La formula di Eulero per i poliedri, un approccio laboratoriale

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "La formula di Eulero per i poliedri, un approccio laboratoriale"

Transcript

1 10 SEMINARIO NAZIONALE SUL CURRICOLO VERTICALE Firenze, 10 maggio 2015 La formula di Eulero per i poliedri, un approccio laboratoriale Ivan Casaglia Liceo Scientifico Guido Castelnuovo Firenze

2 La formula di Eulero per i poliedri costituisce uno dei risultati più interessanti della geometria dello spazio [anche se il suo significato più profondo non può essere interamente compreso in una trattazione al livello di scuola superiore] I libri di testo più diffusi presentano la formula di Eulero (quando la presentano), scollegata dagli altri risultati, relegata ad una sorta di curiosità, talvolta accompagnata da qualche informazione sul suo significato topologico

3 Il problema del significato in matematica non può essere affrontato solo attraverso la modellizzazione ma anche ricostruendo il senso del fare matematica In questa prospettiva l approccio laboratoriale va inteso non solo come utilizzo di modelli fisici, ecc. (che è comunque cosa molto utile), ma come osservazione, scoperta, formulazione di ipotesi, verifica, validazione, generalizzazione

4 Questa traccia di percorso didattico si ispira ad una proposta di George Polya contenuta nel capitolo finale di La scoperta matematica (1962), dal titolo Indovinare e metodo scientifico Ripercorre il ragionamento condotto da Eulero nella prima delle tre memorie dedicata a questo argomento (in cui spiega come fu portato alla scoperta della formula, senza fornirne una dimostrazione)

5 Ha il merito di mostrare alcune caratteristiche del modo di procedere del pensiero matematico - ricerca della generalizzazione di un risultato già noto, - osservazione sperimentale di casi concreti - formulazione di una congettura (evidenziando quindi il momento induttivo del lavoro matematico) - ricerca di una dimostrazione

6 Che cosa serve per partire? Il concetto di poliedro (e questo è di per sé un bel problema: cosa definiamo come poliedro?) A partire dall analogia tra poliedri nello spazio e poligoni nel piano ci si chiede quali proprietà dei poligoni siano traducibili (cioè generalizzabili) anche per i poliedri e si considera in particolare la proprietà angolare dei poligoni la somma degli angoli interni di un poligono di n lati è uguale a ( n 2) π

7 (1) Che cosa può prendere il posto degli angoli quando si passa dai poligoni ai poliedri? Diedri formati dalle facce? Angoli solidi nei vertici? Per i primi si può chiedere agli studenti di indagare in proprio, a partire da casi molto semplici (tetraedri) Per i secondi occorrerebbe definire preliminarmente il significato di addizione tra angoloidi In entrambi i casi la somma dipende, in generale, dalla forma del poliedro

8 Consideriamo il caso più semplice angoli delle facce (2) L osservazione può condurre alla scoperta Invitiamo gli studenti a costruire una tabella che permetta di raccogliere le osservazioni relative a diversi tipi di poliedri per vedere se si riesce a individuare qualche regolarità

9 poliedro f Somma angoli di una faccia α tetraedro 4 π 4π cubo 6 2π 12π ottaedro 8 π 8π

10 poliedro f Somma angoli di una faccia α 5 prisma 7 3π (basi) 2π (facce laterali) 2 3π + 5 2π = 16π 4 torre 9 2π (base e facce dei muri ) 5 2π + 4 π = 14π π (facce del tetto )

11 (3) L osservazione dovrebbe rivelare qualche regolarità, schema o legge Osserviamo qualche regolarità? No, se ci limitiamo a tentare di generalizzare in modo ingenuo, cercando una relazione tra numero delle facce [ f ] e somma degli angoli L osservazione ha più probabilità di dare risultati degni di nota se è guidata da qualche buona considerazione o intuizione idea guida

12 Nella tabella abbiamo sommato gli angoli faccia per faccia ; che cosa accade se sommiamo gli angoli vertice per vertice? Non siamo in grado di farlo perché non sappiamo quanto vale la somma degli angoli che concorrono in uno stesso vertice, ma sappiamo che questa somma deve essere minore di 2π e quindi se indichiamo con v il numero dei vertici del poliedro α < 2πv Verifichiamo questa relazione nella tabella considerata

13 poliedro f α v 2πv tetraedro 4 4π 4 8π cubo 6 12π 8 16π ottaedro 8 8π 6 12π

14 poliedro f α v 2πv 5 prisma 7 16π 10 20π 4 torre 9 14π 9 18π

15 Questa nuova tabella permette di osservare che, in tutti i casi considerati 2πv α = 4π che può essere riscritta nella forma α = 2π ( v 2) Tenuto conto che nei poligoni il numero dei vertici è uguale al numero dei lati, questa relazione si presenta come una naturale estensione ai poliedri della proprietà angolare dei poligoni

