Corso A DOCENTE: M. Auteri Numeri positi e negativi..... 6 5 4 3 2 1 0 1 2 3 4 5 6..... 0 2, 4, 5 2.14, 3.76, 21.9351-2, -4, -5-2.43, -12.54, -17.9136 Docente: Auteri, PreCorso

Dettagli

Potenze reali, esponenziali e logaritmi

Potenze reali, esponenziali e logaritmi Potenze reali, esponenziali e logaritmi Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Potenze reali, esponenziali e logaritmi 1 / 14 Potenza ad esponente intero positivo

Dettagli

Funzione Esponenziale

Funzione Esponenziale Funzione Esponenziale y y O f : R (0,+ ), f(x) = a x con a > a 0 =, a = a a x > 0 x R strettamente crescente: x < x 2 a x < ax 2 se x tende a +, a x tende a + se x tende a, a x tende a 0 x O f : R (0,+

Dettagli

IPSSART Aversa - Prof Nunzio ZARIGNO - Anno scolastico I LOGARITMI. Definizione di logaritmo

IPSSART Aversa - Prof Nunzio ZARIGNO - Anno scolastico I LOGARITMI. Definizione di logaritmo IPSSART Aversa Prof Nunzio ZARIGNO Anno scolastico 200910 I LOGARITMI Definizione di logaritmo Definizione Si dice LOGARITMO in base a, con, di un numero reale positivo b, e si scrive log a b, l'esponente

Dettagli

Equazioni esponenziali e logaritmi

Equazioni esponenziali e logaritmi Copyright c 2008 Pasquale Terrecuso Tutti i diritti sono riservati. Equazioni esponenziali e logaritmi 2 equazioni esponenziali..................................................... 3 casi particolari............................................................

Dettagli

FUNZIONI LOGARITMICHE

FUNZIONI LOGARITMICHE La funzione f: R R + dove f(x) = b x b>0, b 1, è invertibile. La funzione inversa si chiama logaritmo in base b log b : R + R, essendo la funzione inversa si ha log b (b x ) = x b log b x = x In particolare

Dettagli

MATEMATICA DI BASE 1

MATEMATICA DI BASE 1 MATEMATICA DI BASE 1 Francesco Oliveri Dipartimento di Matematica, Università di Messina 30 Agosto 2010 MATEMATICA DI BASE MODULO 1 Insiemi Logica Numeri Insiemi Intuitivamente, con il termine insieme

Dettagli

1.3. Logaritmi ed esponenziali

1.3. Logaritmi ed esponenziali 1.3. Logaritmi ed esponenziali 1. Rappresentazione sugli assi cartesiani 2. Relazione 3. Definizione di funzione 4. La funzione esponenziale 5. Il logaritmo 6. La funzione logaritma 1-3 1 Rappresentazione

Dettagli

Potenze, esponenziali e logaritmi 1 / 34

Potenze, esponenziali e logaritmi 1 / 34 Potenze, esponenziali e logaritmi / 34 Grafico della funzione x 2 e x 2 / 34 y f(x)=x 2 y=x f (x)= x x Le funzioni potenza 3 / 34 Più in generale, si può considerare, per n N, n>0, n pari, la funzione

Dettagli

Matematica di base. Lezioni in Aula D5 ogni Venerdi alle 14:30 BLOG: matematicadibase.wordpress.com

Matematica di base. Lezioni in Aula D5 ogni Venerdi alle 14:30 BLOG: matematicadibase.wordpress.com Matematica di base Lezioni in Aula D5 ogni Venerdi alle 14:30 BLOG: matematicadibase.wordpress.com Calendario 21 Ottobre Aritmetica ed algebra elementare 28 Ottobre Geometria elementare 4 Novembre Insiemi

Dettagli

ESERCITAZIONE: ESPONENZIALI E LOGARITMI

ESERCITAZIONE: ESPONENZIALI E LOGARITMI ESERCITAZIONE: ESPONENZIALI E LOGARITMI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Esercizio 1 In una coltura batterica, il numero di batteri triplica ogni ora. Se all inizio dell osservazione

Dettagli

FUNZIONI LOGARITMICHE

FUNZIONI LOGARITMICHE La funzione f: R R + dove f(x) = b x b>0, b 1, è invertibile. La funzione inversa si chiama logaritmo in base b log b : R + R, essendo la funzione inversa si ha log b (b x ) = x b log b x = x In particolare

Dettagli

9. Lezione 9/10/2017. = a 3 a a

9. Lezione 9/10/2017. = a 3 a a 9. Lezione 9/10/017 9.1. Funzioni esponenziali. Scelta una base positiva a possiamo considerare le potenze a n per ogni n N. Valgono le proprietà: a 0 = 1 1 n 1 a = 1 a 1/ = a a a 4/3 = a 3 a a 0.5 = 1

