ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2007

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2007"

Transcript

1 ESAME DI STAT DI LIE SIENTIFI RS DI RDINAMENT 7 Il cadidato risolva uo dei due problemi e 5 dei quesiti i cui si articola il questioario. PRLEMA Si cosiderio i triagoli la cui base è A e il cui vertice varia i modo che l agolo Aˆ si matega doppio dell agolo Aˆ.. Riferito il piao ad u coveiete sistema di coordiate, si determii l equazioe del luogo geometrico descritto da.. Si rappreseti, teedo coto, ovviamete, delle prescritte codizioi geometriche.. Si determii l ampiezza dell agolo Aˆ che rede massima la somma dei quadrati delle altezze relative ai lati A e e, co l aiuto di ua calcolatrice, se e dia u valore approssimato i gradi e primi (sessagesimali). 4. Si provi che se Aˆ allora è A 5. PRLEMA Si cosideri u cerchio di raggio r.. Tra i triagoli isosceli iscritti i si trovi quello di area massima.. Si deoti co S l area del poligoo regolare di lati iscritto i. Si dimostri che S r se e si trovi u aaloga espressioe per l area del poligoo regolare di lati circoscritto a.. Si calcoli il limite di S per. 4. Si spieghi i che cosa cosista il problema della quadratura del cerchio e se, e i che seso, si tratti di u problema risolubile o meo. QUESTINARI La regioe R delimitata dal grafico di, dall asse e dalla retta (figura ) è la base di u solido S le cui sezioi, otteute tagliado S co piai perpedicolari all asse, soo tutte triagoli equilateri. Si calcoli il volume di S. = Le misure dei lati di u triagolo soo 4, e 8 cm. Si calcolio, co l aiuto di ua calcolatrice, le ampiezze degli agoli del triagolo approssimadole i gradi e primi sessagesimali. Si determii, al variare di k, il umero delle soluzioi reali dell equazioe: k. Figura. 4 U serbatoio di olio ha la stessa capacità del massimo coo circolare retto di apotema metro. Si dica quati litri di olio il serbatoio può coteere. Zaichelli Editore, 8

2 5 7 8 Si mostri che la fuzioe 8 soddisfa le codizioi del Teorema del valor medio (o Teorema di Lagrage) sull itervallo [; ]. Si determiio i valori medi foriti dal teorema e se e illustri il sigificato geometrico. Si sa che il prezzo p di u abito ha subìto ua maggiorazioe del % e, altresì, ua dimiuzioe del %; o si ha ricordo, però, se sia avveuta prima l ua o l altra delle operazioi. he cosa si può dire del prezzo fiale dell abito? Se f () è ua fuzioe reale dispari (ossia il suo grafico cartesiao è simmetrico rispetto all origie), defiita e itegrabile ell itervallo [; ], che dire del suo itegrale esteso a tale itervallo? Quato vale el medesimo itervallo l itegrale della fuzioe f ()? Si risolva l equazioe: Si calcoli l itegrale idefiito d e, successivamete, si verifichi che il risultato di d è i accordo co il suo sigificato geometrico. Per orietarsi sulla Terra si fa riferimeto a meridiai e paralleli, a latitudii e logitudii. Suppoedo che la Terra sia ua sfera S e che l asse di rotazioe terrestre sia ua retta r passate per il cetro di S, come si può procedere per defiire i termii geometrici meridiai e paralleli e itrodurre u sistema di coordiate geografiche terrestri? Durata massima della prova: ore. È cosetito soltato l uso di calcolatrici o programmabili. No è cosetito lasciare l Istituto prima che siao trascorse ore dalla dettatura del tema. Zaichelli Editore, 8

3 SLUZINE DELLA PRVA D ESAME RS DI RDINAMENT 7 PRLEMA. osideriamo il sistema di riferimeto cetrato i A e co gli assi cartesiai orietati come i figura. Idichiamo co ( ; ) le geeriche coordiate di e co l agolo Aˆ. Ne segue che Aˆ. sserviamo che il puto deve giacere el semipiao altrimeti l agolo Aˆ sarebbe miore o uguale ad Aˆ. Tale codizioe può essere migliorata, osservado che el primo quadrate è possibile costruire all itero del triagolo A il triagolo isoscele AA poiché di altezza D, come i figura. A L agolo ˆA è uguale ad i quato l agolo supplemetare di Aˆ è uguale a. Quidi A A. Ioltre, essedo A l ipoteusa del triagolo rettagolo AD co cateto DA, deve essere, cioè. Poiché il problema preseta ua simmetria rispetto all asse, limitiamoci a cosiderare il caso. Per trovare l equazioe del luogo geometrico possiamo procedere i due modi. Figura. Primo metodo osiderado i triagoli rettagoli otteuti tracciado l altezza relativa alla base A, risulta: tg tg() A D A' Figura. ell ipotesi che sia. Il caso è, comuque, geometricamete accettabile i quato si otterrebbe il triagolo rettagolo i A e isoscele, co di coordiate (; ). Suppoiamo, allora, (e quidi tg ). Dal sistema, ricordado la formula di duplicazioe della tagete, otteiamo: tg tg tg Zaichelli Editore, 8

4 Svolgedo i calcoli e portado il tutto a forma ormale otteiamo 4. Questa equazioe comprede ache il caso, poiché la curva passa per il puto (; ), e i casi simmetrici. Questi ultimi corrispodoo a valori egativi di. Essa rappreseta, duque, l equazioe del luogo geometrico richiesto, cosiderado però la limitazioe. Secodo metodo sserviamo che la figura rappreseta il caso i cui. Il caso i cui, ivece, si ha è rappresetato i figura 4. I questo caso è possibile costruire u triagolo isoscele AA, estero al triagolo A, di altezza D. L agolo AˆA è uguale a, i quato l agolo supplemetare Aˆ è uguale a. Ne segue che ache il triagolo A è isoscele, i quato Aˆ Aˆ. osideriamo il triagolo rettagolo DˆA, i cui D ; vale ioltre che AD e A A. I etrambi i casi, applicado il teorema di Pitagora al triagolo DA, otteiamo che A' D A ( ) che è l equazioe del luogo cercato. Figura 4.. Riscrivedo, co il metodo del completameto dei quadrati, l equazioe ella forma 9 è facile ricooscere che tale curva è l iperbole che si ottiee dalla traslazioe rispetto al vettore v ; dell iperbole di equazioe 9 che ha vertici i ; (figura 5). e asitoti Teedo coto delle limitazioi geometriche, è il ramo siistro di tale iperbole traslata. Figura 5. 4 Zaichelli Editore, 8