16 (4) Si tratta di una coincidenza o è una proprietà di carattere generale? Per cominciare invitiamo gli studenti a considerare altri casi, oltre a quelli già visti, per verificare se vale ancora la proprietà [cioè mettiamo alla prova la proprietà appena scoperta]

17 poliedro f α v 2πv dodecaedro 12 36π 20 40π icosaedro 20 20π 12 24π n prisma n + 2 ( 4n 4) π 2n 4πn n piramide n + 1 ( 2n 2) π n + 1 ( 2n + 2) π

18 Considerata la varietà dei casi esaminati, la proprietà α = 2π ( v 2) può essere considerata una congettura L osservazione dà solo generalizzazioni ipotetiche, congetture, non dimostrazioni Controllate la vostra congettura: esaminate i casi particolari e le relative conseguenze Qualunque caso particolare o conseguenza che sia verificata aggiunge credito alla congettura

19 Alla ricerca di una dimostrazione (5) Si può dimostrare questa proprietà? Un dimostrazione guidata si tratta di generalizzare il procedimento utilizzato per compilare la tabella Consideriamo un poliedro con f facce e immaginiamo di numerarle, indicando con - s 1 il numero dei lati (spigoli) della prima faccia - s 2 il numero dei lati della seconda faccia ecc. Andiamo quindi a sommare gli angoli faccia per faccia

20 α = π ( s 1 2) + π ( s 2 2) π ( s f 2) = π ( s + s s 2f ) 1 2 f La somma s 1 + s s f rappresenta la somma dei lati di tutte le facce e poiché ogni spigolo del poliedro è lato di due di queste facce s 1 + s s f = 2s Mettendo insieme queste due relazioni possiamo scrivere α = π ( 2s 2f ) = 2π ( s f )

21 Questa relazione (a differenza della congettura) è stata dimostrata Se combiniamo questa relazione con la congettura, eliminando α, otteniamo 2π ( v 2) = 2π ( s f ) da cui la formula di Eulero v s + f = 2

22 (6) Nel nostro tentativo di dimostrare la congettura abbiamo scoperto questa nuova relazione che è equivalente alla prima Una dimostrazione della congettura permette di provare anche la formula di Eulero (e viceversa) Una prima osservazione: se immaginiamo di poter deformare il poliedro con continuità, cioè senza strappi, in modo che la connessione tra vertici, spigoli e facce resti immutata, il poliedro di modifica, ma i numeri v, s e f rimangono gli stessi

23 Una simile trasformazione modifica i singoli angoli delle facce, ma non modifica la somma α che, come abbiamo già dimostrato, dipende soltanto dal numero degli spigoli e dal numero delle facce Immaginiamo allora di appoggiare una base del poliedro su un piano orizzontale (il piano di un tavolo) e immaginiamo di allargare questa base in modo che l intero poliedro possa essere proiettato ortogonalmente (o schiacciato ) su questa base, in modo che i vertici che non appartengono alla base allargata vengano proiettati in punti interni alla base stessa Si ottengono, in questo modo, i diagrammi di Schlegel

24 Si può proporre la costruzione del più semplice e invitare gli studenti a costruire gli altri

25 (7) Considerando il diagramma di Schlegel di un generico poliedro possiamo calcolare α

26 Il diagramma si Schlegel rappresenta un poliedro schiacciato costituito da due fogli poligonali sovrapposti: - il foglio inferiore (la base allargata) che è un unico poligono - il foglio superiore che è suddiviso in f 1 poligoni Indichiamo con n il numero dei lati del poligono che racchiude i due fogli (cioè il numero degli spigoli della faccia allargata) e andiamo a calcolare α.

27 Foglio inferiore la somma degli angoli interni è ( n 2)π Foglio superiore la somma degli angoli del bordo è la stessa di quella del foglio inferiore, ( n 2)π la somma degli angoli interni può essere ottenuta sommando vertice per vertice : - la somma degli angoli in ciascun vertice è 2π - i vertici interni al foglio sono v n

28 Riassumendo α = ( n 2)π s. angoli foglio inferiore s. angoli foglio sup. + ( n 2)π + ( v n)2π = 2π ( v 2) (8) La formula di Eulero può essere dimostrata direttamente considerando il diagramma di Schelegel di un poliedro generico rete piana (9) Un curiosità: i radiolari I radiolari sono protozoi caratterizzati da uno scheletro siliceo

