Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti"

Transcript

1 Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti Docente: Anna Valeria Germinario Università di Bari A.V.Germinario (Università di Bari) Analisi Matematica ITPS 1 / 43

2 Outline 1 Definizione di successione e di limite di una successione 2 Sottosuccessioni 3 Successioni monotone 4 Il calcolo dei limiti 5 Confronti e stime asintotiche 6 Successioni ricorsive ed equazioni alle differenze A.V.Germinario (Università di Bari) Analisi Matematica ITPS 2 / 43

3 Definizione di successione e di limite di una successione Successioni Funzioni di particolare importanza: Definizione Una successione è una legge che associa ad ogni elemento di N un numero reale cioè una funzione reale definita su N: f : N R f(n) = a n n a n. Si denota con {a n } n N {a n } a n n a n. Spesso le successioni sono definite da un certo intero n 0 in poi, cioè il loro dominio è del tipo {n N n n 0 }. In tal caso si scrive {a n } n n0. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 3 / 43

4 Definizione di successione e di limite di una successione Grafici di successioni: a n = 1/n a n = ( 1) n A.V.Germinario (Università di Bari) Analisi Matematica ITPS 4 / 43

5 Definizione di successione e di limite di una successione Successioni limitate Definizione Una successione {a n } si dice limitata inferiormente se esiste m R tale che, per ogni n, a n m; limitata superiormente se esiste M R tale che, per ogni n, a n M; limitata se esistono m, M R tale che, per ogni n, m a n M. L operazione di limite consente di studiare il comportamento dei numeri a n quando n diventa sempre più grande. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 5 / 43

6 Definizione di successione e di limite di una successione Limiti di successioni Definizione Una successione {a n } possiede definitivamente un proprietà se esiste N N tale che a n soddisfa quella proprietà per ogni n N. Esempi A.V.Germinario (Università di Bari) Analisi Matematica ITPS 6 / 43

7 Definizione di successione e di limite di una successione Successioni convergenti Definizione Una successione {a n } si dice convergente se esiste un numero l R con questa proprietà: qualunque sia ε > 0 risulta definitivamente a n l < ε. In altre parole: per ogni ε > 0 esiste N N tale che a n l < ε n N. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 7 / 43

8 Definizione di successione e di limite di una successione Limite di una successione Quindi, se una successione è convergente ad essa è associato un numero l. Si prova che l è unico. Definizione Sia {a n } una successione convergente. Il numero reale l che compare nella definizione precedente si chiama limite della successione {a n }. Si scrive lim n + a n = l oppure a n l per n +. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 8 / 43

9 Definizione di successione e di limite di una successione Si noti che, dalle proprietà del valore assoluto, la disuguaglianza a n l < ε equivale a l ε < a n < l + ε. Dunque la condizione di convergenza significa che, fissata una striscia orizzontale [l ε, l + ε] comunque stretta, da un certo indice in poi i punti della successione non escono più da questa striscia. Da questa osservazione risulta che: Esempi Ogni successione convergente è limitata. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 9 / 43

10 Definizione di successione e di limite di una successione Successioni divergenti Definizione Sia {a n } una successione. Si dice che {a n } diverge a + se per ogni M > 0 si ha a n > M definitivamente e si scrive lim a n = + ; n + si dice che {a n } diverge a se per ogni M > 0 si ha a n < M definitivamente e si scrive lim a n =. n + Esempi A.V.Germinario (Università di Bari) Analisi Matematica ITPS 10 / 43

11 Definizione di successione e di limite di una successione I simboli + e non sono numeri. L insieme dei numeri reali R con l aggiunta dei due elementi + e si indica con R : R = R { } {+ }. L operazione di limite ha completamente significato se ambientata in R : il limite di una successione, se esiste, è un elemento di R. Esistono successioni che non sono né convergenti né divergenti (per esempio {( 1) n }). Tali successioni si dicono irregolari o indeterminate. Per esse l operazione di limite non è definita. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 11 / 43

12 Definizione di successione e di limite di una successione Insiemi non limitati È comodo adottare la convenzione usata per i limiti anche per il sup e l inf di insiemi. Definizione Sia E R. Se E non è limitato superiormente si dice che sup E = + ; se E non è limitato inferiormente si dice che inf E =. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 12 / 43

13 Definizione di successione e di limite di una successione Infinitesimi e infiniti Definizione Una successione {a n } si dice infinitesima se lim a n = 0. n + Una successione {a n } si dice infinita se lim a n = ±. n + Gli infinitesimi (infiniti) non sono numeri ma quantità variabili che tendono a diventare indefinitamente piccole (grandi). A.V.Germinario (Università di Bari) Analisi Matematica ITPS 13 / 43

14 Sottosuccessioni Definizione Data una successione {a n } n n0 e una successione {n k } k k0 di interi positivi strettamente crescente e tali che n k n 0, la successione {a nk } k k0 si chiama sottosuccessione o successione estratta di {a n } n n0. Esempi: estratta pari, estratta dispari A.V.Germinario (Università di Bari) Analisi Matematica ITPS 14 / 43

15 Sottosuccessioni Teorema Per ogni sottosuccessione {a nk } di una successione {a n }: Se {a n } converge allora anche {a nk } converge allo stesso limite di {a n }; se {a n } diverge allora anche {a nk } diverge. Non vale il viceversa: {( 1) n } Teorema Data una successione {a n }, se l estratta pari {a 2k } e l estratta dispari {a 2k+1 } convergono entrambe allo stesso limite l R, allora anche {a n } converge e lim n + a n = l. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 15 / 43

16 Successioni monotone Successioni monotone Definizione Una successione {a n } si dice monotona crescente se per ogni n a n a n+1 ; strettamente crescente se per ogni n a n < a n+1 ; monotona decrescente se per ogni n a n a n+1 ; strettamente decrescente se per ogni n a n > a n+1. Esempi Le successioni monotone non sono mai irregolari. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 16 / 43

17 Successioni monotone Limiti di successioni monotone Teorema Sia {a n } una successione monotona. Se {a n } è monotona crescente e superiormente limitata allora {a n } è convergente e lim n + a n = sup{a n n N}. Se {a n } è monotona decrescente e inferiormente limitata, allora {a n } è convergente e lim n + a n = inf{a n n N}. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 17 / 43

18 Successioni monotone Limiti di successioni monotone Corollario Sia {a n } una successione monotona. Se {a n } è monotona crescente allora lim a n = sup{a n n N}. n + Se {a n } è monotona decrescente, allora lim a n = inf{a n n N}. n + A.V.Germinario (Università di Bari) Analisi Matematica ITPS 18 / 43