5 . Siao H e K i piedi delle altezze relative ai lati e A, e segue che AH se e K se(). Ioltre, vale agoli iteri di uo stesso triagolo). perché (i quato due Suppoiamo, quidi, e cerchiamo il massimo i tale domiio della fuzioe f () se se (). Per farlo calcoliamo la derivata prima della fuzioe f (): H f () se cos 4 se() cos() f () se() 4 se() cos() K A f () se()[ 4 cos()]; se() è sempre positivo i ;, quidi f () se 4 cos(). Figura. 4( se ) se 5 8 arcse 5 8. Riportiamo l adameto della fuzioe i figura 7. Quidi l ampiezza dell agolo Aˆ che rede massima la somma dei quadrati delle altezze AH e K è Aˆ arcse Per si ottiee u triagolo isoscele A di agoli Aˆ Aˆ 7 e lati A. Tracciado la bisettrice dell agolo Aˆ che iterseca il lato el puto M si ottiee il triagolo AM simile al triagolo A poiché equiagoli, come mostrato i figura 8. Se chiamiamo A risulta AM, M e M. Per similitudie otteiamo: M A A, cioè, e quidi, la cui la cui soluzioe positiva è 5. PRLEMA. osideriamo il triagolo isoscele A iscritto ella circofereza, co A. Sia AˆH, come i figura 9. Ne segue che. Per il teorema della corda, A r se(). Possiamo supporre H. Ifatti, se fosse H (figura ), esisterebbe u triagolo isoscele iscritto co base A A e altezza H H, quidi di area maggiore. Ne segue che i triagoli isosceli co altezza miore del raggio o soo di area massima. A f'() f() 7 + arcse 5 8 ma 7 M A r H Figura 7. Figura 8. Figura 9. 5 Zaichelli Editore, 8

6 ra, poiché A r, si ha che AĈ Aˆ, quidi AÔH. Ne segue che H r cos(), perciò H r r cos(). La fuzioe che descrive l area del triagolo A è, perciò, A H f () A H r se() [r r cos()] f () r [se() cos()se()]. Studiamoe la derivata ell itervallo ; : f () r [ cos() se () cos ()] r [cos () cos() ]. A H Figura. Essa è o egativa se cos() oppure cos(). La prima disequazioe è impossibile el domiio, metre la secoda è verificata per, cioè per. Riportiamo l adameto ella figura. L area massima si ottiee, quidi, per, che corrispode a u triagolo equilatero. f'() f() + ma Figura.. U poligoo regolare di lati iscritto si può scomporre i triagoli isosceli cogrueti co vertice i comue el cetro del cerchio. Essi hao agolo al vertice di ampiezza e lato r. Sia A u triagolo siffatto, come i figura. A H A' H' ' Figura. Per il teorema della corda si ha che A r se. Per il teorema di Pitagora si ha: H r r s e r se. L area del poligoo iscritto cercata è quidi: S A A A H r se cos r se. Zaichelli Editore, 8

7 Aalogamete, per il poligoo regolare di lati circoscritto, cosideriamo il triagolo A della precedete figura. Tale triagolo ha r come altezza e agolo al vertice. Ne segue che H r tg e, quidi, l area del poligoo vale: A A A r tg.. lim S lim r se lim r se variabile t e si è ricordato che lim se t. t t r. Nell ultimo passaggio si è effettuato il cambio di 4. Il problema della quadratura del cerchio cosiste el costruire u quadrato di area pari a quella di u cerchio di raggio assegato co riga e compasso. Dal puto di vista algebrico, idicati co r il raggio del cerchio e co l il lato del quadrato da trovare, vale la relazioe: r l l r. Assuto per semplicità r, si tratta di costruire u lato di misura. Nel 88 vee dimostrata l impossibilità di tale costruzioe attraverso le regole euclidee equivaleti all uso di riga e compasso. QUESTINARI I figura è riportata la regioe R del piao compresa tra il grafico della fuzioe e l asse, co. Si costruisce il solido S co base R avete come sezioi perpedicolari all asse dei triagoli equilateri. = z R S Figura. Figura 4. Il volume V del solido S è l itegrale, per compreso tra e, della fuzioe che rappreseta l area di u triagolo equilatero di lato, cioè () (somma itegrale di prismi triagolari retti): 4 V d. 7 Zaichelli Editore, 8

8 Fissiamo l uità di misura i cetimetri. È assegato il triagolo di lati a 4, b, c 8 e agoli,,. alcoliamo il coseo rispettivamete degli agoli, e utilizzado il teorema di arot: cos b c a 8 4 bc ( 4 ) a c Figura 5. b cos a c b a 4 8 c 4 ( 8 4 ) 4 8 cos a b c a 4 8 c 4 ( 4) 4 4 Le ampiezze degli agoli del triagolo, approssimate i gradi e primi sessagesimali, valgoo quidi: 8 57, 4 4, 4 9. Per determiare al variare di k le soluzioi reali dell equazioe: = + k, studiamo l equazioe k L equazioe cosiderata è equivalete all equazioe risolvete il sistema che descrive le itersezioi tra la curva fissa descritta da = k e il fascio di rette parallele all asse delle ascisse k, k reale: k Studiamo la fuzioe. I particolare, e determiiamo i puti di miimo e massimo relativo. Studiamoe la derivata prima: 7. Essa è o egativa se oppure se, quidi (; ) è u massimo relativo e ; 7 è u miimo relativo. Figura. 8 Zaichelli Editore, 8

9 4 Fissiamo l uità di misura i metri. Si vuole determiare la capacità del massimo coo circolare retto di apotema. Poiamo la misura del raggio della circofereza di base del geerico coo. I limiti geometrici soo. L altezza del coo vale e quidi il volume del coo è V. Al fie di trovare il massimo coo circolare retto, è ecessario massimizzare la fuzioe f(), la cui derivata prima vale: f () 4 ( ). Tale derivata è positiva quado, quidi, poiché, quado. Riportiamo l adameto di f () ella figura 7. f'() + f() ma Figura 7. Pertato il puto di massimo è e il corrispodete valore massimo è il volume del massimo coo circolare retto di apotema, ossia V c. 7 Ricordiamo di aver fissato l uità di misura i metri, da cui segue che il serbatoio può coteere m dm 4, Figura 8. 5 Per mostrare che la fuzioe 8 soddisfa le codizioi del teorema del valor medio (o teorema di Lagrage) sull itervallo [; ] occorre verificare che si tratta di ua fuzioe cotiua i [; ] e derivabile i ]; [. Etrambe le codizioi soo verificate i quato si tratta di ua fuzioe razioale itera. alcoliamo il valore c [; ] tale che f (c) f (b ) f (a) b a dove a e b. Ricaviamo la derivata prima f () e impoiamo che c e otteiamo c, etrambe accettabili. Il sigificato geometrico di questo teorema ci dice che la tagete alla curva data ei puti di ascissa è parallela alla corda cogiugete i puti aveti per ascissa gli estremi dell itervallo [; ]. 9 Zaichelli Editore, 8

10 Il prezzo fiale dell abito o dipede da quale delle due operazioi sia avveuta prima ed è pari a: p p,94, p,994. Ifatti se il prezzo viee prima maggiorato del %, idicato co p il prezzo dopo la maggiorazioe e co p f il prezzo fiale, si ha: p p ; p f p p. Se il prezzo subisce dapprima la miorazioe del %, idicato co p il prezzo dimiuito del % e co p f il prezzo fiale, si ha: p p ; p f p e risulta p f p f. p 7 Per defiizioe, se la fuzioe f () è dispari si ha che f () f () per ogi el domiio di f () ed i particolare per. Utilizzado l additività dell itegrale, si può scrivere: f () d f () d f () d. Ioltre: f () d f () d [ f ()] d. La disparità di f () implica: [ f ()] d f () d. Se si effettua il cambio di variabile t, l ultimo itegrale diveta f () d f (t ) dt pertato f () d f ( ) d f ( ) d. Per la liearità dell itegrale, si ha: ( f () ) d f () d d []. Zaichelli Editore, 8