29 A colpo d occhio: un poliedro con facce esagonali (necessariamente non regolari)

30 Se si guarda con maggiore attenzione si individuano delle facce pentagonali È un caso o la presenza di facce pentagonali è in qualche modo necessaria? Può esistere un poliedro le cui facce siano tutte esagonali? La formula di Eulero permette di provare che non è possibile che tutte le facce siano esagonali

31 (10) poliedri regolari La formula di Eulero permette di dimostrare che i poliedri regolari convessi sono solo cinque (senza tener conto del fatto che le facce sono poligoni regolari )

32 (11) Un possibile sviluppo La formula di Eulero vale per questo poliedro? v s + f = 2 2g

33 (12) Formula di Eulero e definizione di poliedro [Imre Lakatos, Dimostrazione e confutazioni la logica della scoperta matematica] poliedro superficie poliedrica (i) è una superficie formata da poligoni se in uno spigolo concorrono quattro facce non vale la formula di Eulero due tetraedri affiancati lungo uno spigolo v s + f = 3

34 (ii) è una superficie formata da poligoni disposti in modo che in ogni spigolo si incontrino esattamente due di essi, formando un diedro se in un vertice si incontrano sei facce non vale la formula di Eulero due tetraedri incollati in un vertice] v s + f = 3

35 (iii) è una superficie formata da poligoni disposti in modo che in ogni spigolo si incontrino esattamente due di essi, formando un diedro, e che inoltre sia possibile arrivare da qualunque faccia a qualunque altra, oltrepassando degli spigoli [Hilbert Cohn-Vossen, Geometria intuitiva, 1932] e così via

36 (10)* Se tutte le f facce fossero esagonali si avrebbe - v = 6f 3 - s = 6f 2 da cui = 2f (ogni vertice è comune tre facce) = 3f (ogni spigolo è comune a due facce) v s + f = 2f 3f + f = 0

37 (11)* Consideriamo un poliedro regolare con f facce, poligoni (regolari e congruenti) di n lati n 3 Indichiamo con r il numero delle facce che concorrono in uno stesso vertice r 3 n f = 2s (ogni spigolo è comune a due facce) r v = 2s (ogni spigolo contiene due vertici) v s + f = 2s r s + 2s n = 2

38 1 r + 1 n = 1 s n 3 e r 3, ma non possono essere entrambi maggiori di 3 [se fosse n = r = 4 si avrebbe 1 s = 0] n = 3 o r = 3

39 (a) n = 3 (triangoli equilateri) l uguaglianza diventa 1 r 1 6 = 1 s Poiché deve essere 1 s > 0 si hanno solo tre casi possibili r = 3 s = 6 tetraedro r = 4 s = 12 ottaedro r = 5 s = 30 icosaedro

40 (b) r = 3 (triangoli equilateri) l uguaglianza diventa 1 n 1 6 = 1 s come prima si hanno solo tre casi possibili n = 3 s = 6 tetraedro n = 4 s = 12 cubo n = 5 s = 30 dodecaedro

Poliedri regolari. - Le condizioni (a), (b) e (c) della definizione data non sono sovrabbondanti: Riferimenti bibliografici: (a) e (c) non (b)

Poliedri regolari. - Le condizioni (a), (b) e (c) della definizione data non sono sovrabbondanti: Riferimenti bibliografici: (a) e (c) non (b) Riferimenti bibliografici: Poliedri regolari - Forme Maria Dedò Ed. Zanichelli - Le condizioni (a), (b) e (c) della definizione data non sono sovrabbondanti: (a) e (c) non (b) Definizione: Un poliedro

Dettagli

Eulero e i poliedri V + F - S = 2. è nota la relazione. V = numero dei vertici. F = numero delle facce. S = numero degli spigoli. perché?

Eulero e i poliedri V + F - S = 2. è nota la relazione. V = numero dei vertici. F = numero delle facce. S = numero degli spigoli. perché? 1 Eulero e i poliedri è nota la relazione V + F - S = 2 V = numero dei vertici F = numero delle facce S = numero degli spigoli perché? per quali poliedri? conseguenze? 2 Perché V + F - S = 2? Vari modi

Dettagli

I solidi. Un solido è una parte di spazio delimitata da una superficie chiusa. I solidi delimitati da poligoni vengono chiamati poliedri.

I solidi. Un solido è una parte di spazio delimitata da una superficie chiusa. I solidi delimitati da poligoni vengono chiamati poliedri. I solidi Un solido è una parte di spazio delimitata da una superficie chiusa. I solidi delimitati da poligoni vengono chiamati poliedri. I solidi che hanno superfici curve vengono chiamati solidi rotondi.

Dettagli

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 12

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 12 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 12 PARTE SECONDA GEOMETRIA SOLIDA UNA PREMESSA Diversi esperti di Didattica della Matematica ritengono che l approccio migliore, per la

Dettagli

I vertici e i lati di ogni poligono vengono detti rispettivamente vertici e spigoli del poliedro.

