Indice generale. Modulo 1 Algebra 2

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Indice generale. Modulo 1 Algebra 2"

Transcript

1 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori Raccoglimento a fattor comune Raccoglimenti successivi a fattor comune Scomposizione in fattori mediante i prodotti notevoli 8 A 2 B 2 2AB (A B) 2,8 A 2 B 2 C 2 2AB 2AC 2BC (A B C) 2, 11 A 2 B 2 (A B)(A B), 11 x 2 (a b)x ab (x a)(x b), 13 A 3 B 3 3A 2 B 3AB 2 (A B) 3, 15 A 3 B 3 (A B)(A 2 AB B 2 ), 17 A 3 B 3 (A B)(A 2 AB B 2 ), Scomposizione in fattori mediante il teorema e la regola di Ruffini 18 Risoluzione dell equazione P(x) 0 con Ruffini, M.C.D. e m.c.m. fra polinomi 21 Ricapitoliamo 22 Esercizi Raccoglimento a fattor comune, 23. Raccoglimento a fattor comune parziale, 25. Quadrati di polinomi, 27. Differenza di quadrati, 28. Somma e prodotto, 31. Cubo di un binomio, 31. Somma o differenza di cubi, 32. Teorema di Ruffini, 33. Capitolo 2 Frazioni algebriche. Equazioni fratte 2.1 Frazioni algebriche. Dominio Frazioni algebriche equivalenti Semplificazione di frazioni algebriche Riduzione di frazioni algebriche allo stesso denominatore Operazioni con le frazioni algebriche 42 Addizione, 42. Moltiplicazione, 43. Potenza, 45. Inverso di una frazione algebrica, 46. Divisione, 47. Frazioni a termini frazionari, Equazioni razionali fratte 49 Ricapitoliamo 52 Esercizi Dominio, 53. Frazioni algebriche equivalenti, 56. Semplificazione di frazioni algebriche, 57. Riduzione di frazioni algebriche allo stesso denominatore, 58. Addizione di frazioni algebriche, 58. Moltiplicazione di frazioni algebriche, 62. Potenza di frazioni algebriche, 63. Divisione di frazioni algebriche, 64. Equazioni razionali fratte, 67. Capitolo 3 Disequazioni e sistemi di disequazioni lineari 3.1 Richiami sulle disuguaglianze Le disequazioni 68 Dominio di una disequazione, 70. Classificazione delle disequazioni, 72. Strumenti per la risoluzione delle disequazioni, 72. Forma normale. Grado di una disequazione, Gli intervalli in 74 Gli intervalli sulla retta, Risoluzione delle disequazioni lineari (o di primo grado) 77 Rappresentazione grafica dell insieme soluzione, Sistemi di disequazioni lineari Disequazioni di grado superiore al primo e disequazioni fratte 84 Ricapitoliamo 86 Esercizi Le disequazioni e le loro soluzioni, 87. Intervalli in, 90. Risoluzione delle disequazioni lineari, 90. Sistemi di disequazioni lineari, 94. Disequazioni di grado superiore al primo, 96. Disequazioni fratte, 98.

2 IV Indice generale Modulo 2 Equazioni in due incognite Capitolo 4 Equazioni di primo grado in due o più incognite. Sistemi lineari 4.1 Le equazioni in due incognite 100 Il dominio di un equazione in due incognite, 101. Le soluzioni di un equazione in due incognite, 101. La rappresentazione cartesiana delle equazioni di primo grado in due incognite, 103. Forma implicita, esplicita, normale, I sistemi lineari 105 Gli elementi di un sistema, 106. Sistemi equivalenti. Classificazione dei sistemi, Risoluzione di un sistema lineare 109 Metodo grafico, 109. Metodo del confronto, 112. Metodo di sostituzione, 114. Metodo di addizione e sottrazione o di riduzione, 115. Metodo di Cramer, Risoluzione di un sistema di tre equazioni in tre incognite Riconoscere un sistema non determinato 122 Ricapitoliamo 124 Esercizi Equazioni in due incognite, 125. Equazioni equivalenti, 126. Forma implicita, normale, esplicita, 127. Sistemi lineari, 128. Sistemi equivalenti, 129. Risoluzione di un sistema lineare, 130. Risoluzione di un sistema di tre equazioni in tre incognite, 139. Problemi, 140. Capitolo 5 Il piano cartesiano e la retta 5.1 Coordinate cartesiane nel piano Distanza di due punti nel piano Punto medio di un segmento Equazione della retta passante per due punti Equazione della retta in forma esplicita 148 Il significato di m, 149. Equazione del fascio di rette proprio, 150. Il significato di q. Retta per l origine, Equazione della retta in forma implicita o normale 152 Casi particolari, 152. Un altra condizione di parallelismo, Intersezione fra rette: significato geometrico di un sistema di equazioni lineari Il grafico di una funzione Risoluzione grafica delle disequazioni 160 Risoluzione grafica delle disequazioni lineari, 161. Ricapitoliamo 164 Esercizi Coordinate cartesiane nel piano, 166. Distanza e punto medio fra due punti, 167. Retta per due punti e coefficiente angolare, 169. Equazione della retta, 173. Rette parallele, 173. Rette perpendicolari. Asse di un segmento, 175. Intersezione fra rette, 177. Grafico di una funzione, 179. Modulo 3 Algebra 3 Capitolo 6 I radicali 6.1 Richiami sulle potenze La radice quadrata La radice n-sima 184 Le proprietà fondamentali dei radicali, Radicali algebrici Proprietà invariantiva dei radicali. Semplificazione Riduzione di radicali allo stesso indice Operazioni con i radicali 190 Moltiplicazione e divisione fra radicali che hanno lo stesso indice, 190. Moltiplicazione e divisione fra radicali che non hanno lo stesso indice, 191. Addizione algebrica, Trasporto di un fattore fuori dal segno di radice Trasporto di un fattore sotto il segno di radice Radice di un radicale Razionalizzazione del denominatore di una frazione 199 Il denominatore è un unico radicale, 200. Il denominatore è della forma 2a 2b, 203.

3 Indice generale V Ricapitoliamo 204 Esercizi La radice quadrata, 205. La radice n-sima, 206. I radicali come potenze a esponente razionale. Proprietà invariantiva dei radicali, 206. Semplificazione di un radicale e riduzione di radicali allo stesso indice, 207. Moltiplicazione fra radicali, 209. Divisione fra radicali, 210. Addizione algebrica di radicali, 211. Trasporto di un fattore fuori e sotto il segno di radice, 213. Radice di un radicale, 216. Razionalizzazione del denominatore di una frazione, 217. Capitolo 7 Equazioni e disequazioni di secondo grado 7.1 L equazione di secondo grado 222 Classificazione delle equazioni di secondo grado rispetto ai coefficienti, Risoluzione di un equazione di secondo grado completa 223 Formula risolutiva ridotta, 226. Relazione fra i coefficienti dell equazione e il segno delle soluzioni, Equazioni incomplete Relazione fra i coefficienti e le soluzioni di un equazione di secondo grado Scomposizione in fattori del trinomio ax 2 bx c Segno del trinomio di secondo grado 234 Studio del segno del trinomio di secondo grado, Disequazioni di secondo grado 239 Ricapitoliamo 242 Esercizi I coefficienti del trinomio di secondo grado e il discriminante, 243. Risoluzione di equazioni di secondo grado, 244. Relazione fra i coefficienti dell equazione e le sue soluzioni, 247. Scomposizione in fattori del trinomio di secondo grado, 249. Equazioni fratte, 251. Segno del trinomio di secondo grado, 252. Disequazioni di secondo grado, 255. Capitolo 8 Il trinomio di secondo grado e la parabola 8.1 La parabola Intersezione della parabola con l asse x: l equazione ax 2 bx c Posizione della parabola rispetto all asse x. Studio del segno del trinomio Risoluzione grafica di disequazioni di secondo grado Risoluzione grafica di sistemi di disequazioni di grado superiore al primo 268 Ricapitoliamo 270 Esercizi La parabola e i suoi elementi, 271. Posizione della parabola rispetto agli assi, 273. La parabola e le disequazioni di secondo grado, 277. Sistemi di disequazioni, 279. Capitolo 9 Equazioni di grado superiore al secondo. Equazioni irrazionali 9.1 Le equazioni di grado superiore al secondo 281 Scomposizione in fattori, Equazioni biquadratiche Equazioni reciproche 285 Risoluzione delle equazioni reciproche di prima specie, 287. Risoluzione delle equazioni reciproche di seconda specie, Equazioni razionali fratte Equazioni irrazionali 292 Ricapitoliamo 298 Esercizi Risoluzione di equazioni mediante la scomposizione in fattori, 299. Equazioni biquadratiche, 302. Equazioni reciproche, 302. Equazioni razionali fratte, 305. Equazioni irrazionali, 305. Soluzioni 307 RCS Libri S.p.A. - Divisione Education, Milano

4 1 2 3 Algebra 2 Scomposizione in fattori. Equazioni di grado superiore al primo Frazioni algebriche. Equazioni fratte Disequazioni e sistemi di disequazioni lineari Modulo 1 Prerequisiti Prodotti notevoli Teorema di Ruffini Legge di annullamento del prodotto Frazioni numeriche Dominio di un espressione algebrica Concetto di disuguaglianza Scomposizione in fattori di un polinomio Saper scomporre un polinomio in fattori Saper risolvere equazioni di grado superiore al primo mediante la scomposizione in fattori Risoluzione di un equazione di grado superiore al primo Saper operare con le frazioni algebriche Saper risolvere equazioni fratte Frazioni algebriche Acquisire il concetto di disequazione Equazioni fratte Acquisire il concetto di sistema di disequazioni Disequazioni e sistemi di disequazioni Saper risolvere sistemi di disequazioni Obiettivi