11 8 Ricordiamo che il coefficiete biomiale può essere scritto come k ( ) ( k ), co k. k! Pertato 4 4 ( )( )( ) ( )( )( ) 4, co 4 4!! e 5 ( )( )( 4) 5, co, cioè 5.! Affiché abbiao seso etrambe le espressioi precedeti, dobbiamo supporre 5. Impoiamo l uguagliaza: ( )( )( ) ( )( )( 4) 5.!! Semplificado i deomiatori otteiamo: ( )( )[ ( ) 5( 4)] ( )( )( ), che ammette come soluzioi,, e, dove per la codizioe 5, soo accettabili le soluzioi e. 9 Effettuiamo il cambio di variabile se t; quidi d cos tdt e l itegrale può essere riscritto come d se t cos tdt cos tdt. Applicado la formula di bisezioe cos t c os t, oppure itegrado per parti, otteiamo d t se t cos t c, dove c è la costate di itegrazioe. Sostituedo t co la rispettiva espressioe i, otteiamo arcse d c. alcoliamo ora l itegrale defiito d. tteiamo arcse d arcse arcs e 4. Siccome e l equazioe della semicircofereza situata el semipiao delle ordiate positive, relativa alla circofereza di equazioe, osserviamo che calcolare d equivale a calcolare l area di u quarto di cerchio di raggio. Zaichelli Editore, 8

12 Si osservi la figura 9. Per defiire i meridiai, cosideriamo il fascio di piai coteeti l asse di rotazioe r. iascuo di tali piai iterseca la superficie della sfera lugo ua circofereza massima passate per i poli, cioè i puti i cui l asse iterseca la superficie della sfera. iascua delle due semicircofereze defiite dai poli è u arco di meridiao. Fissato come riferimeto l arco di meridiao passate per l osservatorio di Greewich (Lodra), si defiisce logitudie del puto P la misura i gradi dell agolo covesso compreso tra il semipiao coteete l arco di meridiao passate per P e il semipiao coteete il meridiao di Greewich, specificado se l agolo sia percorso verso E o verso rispetto a Greewich (logitudie ). Per defiire la latitudie si immagii il fascio di piai perpedicolari all asse r : ciascuo «taglia» la superficie della sfera lugo ua circofereza detta parallelo. Il parallelo defiito dall uico piao del fascio che cotiee il cetro della sfera terrestre è l equatore: Figura 9. si defiisce latitudie (ord o sud) di u puto P la misura i gradi dell agolo acuto PÔE, dove E è il puto di itersezioe tra l equatore e l arco di meridiao passate per P. (L equatore è ovviamete l isieme dei puti a latitudie zero.) Pertato la posizioe di u puto P sulla superficie terrestre è uivocamete determiata assegado due agoli orietati, per esempio: log. E, 45 lat. N. r N Greewich S P E Zaichelli Editore, 8

( ) ( ) ( )( ) PROBLEMA Fissiamo un sistema di riferimento in cui A ( 0;0) C x y : siano α l angolo , ( ; ) l angolo ˆ

( ) ( ) ( )( ) PROBLEMA Fissiamo un sistema di riferimento in cui A ( 0;0) C x y : siano α l angolo , ( ; ) l angolo ˆ Soluzioe a cura di: lessadra iglio, Liceo lassico Vittorio lfieri, Torio Giuliaa ru, Liceo Scietifico Isaac Newto, hivasso (TO) laudia hau, IRRE Val d osta toella uppari, Liceo Scietifico Galileo Ferraris,

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2010

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 00 Il cadidato risolva uo dei due problemi e 5 dei 0 quesiti i cui si articola il questioario. PROBLEMA Sia ABCD u quadrato di lato, P u puto di

Dettagli

ORDINAMENTO 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1

ORDINAMENTO 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 www.matefilia.it ORDINAMENTO 1 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Due osservatori si trovao ai lati opposti di u grattacielo, a livello del suolo. La cima dell edificio dista 16 metri dal primo

Dettagli

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi:

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi: Isiemi umerici Soo oti l isieme dei umeri aturali: N {1,, 3,, l isieme dei umeri iteri relativi: Z {0, ±1, ±, ±3, N {0 ( N e, l isieme dei umeri razioali: Q {p/q : p Z, q N. Si ottiee questo ultimo isieme,

Dettagli

RISOLUZIONE MODERNA DI PROBLEMI ANTICHI

RISOLUZIONE MODERNA DI PROBLEMI ANTICHI RISOLUZIONE MODERNA DI PROBLEMI ANTICHI L itelletto, duque, che o è la verità, o comprede mai la verità i modo così preciso da o poterla compredere (poi acora) più precisamete, all ifiito, perché sta alla

Dettagli

Precorso di Matematica, aa , (IV)

Precorso di Matematica, aa , (IV) Precorso di Matematica, aa 01-01, (IV) Poteze, Espoeziali e Logaritmi 1. Nel campo R dei umeri reali, il umero 1 e caratterizzato dalla proprieta che 1a = a, per ogi a R; per ogi umero a 0, l equazioe

Dettagli

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n.

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n. SERIE DI POTENZE Esercizi risolti Esercizio x 2 + 2)2. Esercizio 2 + x 3 + 2 3. Esercizio 3 dove a è u umero reale positivo. Esercizio 4 x a, 2x ) 3 +. Esercizio 5 x! = x + x 2 + x 6 + x 24 + x 20 +....

Dettagli

(1 2 3) (1 2) Lezione 10. I gruppi diedrali.

(1 2 3) (1 2) Lezione 10. I gruppi diedrali. Lezioe 0 Prerequisiti: Simmetrie di poligoi regolari. Gruppi di permutazioi. Cetro di u gruppo. Cetralizzate di u elemeto di u gruppo. Riferimeto al testo: [PC] Sezioe 5.4 I gruppi diedrali. Ogi simmetria

Dettagli

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma 1 Serie di poteze È stato dimostrato che la serie geometrica x (1.1) coverge se e solo se la ragioe x soddisfa la disuguagliaza 1 < x < 1. I realtà c è covergeza assoluta i ] 1, 1[. Per x 1 la serie diverge

Dettagli

FUNZIONI RADICE. = x dom f Im f grafici. Corso Propedeutico di Matematica. Politecnico di Torino CeTeM. 7 Funzioni Radice RICHIAMI DI TEORIA

FUNZIONI RADICE. = x dom f Im f grafici. Corso Propedeutico di Matematica. Politecnico di Torino CeTeM. 7 Funzioni Radice RICHIAMI DI TEORIA Politecico di Torio 7 Fuzioi Radice FUNZIONI RADICE RICHIAMI DI TEORIA f ( x) = x dom f Im f grafici. = = =7 =9. dispari R R -. - -. - - -. Grafici di fuzioi radici co pari pari [,+ ) [,+ ).. = = =6 =8

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

1.6 Serie di potenze - Esercizi risolti

1.6 Serie di potenze - Esercizi risolti 6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo

Dettagli

Il candidato risolva uno dei due problemi e 4 quesiti del questionario. la sua primitiva tale che ( 1) f ( 1)