I vertici e i lati di ogni poligono vengono detti rispettivamente vertici e spigoli del poliedro. 1 I poliedri diagonale DEFINIZIONE. Un poliedro è la parte di spazio delimitata da poligoni posti su piani diversi in modo tale che ogni lato sia comune a due di essi. I poligoni che delimitano il poliedro

Dettagli

Geometria euclidea dello spazio Presentazione n. 5 Poliedri Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia

Geometria euclidea dello spazio Presentazione n. 5 Poliedri Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia Geometria euclidea dello spazio Presentazione n. 5 Poliedri Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia Poliedri Un poliedro è un solido delimitato da una superficie formata da

Dettagli

piastrelle piastrelle piastrelle

piastrelle piastrelle piastrelle Perché le celle delle api hanno una struttura esagonale regolare? Università delle Liberetà 2008 09 appunti di marinella bassi 1 2 Il tessuto di molti vegetali e il pigmento della retina nei nostri occhi

Dettagli

LA GEOMETRIA DELLO SPAZIO: CENNI DI TEORIA ED ESERCIZI

LA GEOMETRIA DELLO SPAZIO: CENNI DI TEORIA ED ESERCIZI LA GEOMETRIA DELLO SPAZIO: CENNI DI TEORIA ED ESERCIZI SPAZIO: l insieme di tutti i punti. PUNTI ALLINEATI: punti che appartengono alla stessa retta PUNTI COMPLANARI: punti che appartengono allo stesso

Dettagli

Geometria solida 2. Veronica Gavagna

Geometria solida 2. Veronica Gavagna Geometria solida 2 Veronica Gavagna Lo sviluppo del parallelepipedo B Superficie laterale Area laterale e area totale Dato il parallelepipedo Area laterale A l = (a + b + a + b) c = P c b Area totale A

Dettagli

DIEDRI. Un diedro è convesso se è una figura convessa, concavo se non lo è.

DIEDRI. Un diedro è convesso se è una figura convessa, concavo se non lo è. DIEDRI Si definisce diedro ciascuna delle due parti di spazio delimitate da due semipiani che hanno la stessa origine, compresi i semipiani stessi. I due semipiani prendono il nome di facce del diedro

Dettagli

FIGURE SOLIDE OSSERVANDO LE FIGURE DELLO SPAZIO CHE CI CIRCONDANO NOTIAMO CHE:

FIGURE SOLIDE OSSERVANDO LE FIGURE DELLO SPAZIO CHE CI CIRCONDANO NOTIAMO CHE: FIGURE SOLIDE OSSERVANDO LE FIGURE DELLO SPAZIO CHE CI CIRCONDANO NOTIAMO CHE: IL CUBO IL PARALLELEPIPEDO LA PIRAMIDE HANNO LA SUPERFICIE COSTITUITA DA POLIGONI (QUADRATO, RETTANGOLO, TRIANGOLO) E PRENDONO

Dettagli

December 16, solidi_generalità e prisma_sito scuola.notebook. da studiare solo sul file. La geometria solida. nov

December 16, solidi_generalità e prisma_sito scuola.notebook. da studiare solo sul file. La geometria solida. nov da studiare solo sul file La geometria solida nov 20 8.33 1 I SOLIDI SI SUDDIVIDONO IN DUE GRANDI CATEGORIE POLIEDRI SOLIDI ROTONDI nov 20 8.40 2 POLIEDRI Cos'è un poligono? E' una parte di spazio delimitata

Dettagli

Scuole italiane all estero (Calendario australe) 2007 Suppletiva QUESITO 1

Scuole italiane all estero (Calendario australe) 2007 Suppletiva QUESITO 1 www.matefilia.it Scuole italiane all estero (Calendario australe) 2007 Suppletiva QUESITO 1 Si vuole che delle due radici dell equazione x 2 + 2(h + 1)x + m 2 h 2 = 0 una risulti doppia dell altra. Quale

Dettagli

1. conoscere i concetti fondamentali della geometria sintetica del piano (poligoni, circonferenza

1. conoscere i concetti fondamentali della geometria sintetica del piano (poligoni, circonferenza Terzo modulo: Geometria Obiettivi 1. conoscere i concetti fondamentali della geometria sintetica del piano (poligoni, circonferenza e cerchio, ecc.). calcolare perimetri e aree di figure elementari nel

Dettagli

LA CARATTERISTICA DI EULERO

LA CARATTERISTICA DI EULERO LA CARATTERISTICA DI EULERO Triangolazioni Definizione. Una triangolazione di una superficie compatta S è data da una famiglia finita di suoi sottospazi chiusi {T 1,..., T n } che ricoprano S e da una