Dettagli

Equazione esponenziale a x = b con 0<a<1 oppure a>1; x R; b>0

Equazione esponenziale a x = b con 0<a<1 oppure a>1; x R; b>0 Equazione esponenziale a x = b con 00 Proprietà delle potenze: a n. b n = ( a. b ) n a n : b n = ( a : b ) n a n. a m = a n+m a n : a m = a n-m ( a n ) m = a n a n/m n a = a -n/m

Dettagli

( x) Definizione: si definisce dominio (o campo di esistenza) di una funzione f ( x) l insieme dei valori

( x) Definizione: si definisce dominio (o campo di esistenza) di una funzione f ( x) l insieme dei valori Definizione: si definisce dominio (o campo di esistenza) di una funzione f ( ) l insieme dei valori che la variabile può assumere affinché la funzione f ( ) abbia significato. Vediamo di individuare alcune

Dettagli

FUNZIONE LOGARITMO. =log,, >0, 1 : 0,+ log

FUNZIONE LOGARITMO. =log,, >0, 1 : 0,+ log FUNZIONE LOGARITMO =log,,>0, 1 : 0,+ log a è la base della funzione logaritmo ed è una costante positiva fissata e diversa da 1 x è l argomento della funzione logaritmo e varia nel dominio Funzione logaritmo

Dettagli

2 Logaritmi Definizione di logaritmo Proprietà dei logaritmi Soluzioni degli esercizi 10

2 Logaritmi Definizione di logaritmo Proprietà dei logaritmi Soluzioni degli esercizi 10 POTENZE E RADICALI Potenze, Radicali e Logaritmi Indice Potenze e Radicali. Potenze con esponente naturale......................................... Potenze con esponente intero..........................................

Dettagli

LOGARITMI. Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA. L uguaglianza: a x = b

LOGARITMI. Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA. L uguaglianza: a x = b Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA LOGARITMI L uguaglianza: a x = b nella quale a e b rappresentano due numeri reali noti ed x un incognita, è un equazione

Dettagli

5 Limiti notevoli. Proprietà delle funzioni continue

5 Limiti notevoli. Proprietà delle funzioni continue 5 Limiti notevoli. Proprietà delle funzioni continue 5.1 Due limiti notevoli Teorema 5.1. Se gli angoli sono misurati in radianti, si ha (5.1) lim 0 sin = 1. Dimostrazione. Osserviamo preventivamente che

Dettagli

PREREQUISITI PER SEGUIRE IL CORSO

PREREQUISITI PER SEGUIRE IL CORSO PREREQUISITI PER SEGUIRE IL CORSO Insiemi numerici e aritmetica elementare. Equazioni e disequazioni di primo e secondo grado. Geometria elementare e geometria analitica: rette, parabole, iperbole equilatera.

Dettagli

Nel Sistema Internazionale l unità di misura dell angolo è il radiante

Nel Sistema Internazionale l unità di misura dell angolo è il radiante Scienze Motorie Grandezze fisiche Il Sistema Internazionale di Unità di Misura 1) Nel Sistema Internazionale il prefisso Giga equivale a a) 10 15 b) 10 12 c) 10 9 d) 10 6 e) 10 3 Nel Sistema Internazionale

Dettagli

COMPENDIO ESPONENZIALI LOGARITMI

COMPENDIO ESPONENZIALI LOGARITMI TORINO SETTEMBRE 2010 COMPENDIO DI ESPONENZIALI E LOGARITMI di Bart VEGLIA 1 ESPONENZIALi 1 Equazioni esponenziali Un espressione in cui l incognita compare all esponente di una o più potenze si chiama

Dettagli

In altri termini, il logaritmo in base a di b è quel numero c tale per cui a elevato a c è uguale a b. In simboli

In altri termini, il logaritmo in base a di b è quel numero c tale per cui a elevato a c è uguale a b. In simboli LOGARITMO Il logaritmo è un operatore matematico indicato generalmente con loga(b); detta a la base e b l'argomento, il logaritmo in base a di b è definito come l'esponente a cui elevare la base per ottenere

Dettagli

Proprietà dei logaritmi e problemi. Daniela Valenti, Treccani Scuola 1

Proprietà dei logaritmi e problemi. Daniela Valenti, Treccani Scuola 1 Proprietà dei logaritmi e problemi 1 Attività 2. Proprietà dei logaritmi e problemi Manca un problema da risolvere: calcolare i logaritmi in una base diversa da 10. È il primo problema che risolverete

Dettagli

Prerequisiti per seguire il corso

Prerequisiti per seguire il corso Prerequisiti per seguire il corso Insiemi numerici e aritmetica elementare. Equazioni e disequazioni di primo e secondo grado. Geometria elementare e geometria analitica: rette, parabole, iperbole equilatera.