Il candidato risolva uno dei due problemi e 4 quesiti del questionario. la sua primitiva tale che ( 1) f ( 1) Sessioe ordiaria all estero caledario australe 005 MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ E DELLA RICERCA SCUOLE ITALIANE ALL ESTERO ESAMI DI STATO DI LICEO SCIENTIFICO Sessioe Ordiaria 005 Caledario

Dettagli

RAPPRESENTAZIONE ANALITICA DEI PUNTALI OGIVALI PER PROIETTILI

RAPPRESENTAZIONE ANALITICA DEI PUNTALI OGIVALI PER PROIETTILI M. G. BUSATO RAPPRESENTAZIONE ANALITIA DEI PUNTALI OGIVALI PER PROIETTILI mgbstudio.et SOMMARIO I umerose applicazioi balistiche, ed i particolare per calcolare la resisteza aerodiamica di u proiettile,

Dettagli

3.1 Rappresentazione dello stato tensionale nel piano di Mohr: circoli di Mohr.

3.1 Rappresentazione dello stato tensionale nel piano di Mohr: circoli di Mohr. DIDATTICA DI PROGETTAZIONE DELLE COSTRUZIONI PROF. CARMELO MAJORANA MODULO TRE I CONCETTI FONDAMENTALI NELL ANALISI DELLA TENSIONE PARTE B) MODULO PER LO SPECIALIZZANDO Modulo. Rappresetazioe dello stato

Dettagli

1. DISUGUAGLIANZE GEOMETRICHE

1. DISUGUAGLIANZE GEOMETRICHE . DISUGUAGLIANZE GEOMETRICHE (SOLUZIONI) POTENZE E RADICI Siao m, N, a b 0, allora valgoo: a m b m, b m a m, e si ha l uguagliaza se e solo se a = b oppure m = 0. Esercizio. Dimostra che per ogi coppia

Dettagli

Esercizi di Analisi II

Esercizi di Analisi II Esercizi di Aalisi II Ao Accademico 008-009 Successioi e serie di fuzioi. Serie di poteze. Studiare la covergeza della successioe di fuzioi (f ) N, dove f : [, ] R è defiita poedo f (x) := x +.. Studiare

Dettagli

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4 Quarto Compito di Aalisi Matematica Corso di laurea i Iformatica, corso B 5 Luglio 016 Soluzioi Esercizio 1 Determiare tutti i umeri complessi z tali che z = 3 4 i. Soluzioe. Scrivedo z = a + bi, si ottiee

Dettagli

Geometria analitica: rette e piani

Geometria analitica: rette e piani Geometria aalitica: rette e piai Coordiate polari Cambiameti di riferimeto el piao Cambiameti di riferimeto i geerale Isometrie Simmetrie Isometrie el piao Isometrie ello spazio 2 2006 Politecico di Torio

Dettagli

Istituzioni di Matematiche (CH-CI-MT) V o foglio di esercizi

Istituzioni di Matematiche (CH-CI-MT) V o foglio di esercizi Istituzioi di Matematiche (CH-CI-MT) V o foglio di esercizi ESERCIZIO. Si determiio le soluzioi dell equazioe x x + 5 = 0. Idicata co z 0 la soluzioe co parte immagiaria positiva, si disegi el piao di

Dettagli

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ LE DERIVATE. GENERALITÀ Defiizioe A) Ituitiva. La derivata, a livello ituitivo, è u operatore tale che: a) ad ua fuzioe f associa u altra fuzioe; b) obbedisce alle segueti regole di derivazioe: () D a

Dettagli

ESERCIZI SULLE SERIE

ESERCIZI SULLE SERIE ESERCIZI SULLE SERIE. Dimostrare che la serie seguete è covergete: =0 + + A questa serie applichiamo il criterio del cofroto. Dovedo quidi dimostrare che la serie è covergete si tratterà di maggiorare

Dettagli

PNI SESSIONE SUPPLETIVA QUESITO 1

PNI SESSIONE SUPPLETIVA QUESITO 1 www.matefilia.it PNI 004 - SESSIONE SUPPLETIVA QUESITO La fuzioe f(x) = 3x six x 3six della fuzioe, per x + : è, per x +, ua forma idetermiata del tipo. Il limite A) No esiste; B) è 3/; C) è /3 ; D) è

Dettagli

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57 Tracce di soluzioi di alcui esercizi di matematica - gruppo 42-57 4. Limiti di successioi Soluzioe dell Esercizio 42.. Osserviamo che a = a +6 e duque la successioe prede valori i {a,..., a 6 } e ciascu

Dettagli

Cosa vogliamo imparare?

Cosa vogliamo imparare? Cosa vogliamo imparare? risolvere i modo approssimato equazioi del tipo f()=0 che o solo risolubili i maiera esatta ed elemetare tramite formule risolutive. Esempio: log( ) 1= 0 Iterpretazioe grafica Come

Dettagli

Cerchi di Mohr - approfondimenti

Cerchi di Mohr - approfondimenti Comportameto meccaico dei materiali Cerchi di Mohr - approfodimeti Stato di tesioe e di deformazioe Cerchi di Mohr - approfodimeti L algebra dei cerchi di Mohr Proprietà di estremo dei cerchi di Mohr Costruzioe

Dettagli

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii)

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii) Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi : Riferimeti: R.Adams, Calcolo Differeziale. -Si cosiglia vivamate di fare gli esercizi del testo. Cap. 9.5 - Serie di poteze,

Dettagli

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33)

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33) Defiizioe di umero reale come allieameto decimale co sego. Numeri reali positivi. Numeri razioali: defiizioe e proprietà di desità Numeri reali Defiizioe: U umero reale è u allieameto decimale co sego,

Dettagli

Soluzioni. 2 2n+1 3 2n. n=1. 3 2n 9. n=1. Il numero 2 può essere raccolto fuori dal segno di sommatoria: = 2. n=1 = = 8 5.

Soluzioni. 2 2n+1 3 2n. n=1. 3 2n 9. n=1. Il numero 2 può essere raccolto fuori dal segno di sommatoria: = 2. n=1 = = 8 5. 60 Roberto Tauraso - Aalisi Calcolare la somma della serie Soluzioi + 3 R La serie può essere riscritta el modo seguete: + 4 3 9 Il umero può essere raccolto fuori dal sego di sommatoria: + 4 3 9 Si tratta

Dettagli

Algoritmi e Strutture Dati (Elementi)

Algoritmi e Strutture Dati (Elementi) Algoritmi e Strutture Dati (Elemeti Esercizi sulle ricorreze Proff. Paola Boizzoi / Giacarlo Mauri / Claudio Zadro Ao Accademico 00/003 Apputi scritti da Alberto Leporati e Rosalba Zizza Esercizio 1 Posti

Dettagli

LICEO delle SCIENZE UMANE B. PASCAL

LICEO delle SCIENZE UMANE B. PASCAL LICEO delle SCIENZE UMANE B. PASCAL Prof. Loredaa Maario INDICE 1. Scomposizioe di poliomi 1.1 Raccoglimeto totale a fattor comue..3 1. Raccoglimeto parziale a fattor comue 3 1.3 Triomio scompoibile el

Dettagli

IPSAA U. Patrizi Città di Castello (PG) Classe 5A Tecnico Agrario. Lezione di martedì 10 novembre 2015 (4 e 5 ora) Disciplina: MATEMATICA