Dettagli

APPUNTI SU POLIGONI E POLIEDRI Fiammetta Battaglia

APPUNTI SU POLIGONI E POLIEDRI Fiammetta Battaglia APPUNTI SU POLIGONI E POLIEDRI Fiammetta Battaglia 1. DEFINIZIONI Definizioni preliminari. Le definizioni elementari sono le più difficili. Consideriamo definizioni intuitive. Poligono. Una possibile definizione:

Dettagli

Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre

Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre Geometria euclidea Alessio del Vigna Lunedì 15 settembre La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione

Dettagli

SPAZIO E FIGURE: ROMPIAMO LE SCATOLE

SPAZIO E FIGURE: ROMPIAMO LE SCATOLE SPAZIO E FIGURE: ROMPIAMO LE SCATOLE 1) Procurati una scatola vuota e bada che sia richiusa bene. Apri i lati necessari ad ottenere il suo sviluppo. Quanti lati è necessario aprire come minimo? 2) Lavora

Dettagli

SCHEDA 1: ICOSAEDRO OTTAEDRO E TETRAEDRO SCHEDA 2: CUBO E DODECAEDRO. Costruisci e osserva i tre solidi della scheda 1:

SCHEDA 1: ICOSAEDRO OTTAEDRO E TETRAEDRO SCHEDA 2: CUBO E DODECAEDRO. Costruisci e osserva i tre solidi della scheda 1: Seguendo il filo conduttore del convegno, queste schede vogliono offrire alcuni spunti e proposte di attività di didattica informale e laboratoriale da svolgere in classe. Sulle 8 pagine si trovano gli

Dettagli

I poliedri SMS E. MAJORANA ROMA CLASSI 3F 3 H

I poliedri SMS E. MAJORANA ROMA CLASSI 3F 3 H I poliedri SMS E. MAJORANA ROMA CLASSI 3F 3 H Cosa è un poliedro? Definizioni: Un poliedro è la parte di spazio delimitata da poligoni posti su piani diversi in modo tale che ogni lato sia comune a due

Dettagli

I Solidi. ( Teoria pag ; esercizi pag ) Osserva queste immagini e commentale.

I Solidi. ( Teoria pag ; esercizi pag ) Osserva queste immagini e commentale. I Solidi. ( Teoria pag. 66 70 ; esercizi pag. 139 142 ) Osserva queste immagini e commentale. Immagine 1 Immagine 2 Immagine 3 Immagine 4 Immagine 5 Immagine 6 Conclusioni: Un solido è una parte di spazio

Dettagli

APPUNTI DI GEOMETRIA SOLIDA

APPUNTI DI GEOMETRIA SOLIDA APPUNTI DI GEOMETRIA SOLIDA Geometria piana: (planimetria) studio delle figure i cui punti stanno tutti su un piano Geometria solida: (stereometria) studio delle figure i cui punti non giacciono tutti

Dettagli

Geometria euclidea. Alessio del Vigna

Geometria euclidea. Alessio del Vigna Geometria euclidea Alessio del Vigna La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione sono il punto,

Dettagli

Scuola Galileiana di Studi Superiori Classe di Scienze Naturali - A. A Prova scritta di matematica

Scuola Galileiana di Studi Superiori Classe di Scienze Naturali - A. A Prova scritta di matematica Scuola Galileiana di Studi Superiori Classe di Scienze Naturali - A. A. 016-017 Prova scritta di matematica Il candidato svolga quanti più possibile dei seguenti sei esercizi. Esercizio 1. Consideriamo

Dettagli

PROBLEMA DI FEBBRAIO Congiungendo i centri delle facce (con uno spigolo in comune) di un cubo si ottengono gli spigoli di un poliedro.

PROBLEMA DI FEBBRAIO Congiungendo i centri delle facce (con uno spigolo in comune) di un cubo si ottengono gli spigoli di un poliedro. FLATlandia PROBLEMA DI FEBBRAIO 006 Congiungendo i centri delle facce (con uno spigolo in comune) di un cubo si ottengono gli spigoli di un poliedro. 1) Di quale poliedro si tratta? E regolare? ) Determinare

Dettagli

4.1 I triedri Def triedro vertice spigoli facce triedro

4.1 I triedri Def triedro vertice spigoli facce triedro 1 FIGURE NELLO SPAZIO Rette, piani, semispazi, di cui abbiamo visto le prime proprietà, delimitano le figure solide che si sviluppano nello spazio. Introduciamo gradualmente le figure solide e le loro

Dettagli

ANALISI MATEMATICA DEI POLIEDRI ARCHIMEDEI

ANALISI MATEMATICA DEI POLIEDRI ARCHIMEDEI ANALISI MATEMATICA DEI POLIEDRI ARCHIMEDEI Ho affermato che le matematiche sono molto utili per abituare la mente a un raziocinio esatto e ordinato; con ciò non è che io creda necessario che tutti gli

Dettagli

Uno spazio per lo spazio.