Dettagli

Funzioni Pari e Dispari

Funzioni Pari e Dispari Una funzione f : R R si dice Funzioni Pari e Dispari PARI: se f( ) = f() R In questo caso il grafico della funzione è simmetrico rispetto all asse DISPARI: se f( ) = f() R In questo caso il grafico della

Dettagli

Concentrazioni. concentrazione peso della soluzione

Concentrazioni. concentrazione peso della soluzione Concentrazioni Una soluzione è un sistema omogeneo prodotto dallo scioglimento di una sostanza solida, liquida o gassosa (soluto), in un opportuno liquido (solvente). Definiamo concentrazione di una soluzione

Dettagli

Funzioni Esponenziale e Logaritmica. Prof. Simone Sbaraglia

Funzioni Esponenziale e Logaritmica. Prof. Simone Sbaraglia Funzioni Esponenziale e Logaritmica Prof. Simone Sbaraglia Funzione Esponenziale Vogliamo definire propriamente le funzioni esponenziali e logaritmiche che abbiamo introdotto in precedenza. Qual e` il

Dettagli

Primo modulo: Aritmetica

Primo modulo: Aritmetica Primo modulo: Aritmetica Obiettivi 1. ordinamento e confronto di numeri;. riconoscere la rappresentazione di un numero in base diversa dalla base 10; 3. conoscere differenza tra numeri razionali e irrazionali;

Dettagli

Breve formulario di matematica

Breve formulario di matematica Luciano Battaia a 2 = a ; lim sin = 1, se 0; sin(α + β) = sin α cos β + cos α sin β; f() = e 2 f () = 2e 2 ; sin d = cos + k; 1,2 = b± ; a m a n = 2a a n+m ; log a 2 = ; = a 2 + b + c; 2 + 2 = r 2 ; e

Dettagli

35 è congruo a 11 modulo 12

35 è congruo a 11 modulo 12 ARITMETICA MODULARE Scegliamo un numero m che chiameremo MODULO Identifichiamo ogni altro numero con il suo resto nella divisione per m Tutti i numeri col medesimo resto si trovano insieme nella classe

Dettagli

Esercizi di matematica della Scuola Secondaria

Esercizi di matematica della Scuola Secondaria Esercizi di matematica della Scuola Secondaria 1. Quale é il risultato corretto della seguente operazione aritmetica? (dare la risposta senza eseguire la moltiplicazione) X = 23, 45 0, 0123 (A) X = 0,

Dettagli

Anno 3. Funzioni esponenziali e logaritmi: le 4 operazioni

Anno 3. Funzioni esponenziali e logaritmi: le 4 operazioni Anno 3 Funzioni esponenziali e logaritmi: le 4 operazioni 1 Introduzione In questa lezione impareremo a conoscere le funzioni esponenziali e i logaritmi; ne descriveremo le principali caratteristiche e

Dettagli

Esponenziali elogaritmi

Esponenziali elogaritmi Esponenziali elogaritmi Potenze ad esponente reale Ricordiamo che per un qualsiasi numero razionale m n prendere n>0) si pone a m n = n a m (in cui si può sempre a patto che a sia un numero reale positivo.

Dettagli

R. Capone Analisi Matematica Limiti di una funzione reale di variabile reale ESERCIZI SUI LIMITI DI FUNZIONE ( )

R. Capone Analisi Matematica Limiti di una funzione reale di variabile reale ESERCIZI SUI LIMITI DI FUNZIONE ( ) Esercizio proposto N 1 Verificare che ESERCIZI SUI LIMITI DI FUNZIONE Si ricordi la definizione di ite finito in un punto: Pertanto, applicando la definizione al caso concreto, si ha: o, ciò che è lo stesso:

Dettagli

Campo di Esistenza. Il campo di esistenza di una funzione f è il dominio più grande su cui ha significato la legge f.