IPSAA U. Patrizi Città di Castello (PG) Classe 5A Tecnico Agrario. Lezione di martedì 10 novembre 2015 (4 e 5 ora) Disciplina: MATEMATICA IPSAA U. Patrizi Città di Castello (PG) Classe A Tecico Agrario Lezioe di martedì 0 ovembre 0 (4 e ora) Disciplia: MATEMATICA La derivata della fuzioe composta Fuzioe composta Df(g())f (g())g () Questa

Dettagli

Richiami sulle potenze

Richiami sulle potenze Richiami sulle poteze Dopo le rette, le fuzioi più semplici soo le poteze: Distiguiamo tra: - poteze co espoete itero - poteze co espoete frazioario (razioale) - poteze co espoete reale = Domiio delle

Dettagli

Serie di Fourier / Esercizi svolti

Serie di Fourier / Esercizi svolti Serie di Fourier / Esercizi svolti ESERCIZIO. da Si cosideri la fuzioe f : R R, periodica di periodo e data ell itervallo (, ] se

Dettagli

2. PROBLEMI ISOPERIMETRICI

2. PROBLEMI ISOPERIMETRICI . ROBLEMI IOERIMETRICI (OLUZIONI roblema isoperimetrico classico : Tra le figure piae di perimetro fissato trovare quella di area massima. ROBLEMA IOERIMETRICO ER I RETTANGOLI: (itra tutti i rettagoli

Dettagli

Diottro sferico. Capitolo 2

Diottro sferico. Capitolo 2 Capitolo 2 Diottro sferico Si idica co il termie diottro sferico ua calotta sferica che separa due mezzi co idice di rifrazioe diverso. La cogiugete il cetro di curvatura C della calotta co il vertice

Dettagli

Precorso di Matematica. Parte IV : Funzioni e luoghi geometrici

Precorso di Matematica. Parte IV : Funzioni e luoghi geometrici Facoltà di Igegeria Precorso di Matematica 1. Equazioi e disequazioi Parte IV : Fuzioi e luoghi geometrici Richiamiamo brevemete la ozioe di fuzioe, che sarà utilizzato i quest ultima parte del precorso.

Dettagli

Esercizi sulle successioni

Esercizi sulle successioni Esercizi sulle successioi 1 Verificare, attraverso la defiizioe, che la successioe coverge a 2 3. a := 2 + 3 3 7 2 Verificare, attraverso la defiizioe, che la successioe coverge a 0. a := 4 + 3 3 5 + 7

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 3 Prova scritta del 6//3 Esercizio Suppoiamo che ua variabile aleatoria Y abbia la seguete desita : { hx e 3/x, x > f Y (y) =, x, co h opportua costate positiva.

Dettagli

POLITECNICO di BARI - I Facoltà di INGEGNERIA Corso di Laurea in INGEGNERIA MECCANICA (Corso B) A.A. 2011/2012. per ogni n N

POLITECNICO di BARI - I Facoltà di INGEGNERIA Corso di Laurea in INGEGNERIA MECCANICA (Corso B) A.A. 2011/2012. per ogni n N POLITECNICO di BARI - I Facoltà di INGEGNERIA Corso di Laurea i INGEGNERIA MECCANICA Corso B) A.A. / ) Dimostrare, utilizzado il pricipio di iduzioe, che a) b) c) d) k= log + ) = log + ) per ogi N k k

Dettagli

Elementi di calcolo combinatorio

Elementi di calcolo combinatorio Appedice A Elemeti di calcolo combiatorio A.1 Disposizioi, combiazioi, permutazioi Il calcolo combiatorio si occupa di alcue questioi iereti allo studio delle modalità secodo cui si possoo raggruppare

Dettagli

Solidi e volumi Percorso: Il problema della misura

Solidi e volumi Percorso: Il problema della misura Solidi e volumi Percorso: Il problema della misura Abilità Coosceze Nuclei Collegameti esteri Calcolare perimetri e aree Equivaleza el piao ed Spazio e figure Fisica di poligoi. equiscompoibilità tra Disego

Dettagli

1 + 1 ) n ] n. < e nα 1 n

1 + 1 ) n ] n. < e nα 1 n Esercizi preparati e i parte svolti martedì 0.. Calcolare al variare di α > 0 Soluzioe: + ) α Per α il ite è e; se α osserviamo che da + /) < e segue che α + ) α [ + ) ] α < e α Per α > le successioi e

Dettagli

S n. Soluzione. Il numero N dei chicchi di grano è: N Si tratta di una serie geometrica di ragione 2. cioè:

S n. Soluzione. Il numero N dei chicchi di grano è: N Si tratta di una serie geometrica di ragione 2. cioè: ESAME DI STATO DI LICEO SCIENTIFICO Sessioe Ordiaria 6 PIANO NAZIONALE INFORMATICA Questioario Quesito Si arra che l ivetore del gioco degli scacchi chiedesse di essere compesato co chicchi di grao: u

Dettagli

Prova scritta di Analisi Matematica I 15/09/2010

Prova scritta di Analisi Matematica I 15/09/2010 Prova scritta di Aalisi Matematica I VO 5/09/00 ) Data la fuzioe f ( ) + a) disegare il grafico illustrado i passaggi fodametali b) Euciare e dimostrare il Teorema di Rolle e se possibile applicarlo a

Dettagli

= Pertanto. Per la formula di Navier ( σ = ), gli sforzi normali σ più elevati nella sezione varranno: di compressione);

= Pertanto. Per la formula di Navier ( σ = ), gli sforzi normali σ più elevati nella sezione varranno: di compressione); La sezioe di trave di figura è soggetta ad u mometo flettete pari a 000 knmm e ed u azioe di taglio pari a 5 kn, etrambe ageti su u piao verticale passate per l asse s-s. Calcolare gli sforzi σ e τ massimi

Dettagli

Università degli Studi della Calabria Facoltà di Ingegneria. 26 giugno 2012

Università degli Studi della Calabria Facoltà di Ingegneria. 26 giugno 2012 Uiversità degli Studi della Calabria Facoltà di Igegeria Correzioe della Secoda Prova Scritta di alisi Matematica 2 giugo 202 cura dei Prof. B. Sciuzi e L. Motoro. Secoda Prova Scritta di alisi Matematica

Dettagli

Unità Didattica N 32 Grandezze geometriche omogenee e loro misura

Unità Didattica N 32 Grandezze geometriche omogenee e loro misura Uità Didattica N 3 Uità Didattica N 3 01) Classi di gradezze omogeee 0) Multipli e sottomultipli di ua gradezza geometrica 03) Gradezze commesurabili ed icommesurabili 04) Rapporto di due gradezze 05)

Dettagli

Studio di funzione. Rappresentazione grafica di una funzione: applicazioni

Studio di funzione. Rappresentazione grafica di una funzione: applicazioni Studio di fuzioe Tipi di fuzioi Le fuzioi si possoo raggruppare i alcue tipologie di base: Razioali: se le operazioi che vi si effettuao soo addizioe, sottrazioe, prodotto, divisioe ed elevameto a poteza

Dettagli

1 Esponenziale e logaritmo.

1 Esponenziale e logaritmo. Espoeziale e logaritmo.. Risultati prelimiari. Lemma a b = a b Lemma Disuguagliaza di Beroulli per ogi α e per ogi ln a k b k. k=0 + α + α Teorema Disuguagliaza delle medie Per ogi ln, per ogi upla {a

Dettagli

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge.