5 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori La definizione di scomposizione in fattori per un polinomio è praticamente identica a quella data per i numeri: d DEFINIZIONE Scomporre un polinomio in fattori significa trovare due o più polinomi il cui prodotto dia il polinomio stesso. Esempio Sia dato il polinomio A(x) 3x 2 x 2. Il prodotto (3x 2)(x 1) risulta essere una scomposizione in fattori del polinomio A(x), poiché: (3x 2)(x 1) 3x 2 3x 2x 2 3x 2 x 2 A(x) Quindi, come detto: 3x 2 x 2 (3x 2)(x 1) è una scomposizione in fattori del polinomio A(x). o OSSERVAZIONE Sappiamo che se il polinomio A è divisibile per il polinomio B (R 0), esiste un polinomio C per cui risulta: A B C Questa è una scomposizione in fattori o una fattorizzazione del polinomio A. I fattori della scomposizione, B e C, sono entrambi divisori di A. Questo vuol dire che i polinomi fattori della scomposizione vanno cercati tra i divisori del polinomio A. Si dà la seguente definizione: d DEFINIZIONE Un polinomio si dice riducibile quando è possibile scriverlo come il prodotto di due o più polinomi di grado minore di quello del polinomio dato; si dice irriducibile (o primo) nel caso opposto. Dalla definizione segue immediatamente che ogni polinomio di primo grado è sempre irriducibile.

6 Capitolo 1 Scomposizione in fattori 3 Non è facile decidere se un polinomio sia riducibile o irriducibile, e non esiste una regola per scomporre un qualunque polinomio in fattori. Di seguito vedremo vari metodi di scomposizione in fattori, e li applicheremo immediatamente alla risoluzione di equazioni di grado superiore al primo. A questo scopo, si svolgono i seguenti passaggi: 1. si riduce l equazione nella forma normale P(x) 0; 2. si scompone il polinomio P(x) in fattori; 3. si applica al prodotto ottenuto la legge di annullamento del prodotto ottenendo, così, delle equazioni di grado inferiore; 4. si risolvono le equazioni così ottenute. È importante ricordare, allora, la legge di annullamento del prodotto: se un prodotto è nullo, almeno uno dei suoi fattori deve essere nullo. Ciò significa che se 3ax 0 deve essere o 3 0 (non è possibile), o a 0, o x 0. Esercizi p Raccoglimento a fattor comune Nella trattazione dei monomi (volume 1, capitolo 7), abbiamo detto che un monomio A è divisibile per un monomio M non nullo se esiste un monomio A tale che A MA Il monomio A si ottiene dividendo il monomio A per il monomio M: Consideriamo, adesso, un polinomio A B C e supponiamo che ciascuno dei termini sia divisibile per un monomio M non nullo. Questo vuol dire che esistono dei monomi A, B e C per cui abbiamo: A MA B MB C MC Diciamo, in questo caso, che i monomi hanno un fattore comune, e il monomio M viene detto, appunto, fattore comune. Possiamo, allora, scrivere il polinomio in questo modo: A B C MAMBMC Sappiamo che la moltiplicazione gode della proprietà distributiva rispetto all addizione: Si può riscrivere la (2) così: Applicando la (3) al nostro polinomio, abbiamo: quindi: A A M k (a b c) ka kb kc (2) ka kb kc k (a b c) (3) A B C MAMBMCM (ABC ) A B C M (ABC ) (4) (1) RCS Libri S.p.A. - Divisione Education, Milano

7 4 Modulo 1 Algebra 2 Nota bene Ricordando che A, B e C si ottengono dividendo i monomi A, B e C per il monomio M, possiamo leggere la (4) nel modo seguente: se i termini di un polinomio hanno un fattore comune M, il polinomio stesso può scriversi come il prodotto di questo fattore per il polinomio che si ottiene dividendo ciascun termine del polinomio dato per il fattore comune. Tale operazione viene detta raccoglimento a fattor comune o messa in evidenza e si dice che è stato messo in evidenza il fattore M. Essa rappresenta il primo tipo di scomposizione in fattori: permette di scrivere un polinomio come il prodotto di un monomio per un polinomio. È necessario rispondere, adesso, a due domande: Come si fa a sapere se i termini di un polinomio hanno un fattore comune M? Come si fa a stabilire qual è questo fattore comune? Le due domande hanno un unica risposta: basta calcolare il M.C.D. fra tutti i termini: se il M.C.D. risulta diverso da 1 allora i termini hanno un fattore comune; il fattore comune è proprio il M.C.D. Il fattore comune ai termini del polinomio può anche essere solo un numero oppure un prodotto in cui uno o più fattori possono essere addirittura polinomi (li chiameremo, con molta fantasia, fattori polinomiali). Quindi: si possono mettere in evidenza anche solo numeri; si possono mettere in evidenza anche polinomi. Ricapitolando quanto abbiamo detto fino a ora, per la messa in evidenza occorre procedere nel modo seguente: Regola 1. Si individuano i fattori dei singoli termini del polinomio (considerando, eventualmente, anche i polinomi). 2. Si determina il M.C.D. di tutti i termini prendendo i fattori comuni a tutti i termini (eventualmente anche polinomi) una sola volta con il minimo esponente. 3. Si divide ciascun termine del polinomio per il M.C.D. 4. Si considera il polinomio che ha come termini i quozienti di queste divisioni e lo si moltiplica per il M.C.D. o OSSERVAZIONE Esempi Prima di provare qualunque altro tipo di scomposizione in fattori fra quelli che indicheremo in seguito, è bene verificare sempre se è possibile il raccoglimento a fattor comune e, eventualmente, svolgerlo. 1. Scomponiamo il polinomio 4ax 12ay 8az. Vediamo nella tabella quali sono i fattori dei singoli termini. I fattori comuni con il minimo esponente sono 2 2 e a (ricordiamo che per determinare il M.C.D. si moltiplicano i fattori Termini Fattori 4ax 2 comuni, presi una sola volta, con il minimo esponente); abbiamo, allora: 12ay a y 2 a x M.C.D. 2 2 a 4a 8az 2 3 a z

8 Capitolo 1 Scomposizione in fattori 5 Il fattore comune ai termini del polinomio è, dunque, 4a: mettiamolo in evidenza facendo le divisioni di ciascun termine del polinomio per 4a: (4ax) : (4a) x (12ay) : (4a) 3y (8az) : (4a) 2z Moltiplichiamo il polinomio formato dai quozienti così ottenuti per il M.C.D.: Questa è la scomposizione cercata. 4ax 12ay 8az 4a(x 3y 2z) 2. Scomponiamo in fattori il polinomio 9x(a 1) 15(a 1). I termini del polinomio sono 9x(a 1) e 15(a 1). In tabella è riportata la loro scomposizione in fattori. I fattori comuni con il minimo esponente sono 3 e il polinomio (a 1); quindi: M.C.D. 3(a 1) Questa è la quantità che dobbiamo mettere in evidenza. Eseguiamo le divisioni: [9x(a 1)] : [3(a 1)] 3x [15(a 1)] : [3(a 1)] 5 Moltiplichiamo il polinomio formato dai quozienti così ottenuti per il M.C.D.: Questa è la scomposizione cercata. Termini 9x(a 1) 15(a 1) 3(a 1)(3x 5) Fattori 9x (a 1) 3 2 x (a1) 15 (a 1) 3 5 (a1) Come si vede, è un caso in cui uno dei fattori da mettere in evidenza è un polinomio. Ora prova tu Scomponi in fattori i seguenti polinomi. ax ay az 3a 3b 3c 4x 2 y 3xy 5xy 2 8x 3 12ax 5 24a 2 x 2 3a 12b 6c ax bx cx 25a 2 b 2 20a 2 c 2 18a 3 b 2 c 12a 2 b 2 c 2! ATTENTI ALL ERRORE 12a 2 x 2 8a 2 x 2a 2 (6x 2 4x) Qui l errore consiste nel fatto che viene messo in evidenza un fattore che i due termini hanno in comune, cioè 2a 2, ma non il maggiore (cioè il M.C.D.). Di conseguenza nel polinomio 6x 2 4x c è ancora un fattore comune che si può (anzi, si deve) mettere in evidenza: 2x. Questo vuol dire che dovremo fare un altro passaggio mettendo in evidenza 2x, che è il fattore che i termini 6x 2 e 4x hanno in comune: 12a 2 x 2 8a 2 x 2a 2 (6x 2 4x) 2a 2 2x (3x 2) 4a 2 x (3x 2) Esercizi p. 25 Applicazione all equazione ax 2 bx 0 L equazione ax 2 bx0 è il primo esempio di equazione di grado superiore al primo che si può risolvere mediante la scomposizione in fattori. Infatti, essendo x un fattore comune ai termini dell equazione, può essere messo in evidenza: ax 2 bx x(ax b) e l equazione diventa: x(ax b) 0