Campo di Esistenza. Il campo di esistenza di una funzione f è il dominio più grande su cui ha significato la legge f. Campo di Esistenza Il campo di esistenza di una funzione f è il dominio più grande su cui ha significato la legge f. ESERCIZIO. Determinare il campo di esistenza della funzione f(x) = 9+2x. Soluzione:

Dettagli

Matematica ed Elementi di Statistica. L insieme dei numeri reali

Matematica ed Elementi di Statistica. L insieme dei numeri reali a.a. 2010/11 Laurea triennale in Scienze della Natura Matematica ed Elementi di Statistica L insieme dei numeri reali Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili

Dettagli

Analisi Matematica. Serie numeriche, serie di potenze, serie di Taylor

Analisi Matematica. Serie numeriche, serie di potenze, serie di Taylor a.a. 2014/2015 Laurea triennale in Informatica Analisi Matematica Serie numeriche, serie di potenze, serie di Taylor Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili

Dettagli

Interi positivi e negativi

Interi positivi e negativi Definizioni: numerali e numeri Un numerale è solo una stringa di cifre Un numerale rappresenta un numero solo se si specifica un sistema di numerazione Lo stesso numerale rappresenta diversi numeri in

Dettagli

Le Funzioni. Modulo Esponenziali Logaritmiche. Prof.ssa Maddalena Dominijanni

Le Funzioni. Modulo Esponenziali Logaritmiche. Prof.ssa Maddalena Dominijanni Le Funzioni Modulo Esponenziali Logaritmiche Definizione di modulo o valore assoluto Se x è un generico numero reale, il suo modulo o valore assoluto è: x = x se x 0 -x se x

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

L1 L2 L3 L4 L5 L6 L7 L8 L9. Esercizio. Determinare l insieme di disuguaglianze che descrive esattamente la regione di piano della figura

L1 L2 L3 L4 L5 L6 L7 L8 L9. Esercizio. Determinare l insieme di disuguaglianze che descrive esattamente la regione di piano della figura Determinare l insieme di disuguaglianze che descrive esattamente la regione di piano della figura [1] y x, x 1 [2] y x, x 1 [3] y x, x 1 [4] y x, x 1 [5] y x, x 1 L insieme è simmetrico rispetto all origine

Dettagli

Logaritmo C. Enrico F. Bonaldi 1 LOGARITMO

Logaritmo C. Enrico F. Bonaldi 1 LOGARITMO Logaritmo C. Enrico F. Bonaldi LOGARITMO Premessa Consideriamo che si sappia risolvere il problema: dati due numeri reali a > 0 e n qualunque (intero, razionale, reale e > = < 0), trovare il numero reale

Dettagli

CORSO DI AZZERAMENTO DI MATEMATICA

CORSO DI AZZERAMENTO DI MATEMATICA CORSO DI AZZERAMENTO DI MATEMATICA 1 LE BASI FONDAMENTALI INSIEMI INSIEMI NUMERICI (naturali, interi, razionali e reali) CALCOLO LETTERALE RICHIAMI DI TRIGONOMETRIA I NUMERI COMPLESSI ELEMENTI DI GEOMETRIA

Dettagli

Rappresentazione di Dati: Scala lineare Scala logaritmica. Grafici Lin Lin Grafici Lin Log Grafici Log Log

Rappresentazione di Dati: Scala lineare Scala logaritmica. Grafici Lin Lin Grafici Lin Log Grafici Log Log Rappresentazione di Dati: Scala lineare Scala logaritmica Grafici Lin Lin Grafici Lin Log Grafici Log Log Grafici in scala lineare Grafici Lin Lin Nella rappresentazione di dati in un piano cartesiano

Dettagli

Potenze: alcune semplici equazioni

Potenze: alcune semplici equazioni Potenze: alcune semplici equazioni Fissiamo ora un numero reale a ed un numero intero positivo n. Vogliamo risolvere l equazione x n = a definizione: Le eventuali soluzioni prendono il nome di radici n-esime

Dettagli

Soluzioni Esercizi su rappresentazione binaria dell informazione

Soluzioni Esercizi su rappresentazione binaria dell informazione Soluzioni Esercizi su rappresentazione binaria dell informazione Mauro Bianco 1 Numeri naturali Esercizi: 1. Si calcoli 323 4 + 102 4. Partendo da destra a sinistra 2 4 + 3 4 5 10 4 + 1 10 11 4. La cifra

Dettagli

Sezione Prima Derivate di funzioni elementari: quadro riassuntivo e regole di derivazione. = ( n) lim x

Sezione Prima Derivate di funzioni elementari: quadro riassuntivo e regole di derivazione. = ( n) lim x Capitolo USO DELLE DERIVATE IN ECONOMIA Sezione Prima Derivate di funzioni elementari: quadro riassuntivo e regole di derivazione Si definisce derivata della funzione y f() nel punto 0 del suo insieme

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti

Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti Docente: Anna Valeria Germinario Università di Bari A.V.Germinario (Università di