19 Successioni monotone Il numero di Nepero Teorema La successione definita da è convergente. a n = ( n) n n 1 Si prova che {a n } è strettamente crescente e limitata (2 a n 4). Si scrive ( lim n = e. n + n) Il numero di Nepero e è irrazionale e la sua rappresentazione decimale inizia così: A.V.Germinario (Università di Bari) Analisi Matematica ITPS 19 / 43

20 Successioni monotone Successione geometrica (di ragione q) È la successione {q n }, per un fissato q R. Si ha lim n + qn = + se q > 1; 1 se q = 1; 0 se q < 1; non esiste se q 1. Se q > 1, {q n } è monotona crescente, illimitata superiormente. Se q = 1, {q n } è costante. Se 0 < q < 1, {q n } è monotona decrescente. Se q < 0, {q n } non è monotona. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 20 / 43

21 Il calcolo dei limiti Limiti e operazioni Teorema (Algebra dei limiti) Se a n a, b n b, con a, b R allora a n ± b n a ± b Ka n Ka a n b n a b a n b n a b per ogni K R (b n, b 0). A.V.Germinario (Università di Bari) Analisi Matematica ITPS 21 / 43

22 Il calcolo dei limiti Limiti e ordinamento Teorema (Permanenza del segno, prima forma) Se a n a e a > 0 allora a n > 0 definitivamente. Se a n a e a < 0 allora a n < 0 definitivamente. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 22 / 43

23 Il calcolo dei limiti Limiti e ordinamento Teorema (Permanenza del segno, seconda forma) Se a n a e a n 0 definitivamente allora risulta a 0. Se a n a, b n b e a n b n definitivamente allora risulta a b. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 23 / 43

24 Il calcolo dei limiti Limiti e ordinamento Teorema (del confronto) Se a n b n c n definitivamente ed esiste l R tale che a n l, c n l allora anche b n l. Corollario Se b n c n definitivamente e c n 0 allora anche b n 0. Se c n 0 e b n è limitata b n c n 0. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 24 / 43

25 Il calcolo dei limiti Esempi Si dimostra che: lim n + nα = + se α > 0; 1 se α = 0; 0 se α < 0. Applicazione: limiti di successioni che sono scritte come rapporto tra due successioni, ciascuna costituita da somme di potenze di n. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 25 / 43

26 Il calcolo dei limiti Estensione delle operazioni con i limiti Casi in cui i limiti sono + o. a + = + a = + + = + = Se a 0, a a = 0 = (ove il segno di va determinato con la usuale regola dei segni) a = 0 Si noti che mancano le regole relative alle espressioni + 0 che, per tale motivo, prendono il nome di forme di indecisione. 0 0 A.V.Germinario (Università di Bari) Analisi Matematica ITPS 26 / 43

27 Confronti e stime asintotiche Confronti e stime asintotiche È utile saper confrontare due successioni entrambe infinite o entrambe infinitesime per capire quale delle due tenda più rapidamente all infinito o a 0. Siano {a n } e {b n } due successioni. Consideriamo il limite del loro rapporto. Si hanno le seguenti possibilità: 0 a n l R \ {0} lim = n + b n ± non esiste A.V.Germinario (Università di Bari) Analisi Matematica ITPS 27 / 43

28 Confronti e stime asintotiche Confronto tra infiniti Se {a n } e {b n } sono due infiniti, si dice che {a n } è un infinito di ordine inferiore a {b n } se a n lim = 0; n + b n {a n } e {b n } sono infiniti dello stesso ordine se a n lim = l R \ {0}; n + b n {a n } è un infinito di ordine superiore a {b n } se a n lim = ± ; n + b n {a n } e {b n } non sono confrontabili se il limite del loro rapporto non esiste. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 28 / 43

29 Confronti e stime asintotiche Confronto tra infinitesimi Se {a n } e {b n } sono due infinitesimi, si dice che {a n } è un infinitesimo di ordine superiore a {b n } se a n lim = 0; n + b n {a n } e {b n } sono infinitesimi dello stesso ordine se a n lim = l R \ {0}; n + b n {a n } è un infinitesimo di ordine inferiore a {b n } se a n lim = ± ; n + b n {a n } e {b n } non sono confrontabili se il limite del loro rapporto non esiste. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 29 / 43

30 Confronti e stime asintotiche Successioni asintotiche Definizione Siano {a n } e {b n } due successioni. Se a n lim = 1 n + b n si dice che {a n } e {b n } sono asintotiche e si scrive a n b n. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 30 / 43

31 Confronti e stime asintotiche Proprietà delle successioni asintotiche Proposizione Se a n b n allora {a n } e {b n } hanno lo stesso comportamento: o convergono allo stesso limite o divergono o entrambe non hanno limite. Se a n b n... c n allora a n c n. Se a n a n, b n b n, c n c n allora a n b n c n a nb n c. n Osserviamo inoltre che a n b n a n = b n c n con c n 1 A.V.Germinario (Università di Bari) Analisi Matematica ITPS 31 / 43

32 Confronti e stime asintotiche Esempio di successioni che non sono asintotiche a {n α } per nessun α > 0: Proposizione Per ogni a > 1, α > 0 si ha log lim a n n α n + n α = 0 lim n + a n = 0. Questi limiti descrivono la velocità con cui i logaritmi (con base > 1), le potenze, gli esponenziali (con base > 1) vanno all : i logaritmi più lentamente di qualsiasi potenza; le potenze più lentamente di qualsiasi esponenziale. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 32 / 43

33 Successioni ricorsive ed equazioni alle differenze Successioni ricorsive Una successione si dice ricorsiva o definita per ricorrenza se 1 sono assegnati i primi k termini; 2 è assegnata una formula che esprime il termine generale in funzione di un certo numero di termini precedenti. In formule: { a n+k = f(n, a n+k 1,..., a n ) a 0, a 1,..., a k 1 È possibile calcolare il limite di una successione ricorsiva? È possibile ricavare l espressione esplicita di una successione ricorsiva? A.V.Germinario (Università di Bari) Analisi Matematica ITPS 33 / 43

34 Successioni ricorsive ed equazioni alle differenze Alcuni esempi { a n+2 = a n + a n+1 a 0 = 0, a 1 = 1 (Successione di Fibonacci) Assegnato q R, sia { a n+1 = q a n a 0 = 1 Espressione esplicita: a n = q n (successione geometrica). A.V.Germinario (Università di Bari) Analisi Matematica ITPS 34 / 43