9 6 Modulo 1 Algebra 2 A questo punto il prodotto x(ax b) deve essere nullo e quindi uno dei suoi fattori deve essere nullo. Si ha: x 0 oppure ax b 0 La prima equazione ha soluzione x 1 0, la seconda ha soluzione x 2 b a. L insieme soluzione dell equazione ax 2 bx 0 è S e 0, b a f. Esempio Risolviamo l equazione 3x 2 6x 0. Il M.C.D. fra 3x 2 e 6x è 3x. Mettiamo, allora, in evidenza 3x; abbiamo: 3x (x 2) 0. Per la legge di annullamento del prodotto deve essere: x 0 oppure x 2 0 La prima equazione ha soluzione x 1 0, la seconda ha soluzione x 2 2. L insieme soluzione dell equazione 3x 2 6x 0 è, dunque, S {0, 2}. Svolgiamo la verifica della soluzione x 2 2: 3 (2) 2 6 (2) 0 3 (4) L uguaglianza ottenuta è vera e, quindi, 2 è effettivamente soluzione dell equazione. Ora prova tu Risolvi le seguenti equazioni; poi svolgi la verifica per la soluzione che risulta diversa da 0. 5x 2 20x 0 6x 2 15x 0 9x 2 36x 0 x 2 8x 0 x 2 5x 0 7y 2 11yx 0 3x 2 4x 0 4x 2 14x 0 Esercizi p Raccoglimenti successivi a fattor comune Questo metodo di scomposizione in fattori (detto anche raccoglimento a fattor comune parziale) non è nient altro che l applicazione di successivi raccoglimenti a fattor comune. I passaggi da svolgere sono i seguenti: 1. si scompone il polinomio dato come la somma di polinomi parziali; 2. in ciascuno di questi polinomi si fa il raccoglimento a fattor comune; 3. se i termini così ottenuti hanno un polinomio in comune, lo si mette a sua volta in evidenza. Esempi 1. Scomponiamo in fattori il polinomio ax ay bx by. Seguiamo i tre passaggi indicati sopra. Scomponiamo il polinomio come la somma di polinomi: ax ay bx by (ax ay) (bx by) In ciascuno dei polinomi facciamo il raccoglimento a fattor comune: (ax ay) (bx by) a (x y) b (x y) I termini così ottenuti hanno il polinomio (x y) in comune; lo mettiamo in evidenza: a (x y) b (x y) (x y)(a b) Abbiamo, quindi: ax ay bx by (x y)(a b)

10 Capitolo 1 Scomposizione in fattori 7 2. Scomponiamo in fattori il polinomio 7x 2 2x 35xy 10y. 7x 2 2x 35xy 10y (7x 2 2x) (35xy 10y) (7x 2 2x) (35xy 10y) x (7x 2) 5y (7x 2) x (7x 2) 5y (7x 2) (7x 2)(x 5y) Abbiamo, quindi: 7x 2 2x 35xy 10y (7x 2)(x 5y) 3. Scomponiamo in fattori il polinomio mx nx ny my n m. mx nx ny my n m (mx my m) (nx ny n) (mx my m) (nx ny n) m (x y 1) n (x y 1) m (x y 1) n (x y 1) (x y 1)(m n) Abbiamo, quindi: mx nx ny my n m (x y 1)(m n) Nota bene Se il numero dei termini di un polinomio è un numero primo non è possibile la messa in evidenza parziale. Quindi per un polinomio formato da sette termini non è possibile usare tale metodo di scomposizione.! ATTENTI ALL ERRORE x 3 4x 2 3x 12 x(x 2 4x 3) 12 Questo errore mostra all insegnante che non solo non hai imparato il metodo della messa in evidenza parziale, ma che non ti è chiaro nemmeno che cosa significa scomporre un polinomio in fattori. Se, infatti, ricordi che scomporre un polinomio in fattori significa trovare dei polinomi che moltiplicati fra loro danno il polinomio stesso, ecco che ti rendi conto dell errore: x(x 2 4x 3) 12 non è il prodotto fra due polinomi, ma il prodotto fra un monomio e un polinomio più un terzo termine. La scomposizione corretta è la seguente: x 3 4x 2 3x 12 x 2 (x 4) 3(x 4) (x 4)(x 2 3) Adesso abbiamo scritto il polinomio dato come prodotto fra due polinomi! Esempio Applicazione alle equazioni Risolviamo l equazione x 3 x 2 4x 4 0. Possiamo scrivere: x 3 x 2 4x 4 (x 3 x 2 ) (4x 4) x 2 (x 1) 4(x 1) (x 1)(x 2 4) L equazione allora diventa (x 1)(x 2 4) 0. Per la legge di annullamento del prodotto deve essere: x 1 0 oppure x La prima equazione ammette come soluzione x 1 1; la seconda, come vedremo fra poco, ammette come soluzioni x 2 2 e x 3 2. L insieme soluzione è, pertanto, S {2, 1, 2}. Ora prova tu Trova almeno una soluzione per ciascuna delle seguenti equazioni. x 3 x 2 5x 5 0 x 3 x 2 16x x 3 5x 2 16x400 x 3 2x 2 9x x 3 x 2 8x 4 0 5x 3 x 2 5x10

11 8 Modulo 1 Algebra Scomposizione in fattori mediante i prodotti notevoli Riprendiamo le formule che abbiamo ottenuto per i prodotti notevoli e riscriviamole usando la proprietà simmetrica dell uguaglianza (se x y allora y x). (A B) 2 A 2 B 2 2AB A 2 B 2 2AB (A B) 2 (ABC) 2 A 2 B 2 C 2 2AB2AC 2BC A 2 B 2 C 2 2AB2AC 2BC (ABC) 2 (A B) 3 A 3 3A 2 B 3AB 2 B 3 A 3 3A 2 B 3AB 2 B 3 (A B) 3 (A B) 3 A 3 3A 2 B 3AB 2 B 3 A 3 3A 2 B 3AB 2 B 3 (A B) 3 (A B)(A B) A 2 B 2 A 2 B 2 (A B)(A B) (A B)(A 2 AB B 2 ) A 3 B 3 A 3 B 3 (A B)(A 2 AB B 2 ) Mentre le uguaglianze della prima colonna sono lo sviluppo dei vari tipi di prodotti notevoli, le uguaglianze della seconda colonna possono essere lette come la scomposizione in fattori di alcuni particolari tipi di polinomi. Nota bene Esercizi p. 27 Prima di addentrarci nei vari casi, vogliamo far presente quanto segue: affinché una potenza sia considerata come un quadrato è sufficiente che abbia esponente pari: a 6 è il quadrato di a 3, così come x 8 lo è di x 4 ; se si ha il prodotto di più potenze, questo può essere considerato come un quadrato solo se tutti i fattori hanno esponente pari. Per esempio, x 4 y 2 z 10 è formato da potenze aventi tutte esponente pari e, quindi, può essere considerato come un quadrato. La base della potenza è formata dagli stessi fattori i cui esponenti, però, sono stati divisi per 2. Nel nostro esempio la base è, allora, x 2 yz 5 ; risulta, infatti, x 4 y 2 z 10 (x 2 yz 5 ) 2. Qualora anche uno solo degli esponenti di un prodotto non fosse pari, quel prodotto non può essere considerato un quadrato: a 2 b 4 x 3 y 8 z 10 non è un quadrato per la presenza di x che non ha esponente pari; una potenza può considerarsi un cubo solo se l esponente è un multiplo di 3; se si ha un prodotto di più potenze, questo può essere considerato come un cubo solo se tutti i fattori hanno come esponente un numero divisibile per 3. Per esempio, il prodotto a 6 x 3 z 12 può essere considerato un cubo, essendo gli esponenti 6, 3 e 12 multipli di 3. La base della potenza è formata dagli stessi fattori i cui esponenti, però, sono stati divisi per 3. Quindi nel nostro esempio la base è a 2 xz 4. Risulta, cioè, a 6 x 3 z 12 (a 2 xz 4 ) 3 ; può accadere che una potenza possa essere considerata, contemporaneamente, sia come quadrato sia come cubo: un esempio è a 6 (a 3 ) 2 (a 2 ) 3. Di volta in volta si dovrà individuare in quale dei due esponenti sia la convenienza. A 2 B 2 2AB (A B) 2 Questo tipo di scomposizione prende il nome di trinomio quadrato di un binomio. Affinché sia possibile applicarlo è necessario che: 1. il polinomio sia composto soltanto da tre termini; 2. due termini dei tre che formano il trinomio devono essere dei quadrati; 3. i due quadrati devono avere lo stesso segno (anche negativo); se in un trinomio due termini sono dei quadrati, ma hanno segno opposto, è inutile perdere tempo: il trinomio non è scomponibile con questo metodo;