Dettagli

Esercitazione Informatica I (Parte 1) AA Nicola Paoletti

Esercitazione Informatica I (Parte 1) AA Nicola Paoletti Esercitazione Informatica I (Parte 1) AA 2011-2012 Nicola Paoletti 31 Maggio 2012 2 Antipasto 1. Quanti bit sono necessari per rappresentare (a) (227.551.832) 10? (b) (125.521) 10? 2. Quanti decimali sono

Dettagli

I numeri relativi. Definizioni Rappresentazione Operazioni Espressioni Esercizi. Materia: Matematica Autore: Mario De Leo

I numeri relativi. Definizioni Rappresentazione Operazioni Espressioni Esercizi. Materia: Matematica Autore: Mario De Leo I numeri relativi Definizioni Rappresentazione Operazioni Espressioni Esercizi Materia Matematica Autore Mario De Leo Definizioni I numeri relativi sono i numeri preceduti dal simbolo (positivi) o dal

Dettagli

I logaritmi. Cenni storici

I logaritmi. Cenni storici 1 I logaritmi by Caterina Vespia "Poiché non vi è nulla di più ostico nell applicazione matematica, né che reca maggiori difficoltà nei calcoli, che la moltiplicazione, la divisione, l estrazione di radici

Dettagli

Conversione binario-decimale. Interi unsigned in base 2. Esercitazioni su rappresentazione. dei numeri e aritmetica

Conversione binario-decimale. Interi unsigned in base 2. Esercitazioni su rappresentazione. dei numeri e aritmetica Esercitazioni su rappresentazione dei numeri e aritmetica Salvatore Orlando & Marta Simeoni Interi unsigned in base 2 I seguenti numeri naturali sono rappresentabili usando il numero di bit specificato?

Dettagli

Lezione 4. Sommario. L artimetica binaria: I numeri relativi e frazionari. I numeri relativi I numeri frazionari

Lezione 4. Sommario. L artimetica binaria: I numeri relativi e frazionari. I numeri relativi I numeri frazionari Lezione 4 L artimetica binaria: I numeri relativi e frazionari Sommario I numeri relativi I numeri frazionari I numeri in virgola fissa I numeri in virgola mobile 1 Cosa sono inumeri relativi? I numeri

Dettagli

Logaritmi (progressione aritmetica di ragione 1)

Logaritmi (progressione aritmetica di ragione 1) Logaritmi Dal greco logos = discorso, ragionamento e arithmos = numero. I logaritmi vennero scoperti dallo scozzese di nobile famiglia, John Napier, meglio conosciuto con il nome latinizzato di Nepero.

Dettagli

Rappresentazione di numeri relativi (interi con segno) Rappresentazione di numeri interi relativi (con N bit) Segno e Valore Assoluto

Rappresentazione di numeri relativi (interi con segno) Rappresentazione di numeri interi relativi (con N bit) Segno e Valore Assoluto Rappresentazione di numeri relativi (interi con segno) E possibile estendere in modo naturale la rappresentazione dei numeri naturali ai numeri relativi. I numeri relativi sono numeri naturali preceduti

Dettagli

4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO

4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO 4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO 4.0. Esponenziale. Nella prima sezione abbiamo definito le potenze con esponente reale. Vediamo ora in dettaglio le proprietà della funzione esponenziale a,

Dettagli

n=0 a n è convergente. x 2

n=0 a n è convergente. x 2 MATERIALE PROPEDEUTICO ALLE LEZIONI DI ANALISI MATEMATICA PER I CORSI DI LAUREA IN INGEGNERIA ENERGETICA E MECCANICA N-Z DELL UNIVERSITÀ DI BOLOGNA ANNO ACCADEMICO 23/24 DOCENTE: FAUSTO FERRARI Esercizi

Dettagli

1 Funzioni reali di una variabile reale

1 Funzioni reali di una variabile reale 1 Funzioni reali di una variabile reale Qualche definizione e qualche esempio che risulteranno utili più avanti Durante tutto questo corso studieremo funzioni reali di una variabile reale, cioè Si ha f

Dettagli

Interi unsigned in base 2. Esercitazioni su rappresentazione dei numeri e aritmetica. Conversione binario-decimale

Interi unsigned in base 2. Esercitazioni su rappresentazione dei numeri e aritmetica. Conversione binario-decimale Arch. Elab. A M. Simeoni 1 Interi unsigned in base 2 Si utilizza un alfabeto binario A = {0,1}, dove 0 corrisponde al numero zero, e 1 corrisponde al numero uno d n1...d 1 d 0 con di d i {0,1} Esercitazioni

Dettagli

Concentrazioni. concentrazione quantità di soluzione

Concentrazioni. concentrazione quantità di soluzione Concentrazioni Una soluzione è un sistema omogeneo prodotto dallo scioglimento di una sostanza solida, liquida o gassosa (soluto), in un opportuno liquido (solvente). Definiamo concentrazione di una soluzione