35 Successioni ricorsive ed equazioni alle differenze Alcuni esempi Studiare le successioni: { { { a n+1 = 1 4 (a2 n + 3) a 1 = 2 a n+1 = 1 2 a 1 = 2 ( ) a n + 2 a n a n+1 = n a n a 0 = 1 A.V.Germinario (Università di Bari) Analisi Matematica ITPS 35 / 43

36 Successioni ricorsive ed equazioni alle differenze Equazioni alle differenze È possibile ricavare l espressione esplicita di una successione ricorsiva? Esaminiamo una caso particolare. L equazione a n+k = f(n, a n+k 1,..., a n ) (1) si chiama equazione alle differenze di ordine k. Se si scrive la (1) per k = 1 e si suppone che f non dipenda esplicitamente da n si ottiene a n+1 = f(a n ). A.V.Germinario (Università di Bari) Analisi Matematica ITPS 36 / 43

37 Successioni ricorsive ed equazioni alle differenze Equazioni alle differenze lineari del primo ordine a coefficienti costanti Dati a, b R, sia f(x) = ax + b. La (1) diventa a n+1 = a a n + b. Per questo tipo di equazioni è disponibile una formula esplicita per la soluzione generale. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 37 / 43

38 Successioni ricorsive ed equazioni alle differenze Equazione omogenea Se b = 0, la (1) diventa a n+1 = a a n. (2) Per induzione si prova che, per ogni valore iniziale A R, il problema { a n+1 = a a n a 0 = A ha come soluzione la successione {a n } definita da a n = A a n. Che comportamento hanno le soluzioni per n +? L insieme delle soluzioni di (2) è dato dalle successioni del tipo: a n = c a n c R, n N. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 38 / 43

39 Successioni ricorsive ed equazioni alle differenze Equazione non omogenea Se b 0, l eq. diventa a n+1 = a a n + b. (3) Si consideri l eq. omogenea associata a n+1 = a a n. (4) Ogni soluzione di (3) si può scrivere come somma di una sol. di (4) e di una sol. di di (3). Teorema Sia {y n } una sol. di (3). Allora, per ogni {x n } sol. di (3), esiste c R tale che x n = c a n + y n. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 39 / 43

40 Successioni ricorsive ed equazioni alle differenze Equazione non omogenea Come determinare una soluzione particolare di (3)? Proposizione L eq. (3) se a 1, ammette la soluzione costante se a = 1, ammette la soluzione y n = b 1 a ; y n = n b. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 40 / 43

41 Successioni ricorsive ed equazioni alle differenze Equazione non omogenea L insieme delle soluzioni dell eq. non omogenea è dato dunque dalle successioni del tipo: se a 1 se a = 1 x n = c a n + b 1 a c R, n N; x n = c + b n c R, n N. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 41 / 43

42 Successioni ricorsive ed equazioni alle differenze Equazione non omogenea La soluzione di { a n+1 = a a n + b a 0 = A è se a 1 se a = 1 x n = ( A b ) a n + b 1 a 1 a x n = A + b n n N. n N; A.V.Germinario (Università di Bari) Analisi Matematica ITPS 42 / 43

43 Successioni ricorsive ed equazioni alle differenze Equazioni alle differenze lineari del secondo ordine a coefficienti costanti Sono del tipo: { Equazioni omogenee: c = 0 Esempio: successione di Fibonacci a n+2 = a a n+1 + b a n + c a 0 = A, a 1 = B. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 43 / 43

Corso di Analisi Matematica Successioni e loro limiti

Corso di Analisi Matematica Successioni e loro limiti Corso di Analisi Matematica Successioni e loro limiti Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 30 1 Definizione di successione

Dettagli

Pag. 151 Dimostrazioni dei criteri per lo studio della convergenza di serie numeriche

Pag. 151 Dimostrazioni dei criteri per lo studio della convergenza di serie numeriche C.7 Serie Pag. 151 Dimostrazioni dei criteri per lo studio della convergenza di serie numeriche Teorema 5.29 (Criterio del confronto) Siano e due serie numeriche a termini positivi e si abbia 0, per ogni

Dettagli

Limiti di successioni

Limiti di successioni Capitolo 5 Limiti di successioni 5.1 Successioni Quando l insieme di definizione di una funzione coincide con l insieme N costituito dagli infiniti numeri naturali 1, 2, 3,... talvolta si considera anche

Dettagli

Corso di Analisi Matematica Limiti di funzioni

Corso di Analisi Matematica Limiti di funzioni Corso di Analisi Matematica Limiti di funzioni Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 39 1 Definizione di ite 2 Il calcolo dei

Dettagli

Analisi Matematica 1. Serie numeriche. (Parte 2) Dott. Ezio Di Costanzo.

Analisi Matematica 1. Serie numeriche. (Parte 2) Dott. Ezio Di Costanzo. Facoltà di Ingegneria Civile e Industriale Analisi Matematica 1 Serie numeriche (Parte 2) Dott. Ezio Di Costanzo ezio.dicostanzo@sbai.uniroma1.it Definizione Data la serie + n=0 a n si definisce resto

Dettagli

Serie Borlini Alex

Serie Borlini Alex Serie numerica >> Prefazione Progressione lista ordinata e finita di elementi. Successione lista ordinata e infinita di elementi (numeri reali chiamati termini), {a n }=a 1, a 2, a 3 Successione di Fibonacci:

Dettagli

Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile

Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Docente: Anna Valeria Germinario Università di Bari A.V.Germinario (Università di Bari) Analisi Matematica

Dettagli

SERIE NUMERICHE FAUSTO FERRARI

SERIE NUMERICHE FAUSTO FERRARI SERIE NUMERICHE FAUSTO FERRARI Materiale propedeutico alle lezioni di Analisi Matematica per i corsi di Laurea in Ingegneria Energetica e Meccanica N-Z dell Università di Bologna. Anno Accademico 2003/2004.

Dettagli

Proposizioni. Negazione di una proposizione. Congiunzione e disgiunzione di due proposizioni. Predicati. Quantificatori.

Proposizioni. Negazione di una proposizione. Congiunzione e disgiunzione di due proposizioni. Predicati. Quantificatori. Corso di laurea in Ingegneria elettronica e informatica - A13 Programma di Analisi matematica 1 - A13106 Anno accademico 2015-2016 Prof. Giulio Starita 1 - Insiemi, logica, numeri I concetti primitivi.

Dettagli

PROGRAMMA. Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale.