12 Capitolo 1 Scomposizione in fattori 9 4. considerate le basi dei due quadrati, si fa il loro prodotto e si moltiplica il risultato per 2: se si ottiene il terzo termine del trinomio, allora questo è, effettivamente, il quadrato di un binomio; 5. se il segno del doppio prodotto è positivo, allora i segni delle due basi del binomio sono concordi; se, invece, il segno del doppio prodotto è negativo, allora i segni delle due basi del binomio sono discordi. Esempi 1. Sia dato il polinomio 4x 2 4x 1. Verifichiamo se è il quadrato di un binomio. Seguiamo i passaggi sopra elencati: il polinomio è costituito da tre termini; due termini sono dei quadrati: 4x 2 (2x) 2 e 1(1) 2 ; i quadrati 4x 2 e 1 hanno lo stesso segno; le basi di 4x 2 e di 1 sono, rispettivamente, 2x e 1; calcoliamo il loro doppio prodotto: 2(2x)(1) 4x, che è esattamente il terzo termine del trinomio dopo 4x 2 e 1; nel polinomio dato, davanti al doppio prodotto (4x) c è il segno positivo: ciò vuol dire che le due basi hanno segno concorde; pertanto possiamo avere: 4x 2 4x 1 (2x 1) 2 oppure 4x 2 4x 1 (2x 1) 2 2. Sia dato il polinomio 9a 4 30a 2 b 25b 2. Verifichiamo se è il quadrato di un binomio: compaiono solo tre termini; due termini sono dei quadrati: 9a 4 (3a 2 ) 2 e 25b 2 (5b) 2 ; i quadrati hanno lo stesso segno; prese le basi dei quadrati, 3a 2 e 5b, calcoliamo 2(3a 2 )(5b) 30a 2 b: è il terzo termine del polinomio; nel polinomio dato, davanti al doppio prodotto (30a 2 b) c è il segno negativo: ciò vuol dire che le due basi hanno segno discorde; pertanto possiamo avere: 9a 4 30a 2 b 25b 2 (3a 2 5b) 2 oppure 9a 4 30a 2 b 25b 2 (3a 2 5b) 2 Possiamo scegliere quale delle due scomposizioni è più comoda per il prosieguo dell esercizio. 3. Sia dato il polinomio 16x 2 y 4 9x 4 y 2 24x 3 y 3. Verifichiamo se è il quadrato di un binomio. Prima di cominciare osserviamo che i due quadrati hanno segno negativo; mettiamo in evidenza 1 fra i termini del polinomio, ottenendo: 16x 2 y 4 9x 4 y 2 24x 3 y 3 (16x 2 y 4 9x 4 y 2 24x 3 y 3 ) compaiono solo tre termini; due termini sono dei quadrati: 16x 2 y 4 (4xy 2 ) 2 e 9x 4 y 2 (3x 2 y) 2 ; i quadrati hanno lo stesso segno; prese le basi dei quadrati, 4xy 2 e 3x 2 y, calcoliamo 2(4xy 2 )(3x 2 y) 24x 3 y 3 : è il terzo termine del polinomio; il doppio prodotto ha segno positivo: ciò vuol dire che le due basi sono concordi. Abbiamo, allora: 16x 2 y 4 9x 4 y 2 24x 3 y 3 (16x 2 y 4 9x 4 y 2 24x 3 y 3 ) (4xy 2 3x 2 y) 2 (4xy 2 3x 2 y) 2 Ora prova tu Scomponi in fattori i seguenti polinomi. a 2 12a 36 4a 2 12a 9 b 2 14b 49 x 2 22x 121 a 4 12a 2 36 a 2 b 2 6ab 9 9x 2 y 2 12xy 4 25a 4 c 2 10a 2 b 2 c b 4

13 10 Modulo 1 Algebra 2! ATTENTI ALL ERRORE Esercizi p. 27 Esempi 4x 2 1 (2x 1) 2 o, peggio, 4x 2 1 (2x 1) 2 L errore della prima scomposizione mette in evidenza che non hai imparato la regola per svolgere il quadrato di un binomio e, soprattutto, qual è la condizione fondamentale per avere il quadrato di un binomio: i termini del polinomio di partenza devono essere tre e tu ne hai solo due. Ma i termini del polinomio 4x 2 1 sono due quadrati che hanno lo stesso segno!. Non basta: manca il doppio prodotto; ricorda, inoltre, che la somma di due quadrati non si può mai scomporre. Nella seconda scomposizione, invece, gli errori sono tre: nello sviluppo del quadrato di un binomio i termini devono essere tre e qui ne abbiamo solo due; il segno dei due quadrati deve essere positivo e qui compare un segno negativo (1); 4x 2 1 si scompone, come vedremo in seguito, come (2x 1)(2x 1), essendo la differenza di due quadrati. Applicazione all equazione a 2 x 2 2abx b Risolviamo l equazione 4x 2 4x 1 0. Nel polinomio abbiamo 4x 2 (2x) 2, 1 (1) 2 e 4x 2(2x)(1): vi sono due quadrati (concordi) e il terzo termine è il doppio prodotto delle loro basi. Quindi risulta: 4x 2 4x 1 (2x 1) 2 L equazione diventa: (2x 1) 2 0 Poiché una potenza vale 0 solo se la base vale 0 deve essere 2x 1 0. Quindi risulta S e 1 2 f. Osserviamo che la soluzione non cambia se consideriamo la scomposizione: 4x 2 4x 1 (1 2x) 2 In questo caso, infatti, l equazione diventa: (1 2x) x 0 il cui insieme soluzione è ancora S e 1 2 f. 2. Risolviamo l equazione 9x 2 12x 4 0. Nel polinomio abbiamo 9x 2 (3x) 2, 4 (2) 2 e 12x 2(3x)(2): vi sono due quadrati (concordi) e il terzo termine è il doppio prodotto delle loro basi. Quindi risulta: 9x 2 12x 4 (3x 2) 2 L equazione diventa: (3x 2) 2 0 3x 2 0 Quindi risulta S e 2 3 f. Anche qui le soluzioni non cambiano se consideriamo la scomposizione: 9x 2 12x 4 (3x 2) 2 In questo caso l equazione diventa: (3x 2) 2 0 3x 2 0 il cui insieme soluzione è ancora S e 2 3 f.

14 Ora prova tu Risolvi le seguenti equazioni. Capitolo 1 Scomposizione in fattori 11 x 2 10x x 2 12x x 2 12x 2 0 x 2 6x 9 0 9x 2 12x 4 0 5x 2 10x 5 0 Esercizi p. 28 Nota bene A 2 B 2 C 2 2AB 2AC 2BC (A B C) 2 Questo tipo di scomposizione prende il nome di polinomio quadrato di un trinomio. Affinché sia possibile applicarlo è necessario che: 1. il polinomio sia composto soltanto da sei termini; 2. tre termini dei sei che formano il polinomio devono essere dei quadrati; 3. i tre quadrati devono avere lo stesso segno (anche negativo); se uno dei tre quadrati ha segno diverso dagli altri due è inutile perdere tempo: il polinomio non è scomponibile con questo metodo; 4. considerate le basi A, B, C dei tre quadrati, si fanno i tre doppi prodotti possibili (2AB, 2AC, 2BC): se si ottengono gli altri tre termini del polinomio, allora questo è, effettivamente, il quadrato di un trinomio. Particolare attenzione deve essere rivolta ai segni dei doppi prodotti: può capitare, infatti, che un polinomio di sei termini presenti tutte e quattro le caratteristiche citate, ma che non venga rispettata la regola del prodotto dei segni. Esempio Esercizi p. 28 Dato il polinomio 9x 2 4y 2 z 2 12xy 6xz 4yz, verifichiamo se è il quadrato di un trinomio. I primi tre termini sono i quadrati rispettivamente di 3x, 2y e z e hanno lo stesso segno. Il doppio prodotto fra 3x e 2y (12xy) è positivo: 3x e 2y devono essere concordi. Il doppio prodotto fra 3x e z (6xy) è positivo: 3x e z devono essere concordi. 2y e z, essendo concordi con 3x, devono essere anch essi concordi: il loro doppio prodotto è positivo, ma nel polinomio abbiamo 4yz. Il polinomio non è dunque il quadrato di un trinomio. A 2 B 2 (A B)(A B) Questo tipo di scomposizione prende il nome di differenza di due quadrati. Come si vede dalla formula, per poterlo applicare devono verificarsi le seguenti condizioni: 1. il polinomio deve essere composto soltanto da due termini (uno può anche essere il quadrato di un polinomio); 2. devono essere entrambi dei quadrati; 3. i due termini devono avere segni discordi (nell eventualità che sia A 2 B 2, applicando la proprietà commutativa si ha B 2 A 2 ). Nota bene La somma di due quadrati non è mai scomponibile! Per poter applicare questo tipo di scomposizione non è necessario che gli esponenti dei due termini siano uguali a 2, ma è sufficiente che siano entrambi pari. Infatti a 6 b 8 (a 3 ) 2 (b 4 ) 2 risulta comunque essere la differenza di due quadrati anche se nessuno dei due termini ha come esponente 2.

15 12 Modulo 1 Algebra 2 Per scomporre in fattori la differenza di due quadrati dobbiamo quindi: 1. vedere se i due termini sono discordi; 2. vedere se i due termini sono dei quadrati (cioè se entrambi hanno esponente pari) e cercare le basi di questi quadrati; 3. scrivere il binomio come il prodotto della somma delle basi per la loro differenza. Esempi 1. Scomponiamo in fattori 4a 4 25b 2. Vediamo se sono verificate le condizioni descritte: i due termini sono discordi; 4a 4 (2a 2 ) 2 e 25b 2 (5b) 2 ; i due termini del binomio sono, allora, dei quadrati e le basi sono 2a 2 e 5b; possiamo scomporre il binomio come: 4a 4 25b 2 (2a 2 5b)(2a 2 5b) 2. Scomponiamo in fattori 81x y 4 : i due termini sono discordi: scriviamo il binomio come 16y 4 81x 10 ; 16y 4 (4y 2 ) 2 e 81x 10 (9x 5 ) 2 ; quindi i due termini del binomio sono dei quadrati e le basi sono 4y 2 e 9x 5 ; possiamo scomporre il binomio come segue: 81x 10 16y 4 16y 4 81x 10 (4y 2 9x 5 )(4y 2 9x 5 ) 3. Scomponiamo in fattori (2x 3y) 2 9a 2 : i due termini sono discordi; i due termini sono dei quadrati e le basi sono (2x 3y) e 3a; possiamo scomporre il binomio come segue: (2x 3y) 2 9a 2 [(2x 3y) 3a][(2x 3y) 3a] 4. Scomponiamo in fattori 12ax 4 48ay 6. Il polinomio non si presenta come la differenza di due quadrati, non essendo tali né 12ax 4 né 48ay 6. Però possiamo mettere in evidenza il fattore comune 12a: 12ax 4 48ay 6 12a(x 4 4y 6 ) Come esercizio, completa la scomposizione in fattori. Ora prova tu Verifica se i seguenti polinomi sono scomponibili e, laddove è possibile, effettua la scomposizione (ricorda di verificare prima se è possibile il raccoglimento a fattor comune). 100a 2 49b 4 16c 2 9a 2 c 4 4x 4 y 2 y 4 9p 2 36q 4 36a 2 b 2 x 4 y 6 18a 3 c 2 50ax 4 16x 2 y 2 9x 4 y 4 (2x 5) 2 9a 4 9a 6 b 4 16a 4 b 6 16b 12 (3x 2 4x) 2 (5a 8b) 4 c 2 a 4 b 4! ATTENTI ALL ERRORE 4x 2 1 (2x 1) 2 Qui gli errori sono due, e gravi: nello sviluppo del quadrato di un binomio i termini devono essere tre e qui ne abbiamo solo due; il segno dei due quadrati deve essere positivo e qui compare un segno negativo (1).