Dettagli

Coordinate cartesiane nel piano

Coordinate cartesiane nel piano Coordinate cartesiane nel piano O = (0, 0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

LA FUNZIONE LOGARITMO

LA FUNZIONE LOGARITMO LA FUNZIONE LOGARITMO In una popolazione la cui numerosita varia con la legge N(t)=N(0)R t, con R=1+n-m, formata inizialmente da 10 5 individui, ad ogni generazione muore il 15% e il tasso di natalità

Dettagli

ESPONENZIALI E LOGARITMI. chiameremo logaritmica (e si legge il logaritmo in base a di c è uguale a b ).

ESPONENZIALI E LOGARITMI. chiameremo logaritmica (e si legge il logaritmo in base a di c è uguale a b ). ESPONENZIALI E LOGARITMI Data una espressione del tipo a b = c, che chiameremo notazione esponenziale (e dove a>0), stabiliamo di scriverla anche in un modo diverso: log a c = b che chiameremo logaritmica

Dettagli

Esponenziali e logaritmi: possibili introduzioni

Esponenziali e logaritmi: possibili introduzioni Esponenziali e logaritmi: possibili introduzioni In queste pagine diamo possibili introduzioni delle funzioni esponenziali e logaritmiche: a partire dalle potenze a esponente reale, con l uso delle equazioni

Dettagli

Corso di Analisi Matematica Successioni e loro limiti

Corso di Analisi Matematica Successioni e loro limiti Corso di Analisi Matematica Successioni e loro limiti Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 30 1 Definizione di successione

Dettagli

LOGARITMI. log = = con >0, 1; >0 = >0, 1, >0. log =1 >0, 1. notebookitalia.altervista.org

LOGARITMI. log = = con >0, 1; >0 = >0, 1, >0. log =1 >0, 1. notebookitalia.altervista.org LOGARITMI Sia un numero reale positivo ed un numero reale, positivo, diverso da 1; si dice logaritmo di in base il valore da attribuire come esponente alla base per ottenere una potenza uguale all argomento.

Dettagli

7 2 =7 2=3,5. Casi particolari. Definizione. propria se < impropria se > e non è multiplo di b. apparente se è un multiplo di. Esempi.

7 2 =7 2=3,5. Casi particolari. Definizione. propria se < impropria se > e non è multiplo di b. apparente se è un multiplo di. Esempi. NUMERI RAZIONALI Q Nell insieme dei numeri naturali e nell insieme dei numeri interi relativi non è sempre possibile effettuare l operazione di divisione. Infatti, eseguendo la divisione 7 2 si ottiene

Dettagli

Sviluppi e derivate delle funzioni elementari

Sviluppi e derivate delle funzioni elementari Sviluppi e derivate delle funzioni elementari In queste pagine dimostriamo gli sviluppi del prim ordine e le formule di derivazioni delle principali funzioni elementari. Utilizzeremo le uguaglianze lim

Dettagli

Capitolo 1 ANALISI COMPLESSA

Capitolo 1 ANALISI COMPLESSA Capitolo 1 ANALISI COMPLESSA 1 1.2 Funzioni Complesse Una funzione complessa di variabile complessa f : E C, E C è un applicazione ce associa un numero complesso f(z) ad ogni z E, con E sottoinsieme del

Dettagli

210 Limiti. (g) lim. (h) lim. x 3 + ln ; x 3 3. (i) lim. x 2 + ln(x + 2)(x 2) ; (j) lim. 6 (Prodotti di limiti non necessariamente finiti).

210 Limiti. (g) lim. (h) lim. x 3 + ln ; x 3 3. (i) lim. x 2 + ln(x + 2)(x 2) ; (j) lim. 6 (Prodotti di limiti non necessariamente finiti). 0 Limiti Diamoci da fare... (Soluzioni a pagina 47) Sia f () =, determinare δ affinché perogni + nell intervallo ( δ, + δ) f () 3 < oppure 0 f () 3 < 000. Dimostrare quindi che + = 3. Dimostrare, utilizzando

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

i) la somma e il prodotto godano delle proprietà associativa, commutativa e distributiva;

i) la somma e il prodotto godano delle proprietà associativa, commutativa e distributiva; 1 Spazi vettoriali 11 Definizioni ed assiomi Definizione 11 Un campo è un insieme K dotato di una operazione somma K K K, (x, y) x + y e di una operazione prodotto K K K, (x, y) xy tali che i) la somma