PROGRAMMA. Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale. PROGRAMMA Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale. Gli insiemi numerici oggetto del corso: numeri naturali, interi relativi, razionali. Operazioni sui numeri

Dettagli

SUCCESSIONI E SERIE NUMERICHE E DI FUNZIONI

SUCCESSIONI E SERIE NUMERICHE E DI FUNZIONI SERIE NUMERICHE Si consideri una successione di elementi. Si definisce serie associata ad la somma Per ogni indice della successione, si definisce successione delle somme parziali associata a la somma

Dettagli

k=0 a k k=0 a k, quando si voglia precisare qual è l indice iniziale: si possono infatti considerare anche serie del tipo k=1 a k, k=50 a k,

k=0 a k k=0 a k, quando si voglia precisare qual è l indice iniziale: si possono infatti considerare anche serie del tipo k=1 a k, k=50 a k, 2.2 Serie Le serie numeriche sono semplicemente successioni reali o complesse di tipo particolare, che però, per la loro importanza pratica e teorica, meritano una trattazione a parte. Data una successione

Dettagli

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI. Giovanni Villani

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI. Giovanni Villani Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI Giovanni Villani FUNZIONI Definizione 1 Assegnati due insiemi A e B, si definisce funzione

Dettagli

Corso di Analisi Matematica Funzioni di una variabile

Corso di Analisi Matematica Funzioni di una variabile Corso di Analisi Matematica Funzioni di una variabile Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 24 1 Generalità 2 Funzioni reali

Dettagli

PROGRAMMA di Analisi Matematica 1 A.A , canale 3, prof.: Francesca Albertini Ingegneria area dell Informazione

PROGRAMMA di Analisi Matematica 1 A.A , canale 3, prof.: Francesca Albertini Ingegneria area dell Informazione PROGRAMMA di Analisi Matematica A.A. 204-205, canale 3, prof.: Francesca Albertini Ingegneria area dell Informazione Testo Consigliato: - Analisi Matematica, Teoria e Applicazioni, A. Marson, P. Baiti,

Dettagli

SERIE NUMERICHE FAUSTO FERRARI

SERIE NUMERICHE FAUSTO FERRARI SERIE NUMERICHE FAUSTO FERRARI Materiale propedeutico alle lezioni di Complementi di Analisi Matematica ed Elementi di Calcolo delle probabilità per il corso di Laurea in Ingegneria per la parte di Elementi

Dettagli

Esercitazione di Analisi Matematica I Esercizi e soluzioni 19/04/2013 TOPOLOGIA

Esercitazione di Analisi Matematica I Esercizi e soluzioni 19/04/2013 TOPOLOGIA Esercitazione di Analisi Matematica I Esercizi e soluzioni 9/04/203 TOPOLOGIA Mostrare che uno spazio infinito con la metrica discreta non può essere compatto Soluzione: Per la metrica discreta d : X X

Dettagli

Massimo e minimo limite di successioni

Massimo e minimo limite di successioni Massimo e minimo limite di successioni 1 Premesse Definizione 1.1. Definiamo R esteso l insieme R = R { } {+ }. In R si estende l ordinamento tra numeri reali ponendo < a < +, a R. In base a tale definizione,

Dettagli

DIARIO DELLE LEZIONI DI ANALISI PER FISICA (Pb-Z) a.a. 2016/2017

DIARIO DELLE LEZIONI DI ANALISI PER FISICA (Pb-Z) a.a. 2016/2017 DIARIO DELLE LEZIONI DI ANALISI PER FISICA (Pb-Z) a.a. 2016/2017 27 settembre.(2 ore) Introduzione e informazioni. Linguaggio matematico. Insiemi numerici e loro proprietà : N, Z, Q. 2 non è un numero

Dettagli

PARTE 1: Elementi di base. Simboli e operazioni sugli insiemi. Simboli logici. Prodotto cartesiano.

PARTE 1: Elementi di base. Simboli e operazioni sugli insiemi. Simboli logici. Prodotto cartesiano. PROGRAMMA di Analisi Matematica 1 A.A. 2008-2009, canale 1, prof.: Francesca Albertini, Claudio Marchi Ingegneria gestionale, meccanica e meccatronica, Vicenza Testo Consigliato: Analisi Matematica, M.

Dettagli

Calcolo Combinatorio Il fattoriale, coefficienti binomiali e loro proprietà; formula del binomio di Newton

Calcolo Combinatorio Il fattoriale, coefficienti binomiali e loro proprietà; formula del binomio di Newton Programma di Analisi 1 Note: - I programmi presentati sono estratti ed integrati da Programmi previsti in diverse Università, possono pertanto contenere parti simili, o in più, dei programmi ufficiali.

Dettagli

ANALISI 1 1 QUINTA LEZIONE

ANALISI 1 1 QUINTA LEZIONE ANALISI 1 1 QUINTA LEZIONE 1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, Via F. Buonarroti 1/C email: saccon@mail.dm.unipi.it web: http://www2.ing.unipi.it/ d6081/index.html Ricevimento:

Dettagli

Analisi Matematica. Serie numeriche, serie di potenze, serie di Taylor

Analisi Matematica. Serie numeriche, serie di potenze, serie di Taylor a.a. 2014/2015 Laurea triennale in Informatica Analisi Matematica Serie numeriche, serie di potenze, serie di Taylor Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili

Dettagli

Limite di successioni

Limite di successioni Limite di successioni Ricordiamo che: una successione è una funzione a : n N a (n) R si pone a n = a (n) e la successione stessa viene indicata con (a n ) n0 oppure a 0,a 1,a 2,a 3,... è ammesso che sia

Dettagli

Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno

Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno Programma del Corso di Matematica A Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno Premessa (D) dopo un teorema o una proposizione citati sta ad

Dettagli

Diario del Corso Analisi Matematica I

Diario del Corso Analisi Matematica I Diario del Corso Analisi Matematica I 1. Martedì 1 ottobre 2013 Presentazione del corso. Nozioni di Teoria degli Insiemi. Numeri Naturali, loro proprietà, rappresentazione geometrica, sommatoria, principio

Dettagli

Principali insiemi di numeri

Principali insiemi di numeri Principali insiemi di numeri N = {0,1,2,...} insieme dei numeri naturali o anche interi non negativi Z = N { 1, 2, 3,...} insieme dei numeri interi Q = { n m } : n,m Z, m 0 insieme dei numeri razionali

Dettagli

Analisi I Ingegneria Chimica e Aerospaziale 1 o compitino

Analisi I Ingegneria Chimica e Aerospaziale 1 o compitino 1 o compitino 1 febbraio 215 1 Si consideri la funzione f : R R definita da { f) = 2 log se se = a) Si dimostri che f è continua e derivabile su tutto R b) Si dica se f ammette derivata seconda in ogni

Dettagli

12/10/05 (2 ore): Esercizi vari sull ellisse, iperbole, parabola. Disequazioni in due variabili. Equazione dell iperbole equilatera. Esempi.