Uno spazio per lo spazio. Uno spazio per lo spazio. Il gruppo di matematica del Laboratorio Franco Conti ha lavorato quest anno nella direzione di ripensare l insegnamento della geometria dello spazio, unendo la riflessione teorica

Dettagli

GEOMETRIA SOLIDA PIRAMIDE. Prof.ssa M. Rosa Casparriello

GEOMETRIA SOLIDA PIRAMIDE. Prof.ssa M. Rosa Casparriello GEOMETRIA SOLIDA PIRAMIDE Prof.ssa M. Rosa Casparriello Scuola media di Cervinara 2007/2008 DEFINIZIONE La piramide è un poliedro limitato da un poligono qualsiasi e da tanti triangoli quanti sono i lati

Dettagli

Esame di Stato di Liceo Scientifico Corso di Ordinamento

Esame di Stato di Liceo Scientifico Corso di Ordinamento Corso di Ordinamento Soluzione dei Temi di Matematica proposti nella Sessione Ordinaria 006 Sessione Ordinaria 006 Corso di Ordinamento Sommario Problema Punto a) Punto b) Punto c) Punto Finale 4 Problema

Dettagli

I POLIEDRI SEMIREGOLARI

I POLIEDRI SEMIREGOLARI I POLIEDRI SEMIREGOLARI Il matematico, come il pittore o il poeta, è un creatore di forme. E se le forme che crea sono più durature delle loro è perché sono fatte di idee Godfrey H. Hardy In geometria

Dettagli

La piramide. BM 3 teoria pag ; esercizi 52 71, pag

La piramide. BM 3 teoria pag ; esercizi 52 71, pag La piramide. BM teoria pag. 4-49; esercizi 52 71, pag.120-127 Ricorda: I poliedri: sono solidi ottenuti accostando dei poligoni in modo da racchiudere parti di spazio limitate, essi si dividono in prismi

Dettagli

Uno spazio per lo spazio.

Uno spazio per lo spazio. Uno spazio per lo spazio. Il gruppo di matematica del Laboratorio Franco Conti ha lavorato quest anno nella direzione di ripensare l insegnamento della geometria dello spazio, unendo la riflessione teorica

Dettagli

Le cupole geodetiche

Le cupole geodetiche Le cupole geodetiche Una cupola geodetica é una struttura semisferica composta da aste che si intersecano in triangoli. Dal punto di vista matematico possiamo definire cupola geodetica un tipo di triangolazione

Dettagli

Quesiti della seconda prova scritta per Matematica. MCD(x, y) = 10 xy = 30000

Quesiti della seconda prova scritta per Matematica. MCD(x, y) = 10 xy = 30000 Quesiti della seconda prova scritta per Matematica Problema 1. (i) Dire quante e quali sono le coppie ordinate (x, y) di numeri naturali che sono soluzioni del sistema { MCD(x, y) = 10 xy = 30000 Qui MCD(x,

Dettagli

Elementi di Euclide. Libro II. Algebra Geometrica. Proposizione 4: (x + y) 2 = x 2 + 2xy + y 2.

Elementi di Euclide. Libro II. Algebra Geometrica. Proposizione 4: (x + y) 2 = x 2 + 2xy + y 2. PAS 2014 GEOMETRIA Programma di massima: Elementi di logica elementare. La geometria degli Elementi di Euclide. De nizioni, assiomi e postulati. La geometria del triangolo. Criteri di uguaglianza. Teorema

Dettagli

PNI QUESITO 1 QUESITO 2

PNI QUESITO 1 QUESITO 2 www.matefilia.it PNI 0014 QUESITO 1 Per il teorema dei seni risulta: = da cui sen α = Quindi α = arcsen ( ) che porta alle due soluzioni: α 41,810 41 49 α 138 11 QUESITO I poliedri regolari (solidi platonici)

Dettagli

Simmetrie nei poliedri

Simmetrie nei poliedri Simmetrie nei poliedri Livello scolare: 1 biennio Abilità interessate Individuare e riconoscere nel mondo reale le figure. geometriche note e descriverle con la terminologia specifica. Analizzare con strumenti

Dettagli

Indice. Parte prima Metodi. XI Gli autori

Indice. Parte prima Metodi. XI Gli autori XI Gli autori XIII Prefazione Parte prima Metodi 5 Capitolo 1 Elementi di geometria proiettiva 5 1.1 Gli enti geometrici 6 1.2 Convenzioni 7 1.3 L operazione di proiezione 9 1.4 L ampliamento proiettivo