Dettagli

tele limite è unico. Ciò significa che se non può accadere che una funzione abbia limiti diversi per x. Se per assurdo si avesse che lim f ( x)

tele limite è unico. Ciò significa che se non può accadere che una funzione abbia limiti diversi per x. Se per assurdo si avesse che lim f ( x) Calcolo dei iti (C. DIMAURO) Per il calcolo dei iti ci serviamo di alcuni teoremi. Tali teoremi visti nel caso in cui, valgono anche quando Teorema dell unicità del ite: se una funzione ammette ite per

Dettagli

LIMITI - ESERCIZI SVOLTI

LIMITI - ESERCIZI SVOLTI LIMITI - ESERCIZI SVOLTI ) Verificare mediante la definizione di ite che a) 3 5) = b) = + ) c) 3n n + n+ = + d) 3+ = 3. ) Calcolare utilizzando i teoremi sull algebra dei iti a) 3 + ) b) + c) 0 + d) ±

Dettagli

Esercitazione di Matematica Argomento: esponenziali e logaritmi

Esercitazione di Matematica Argomento: esponenziali e logaritmi Esercitazione di Matematica Argomento: esponenziali e logaritmi Risolvere le seguenti equazioni esponenziali e logaritmiche:. x = 4;. ( ) x+ ( = 3. 00 x 0 4x+ = 0; 4. 3 4 x > 9x ;. e x = ;. 7 x = 0(x+)

Dettagli

Algebra. I numeri relativi

Algebra. I numeri relativi I numeri relativi I numeri relativi sono quelli preceduti dal segno > o dal segno . I numeri positivi sono quelli preceduti dal segno + (zero escluso). I numeri negativi sono quelli preceduti

Dettagli

Esempio 1: virgola mobile

Esempio 1: virgola mobile Esempio 1: virgola mobile Rappresentazione binaria in virgola mobile a 16 bit: 1 bit per il (0=positivo) 8 bit per l'esponente, in eccesso 128 7 bit per la parte frazionaria della mantissa normalizzata

Dettagli

Esercizi proposti - Gruppo 7

Esercizi proposti - Gruppo 7 Argomenti di Matematica er l Ingegneria - Volume I - Esercizi roosti Esercizi roosti - Gruo 7 1) Verificare che ognuina delle seguenti coie di numeri razionali ( ) r + 1, r + 1, r Q {0} r ha la rorietà

Dettagli

1 Insiemi. 1.1 Operazioni sugli insiemi. Domande Debito Formativo di MATEMATICA. Sommario

1 Insiemi. 1.1 Operazioni sugli insiemi. Domande Debito Formativo di MATEMATICA. Sommario Domande Debito Formativo di MATEMATICA Sommario Insiemi.... Operazioni sugli insiemi... Strutture numeriche, aritmetiche.... Ordinamento numeri reali, razionali, interi.... Il m.c.m. e M.C.D. tra numeri....

Dettagli

Codifica binaria. Rappresentazioni medianti basi diverse

Codifica binaria. Rappresentazioni medianti basi diverse Codifica binaria Rappresentazione di numeri Notazione di tipo posizionale (come la notazione decimale). Ogni numero è rappresentato da una sequenza di simboli Il valore del numero dipende non solo dalla

Dettagli

DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI

DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI FACOLTA' DI ECONOMIA UNIVERSITA DELLA CALABRIA Corso di Modelli Matematici per l Azienda a.a. 2011-2012 DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI Prof. Fabio Lamantia INSIEMI INSIEME= gruppo di oggetti

Dettagli

Sistemi numerici: numeri in virgola mobile Esercizi risolti

Sistemi numerici: numeri in virgola mobile Esercizi risolti Esercizi risolti 1 Esercizio Un numero relativo è rappresentato in virgola mobile secondo lo standard IEEE 754 su 32 bit nel seguente modo: s = 1 e = 10000111 m = 11011000000000000000000 Ricavare il corrispondente

Dettagli

Funzioni e grafici. prof. Andres Manzini

Funzioni e grafici. prof. Andres Manzini Università degli studi di Modena e Reggio Emilia Dipartimento di Scienze e Metodi dell Ingegneria Corso MOOC Iscriversi a Ingegneria Reggio Emilia Introduzione Definizione Si dice funzione (o applicazione)

Dettagli

1. FUNZIONI IN UNA VARIABILE

1. FUNZIONI IN UNA VARIABILE 1. FUNZIONI IN UNA VARIABILE Definizione: Dati due insiemi A, B chiamiamo funzione da A in B ogni, f, applicazione (legge, corrispondenza) che associa ad ogni elemento di A uno ed uno solo elemento di