12/10/05 (2 ore): Esercizi vari sull ellisse, iperbole, parabola. Disequazioni in due variabili. Equazione dell iperbole equilatera. Esempi. Università degli Studi di Trento Facolta di Scienze Cognitive Corso di Laurea in Scienze e Tecniche di Psicologia Cognitiva Applicata Corso di Analisi Matematica - a.a. 2005/06 Docente: Prof. Anneliese

Dettagli

A.A. 2016/17 - Analisi Matematica 1

A.A. 2016/17 - Analisi Matematica 1 A.A. 2016/17 - Analisi Matematica 1 Argomenti svolti, libro di testo di riferimento: P. Marcellini, C. Sbordone: Elementi Calcolo. Liguori Editore. O. Bernardi: Temi d esame senza tema. Ed. Libreria Progetto.

Dettagli

COMPLETEZZA DELL INSIEME DEI NUMERI REALI R.

COMPLETEZZA DELL INSIEME DEI NUMERI REALI R. COMPLETEZZA DELL INSIEME DEI NUMERI REALI R. FABIO CIPRIANI 1. Completezza dell insieme dei numeri reali R. Nell insieme dei numeri reali R la condizione di Cauchy e necessaria e sufficiente per la convergenza

Dettagli

Diario del corso di Analisi Matematica 1 (a.a. 2016/17)

Diario del corso di Analisi Matematica 1 (a.a. 2016/17) Diario del corso di Analisi Matematica 1 (a.a. 2016/17) 16 settembre 2016 (2 ore) Presentazione del corso. Numeri naturali, interi, razionali, reali. 2 non è razionale. Come si risolve 2 + 1 = 0? 19 settembre

Dettagli

ESERCITAZIONE: ESPONENZIALI E LOGARITMI

ESERCITAZIONE: ESPONENZIALI E LOGARITMI ESERCITAZIONE: ESPONENZIALI E LOGARITMI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Esercizio 1 In una coltura batterica, il numero di batteri triplica ogni ora. Se all inizio dell osservazione

Dettagli

Corso di laurea: Ingegneria Civile Programma di Fondamenti di Analisi Matematica I a.a. 2011/2012 Docenti: Fabio Paronetto e Fabio Ancona

Corso di laurea: Ingegneria Civile Programma di Fondamenti di Analisi Matematica I a.a. 2011/2012 Docenti: Fabio Paronetto e Fabio Ancona Corso di laurea: Ingegneria Civile Programma di Fondamenti di Analisi Matematica I a.a. 2011/2012 Docenti: Fabio Paronetto e Fabio Ancona Gli argomenti denotati con un asterisco tra parentesi sono stati

Dettagli

UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI INGEGNERIA (sede di Vicenza)

UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI INGEGNERIA (sede di Vicenza) UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI INGEGNERIA (sede di Vicenza) PROGRAMMA DI MATEMATICA A, A.A. 2007-08 CANALI 1 E 2 - Prof. F. Albertini e M. Motta Testi Consigliati: Elementi di Analisi Matematica

Dettagli

Ricorrendo alle definizioni di limite, si dimostrano importanti risultati. Vedremo: che, se esiste, il limite lim

Ricorrendo alle definizioni di limite, si dimostrano importanti risultati. Vedremo: che, se esiste, il limite lim Teoremi sui limiti Ricorrendo alle definizioni di limite, si dimostrano importanti risultati. Vedremo: che, se esiste, il limite lim f () può dare informazioni locali (= che valgono nell intorno di c)

Dettagli

A.A. 2011/12 CORSO DI ANALISI MATEMATICA 10 crediti, I semestre

A.A. 2011/12 CORSO DI ANALISI MATEMATICA 10 crediti, I semestre A.A. 2011/12 CORSO DI ANALISI MATEMATICA 10 crediti, I semestre REGISTRO ELETTRONICO DELLE LEZIONI IMPORTANTE: Le definizioni ed i risultati fondamentali per poter studiare con profitto sono scritti in

Dettagli

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame COGNOME NOME Matr. A Analisi Matematica (Corso di Laurea in Informatica e Bioinformatica) Firma dello studente Tempo: 3 ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni

Dettagli

CLASSE LIMITE DI UNA SUCCESSIONE DI NUMERI REALI C. MADERNA, G. MOLTENI, M. VIGNATI

CLASSE LIMITE DI UNA SUCCESSIONE DI NUMERI REALI C. MADERNA, G. MOLTENI, M. VIGNATI CLASSE LIMITE DI UNA SUCCESSIONE DI NUMERI REALI C. MADERNA, G. MOLTENI, M. VIGNATI Consideriamo l insieme R = R {, + } ottenuto aggiungendo all insieme dei numeri reali i simboli e +. Introduciamo in

Dettagli

Elenco moduli Argomenti Strumenti / Testi Letture / Metodi. partecipazione degli alunni. 2 Completamento equazioni e disequazioni.

Elenco moduli Argomenti Strumenti / Testi Letture / Metodi. partecipazione degli alunni. 2 Completamento equazioni e disequazioni. Pagina 1 di 5 DISCIPLINA: MATEMATICA E LABORATORIO INDIRIZZO: IGEA CLASSE: IV FM DOCENTE : Cornelio Terreni Elenco moduli Argomenti Strumenti / Testi Letture / Metodi 1 Matematica RIPASSO e COMPLETAMENTO:

Dettagli

ANALISI MATEMATICA 1. (Ingegneria Industriale, corsi A e B) Esempi di prove scritte

ANALISI MATEMATICA 1. (Ingegneria Industriale, corsi A e B) Esempi di prove scritte ANALISI MATEMATICA 1 (Ingegneria Industriale, corsi A e B) Esempi di prove scritte Rispondere ai quesiti a risposta multipla Qi, risolvere gli esercizi Ei, enunciare le definizioni Di e svolgere le dimostrazioni

Dettagli

non solo otteniamo il valore cercato per la validità della (1.4), ma anche che tale valore non dipende da

non solo otteniamo il valore cercato per la validità della (1.4), ma anche che tale valore non dipende da NOTE INTEGRATIVE PER IL CORSO DI ANALISI MATEMATICA 2 ANNO ACCADEMICO 2012/13 NOTE SULLA CONTINUITÀ UNIFORME D.BARTOLUCCI, D.GUIDO Sia f(x) = x 3, x [ 1, 1]. Si ha 1. La continuità uniforme x 3 y 3 = x