16 Capitolo 1 Scomposizione in fattori 13 Le osservazioni che dovevano essere fatte, invece, sono le seguenti: i termini sono due (questo basta per escludere il quadrato di un binomio); sono due quadrati le cui basi sono 2x e 1; hanno segni discordi (questo elimina la possibilità di avere la somma di due quadrati che, come abbiamo detto più di una volta, non è scomponibile). Il prodotto notevole cui far riferimento è, allora, il prodotto di una somma di due espressioni per la loro differenza: 4x 2 1 (2x 1)(2x 1) Esercizi p. 30 Esempio Applicazione all equazione a 2 x 2 b 2 0 Risolviamo l equazione 4x Il binomio al primo membro risulta essere la differenza di due quadrati: 4x 2 (2x) 2 e 25 (5) 2 ; possiamo, allora, scrivere: 4x 2 25 (2x 5)(2x 5) e l equazione diventa: (2x 5)(2x 5) 0 Per la legge di annullamento del prodotto deve essere: 2x 5 0 oppure 2x 5 0 La prima equazione ha soluzione 5 5, la seconda ha soluzione 2 2. L insieme soluzione dell equazione 4x è, allora, S e 5 2 ; 5 2 f. Ora prova tu Risolvi le seguenti equazioni. x x x x x x x x Esercizi p. 31 x 2 (a b)x ab (x a)(x b) Dati due numeri a e b, calcoliamo il prodotto (x a)(x b): (x a)(x b) x 2 bx ax ab x 2 (a b) x ab (5) Possiamo riscrivere la (5) nel modo seguente: x 2 (a b)x ab (x a)(x b) (6) Quindi un trinomio di secondo grado P(x) x 2 sx p può essere scomposto in fattori se esistono due numeri a e b per i quali risulta: s a b p ab La (6) risulta, dunque, una scomposizione in fattori di un trinomio di secondo grado. Vediamo quali sono le condizioni che il trinomio deve rispettare perché essa possa essere applicata: 1. il coefficiente di x 2 deve essere 1; 2. il coefficiente di x deve essere uguale alla somma di due numeri a e b; 3. il termine noto deve essere uguale al prodotto dei due stessi numeri a e b.

17 Nota bene 14 Modulo 1 Algebra 2 Non è detto che i numeri a e b esistano. Qualora il coefficiente di x 2 non sia 1, si può mettere in evidenza nel trinomio tale coefficiente e poi cercare di applicare la suddetta scomposizione. Il fatto che sia p ab fornisce un utilissimo strumento di ricerca dei numeri a e b: essi devono essere cercati tra i possibili divisori del termine noto. Nella ricerca dei numeri a e b bisogna tener conto del segno del termine noto: se questo è positivo a e b devono essere concordi, se è negativo a e b devono essere discordi. Esempi 1. Scomponiamo in fattori il trinomio x 2 5x 6. Dobbiamo trovare due numeri a e b per cui risulti a b 6ea b 5. Tenendo conto che: 6 è positivo e, quindi, a e b devono essere concordi, 5 è positivo e, quindi, a e b devono essere entrambi positivi (se fossero negativi la loro somma sarebbe negativa), bisogna considerare solo le scomposizioni di 6 in cui entrambi i fattori sono positivi: (6) (1) (2) (3) Fra queste scomposizioni, quella per cui risulta a b 5 è a 2 e b 3; il trinomio, allora, è così scomponibile: x 2 5x 6 (x 2)(x 3) Ora prova tu 2. Scomponiamo in fattori il trinomio y 2 9y 20. Dobbiamo trovare due numeri a e b per cui risulti a b 20 e a b 9. Tenendo conto che: 20 è positivo e, quindi, a e b devono essere concordi, 9 è negativo e, quindi, a e b devono essere entrambi negativi (se fossero positivi la loro somma sarebbe positiva), bisogna considerare solo le scomposizioni di 20 in cui entrambi i fattori sono negativi: (1) (20) (2) (10) (4) (5) Fra queste scomposizioni, quella per cui risulta a b 9 è a 4 e b 5; il trinomio, allora, è così scomponibile: y 2 9y 20 (y 4)(y 5) 3. Scomponiamo in fattori il trinomio 2x 2 6x 8. Il coefficiente di x 2 è 2: mettiamolo in evidenza. Otteniamo: 2x 2 6x 8 2(x 2 3x 4) Dobbiamo trovare, così, due numeri a e b per cui risulti ab 4ea b 3. Le scomposizioni possibili di 4 sono (1) (4), (4) (1), (2) (2). Fra queste scomposizioni, quella per cui risulta a b 3 è a 4 e b 1; il trinomio, allora, è così scomponibile: 2x 2 6x 8 2(x 2 3x 4) 2(x 4)(x1) Scomponi in fattori i seguenti trinomi di secondo grado. x 2 4x 3 3x 2 18x 21 x 2 3x 10 5x 2 5x 150 x 2 7x 12 x 2 2x 24 2x 2 20x 32 x 2 11x 10 4x 2 8x 60 6x 2 54x 84

18 Capitolo 1 Scomposizione in fattori 15 Esercizi p. 31 Esempio Applicazione all equazione x 2 (a b)x ab 0 Risolviamo l equazione x 2 7x Tenendo conto che: 12 è positivo e, quindi, i numeri a e b devono essere concordi, 7 è negativo e, quindi, a e b devono essere negativi (se fossero positivi la loro somma sarebbe positiva), le scomposizioni di 12 che consideriamo sono: (1) (12), (2) (6), (3) (4). Fra queste, quella per cui risulta a b 7 è a 3 e b 4. Il polinomio si può scrivere x 2 7x 12 (x 3)(x 4) e quindi l equazione può essere espressa nella forma (x 3)(x 4) 0; deve essere, allora, x 3 0 oppure x 4 0. L insieme soluzione è, dunque, S {3, 4}. Ora prova tu Risolvi le seguenti equazioni. x 2 4x 3 0 3x 2 18x 21 0 x 2 3x x 2 54x 84 0 x 2 2x x 2 20x 32 0 x 2 11x x 2 8x 60 0 Esercizi p. 31 A 3 B 3 3A 2 B 3AB 2 (A B) 3 Affinché sia possibile utilizzare questo tipo di scomposizione devono essere verificate le seguenti condizioni: 1. il polinomio deve essere composto da quattro termini; 2. due termini (A 3 e B 3 ) devono essere dei cubi; individuati i cubi, si cercano le loro basi (cioè il monomio del quale il termine è cubo); 3. il terzo termine (3A 2 B) deve essere il prodotto del triplo del quadrato della prima base (3A 2 ) per la seconda base (B); 4. il quarto termine (3AB 2 ) deve essere il prodotto del triplo della prima base (3A) per il quadrato della seconda (B 2 ). In questo tipo di scomposizione è necessario fare particolarmente attenzione ai segni; a volte, infatti, un polinomio può apparire come il cubo di un binomio mentre, invece, non lo è. Consideriamo, per esempio, il quadrinomio 125u 3 150u 2 60u 8 e vediamo se è possibile scomporlo in fattori: abbiamo due cubi: 125u 3 (5u) 3 e 8 (2) 3 ; le basi sono 5u e 2; calcoliamo il triplo del quadrato della prima base per la seconda: 3(5u) 2 (2) 3(25u 2 )(2) 150u 2 calcoliamo il triplo della prima base per il quadrato della seconda: 3(5u)(2) 2 3(5u)(2) 2 60u Come possiamo notare, il primo dei due prodotti che abbiamo calcolato (150u 2 ) è uguale al secondo termine del quadrinomio, mentre il secondo prodotto (60u) non ha lo stesso segno del terzo termine del quadrinomio. Questo vuol dire che 125u 3 150u 2 60u 8 non è il cubo di un binomio.