Dettagli

LA MATEMATICA DEI POLIEDRI REGOLARI

LA MATEMATICA DEI POLIEDRI REGOLARI LA MATEMATICA DEI POLIEDRI REGOLARI Essi simbolizzano il desiderio di Armonia e di ordine dell uomo, ma nello stesso tempo la loro perfezione desta in noi il senso della nostra impotenza. I poliedri regolari

Dettagli

Misura dei volumi dei solidi

Misura dei volumi dei solidi Geometria euclidea dello spazio Presentazione n. 8 Misura dei volumi dei solidi Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia Richiamo di geometria piana: misura delle aree Per misurare

Dettagli

Teorema di Ceva. Tesina per il corso di Didattica dell algebra e della geometria. Francesco Biccari 23 gennaio 2013

Teorema di Ceva. Tesina per il corso di Didattica dell algebra e della geometria. Francesco Biccari 23 gennaio 2013 Teorema di Ceva Tesina per il corso di Didattica dell algebra e della geometria Francesco Biccari 23 gennaio 2013 Il teorema di Ceva è un teorema di geometria euclidea piana dimostrato nel 1678 dall italiano

Dettagli

Laboratorio di informatica

Laboratorio di informatica Laboratorio di informatica GEOMETRIA DELLO SPAZIO Introduzione a Geogebra 3D La versione 5 di Geogebra prevede anche la possibilità di lavorare in ambiente 3D. Basta aprire Visualizza - Grafici 3D: sullo

Dettagli

Le figure solide. Due rette nello spaio si dicono sghembe se non sono complanari e non hanno alcun punto in comune.

Le figure solide. Due rette nello spaio si dicono sghembe se non sono complanari e non hanno alcun punto in comune. Le figure solide Nozioni generali Un piano nello spazio può essere individuato da: 1. tre punti A, B e C non allineati. 2. una retta r e un punto A non appartenente ad essa. 3. due rette r e s incidenti.

Dettagli

Precorso di Matematica

Precorso di Matematica UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 17-24 Ottobre 2005 INDICE 1. GEOMETRIA EUCLIDEA........................ 2 1.1 Triangoli...............................

Dettagli

Le immagini della matematica: esempi a quattro dimensioni

Le immagini della matematica: esempi a quattro dimensioni Le immagini della matematica: esempi a quattro dimensioni Summer School: La matematica incontra le altre Scienze San Pellegrino Terme, 08-09-2014 M. Dedò Da anni il Centro matematita riserva una particolare

Dettagli

I punti di inizio e di fine della spezzata prendono il nome di estremi della spezzata. lati

I punti di inizio e di fine della spezzata prendono il nome di estremi della spezzata. lati I Poligoni Spezzata C A cosa vi fa pensare una spezzata? Qualcosa che si rompe in tanti pezzi A me dà l idea di un spaghetto che si rompe Se noi rompiamo uno spaghetto e manteniamo uniti i vari pezzi per

Dettagli

Le simmetrie dei poliedri regolari

Le simmetrie dei poliedri regolari Le simmetrie dei poliedri regolari Le isometrie del piano e dello spazio sono state classificate da due illustri matematici. Per quanto riguarda il piano, il teorema di Chasles, del 8, afferma che nel

Dettagli

I N F I N I T I T R I A N G O L I. (Tk) D I T A R T A G L I A. (possibili applicazioni in geometria (k + 2) - dimensionale)

I N F I N I T I T R I A N G O L I. (Tk) D I T A R T A G L I A. (possibili applicazioni in geometria (k + 2) - dimensionale) I N F I N I T I T R I A N G O L I (Tk) D I T A R T A G L I A (possibili applicazioni in geometria (k + 2) - dimensionale) Gruppo B. Riemann * Francesco Di Noto, Michele Nardelli *Gruppo amatoriale per

Dettagli

LA GEOMETRIA DELLO SPAZIO

LA GEOMETRIA DELLO SPAZIO LA GEOMETRIA ELLO SPAZIO 1 alcola l area e il perimetro del triangolo individuato dai punti A ; 0; 4, ; 1; 5 e 0; ;. ( ) ( ) ( ) 9 ; + 6 Stabilisci se il punto A ( 1;1; ) appartiene all intersezione dei

Dettagli

Rinnovare l insegnamento della matematica a scuola: proposte e ripensamenti

Rinnovare l insegnamento della matematica a scuola: proposte e ripensamenti Rinnovare l insegnamento della matematica a scuola: proposte e ripensamenti Simonetta Di Sieno Dipartimento di Matematica Università degli Studi di Milano Roma, 15 dicembre 2008 La scuola cambia Il vero