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge. Le successioi A parole ua successioe é u isieme ifiito di umeri disposti i u particolare ordie. Piú rigorosamete, ua successioe é ua legge che associa ad ogi umero aturale u altro umero (ache o aturale):

Dettagli

C2. Congruenza. C2.1 Figure congruenti. C2.2 Relazione di equivalenza. C2.3 Esempi di relazioni di equivalenza

C2. Congruenza. C2.1 Figure congruenti. C2.2 Relazione di equivalenza. C2.3 Esempi di relazioni di equivalenza 2. ogrueza 2.1 igure cogrueti ue figure geometriche soo cogrueti se soo sovrappoibili perfettamete. Il simbolo di cogrueza è. cco alcui esempi di figure cogrueti: ue quadrati co i lati della stessa lughezza

Dettagli

Cenni di topologia di R

Cenni di topologia di R Cei di topologia di R. Sottoisiemi dei umeri reali Studieremo le proprietà dei sottoisiemi dei umeri reali, R, che hao ad esempio la forma: = (, ) (,) 6 8 = [,] { ;6;8} { } = (, ) (,) [, + ) Defiizioe:

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2006

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2006 ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 006 Il cadidato risolva uo dei due problemi e 5 dei 0 quesiti i cui si articola il questioario. PRBLEMA U filo metallico di lughezza l viee utilizzato

Dettagli

APPENDICE. A.1 Derivate notevoli. dy m df. sin x. 1 dx. dx 1 f x. f x. y f x. y x. dx dx. df x. dx n x. dy m. cos f x. cos x. sin f x.

APPENDICE. A.1 Derivate notevoli. dy m df. sin x. 1 dx. dx 1 f x. f x. y f x. y x. dx dx. df x. dx n x. dy m. cos f x. cos x. sin f x. APPENDICE A. Derivate otevoli k d d d d d m m m d si cos cos si ta d cos cot d si arcsi arccos m d d d d d d si cos d m d m d d d si d d d cos d d cos d d ta cot arcta d arccot d log a l d d arcsi arccos

Dettagli

Esercizi svolti. 1. Calcolare i seguenti limiti: log(1 + 3x) x 2 + 2x. x 2 + 3 sin 2x. l) lim. b) lim. x 0 sin x. 1 e x2 d) lim. c) lim.

Esercizi svolti. 1. Calcolare i seguenti limiti: log(1 + 3x) x 2 + 2x. x 2 + 3 sin 2x. l) lim. b) lim. x 0 sin x. 1 e x2 d) lim. c) lim. Esercizi svolti. Calcolare i segueti iti: a log + + c ± ta 5 + 5 si π e b + si si e d + f + 4 5 g + 6 4 6 h 4 + i + + + l ± + log + log 7 log 5 + 4 log m + + + o cos + si p + e q si s e ta cos e u siπ

Dettagli

Principio di induzione: esempi ed esercizi

Principio di induzione: esempi ed esercizi Pricipio di iduzioe: esempi ed esercizi Pricipio di iduzioe: Se ua proprietà P dipedete da ua variabile itera vale per e se, per ogi vale P P + allora P vale su tutto Variate del pricipio di iduzioe: Se

Dettagli

Proposizione 1. Due sfere di R m hanno intersezione non vuota se e solo se la somma dei loro raggi e maggiore della distanza fra i loro centri.

Proposizione 1. Due sfere di R m hanno intersezione non vuota se e solo se la somma dei loro raggi e maggiore della distanza fra i loro centri. Laboratorio di Matematica, A.A. 009-010; I modulo; Lezioi II e III - schema. Limiti e isiemi aperti; SB, Cap. 1 Successioi di vettori; SB, Par. 1.1, pp. 3-6 Itori sferici aperti. Nell aalisi i ua variabile

Dettagli

Le successioni: intro

Le successioni: intro Le successioi: itro Si cosideri la seguete sequeza di umeri:,, 2, 3, 5, 8, 3, 2, 34, 55, 89, 44, 233, detti di Fiboacci. Essa rappreseta il umero di coppie di coigli preseti ei primi 2 mesi i u allevameto!

Dettagli

1 Congruenze. Definizione 1.1. Siano a, b, n Z con n 2, definiamo a b (mod n) se n a b.

1 Congruenze. Definizione 1.1. Siano a, b, n Z con n 2, definiamo a b (mod n) se n a b. 1 Cogrueze Defiizioe 1.1. Siao a, b, Z co 2, defiiamo a b (mod ) se a b. Proposizioe 1.2. 2 la cogrueza mod è ua relazioe di equivaleza su Z. a a () perché a a a b () b a () a b () b c () a b b c a c =

Dettagli

169. Segmenti paralleli

169. Segmenti paralleli 169. Segmeti paralleli Matematicamete.it UMERO 17 APRILE 01 Bruo Sachii bruosachii@yahoo.it Suto y ta x k b a ta ak x R cos ak Si utilizza il sistema: di ua grade famiglia di superfici. Lo scopo di questo

Dettagli

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c)

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c) SERIE NUMERICHE Esercizi risolti. Calcolare la somma delle segueti serie telescopiche: a) b). Verificare utilizzado la codizioe ecessaria per la covergeza) che le segueti serie o covergoo: a) c) ) log

Dettagli

Risoluzione del compito n. 2 (Gennaio 2017/2)

Risoluzione del compito n. 2 (Gennaio 2017/2) Risoluzioe del compito. (Geaio 017/ PROBLEMA 1 Trovate tutte le soluzioi (z, w, co z, w C,del sistema { i z + w =0 z + z + w +1=0;. Dalla prima equazioe, w = i z e quidi w = iz, che sostituito ella secoda

Dettagli

Problema di Natale 1 Corso di Geometria per la Laurea in Fisica Andrea Sambusetti 19 Dicembre 2008

Problema di Natale 1 Corso di Geometria per la Laurea in Fisica Andrea Sambusetti 19 Dicembre 2008 Problema di Natale 1 Corso di Geometria per la Laurea i Fisica Adrea Sambusetti 19 Dicembre 28 La particella Mxyzptlk. 2 La particella Mxyzptlk vive i u uiverso euclideo -dimesioale. È costituita da u

Dettagli

Radici, potenze, logaritmi in campo complesso.