19 16 Modulo 1 Algebra 2 Esempi 1. Scomponiamo il polinomio 125s 3 150s 2 60s 8: il polinomio è composto da quattro termini; presenta due cubi: 125s 3 (5s) 3 e 8 (2) 3 ; quindi le basi sono 5s e 2; il prodotto del triplo del quadrato della prima base per la seconda è 3(5s) 2 (2) 3 25s s 2 e coincide con il secondo termine del polinomio; il prodotto del triplo della prima base per il quadrato della seconda è 3(5s)(2) 2 60s e coincide con il terzo termine del polinomio. Allora possiamo affermare che: 125s 3 150s 2 60s 8 (5s 2) 3 2. Scomponiamo il polinomio 8u 3 36u 2 54u 27: il polinomio è composto da quattro termini; presenta due cubi: 8u 3 (2u) 3 e 27 (3) 3 (qui occorre stare attenti al segno); le basi sono, allora, 2u e 3; il prodotto del triplo del quadrato della prima base per la seconda è 3(2u) 2 (3) 3(4u 2 )(3) 36u 2 e coincide con il secondo termine del polinomio; il prodotto del triplo della prima base per il quadrato della seconda è 3(2u)(3) 2 3(2u)(9) 54u e coincide con il terzo termine del polinomio. Possiamo scrivere allora: 8u 3 36u 2 54u 27 (2u 3) 3 Esercizi p. 32 Esempi Applicazione all equazione a 3 x 3 3(a 2 x 2 )b 3(ax)b 2 b Risolviamo l equazione 64x 3 144x 2 108x Prendiamo in considerazione il polinomio 64x 3 144x 2 108x 27: ha quattro termini; presenta due cubi: 64x 3 (4x) 3 e 27 (3) 3 ; le loro basi sono 4x e 3; il prodotto del triplo del quadrato della prima base per la seconda è 3(4x) 2 (3) 3 16x x 2 e coincide con il secondo termine del polinomio; il prodotto del triplo della prima base per il quadrato della seconda è 3(4x)(3) 2 3 4x 9 108x e coincide con il terzo termine del polinomio. Possiamo affermare, allora, che 64x 3 144x 2 108x 27 (4x 3) 3 ; l equazione di partenza può essere scritta come: (4x 3) 3 0 e poiché una potenza vale 0 solo se la sua base è 0, deve essere: 4x 3 0 x 3 quindi S e f

20 Capitolo 1 Scomposizione in fattori Risolviamo l equazione 8x 3 60x 2 150x Prendiamo in considerazione il polinomio 8x 3 60x 2 150x 125: ha quattro termini; presenta due cubi: 8x 3 (2x) 3 e 125 (5) 3 ; le loro basi sono 2x e 5; il prodotto del triplo del quadrato della prima base per la seconda è 3(2x) 2 (5) 3 4x 2 (5) 60x 2 e coincide con il secondo termine del polinomio; il prodotto del triplo della prima base per il quadrato della seconda è 3(2x)(5) 2 3 2x x e coincide con il terzo termine del polinomio. Possiamo affermare, allora, che 8x 3 60x 2 150x 125 (2x 5) 3 ; l equazione di partenza può essere scritta come: (2x 5) 3 0 e poiché una potenza vale 0 solo se la sua base è 0, deve essere: 2x 5 0 x 5 2 quindi S e 5 2 f Esercizi p. 32 Nota bene Esempi A 3 B 3 (A B)(A 2 AB B 2 ) A 3 B 3 (A B)(A 2 AB B 2 ) Questi due tipi di scomposizione in fattori vengono detti, rispettivamente, somma e differenza di cubi. Come si vede, i termini che devono comparire sono solo due. Le due formule di scomposizione si possono così enunciare. La somma di due cubi A 3 B 3 è scomponibile come il prodotto tra: il binomio (A B) costituito dalla somma delle basi A e B; il trinomio (A 2 AB B 2 ) costituito da: il quadrato della prima base (A 2 ); più l opposto del prodotto delle basi (AB); più il quadrato della seconda base (B 2 ). La differenza di due cubi A 3 B 3 è scomponibile come il prodotto tra: il binomio (A B) costituito dalla differenza delle basi A e B; il trinomio (A 2 AB B 2 ) costituito da: il quadrato della prima base (A 2 ); più il prodotto delle basi (AB); più il quadrato della seconda base (B 2 ). Per poter applicare questo tipo di scomposizione non è necessario che gli esponenti dei due termini siano uguali a 3, ma è sufficiente che siano divisibili per 3; a 6 b 15 può essere considerata come la differenza dei cubi di a 2 e di b 5 : a 6 b 15 (a 2 ) 3 (b 5 ) Scomponiamo in fattori il binomio 8a Possiamo considerare 8a 6 e 27 come due cubi: 8a 6 (2a 2 ) 3 e Abbiamo, così: 8a 6 27 (2a 2 3)[(2a 2 ) 2 2a ] (2a 2 3)(4a 4 6a 2 9) 2. Scomponiamo in fattori il binomio x 3 125y 9. Possiamo considerare 125y 9 come il cubo di 5y 3 : (5y 3 ) 3 125y 9. Abbiamo, così: x 3 125y 9 (x 5y 3 )[x 2 x(5y 3 ) (5y 3 ) 2 ] (x 5y 3 )(x 2 5xy 3 25y 6 )

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI Indice 1 Le frazioni algebriche 1.1 Il minimo comune multiplo e il Massimo Comun Divisore fra polinomi........ 1. Le frazioni algebriche....................................

Dettagli

SCOMPOSIZIONE IN FATTORI DI UN POLINOMIO

SCOMPOSIZIONE IN FATTORI DI UN POLINOMIO SCOMPOSIZIONE IN FATTORI DI UN POLINOMIO Così come avviene per i numeri ( 180 = 5 ), la scomposizione in fattori di un polinomio è la trasformazione di un polinomio in un prodotto di più polinomi irriducibili

Dettagli

Appunti sulle disequazioni

Appunti sulle disequazioni Premessa Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) Appunti sulle disequazioni Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire

Dettagli

Alla pagina successiva trovate la tabella

Alla pagina successiva trovate la tabella Tabella di riepilogo per le scomposizioni Come si usa la tabella di riepilogo per le scomposizioni Premetto che, secondo me, questa tabella e' una delle pochissime cose che in matematica bisognerebbe "studiare

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

ESERCIZI SVOLTI Ricerca del dominio di funzioni razionali fratte e irrazionali. www.vincenzoscudero.it novembre 2009

ESERCIZI SVOLTI Ricerca del dominio di funzioni razionali fratte e irrazionali. www.vincenzoscudero.it novembre 2009 ESERCIZI SVOLTI Ricerca del dominio di funzioni razionali fratte e irrazionali v.scudero www.vincenzoscudero.it novembre 009 1 1 Funzioni algebriche fratte 1.1 Esercizio svolto y = x 1 x 11x + 10 (generalizzazione)

Dettagli

PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si sostituisce la loro somma.

PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si sostituisce la loro somma. Addizione: PROPRIETA' COMMUTATIVA Cambiando l'ordine degli addendi la somma non cambia. 1) a + b = b + a PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali 1 Numeri naturali La successione di tutti i numeri del tipo: 0,1, 2, 3, 4,..., n,... forma l'insieme dei numeri naturali, che si indica con il simbolo N. Tale insieme si può disporre in maniera ordinata

Dettagli

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale Radicali 1. Radice n-esima Terminologia Il simbolo è detto radicale. Il numero è detto radicando. Il numero è detto indice del radicale. Il numero è detto coefficiente del radicale. Definizione Sia un

Dettagli

Raccolta di Esercizi di Matematica. Capitolo 8 : Modalità CAS (Computer Algebra S ystem)

Raccolta di Esercizi di Matematica. Capitolo 8 : Modalità CAS (Computer Algebra S ystem) Raccolta di Esercizi di Matematica Capitolo 8 : Modalità CAS (Computer Algebra S ystem) Contenuti: 8-1. L ordine Algebrico delle Operazioni 8-2. Problemi sulle Percentuali 8-3. Le Forme Standard e Point-Slope

Dettagli

B9. Equazioni di grado superiore al secondo

B9. Equazioni di grado superiore al secondo B9. Equazioni di grado superiore al secondo Le equazioni di terzo grado hanno una, due o tre soluzioni, risolvibili algebricamente con formule molto più complesse di quelle dell equazione di secondo grado.

Dettagli

24 : 3 = 8 con resto 0 26 : 4 = 6 con resto 2

24 : 3 = 8 con resto 0 26 : 4 = 6 con resto 2 Dati due numeri naturali a e b, diremo che a è divisibile per b se la divisione a : b è esatta, cioè con resto 0. In questo caso diremo anche che b è un divisore di a. 24 : 3 = 8 con resto 0 26 : 4 = 6

Dettagli

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI Le disequazioni fratte Le disequazioni di secondo grado I sistemi di disequazioni Alessandro Bocconi Indice 1 Le disequazioni non lineari 2 1.1 Introduzione.........................................

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA 1. RICHIAMI SULLE PROPRIETÀ DEI NUMERI NATURALI Ho mostrato in un altra dispensa come ricavare a partire dagli assiomi di

Dettagli

Esercizi svolti sui numeri complessi

Esercizi svolti sui numeri complessi Francesco Daddi - ottobre 009 Esercizio 1 Risolvere l equazione z 1 + i = 1. Soluzione. Moltiplichiamo entrambi i membri per 1 + i in definitiva la soluzione è z 1 + i 1 + i = 1 1 + i z = 1 1 i. : z =

Dettagli

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti 4. Insiemi numerici 4.1 Insiemi numerici Insieme dei numeri naturali = {0,1,,3,,} Insieme dei numeri interi relativi = {..., 3,, 1,0, + 1, +, + 3, } Insieme dei numeri razionali n 1 1 1 1 = : n, m \{0}

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. Prerequisiti I radicali Risoluzione di sistemi di equazioni di primo e secondo grado. Classificazione e dominio delle funzioni algebriche Obiettivi minimi Saper

Dettagli

ESTRAZIONE DI RADICE

ESTRAZIONE DI RADICE ESTRAZIONE DI RADICE La radice è l operazione inversa dell elevamento a potenza. L esponente della potenza è l indice della radice che può essere: quadrata (); cubica (); quarta (4); ecc. La base della

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

Numeri complessi e polinomi

Numeri complessi e polinomi Numeri complessi e polinomi 1 Numeri complessi L insieme dei numeri reali si identifica con la retta della geometria: in altri termini la retta si può dotare delle operazioni + e e divenire un insieme

Dettagli

APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI Indice 1 Le funzioni nel discreto 3 1.1 Le funzioni nel discreto.................................. 3 1.1.1 La rappresentazione grafica............................