Dettagli

Alcuni Teoremi sulle funzioni continue e uniforme continuità

Alcuni Teoremi sulle funzioni continue e uniforme continuità Alcuni Teoremi sulle funzioni continue e uniforme continuità Teorema 0. Una funzione f(x) è continua in x 0 se e solo se per ogni sucessione {x n } dom(f) con x n x 0 dom(f), risulta f(x n ) f(x 0 ). (Non

Dettagli

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni Soluzioni dello scritto di Analisi Matematica II - /7/9 C.L. in Matematica e Matematica per le Applicazioni Proff. K. Payne, C. Tarsi, M. Calanchi Esercizio. a La funzione f è limitata e essendo lim fx

Dettagli

Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile

Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 41 1 Derivata

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE Una funzione reale di una variabile reale f di dominio A è una legge che ad ogni x A associa un numero reale che denotiamo con f(x). Se A = N, la f è detta successione di numeri reali.

Dettagli

Dimostrazione. Indichiamo con α e β (finiti o infiniti) gli estremi dell intervallo I. Poniamo

Dimostrazione. Indichiamo con α e β (finiti o infiniti) gli estremi dell intervallo I. Poniamo C.6 Funzioni continue Pag. 114 Dimostrazione del Corollario 4.25 Corollario 4.25 Sia f continua in un intervallo I. Supponiamo che f ammetta, per x tendente a ciascuno degli estremi dell intervallo, iti

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

Serie di funzioni: esercizi svolti

Serie di funzioni: esercizi svolti Serie di funzioni: esercizi svolti Gli esercizi contrassegnati con il simbolo * presentano un grado di difficoltà maggiore. Esercizio. seguenti serie di funzioni: Studiare la convergenza normale, uniforme,

Dettagli

Esempi 1. Troviamo, se esistono, sup/inf, max/min dell insieme A = n : n N,n>0 } A è composto dai numeri. 4,... Vediamo subito che 1 A e 1 n 2, 1 3, 1

Esempi 1. Troviamo, se esistono, sup/inf, max/min dell insieme A = n : n N,n>0 } A è composto dai numeri. 4,... Vediamo subito che 1 A e 1 n 2, 1 3, 1 Lezioni -4 8 Esempi 1. Troviamo, se esistono, sup/inf, max/min dell insieme A = A è composto dai numeri { 1 n : n N,n>0 }. 1, 1 2, 1, 1 4,... Vediamo subito che 1 A e 1 n 1 per ogni n N, n > 0. Questa

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE Definizione: Si chiama successione numerica una funzione definita su IN a valori in IR, cioè una legge che associa ad ogni intero n un numero reale a n. Per abuso di linguaggio, si

Dettagli

1 Successioni di funzioni

1 Successioni di funzioni Analisi Matematica 2 Successioni di funzioni CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 6 SERIE DI POTENZE Supponiamo di associare ad ogni n N (rispettivamente ad ogni n p, per qualche

Dettagli

ANALISI 1 - Teoremi e dimostrazioni vari

ANALISI 1 - Teoremi e dimostrazioni vari ANALISI 1 - Teoremi e dimostrazioni vari Sommario Proprietà dell estremo superiore per R... 2 Definitivamente... 2 Successioni convergenti... 2 Successioni monotone... 2 Teorema di esistenza del limite

Dettagli

Prove scritte di Analisi I - Informatica

Prove scritte di Analisi I - Informatica Prove scritte di Analisi I - Informatica Prova scritta del 3 gennaio Esercizio Stabilire il comportamento delle seguenti serie: n= n + 3 sin n, n= ( ) n n + 3 sin n, n= (n)! (n!), n= n + n 9 n + n. Esercizio

Dettagli

CORSO DI ANALISI MATEMATICA 1 ESERCIZI. Carlo Ravaglia

CORSO DI ANALISI MATEMATICA 1 ESERCIZI. Carlo Ravaglia CORSO DI ANALISI MATEMATICA ESERCIZI Carlo Ravaglia 6 settembre 5 iv Indice Numeri reali Ordine fra numeri reali Funzioni reali 4 Radici aritmetiche 7 4 Valore assoluto 9 5 Polinomi 6 Equazioni 7 Disequazioni

Dettagli

1 - Estremo superiore ed estremo inferiore di insiemi

1 - Estremo superiore ed estremo inferiore di insiemi - Estremo superiore ed estremo inferiore di insiemi Prima di affrontare gli esercizi su estremo superiore ed inferiore, ricordiamo alcune definizioni ed alcuni teoremi che ci verranno utili. Definizione.

Dettagli

Corso di Analisi Matematica I numeri reali

Corso di Analisi Matematica I numeri reali Corso di Analisi Matematica I numeri reali Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 57 1 Insiemi e logica 2 Campi ordinati 3 Estremo

Dettagli

ANALISI MATEMATICA I-A. Prova scritta del 1/9/2009 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE

ANALISI MATEMATICA I-A. Prova scritta del 1/9/2009 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE ANALISI MATEMATICA I-A CORSO DI LAUREA IN FISICA Prova scritta del /9/009 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE ESERCIZIO. Punti 8 Risolvere la seguente equazione nel campo complesso w 6 w 64 = 64 3

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

ARGOMENTI SETTIMANA 1.

ARGOMENTI SETTIMANA 1. Programma di Analisi Matematica 1 (Canale ICM) svolto per lezioni - A. Languasco - A. Benvegnù 1 Date d esame: 24/1/217, aule P3-Lu3-Lu4; ore 9.-12.; 24/2/217, aule P3-Lu3-Lu4; ore 9.- 12.; 28/6/217, aule

Dettagli

Corso di Laurea in Informatica Sede di Brindisi Esame di Analisi Matematica 25 giugno ex+1 x 2 2x. f (x) =

Corso di Laurea in Informatica Sede di Brindisi Esame di Analisi Matematica 25 giugno ex+1 x 2 2x. f (x) = 25 giugno 215 f (x) = ex+1 x 2 2x 2. Si calcoli il seguente integrale: 4 2 x log(x 2 1) dx. 3. Si enunci la definizione di funzione continua. 4. Si enunci il teorema di Fermat e, facoltativamente, lo si

Dettagli

LOGARITMI. log = = con >0, 1; >0 = >0, 1, >0. log =1 >0, 1. notebookitalia.altervista.org

LOGARITMI. log = = con >0, 1; >0 = >0, 1, >0. log =1 >0, 1. notebookitalia.altervista.org LOGARITMI Sia un numero reale positivo ed un numero reale, positivo, diverso da 1; si dice logaritmo di in base il valore da attribuire come esponente alla base per ottenere una potenza uguale all argomento.