Dettagli

FUNZIONI ESPONENZIALE E LOGARITMICA

FUNZIONI ESPONENZIALE E LOGARITMICA FUNZIONI ESPONENZIALE E LOGARITMICA Le potenze con esponente reale La potenza a x di un numero reale a è definita se a>0 per ogni x R se a=0 per tutti e soli i numeri reali positivi ( x R + ) se a

Dettagli

Concentrazioni. concentrazione quantità di soluzione. Matematica con Elementi di Statistica a.a. 2017/18

Concentrazioni. concentrazione quantità di soluzione. Matematica con Elementi di Statistica a.a. 2017/18 Concentrazioni Una soluzione è un sistema omogeneo prodotto dallo scioglimento di una sostanza solida, liquida o gassosa (il soluto), in un opportuno liquido (il solvente). Definiamo concentrazione di

Dettagli

Funzioni elementari: logaritmi 1 / 11

Funzioni elementari: logaritmi 1 / 11 Funzioni elementari: logaritmi 1 / 11 Logaritmi La funzione logaritmica é definita come g: (0,+ ) R x log a x con a > 0 e a 1. 2 / 11 Logaritmi La funzione logaritmica é definita come g: (0,+ ) R x log

Dettagli

Funzioni esponenziali e logaritmiche Indice

Funzioni esponenziali e logaritmiche Indice Funzioni esponenziali e logaritmiche Indice Funzioni esponenziali...1 Funzioni logaritmiche...3 Funzioni esponenziali Definizione: Si definisce funzione esponenziale di base a > 0 la funzione reale y =

Dettagli

Limiti di successioni

Limiti di successioni Capitolo 5 Limiti di successioni 5.1 Successioni Quando l insieme di definizione di una funzione coincide con l insieme N costituito dagli infiniti numeri naturali 1, 2, 3,... talvolta si considera anche

Dettagli

Esercizi svolti. 1 Numeri complessi. 1.1 Forma cartesiana. Esercizio 1.1 Dato il numero complesso. z = 4 3 4i,

Esercizi svolti. 1 Numeri complessi. 1.1 Forma cartesiana. Esercizio 1.1 Dato il numero complesso. z = 4 3 4i, Numeri complessi Esercizi svolti 1 Numeri complessi 1.1 Forma cartesiana Esercizio 1.1 Dato il numero complesso z = 4 3 4i, a) determinare la parte reale x di z: x = Re z, b) determinare la parte immaginaria

Dettagli

Lezione 3. I numeri relativi

Lezione 3. I numeri relativi Lezione 3 L artimetcia binaria: i numeri relativi i numeri frazionari I numeri relativi Si possono rappresentare i numeri negativi in due modi con modulo e segno in complemento a 2 1 Modulo e segno Si

Dettagli

1 IL LINGUAGGIO MATEMATICO

1 IL LINGUAGGIO MATEMATICO 1 IL LINGUAGGIO MATEMATICO Il linguaggio matematico moderno è basato su due concetti fondamentali: la teoria degli insiemi e la logica delle proposizioni. La teoria degli insiemi ci assicura che gli oggetti

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Università degli Studi di Udine Anno Accademico 06/7 Dipartimento di Scienze Matematica Informatiche e Fisiche Corsi di Laurea in Informatica e in TWM Esercizi di Analisi Matematica Esercizi del 3 ottobre

Dettagli

Concentrazioni - 1 CONCENTRAZIONE

Concentrazioni - 1 CONCENTRAZIONE Concentrazioni - 1 Una soluzione è un sistema omogeneo prodotto dallo scioglimento di una sostanza solida, liquida o gassosa (soluto), in un opportuno liquido (solvente). CONCENTRAZIONE per semplicità

Dettagli

1 Limiti e continuità per funzioni di una variabile

1 Limiti e continuità per funzioni di una variabile 1 Limiti e continuità per funzioni di una variabile Considerazioni introduttive Consideriamo la funzione f() = sin il cui dominio naturale è R\ {0}. Problema: non è possibile calcolare il valore di f per

Dettagli

Numeri interi (+/-) Alfabeto binario. Modulo e segno

Numeri interi (+/-) Alfabeto binario. Modulo e segno Numeri interi (+/-) Alfabeto binario il segno è rappresentato da 0 (+) oppure 1 (-) è indispensabile indicare il numero k di bit utilizzati Modulo e segno 1 bit di segno (0 positivo, 1 negativo) k 1 bit

Dettagli

Capitolo 5. Funzioni. Grafici.

Capitolo 5. Funzioni. Grafici. Capitolo 5 Funzioni. Grafici. Definizione: Una funzione f di una variabile reale,, è una corrispondenza che associa ad ogni numero reale appartenente ad un insieme D f R un unico numero reale, y R, denotato

Dettagli