Dettagli

Metodi risolutivi per le disequazioni algebriche

Metodi risolutivi per le disequazioni algebriche Metodi risolutivi per le disequazioni algebriche v.scudero Una disequazioni algebrica si presenta in una delle quattro forme seguenti: () P( () P( (3) P( () P( essendo P( un polinomio in. Noi studieremo

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

Esercizi di Algebra Lineare. Claretta Carrara

Esercizi di Algebra Lineare. Claretta Carrara Esercizi di Algebra Lineare Claretta Carrara Indice Capitolo 1. Operazioni tra matrici e n-uple 1 1. Soluzioni 3 Capitolo. Rette e piani 15 1. Suggerimenti 19. Soluzioni 1 Capitolo 3. Gruppi, spazi e

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

STUDIO DEL SEGNO DI UNA FUNZIONE

STUDIO DEL SEGNO DI UNA FUNZIONE STUDIO DEL SEGNO DI UNA FUNZIONE Quando si studia una funzione! " #$%&' (funzione reale di variabile reale) è fondamentale conoscere il segno, in altre parole sapere per quali valori di &( #$%&'$è positiva,

Dettagli

1 n. Intero frazionato. Frazione

1 n. Intero frazionato. Frazione Consideriamo un intero, prendiamo un rettangolo e dividiamolo in sei parti uguali, ciascuna di queste parti rappresenta un sesto del rettangolo, cioè una sola delle sei parti uguali in cui è stato diviso.

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

Limiti e forme indeterminate

Limiti e forme indeterminate Limiti e forme indeterminate Edizioni H ALPHA LORENZO ROI c Edizioni H ALPHA. Ottobre 04. H L immagine frattale di copertina rappresenta un particolare dell insieme di Mandelbrot centrato nel punto.5378303507,

Dettagli

Anello commutativo. Un anello è commutativo se il prodotto è commutativo.

Anello commutativo. Un anello è commutativo se il prodotto è commutativo. Anello. Un anello (A, +, ) è un insieme A con due operazioni + e, dette somma e prodotto, tali che (A, +) è un gruppo abeliano, (A, ) è un monoide, e valgono le proprietà di distributività (a destra e

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

I numeri relativi. Il calcolo letterale

I numeri relativi. Il calcolo letterale Indice Il numero unità I numeri relativi VIII Indice L insieme R Gli insiemi Z e Q Confronto di numeri relativi Le operazioni fondamentali in Z e Q 0 L addizione 0 La sottrazione La somma algebrica La

Dettagli

Le trasformazioni geometriche

Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni affini del piano o affinità Le similitudini Le isometrie Le traslazioni Le rotazioni Le simmetrie assiale e centrale Le omotetie

Dettagli

SEGNO DELLA FUNZIONE. Anche in questo caso, per lo studio del segno della funzione, occorre risolvere la disequazione: y > 0 Ne segue:

SEGNO DELLA FUNZIONE. Anche in questo caso, per lo studio del segno della funzione, occorre risolvere la disequazione: y > 0 Ne segue: CAMPO DI ESISTENZA. Poiché la funzione data è una razionale fratta, essa risulta definita su tutto l asse reale tranne che nei punti in cui il denominatore della frazione si annulla, cioè: C.E. { R: 0}

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. UdA n. 1 Titolo: Disequazioni algebriche Saper esprimere in linguaggio matematico disuguaglianze e disequazioni Risolvere problemi mediante l uso di disequazioni algebriche Le disequazioni I principi delle

Dettagli

APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI

APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI I numeri naturali I numeri interi I numeri razionali Teoria degli insiemi (cenni) ALESSANDRO BOCCONI Indice 1 L insieme N dei numeri naturali 4 1.1 Introduzione.........................................

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali.

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. CAPITOLO 7 Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. Esercizio 7.1. Determinare il rango delle seguenti matrici al variare del parametro t R. 1 4 2 1 4 2 A 1 = 0 t+1 1 A 2 = 0 t+1 1

Dettagli

LE FUNZIONI MATEMATICHE

LE FUNZIONI MATEMATICHE ALGEBRA LE FUNZIONI MATEMATICHE E IL PIANO CARTESIANO PREREQUISITI l l l l l conoscere il concetto di insieme conoscere il concetto di relazione disporre i dati in una tabella rappresentare i dati mediante

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014 Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,

Dettagli

1A ARITMETICA. I numeri naturali e le quattro operazioni. Esercizi supplementari di verifica

1A ARITMETICA. I numeri naturali e le quattro operazioni. Esercizi supplementari di verifica A ARITMETICA I numeri naturali e le quattro operazioni Esercizi supplementari di verifica Esercizio Rappresenta sulla retta orientata i seguenti numeri naturali. ; ; ; 0;. 0 Esercizio Metti una crocetta

Dettagli

Logica Numerica Approfondimento 1. Minimo Comune Multiplo e Massimo Comun Divisore. Il concetto di multiplo e di divisore. Il Minimo Comune Multiplo

Logica Numerica Approfondimento 1. Minimo Comune Multiplo e Massimo Comun Divisore. Il concetto di multiplo e di divisore. Il Minimo Comune Multiplo Logica Numerica Approfondimento E. Barbuto Minimo Comune Multiplo e Massimo Comun Divisore Il concetto di multiplo e di divisore Considerato un numero intero n, se esso viene moltiplicato per un numero

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06 Analisi Mat. - Ing. Inform. - Soluzioni del compito del 3-3-6 Sia p il polinomio di quarto grado definito da pz = z 4. Sia S il settore circolare formato dai numeri complessi che hanno modulo minore o

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli

Numeri reali. Funzioni e loro grafici

Numeri reali. Funzioni e loro grafici Argomento Numeri reali. Funzioni e loro grafici Parte B - Funzioni e loro grafici Funzioni reali di variabile reale Definizioni. Supponiamo che A sia un sottoinsieme di R e che esista una legge che ad

Dettagli

NUMERI COMPLESSI. Esercizi svolti., e) i 34, f) i 7. 10 i

NUMERI COMPLESSI. Esercizi svolti., e) i 34, f) i 7. 10 i NUMERI COMPLESSI Esercizi svolti 1. Calcolare le seguenti potenze di i: a) i, b) i, c) i 4, d) 1 i, e) i 4, f) i 7. Semplificare le seguenti espressioni: a) ( i) i(1 ( 1 i), b) ( + i)( i) 5 + 1 ) 10 i,

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

LE FUNZIONI E LE LORO PROPRIETÀ

LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI REALI DI VARIABILE REALE COSA SONO LE FUNZIONI Dati due sottoinsiemi A e B non vuoti di R, una FUNZIONE da A a B è una relazione che associa ad ogni numero reale

Dettagli

Verica di Matematica su dominio e segno di una funzione [COMPITO 1]

Verica di Matematica su dominio e segno di una funzione [COMPITO 1] Verica di Matematica su dominio e segno di una funzione [COMPITO 1] Esercizio 1. Determinare il dominio delle seguenti funzioni: 1. y = 16 x ;. y = e 1 x +4 + x + x + 1; 3. y = 10 x x 3 4x +3x; 4. y =

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

FASCI DI RETTE. scrivere la retta in forma esplicita: 2y = 3x + 4 y = 3 2 x 2. scrivere l equazione del fascio di rette:

FASCI DI RETTE. scrivere la retta in forma esplicita: 2y = 3x + 4 y = 3 2 x 2. scrivere l equazione del fascio di rette: FASCI DI RETTE DEFINIZIONE: Si chiama fascio di rette parallele o fascio improprio [erroneamente data la somiglianza effettiva con un fascio!] un insieme di rette che hanno tutte lo stesso coefficiente

Dettagli

QUADERNI DI DIDATTICA

QUADERNI DI DIDATTICA Department of Applied Mathematics, University of Venice QUADERNI DI DIDATTICA Tatiana Bassetto, Marco Corazza, Riccardo Gusso, Martina Nardon Esercizi sulle funzioni di più variabili reali con applicazioni

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1 Le funzioni continue A. Pisani Liceo Classico Dante Alighieri A.S. -3 A. Pisani, appunti di Matematica 1 Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato

Dettagli

I numeri complessi. Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli

I numeri complessi. Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli I numeri complessi Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli 1 Introduzione Studiare i numeri complessi può sembrare inutile ed avulso dalla realtà;

Dettagli

Studio grafico-analitico delle funzioni reali a variabile reale

Studio grafico-analitico delle funzioni reali a variabile reale Studio grafico-analitico delle funzioni reali a variabile reale Sequenza dei passi Classificazione In pratica Classifica il tipo di funzione: Funzione razionale: intera / fratta Funzione irrazionale: intera

Dettagli

ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA a.s. 2014/2015

ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA a.s. 2014/2015 NUMERI. SPAZIO E FIGURE. RELAZIONI, FUNZIONI, MISURE, DATI E PREVISIONI Le sociali e ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA procedure

Dettagli

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti Y T T I Numeri Complessi Operazioni di somma e prodotto su Consideriamo, insieme delle coppie ordinate di numeri reali, per cui si ha!"# $&% '( e )("+* Introduciamo in tale insieme una operazione di somma,/0"#123045"#