Dettagli

Registro di Meccanica /13 - F. Demontis 2

Registro di Meccanica /13 - F. Demontis 2 Registro delle lezioni di ISTITUZIONI ED ESERCITAZIONI DI MATEMATICA 1 Corso di Laurea in Chimica 8 CFU - A.A. 2015/2016 docente: Francesco Demontis ultimo aggiornamento: 17 dicembre 2015 1. Lunedì 05/10/2015,

Dettagli

Una successione numerica è una funzione : che associa ad ogni numero naturale un numero reale :. In simboli:

Una successione numerica è una funzione : che associa ad ogni numero naturale un numero reale :. In simboli: Successioni numeriche Successioni Una successione numerica è una funzione : che associa ad ogni numero naturale un numero reale :. In simboli:. = Una successione è un insieme ordinato e infinito di numeri,

Dettagli

Esercizi di Analisi Matematica I. Andrea Corli e Alessia Ascanelli

Esercizi di Analisi Matematica I. Andrea Corli e Alessia Ascanelli Esercizi di Analisi Matematica I Andrea Corli e Alessia Ascanelli 6 settembre 5 ii Indice Introduzione v Nozioni preinari. Fattoriali e binomiali..................................... Progressioni..........................................

Dettagli

Scritto d esame di Analisi Matematica I

Scritto d esame di Analisi Matematica I Capitolo 2: Scritti d esame 07 Pisa, 8 Gennaio 999. Studiare il comportamento della serie al variare del parametro α > /2. ( ) n n sin α n 2α 2. Sia ( ) f(x) = log + sin3 x. 2 (a) Determinare la derivata

Dettagli

Successioni, massimo e minimo limite e compattezza in R

Successioni, massimo e minimo limite e compattezza in R Università di Roma Tor Vergata Corso di Laurea in Scienze e Tecnologie per i Media Successioni, massimo e minimo limite e compattezza in R Massimo A. Picardello BOZZA 10.11.2011 21:24 i CAPITOLO 1 Successioni

Dettagli

Serie numeriche e serie di potenze

Serie numeriche e serie di potenze Serie numeriche e serie di potenze Sommare un numero finito di numeri reali è senza dubbio un operazione che non può riservare molte sorprese Cosa succede però se ne sommiamo un numero infinito? Prima

Dettagli

Università di Foggia - Facoltà di Economia. Prova scritta di Matematica Generale - Vecchio Ordinamento - 04 giugno 2002

Università di Foggia - Facoltà di Economia. Prova scritta di Matematica Generale - Vecchio Ordinamento - 04 giugno 2002 Università di Foggia - Facoltà di Economia Prova scritta di Matematica Generale - Vecchio Ordinamento - 04 giugno 00 Cognome e nome............................................ Numero di matricola...........

Dettagli

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 14 gennaio 2017 Fila 1.

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 14 gennaio 2017 Fila 1. Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA Prova scritta del gennaio 207 Fila. Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile.. (Punti 6) Determinare

Dettagli

Corso di Analisi Matematica. Successioni e serie numeriche

Corso di Analisi Matematica. Successioni e serie numeriche a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica Successioni e serie numeriche Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità

Dettagli

Corso di Laurea in Ingegneria Edile-Architettura ANALISI MATEMATICA I. Prova scritta del 8 Gennaio 2014

Corso di Laurea in Ingegneria Edile-Architettura ANALISI MATEMATICA I. Prova scritta del 8 Gennaio 2014 Corso di Laurea in Ingegneria Edile-Architettura ANALISI MATEMATICA I Prova scritta del 8 Gennaio 214 Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile. (1) (Punti 8)

Dettagli

Serie numeriche. 1 Nozioni generali

Serie numeriche. 1 Nozioni generali Serie numeriche Nozioni generali Con il concetto di serie si affronta il problema di dare un senso alla somma di infiniti addendi ordinati in successione. Data una successione (a k ) k N di numeri reali,

Dettagli

Numeri complessi, Successioni numeriche, Serie numeriche, Limiti e continuità, Calcolo differenziale: TEOREMI

Numeri complessi, Successioni numeriche, Serie numeriche, Limiti e continuità, Calcolo differenziale: TEOREMI Numeri complessi, Successioni numeriche, Serie numeriche, Limiti e continuità, Calcolo differenziale: TEOREMI Pagina 1 NUMERI COMPLESSI (C, +, ) è un campo. i 2 = -1. K, +,,, 0, 1 L'equazione x 2 +1=0

Dettagli

Analisi Matematica I Primo Appello ( ) - Fila 1

Analisi Matematica I Primo Appello ( ) - Fila 1 Analisi Matematica I Primo Appello (4-11-003) - Fila 1 1. Determinare la retta tangente alla funzione f() = (1 + ) 1+ in = 0. R. f(0) = 1, mentre la derivata è f () = ( e (1+) log(1+)) ( ) = e (1+) log(1+)

Dettagli

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che. Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti

Dettagli

Corsi di Laurea in Ingegneria Elettronica e Telecomunicazioni.

Corsi di Laurea in Ingegneria Elettronica e Telecomunicazioni. Corsi di Laurea in Ingegneria Elettronica e Telecomunicazioni. Università di Pisa. Prima prova scritta di Analisi Matematica I. Soluzioni. Esercizio. Si consideri la successione c n ) n N definita dalla

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Analisi Matematica 1 Schema provvisorio delle lezioni A. A. 2015/16 1 Distribuzione degli argomenti delle lezioni Argomento ore tot Numeri reali 11 11 Numeri complessi 1 12 Spazio euclideo 2 14 Topologia

Dettagli

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA PRIMA PARTE Intervallo limitato di numeri reali Dati due numeri reali a e b, con a

Dettagli

DERIVATA DI UNA FUNZIONE REALE. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR.

DERIVATA DI UNA FUNZIONE REALE. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR. DERIVATA DI UNA FUNZIONE REALE 1. Definizioni. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR. DEFINIZIONE 1. Sia x 0 un elemento di I. Per ogni x (I \ {x 0 }) consideriamo

Dettagli

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.

Dettagli

Corso di Laurea in Ingegneria per l Ambiente e il Territorio - sede distaccata di Latina Corso di Analisi Matematica (1 modulo) - a.a.