Radici, potenze, logaritmi in campo complesso. SOMMARIO NUMERI COMPLESSI... Formula di Eulero... Coiugato di u umero complesso... 3 Poteza -esima di u umero complesso z (formula di De Moivre... 3 Radice -esima di z... 3 Osservazioi... Logaritmo di

Dettagli

a) la funzione costante k. Sia k un numero reale e consideriamo la funzione che ad ogni numero reale x associa k: x R k

a) la funzione costante k. Sia k un numero reale e consideriamo la funzione che ad ogni numero reale x associa k: x R k ALCUNE FUNZIONI ELEMENTARI ( E NON) E LORO GRAFICI (*) a) la fuzioe costate k. Sia k u umero reale e cosideriamo la fuzioe che ad ogi umero reale x associa k: x R k Tale fuzioe è detta fuzioe costate k;

Dettagli

3. Calcolo letterale

3. Calcolo letterale Parte Prima. Algera 1) Moomi Espressioe algerica letterale 42 Isieme di umeri relativi, talui rappresetati da lettere, legati fra loro da segi di operazioi. Moomio Espressioe algerica che o cotiee le operazioi

Dettagli

Campionamento casuale da popolazione finita (caso senza reinserimento )

Campionamento casuale da popolazione finita (caso senza reinserimento ) Campioameto casuale da popolazioe fiita (caso seza reiserimeto ) Suppoiamo di avere ua popolazioe di idividui e di estrarre u campioe di uità (co < ) Suppoiamo di studiare il carattere X che assume i valori

Dettagli

Sviluppi di Taylor. Andrea Corli 1 settembre Notazione o 1. 3 Formula di Taylor 3. 4 Esempi ed applicazioni 5

Sviluppi di Taylor. Andrea Corli 1 settembre Notazione o 1. 3 Formula di Taylor 3. 4 Esempi ed applicazioni 5 Sviluppi di Taylor Adrea Corli settembre 009 Idice Notazioe o Liearizzazioe di ua fuzioe 3 Formula di Taylor 3 4 Esempi ed applicazioi 5 I questo capitolo aalizziamo l approssimazioe di ua fuzioe regolare

Dettagli

a'. a' e b n y se e solo se x, y, divisi per n danno lo stesso resto.

a'. a' e b n y se e solo se x, y, divisi per n danno lo stesso resto. E.5. Cogrueze Nella sezioe D. (esempio (d)) abbiamo itrodotto la relazioe di cogrueza modulo : dati due umeri iteri x, y e u umero itero positivo diciamo che x è cogruo a y modulo (i formula x y se è u

Dettagli

Lezione 10 - Tensioni principali e direzioni principali

Lezione 10 - Tensioni principali e direzioni principali Lezioe 10 - Tesioi pricipali e direzioi pricipali ü [A.a. 2011-2012 : ultima revisioe 23 agosto 2011] I questa lezioe si studiera' cio' che avviee alla compoete ormale di tesioe s, al variare del piao

Dettagli

Analisi Matematica I

Analisi Matematica I Uiversità di Pisa - orso di Laurea i Igegeria Edile-rchitettura alisi Matematica I Pisa, febbraio Domada La derivata della fuzioe f) log ) si è ) log )si B) log )cos ) log ) si cos loglog ) + si ) log

Dettagli

1 Congruenze. Definizione 1.1. a, b, n Z n 2, allora definiamo a b (mod n) se n a b.

1 Congruenze. Definizione 1.1. a, b, n Z n 2, allora definiamo a b (mod n) se n a b. 1 Cogrueze Defiizioe 1.1. a, b, Z 2, allora defiiamo a b (mod ) se a b. Proposizioe 1.2. 2 la cogrueza mod è ua relazioe di equivaleza su Z. a a () perché a a a b () b a () a b () b c () a b b c a c =

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea i Ecoomia e Fiaza Statistica 1 A.A. 2015/2016 (8 CFU, corrispodeti a 48 ore di lezioe frotale e 24 ore di esercitazioe) Prof. Luigi Augugliaro 1 / 21 Misura della dipedeza di u carattere

Dettagli

1. (Punti 8) Deteminare modulo e argomento delle soluzioni della seguente equazione nel campo complesso. 1 x = 0. x 2 e 8.

1. (Punti 8) Deteminare modulo e argomento delle soluzioni della seguente equazione nel campo complesso. 1 x = 0. x 2 e 8. Corso di Laurea i Igegeria Biomedia ANALISI MATEMATICA Prova sritta del giugo 7 Fila. Esporre il proedimeto di risoluzioe degli eserizi i maiera ompleta e leggibile.. Puti 8) Detemiare modulo e argometo

Dettagli

Tutorato di Probabilità 1, foglio I a.a. 2007/2008

Tutorato di Probabilità 1, foglio I a.a. 2007/2008 Tutorato di Probabilità, foglio I a.a. 2007/2008 Esercizio. Siao A, B, C, D eveti.. Dimostrare che P(A B c ) = P(A) P(A B). 2. Calcolare P ( A (B c C) ), sapedo che P(A) = /2, P(A B) = /4 e P(A B C) =

Dettagli

2T(n/2) + n se n > 1 T(n) = 1 se n = 1

2T(n/2) + n se n > 1 T(n) = 1 se n = 1 3 Ricorreze Nel caso di algoritmi ricorsivi (ad esempio, merge sort, ricerca biaria, ricerca del massimo e/o del miimo), il tempo di esecuzioe può essere descritto da ua fuzioe ricorsiva, ovvero da u equazioe

Dettagli

ANALISI MATEMATICA 1. Funzioni elementari

ANALISI MATEMATICA 1. Funzioni elementari ANALISI MATEMATICA Fuzioi elemetari Trovare le soluzioi delle segueti disequazioi ) x + 4 5 > 8 + 5x 0 ) 5x + 0 > 0, x 4 < 0 3) x x 3 4) x + x + > 3 x + 4 5) 5x 4x x + )x ) 6) x x + > 0, x + 5x + 6 0,

Dettagli

Programma (orientativo) secondo semestre 32 ore - 16 lezioni

Programma (orientativo) secondo semestre 32 ore - 16 lezioni Programma (orietativo) secodo semestre 32 ore - 6 lezioi 3 lezioi: successioi e serie 4 lezioi: itegrali 2-3 lezioi: equazioi differeziali 4 lezioi: sistemi di equazioi e calcolo vettoriale e matriciale

Dettagli

A.S ABSTRACT

A.S ABSTRACT ILLUSIONI GEOMETRICHE E NUMERI DI IBONACCI A.S. 00-0 GUGLIELMO SACCO (C) ENRICO IZZO (C) ABSTRACT I questo articolo vegoo messe i luce alcue "illusioi" geometriche elle quali giocao u ruolo chiave le proprietà

Dettagli

La dinamica dei sistemi - intro

La dinamica dei sistemi - intro La diamica dei sistemi - itro Il puto materiale rappreseta ua schematizzazioe utile o solo per descrivere situazioi di iteresse diretto ma è ache il ecessario presupposto alla meccaica dei sistemi materiali

Dettagli

Introduzione all Analisi di Fourier. Prof. Luigi Landini Ing. Nicola Vanello. (presentazione a cura di N. Vanello)

Introduzione all Analisi di Fourier. Prof. Luigi Landini Ing. Nicola Vanello. (presentazione a cura di N. Vanello) Itroduzioe all Aalisi di Prof. Luigi Ladii Ig. Nicola Vaello (presetazioe a cura di N. Vaello) ANALII DI FOURIER egali tempo cotiui: egali periodici egali aperiodici viluppo i serie di Itroduzioe alla

Dettagli

Matematica I, Limiti di successioni (II).