Dettagli

IL PENSIERO MATEMATICO

IL PENSIERO MATEMATICO Claudio Bernardi Lodovico Cateni Roberto ortini Silvio Maracchia Giovanni Olivieri erruccio Rohr IL PENSIERO MATEMATICO OLUME 1 Algebra Statistica Geometria IL PENSIERO MATEMATICO cindice ALGEBRA UNITÀ

Dettagli

FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA

FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA DEFINIZIONE: Dato un numero reale a che sia a > 0 e a si definisce funzione esponenziale f(x) = a x la relazione che ad ogni valore di x associa uno e un solo

Dettagli

IV-1 Funzioni reali di più variabili

IV-1 Funzioni reali di più variabili IV- FUNZIONI REALI DI PIÙ VARIABILI INSIEMI IN R N IV- Funzioni reali di più variabili Indice Insiemi in R n. Simmetrie degli insiemi............................................ 4 2 Funzioni da R n a R

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

Teoria degli insiemi

Teoria degli insiemi Teoria degli insiemi pag 1 Easy Matematica di dolfo Scimone Teoria degli insiemi Il concetto di insieme si assume come primitivo, cioè non riconducibile a concetti precedentemente definiti. Sinonimi di

Dettagli

Geometria nel piano complesso

Geometria nel piano complesso Geometria nel piano complesso Giorgio Ottaviani Contents Un introduzione formale del piano complesso 2 Il teorema di Napoleone 5 L inversione circolare 6 4 Le trasformazioni di Möbius 7 5 Il birapporto

Dettagli

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Archimede ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. Sia ABCD un quadrato di

Dettagli

Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado

Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado I quesiti sono distribuiti negli ambiti secondo la tabella seguente Ambito

Dettagli

Frazioni e numeri razionali

Frazioni e numeri razionali Frazioni e numeri razionali I numeri naturali sono i primi numeri che hai incontrato, quando hai cominciato a contare con le dita. Ma vuoi eseguire tutte le sottrazioni. E allora hai bisogno dei numeri

Dettagli

Equazione della Circonferenza - Grafico di una Circonferenza - Intersezione tra Circonferenza e Retta

Equazione della Circonferenza - Grafico di una Circonferenza - Intersezione tra Circonferenza e Retta Equazione della Circonferenza - Grafico di una Circonferenza - Intersezione tra Circonferenza e Retta Francesco Zumbo www.francescozumbo.it http://it.geocities.com/zumbof/ Questi appunti vogliono essere

Dettagli

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Trasformazioni Geometriche 1 Roberto Petroni, 2011 1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Capitolo 2 Equazioni differenziali ordinarie 2.1 Formulazione del problema In questa sezione formuleremo matematicamente il problema delle equazioni differenziali ordinarie e faremo alcune osservazioni

Dettagli

PRESENTAZIONE DEL CAPITOLO SULLE EQUAZIONI E DISEQUAZIONI IRRAZIONALI O COL VALORE ASSOLUTO

PRESENTAZIONE DEL CAPITOLO SULLE EQUAZIONI E DISEQUAZIONI IRRAZIONALI O COL VALORE ASSOLUTO 9 PRESENTAZIONE DEL CAPITOLO SULLE EQUAZIONI E DISEQUAZIONI IRRAZIONALI O COL VALORE ASSOLUTO Il capitolo che sta per iniziare presenta alcuni argomenti dall aspetto un po arido. Tuttavia, nelle facoltà

Dettagli

FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas

FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas.8.6.. - -.5.5 -. In questa dispensa ricordiamo la classificazione delle funzioni elementari e il dominio di esistenza delle stesse. Inoltre

Dettagli

Appunti di Algebra Lineare

Appunti di Algebra Lineare Appunti di Algebra Lineare Indice 1 I vettori geometrici. 1 1.1 Introduzione................................... 1 1. Somma e prodotto per uno scalare....................... 1 1.3 Combinazioni lineari e

Dettagli

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO SIMULAZINE DI PRVA D ESAME CRS DI RDINAMENT Risolvi uno dei due problemi e 5 dei quesiti del questionario. PRBLEMA Considera la famiglia di funzioni k ln f k () se k se e la funzione g() ln se. se. Determina

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

LA MATEMATICA PER LE ALTRE DISCIPLINE. Prerequisiti e sviluppi universitari G. ACCASCINA, G. ANICHINI, G. ANZELLOTTI, F. ROSSO, V. VILLANI, R.

LA MATEMATICA PER LE ALTRE DISCIPLINE. Prerequisiti e sviluppi universitari G. ACCASCINA, G. ANICHINI, G. ANZELLOTTI, F. ROSSO, V. VILLANI, R. LA MATEMATICA PER LE ALTRE DISCIPLINE Prerequisiti e sviluppi universitari a cura di G. ACCASCINA, G. ANICHINI, G. ANZELLOTTI, F. ROSSO, V. VILLANI, R. ZAN Unione Matematica Italiana 2006 Ho continuato

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

Come si può esprimere il risultato dl un conteggio e di una misura? Quando si dice che In una

Come si può esprimere il risultato dl un conteggio e di una misura? Quando si dice che In una NUMERI INTERI E NUMERI DECIMALI Come si può esprimere il risultato dl un conteggio e di una misura? Quando si dice che In una cassetta sono contenuti 45 penne e che una lamiera misura 1,35 m. dl lunghezza,

Dettagli

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d.

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d. 1) Il valore di 5 10 20 è: a. 10 4 b. 10-15 c. 10 25 d. 10-4 2) Il valore del rapporto (2,8 10-4 ) / (6,4 10 2 ) è: a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori 3) La quantità

Dettagli

Maturità Scientifica PNI, sessione ordinaria 2000-2001

Maturità Scientifica PNI, sessione ordinaria 2000-2001 Matematica per la nuova maturità scientifica A. Bernardo M. Pedone Maturità Scientifica PNI, sessione ordinaria 000-00 Problema Sia AB un segmento di lunghezza a e il suo punto medio. Fissato un conveniente

Dettagli

Formule trigonometriche

Formule trigonometriche Formule trigonometriche C. Enrico F. Bonaldi 1 Formule trigonometriche In trigonometria esistono delle formule fondamentali che permettono di calcolare le funzioni goniometriche della somma di due angoli

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Lo studio di unzione Ing. Alessandro Pochì Appunti di analisi Matematica per la Classe VD (a.s. 011/01) Schema generale per lo studio di una unzione Premessa Per Studio unzione si intende, generalmente,

Dettagli

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto.

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto. 29 giugno 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

POLITECNICO DI BARI REGOLAMENTO TEST DI AMMISSIONE

POLITECNICO DI BARI REGOLAMENTO TEST DI AMMISSIONE POLITECNICO DI BARI REGOLAMENTO TEST DI AMMISSIONE IMMATRICOLAZIONI AL PRIMO ANNO DEI CORSI DI LAUREA TRIENNA- LI IN INGEGNERIA DEL POLITECNICO DI BARI - A.A. 2015/2016 Sommario REGOLAMENTO TEST DI AMMISSIONE...

Dettagli

Appunti e generalità sulle funzioni reali di variabili reali.

Appunti e generalità sulle funzioni reali di variabili reali. Appunti e generalità sulle funzioni reali di variabili reali. Premessa Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire solamente i concetti

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

IL TEOREMA FONDAMENTALE DELL ARITMETICA: FATTORIZZAZIONE IN NUMERI PRIMI.

IL TEOREMA FONDAMENTALE DELL ARITMETICA: FATTORIZZAZIONE IN NUMERI PRIMI. IL TEOREMA FONDAMENTALE DELL ARITMETICA: FATTORIZZAZIONE IN NUMERI PRIMI. PH. ELLIA Indice Introduzione 1 1. Divisori di un numero. 2 2. Numeri primi: definizioni. 4 2.1. Fare la lista dei numeri primi.

Dettagli

1. Intorni di un punto. Punti di accumulazione.

1. Intorni di un punto. Punti di accumulazione. 1. Intorni di un punto. Punti di accumulazione. 1.1. Intorni circolari. Assumiamo come distanza di due numeri reali x e y il numero non negativo x y (che, come sappiamo, esprime la distanza tra i punti

Dettagli

EQUAZIONI CON VALORE ASSOLUTO

EQUAZIONI CON VALORE ASSOLUTO VALORE AOLUTO EQUAZIONI CON VALORE AOLUTO Esercizi DIEQUAZIONI CON VALORE AOLUTO Esercizi Prof. Giulia Cagnetta ITI Marconi Domodossola (VB) *EQUAZIONI CON VALORE AOLUTO Data una qualsiasi espressione

Dettagli

Scuola primaria: obiettivi al termine della classe 5

Scuola primaria: obiettivi al termine della classe 5 Competenza: partecipare e interagire con gli altri in diverse situazioni comunicative Scuola Infanzia : 3 anni Obiettivi di *Esprime e comunica agli altri emozioni, sentimenti, pensieri attraverso il linguaggio

Dettagli

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti.

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Def. Si dice equazione differenziale lineare del secondo ordine

Dettagli

Se log a. b = c allora: A) a b = c B) c a = b C) c b = a D) b c = a E) a c = b. L espressione y = log b x significa che:

Se log a. b = c allora: A) a b = c B) c a = b C) c b = a D) b c = a E) a c = b. L espressione y = log b x significa che: MATEMATICA 2005 Se log a b = c allora: A) a b = c B) c a = b C) c b = a D) b c = a E) a c = b L espressione y = log b x significa che: A) y é l esponente di una potenza di base b e di valore x B) x è l

Dettagli