Corso di Laurea in Ingegneria per l Ambiente e il Territorio - sede distaccata di Latina Corso di Analisi Matematica (1 modulo) - a.a. Corso di Laurea in Ingegneria per l Ambiente e il Territorio - sede distaccata di Latina Corso di Analisi Matematica ( modulo) - a.a. 00/04 APPUNTI INTEGRATIVI SUI CRITERI DI CONVERGENZA PER LE SERIE Serie

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

Concentriamo la nostra attenzione sull insieme dei numeri razionali Q. In Q sono definite

Concentriamo la nostra attenzione sull insieme dei numeri razionali Q. In Q sono definite Lezioni del 22 e 24 settembre. Numeri razionali. 1. Operazioni, ordinamento. Indichiamo con N, Z, Q gli insiemi dei numeri naturali, interi relativi, e razionali: N = {0, 1, 2,...} Z = {0, ±1, ±2,...}

Dettagli

Esempi. La successione {cos n} è limitata; {n ¾ } è limitata inferiormente ma non è limitata superiormente, quindi non è limitata.

Esempi. La successione {cos n} è limitata; {n ¾ } è limitata inferiormente ma non è limitata superiormente, quindi non è limitata. Analisi 2 Successioni numeriche -1- ÔÔÙÒØ Ô Ö Ð ÓÖ Ó Ò Ð ¾ º ËÙ ÓÒ ÒÙÑ Ö Proposizione (unicità del limite). Se {a n } è convergente, allora il limite è unico. Dimostrazione. Supponiamo che la tesi sia

Dettagli

1 Funzioni reali di una variabile reale

1 Funzioni reali di una variabile reale 1 Funzioni reali di una variabile reale Qualche definizione e qualche esempio che risulteranno utili più avanti Durante tutto questo corso studieremo funzioni reali di una variabile reale, cioè Si ha f

Dettagli

ANALISI MATEMATICA A CORSO DI LAUREA TRIENNALE IN MATEMATICA 15 CF A.A

ANALISI MATEMATICA A CORSO DI LAUREA TRIENNALE IN MATEMATICA 15 CF A.A ANALISI MATEMATICA A CORSO DI LAUREA TRIENNALE IN MATEMATICA 15 CF A.A. 2016-17 Programma Provvisorio del corso di Analisi Matematica A Il programma che segue è solo indicativo. Il programma definitivo

Dettagli

Massimo limite e minimo limite di una funzione

Massimo limite e minimo limite di una funzione Massimo limite e minimo limite di una funzione Sia f : A R una funzione, e sia p DA). Per ogni r > 0, l insieme ) E f p r) = { fx) x A I r p) \ {p} } è non vuoto; inoltre E f p r ) E f p r ) se 0 < r r.

Dettagli

Università degli Studi di Palermo Facoltà di Economia. CdS Sviluppo Economico e Cooperazione Internazionale. Appunti del corso di Matematica

Università degli Studi di Palermo Facoltà di Economia. CdS Sviluppo Economico e Cooperazione Internazionale. Appunti del corso di Matematica Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 05 - Limiti Anno Accademico 2013/2014 D. Provenzano M. Tumminello,

Dettagli

La convergenza uniforme

La convergenza uniforme La convergenza uniforme 1. Il tubo Sia {f n (x)} una successione convergente a f(x) per x E: disegniamo il grafico della funzione limite f(x) assegnato ε > 0 disegniamo la striscia - il tubo - intorno

Dettagli

Matematica generale CTF

Matematica generale CTF Successioni numeriche 19 agosto 2015 Definizione di successione Monotonìa e limitatezza Forme indeterminate Successioni infinitesime Comportamento asintotico Criterio del rapporto per le successioni Definizione

Dettagli

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Risoluzione di Equazioni non lineari Sia F C 0 ([a, b]), cioé F è una funzione continua in un intervallo [a, b] R, tale che F(a)F(b) < 0 1.5 1 F(b) 0.5 0 a

Dettagli

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero Il teorema degli zeri è fondamentale per determinare se una funzione continua in un intervallo chiuso [ a ; b ] si annulla in almeno un punto interno

Dettagli

Analisi Matematica T1 (prof.g.cupini) (CdL Ingegneria Edile Polo Ravenna) REGISTRO DELLE LEZIONI A.A

Analisi Matematica T1 (prof.g.cupini) (CdL Ingegneria Edile Polo Ravenna) REGISTRO DELLE LEZIONI A.A Analisi Matematica T1 (prof.g.cupini) (CdL Ingegneria Edile Polo Ravenna) REGISTRO DELLE LEZIONI A.A.2012-2013 (Grazie agli studenti del corso che comunicheranno eventuali omissioni o errori) 25 SETTEMBRE

Dettagli

Proprietà commutativa e associativa per le serie

Proprietà commutativa e associativa per le serie Analisi Matematica 1 Trentaseiesima Trentasettesimalezione Proprietà commutativa e associativa per le serie Prodotto Serie di alla potenze Cauchy prof. Claudio Saccon Dipartimento di Matematica Applicata,

Dettagli

Simboli logici. Predicati, proposizioni e loro negazioni.

Simboli logici. Predicati, proposizioni e loro negazioni. PROGRAMMA di Analisi Matematica A.A. 202-203, canale, prof.: Francesca Albertini, Monica Motta Ingegneria gestionale, meccanica e meccatronica, Vicenza Testo Consigliato: Analisi Matematica, M. Bramanti,

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

INTEGRALI Test di autovalutazione

INTEGRALI Test di autovalutazione INTEGRALI Test di autovalutazione. L integrale ln 6 è uguale a (a) vale 5 2 (b) (c) (d) 4 5 vale ln 256 2 è negativo 2 5 + 4 5 2 5 + 4 5 d d 2. È data la funzione = e 2. Allora: (a) se F() è una primitiva

Dettagli

2 - Le successioni per ricorrenza

2 - Le successioni per ricorrenza - Le successioni per ricorrenza Le successioni per ricorrenza sono un po come le serie numeriche delle successioni di numeri reali abbastanza particolari. A differenza delle successioni standard, come

Dettagli

1. Scrivere il termine generale a n delle seguenti successioni e calcolare lim n a n:

1. Scrivere il termine generale a n delle seguenti successioni e calcolare lim n a n: Serie numeriche.6 Esercizi. Scrivere il termine generale a n delle seguenti successioni e calcolare a n: a),, 4, 4 5,... b), 9, 4 7, 5 8,... c) 0,,,, 4,.... Studiare il comportamento delle seguenti successioni

Dettagli