Matematica I, Limiti di successioni (II). Matematica I, 05102012 Limiti di successioi II) 1 Le successioi elemetari, cioe α, = 0, 1, 2, α R), b, = 0, 1, 2, b R), log b, = 1, 2, b > 0, b 1), si, = 0, 1, 2,, cos, = 0, 1, 2,, per + hao il seguete

Dettagli

Consideriamo un insieme di n oggetti di natura qualsiasi. Indicheremo questi oggetti con

Consideriamo un insieme di n oggetti di natura qualsiasi. Indicheremo questi oggetti con Calcolo Combiatorio Adolfo Scimoe pag 1 Calcolo combiatorio Cosideriamo u isieme di oggetti di atura qualsiasi. Idicheremo questi oggetti co a1 a2... a. Co questi oggetti si voglioo formare dei gruppi

Dettagli

1 I sistemi di equazioni

1 I sistemi di equazioni 1.1 Le equazioi lieari i due icogite 1 I sistemi di equazioi Ua equazioe lieare i due icogite x, y R, i cui cioè le due icogite compaioo solo al primo grado, può essere scritta ella forma ormale: ax +

Dettagli

1. Suddivisione di triangoli

1. Suddivisione di triangoli 1. Suddivisioe di triagoli 1.1 Il problema proposto da Silvao Rossetto La costruzioe descritta dalla figura seguete divide il triagolo C, rettagolo i, i due parti equiestese: r t s C g P g 1 K M 1 1) Precisare

Dettagli

ALGEBRA I MODULO PROF. VERARDI - ESERCIZI. Sezione 1 NUMERI NATURALI E INTERI

ALGEBRA I MODULO PROF. VERARDI - ESERCIZI. Sezione 1 NUMERI NATURALI E INTERI ALGEBRA I MODULO PROF. VERARDI - ESERCIZI Sezioe 1 NUMERI NATURALI E INTERI 2 1.1. Si dimostri per iduzioe la formula: N, k 2 "1( * " 3 ) " 3k +1(. 3 1.2. A) Si dimostri che per ogi a,b N +, N +, se a

Dettagli

Congruenze in ; l insieme quoziente / n

Congruenze in ; l insieme quoziente / n Cogrueze i ; l isieme quoziete / Per ogi, si cosideri i la relazioe, che per il mometo deoteremo co ( ), così defiita: a ( ) b divide a-b Esempio: 5 (7 ) 19, perché 7 5-19=-14, metre 4 o è ella relazioe

Dettagli

Esercizi svolti su successioni e serie di funzioni

Esercizi svolti su successioni e serie di funzioni Esercizi svolti su successioi e serie di fuzioi Esercizio. Calcolare il limite putuale di f ) = 2 +, [0, + ). Dimostrare che o si ha covergeza uiforme su 0, + ), metre si ha covergeza uiforme su [a, +

Dettagli

PRINCIPIO D INDUZIONE E DIMOSTRAZIONE MATEMATICA. A. Induzione matematica: Introduzione

PRINCIPIO D INDUZIONE E DIMOSTRAZIONE MATEMATICA. A. Induzione matematica: Introduzione PRINCIPIO D INDUZIONE E DIMOSTRAZIONE MATEMATICA CHU WENCHANG A Iduzioe matematica: Itroduzioe La gra parte delle proposizioi della teoria dei umeri dà euciati che coivolgoo i umeri aturali; per esempio

Dettagli

Una raccolta di esercizi

Una raccolta di esercizi Corso di Aalisi matematica per Fisici (aa 007-08) (prof Alfoso Villai) Ua raccolta di esercizi (aggiorameto: maggio 008) Risolvere le segueti equazioi ell icogita : a) ( + ) = ( ); b) ( 8) = 9; c) 4 =

Dettagli

17. Funzioni implicite

17. Funzioni implicite 17. Fuzioi implicite 17.a Fuzioi defiite implicitamete Sia data l equazioe lieare implicita i R 2 ax + by = 0. Se b 0, si puo ricavare la variabile y i fuzioe della x come y = ( a/b)x. Equivaletemete possiamo

Dettagli

Qual è il numero delle bandiere tricolori a righe verticali che si possono formare con i 7 colori dell iride?

Qual è il numero delle bandiere tricolori a righe verticali che si possono formare con i 7 colori dell iride? Calcolo combiatorio sempi Qual è il umero delle badiere tricolori a righe verticali che si possoo formare co i 7 colori dell iride? Dobbiamo calcolare il umero delle disposizioi semplici di 7 oggetti di

Dettagli

Appendice A. Elementi di Algebra Matriciale

Appendice A. Elementi di Algebra Matriciale ppedice. Elemeti di lgebra Matriciale... 2. Defiizioi... 2.. Matrice quadrata... 2..2 Matrice diagoale... 2..3 Matrice triagolare... 3..4 Matrice riga e matrice coloa... 3..5 Matrice simmetrica e emisimmetrica...

Dettagli

Esercizi di econometria: serie 2

Esercizi di econometria: serie 2 Esercizi di ecoometria: serie Esercizio Per quali delle segueti uzioi di desità cogiuta le variabili casuali ed soo idipedeti?......3.4.5..5 (a) (b) 3 4....3.6.9..4...5..5 3.. 3.8..4.6 (c) (d) Nel caso

Dettagli

La base naturale dell esponenziale

La base naturale dell esponenziale La base aturale dell espoeziale Beiamio Bortelli 7 aprile 007 Il problema I matematica, ci è stato detto, la base aturale della fuzioe espoeziale è il umero irrazioale: e =, 7888... Restao, però, da chiarire

Dettagli

Approfondimento 2.1 Scaling degli stimoli mediante il metodo del confronto a coppie

Approfondimento 2.1 Scaling degli stimoli mediante il metodo del confronto a coppie Approfodimeto 2.1 Scalig degli stimoli mediate il metodo del cofroto a coppie Il metodo del cofroto a coppie di Thurstoe (Thurstoe, 1927) si basa sull assuzioe che la valutazioe di u oggetto o di uo stimolo

Dettagli

Sommando le (8-13), (8-14), (8-19), (8-20), (8-21), (8-22) e uguagliando a zero si ottiene: V g

Sommando le (8-13), (8-14), (8-19), (8-20), (8-21), (8-22) e uguagliando a zero si ottiene: V g Correti a superficie libera 5 F p (8-) La proiezioe su s della forza di ierzia è ivece pari a: d ρ A ds ρ A ds + (8-) dt Sommado le (8-3), (8-4), (8-9), (8-0), (8-), (8-) e uguagliado a zero si ottiee:

Dettagli

LE MISURE DI TENDENZA CENTRALE

LE MISURE DI TENDENZA CENTRALE STATISTICA DESCRITTIVA LE MISURE DI TENDENZA CENTRALE http://www.biostatistica.uich.itit OBIETTIVO Esempio: Nella tabella seguete soo riportati i valori del tasso glicemico rilevati su 0 pazieti: Idividuare

Dettagli

Esercizi proposti. f(x), f(x), f(x), f(x + 1), f(x) + 1. x 2 x 1 se x 1, 4 x se x > 1 2, 2).

Esercizi proposti. f(x), f(x), f(x), f(x + 1), f(x) + 1. x 2 x 1 se x 1, 4 x se x > 1 2, 2). Esercizi proposti 1. Risolvere la disequazioe + 1.. Disegare i grafici di a) y = 1 + + 3 ; b) y = 1 ; c) y = log 10 + 1). 3. Si cosideri la fuzioe f) = ; disegare i grafici di f), f), f), f + 1), f) +

Dettagli