Dettagli

CLASSE 1A I.T.I. GRAFICO a.s. 2010/2011

CLASSE 1A I.T.I. GRAFICO a.s. 2010/2011 CLASSE 1A I.T.I. GRAFICO a.s. 2010/2011 - Umberto - Giulia - Giulia - Mattia GRUPPO N. 3 SCHEDA 1 Obiettivo: saper riconoscere e costruire in modo intuitivo poligoni simili Esecuzione: a ) Usando la casella

Dettagli

Le sezioni piane del cubo

Le sezioni piane del cubo Le sezioni piane del cubo Versione provvisoria 11 dicembre 006 1 Simmetrie del cubo e sezioni speciali Sezioni speciali si presentano in corrispondenza di piani perpendicolari agli assi di simmetria del

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico PNI

Proposta di soluzione della prova di matematica Liceo scientifico PNI Proposta di soluzione della prova di matematica Liceo scientifico PNI - 14 Problema 1 Punto a) In A e O, g non è derivabile in quanto la tangente risulta verticale (punto di cuspide). Stesso dicasi per

Dettagli

IIASS International Institute for Advanced Scientific Studies

IIASS International Institute for Advanced Scientific Studies Out[267]= IIASS International Institute for Advanced Scientific Studies Eduardo R. Caianiello Circolo di Matematica e Fisica Dipartimento di Fisica E.R. Caianiello Università di Salerno Premio Eduardo

Dettagli

Sapreste dire che cosa sono vertice, spigolo e faccia di un poliedro? Indicatelo negli appositi spazi della figura sottostante:

Sapreste dire che cosa sono vertice, spigolo e faccia di un poliedro? Indicatelo negli appositi spazi della figura sottostante: Laboratorio formazione primaria.. 2008-2009 1. SSERVZINE DI LIEDRI sservate le costruzioni presenti in sala, realizzate con tessere colorate. In generale le costruzioni in cui le tessere si incastrano

Dettagli

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 11

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 11 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 11 In questa lezione percorriamo gli argomenti della geometria che interessano la scuola primaria, in modo essenziale, o meglio ancora

Dettagli

CONCETTI DI GEOMETRIA

CONCETTI DI GEOMETRIA LA GEOMETRIA EUCLIDEA SI BASA SU TRE CONCETTI INTUITIVI: IL PUNTO, LA RETTA, IL PIANO IL PUNTO E' UN ENTE GEOMETRICO PRIVO DI DIMENSIONI. LA RETTA E' UN INSIEME DI PUNTI ALLINEATI. IL PIANO E' UN INSIEME

Dettagli

UNITÀ DIDATTICA 5 LA RETTA

UNITÀ DIDATTICA 5 LA RETTA UNITÀ DIDATTICA 5 LA RETTA 5.1 - La retta Equazione generica della retta Dalle considerazioni emerse nel precedente capitolo abbiamo compreso come una funzione possa essere rappresentata da un insieme

Dettagli

Test di Matematica di base

Test di Matematica di base Test di Matematica di base Geometria Il rapporto tra la superficie di un quadrato e quella di un triangolo equilatero di eguale lato è a. 4 b. 4 d. [ ] Quali sono le ascisse dei punti della curva di equazione

Dettagli

ù ={0,1,2,3, } la cui prima funzione è contare.

ù ={0,1,2,3, } la cui prima funzione è contare. ESERCITAZIONE N.3 1 ottobre 007 I NUMERI NATURALI L'insieme dei numeri naturali è l insieme infinito ù {0,1,,3, } la cui prima funzione è contare. Abbiamo già visto che la scrittura ù {0,1,,3, } è scorretta,

Dettagli

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 10

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 10 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 10 In questa lezione percorriamo gli argomenti della geometria che interessano la scuola primaria, in modo essenziale, o meglio ancora

Dettagli

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA FOGLIO DI ESERCIZI 1 GEOMETRIA 2009/10 Esercizio 1.1 (2.2). Determinare l equazione parametrica e Cartesiana della retta dello spazio (a) Passante per i

Dettagli

Introduzione. Al termine della lezione sarai in grado di:

Introduzione. Al termine della lezione sarai in grado di: Anno 4 Prismi 1 Introduzione In questa lezione parleremo di un particolare poliedro detto prisma. Ne daremo una definizione generale e poi soffermeremo la nostra attenzione su alcuni prismi particolari.

Dettagli

Progetto Matematica in Rete - Geometria euclidea - Introduzione GEOMETRIA EUCLIDEA. Introduzione. geo (terra) e metron (misura)

Progetto Matematica in Rete - Geometria euclidea - Introduzione GEOMETRIA EUCLIDEA. Introduzione. geo (terra) e metron (misura) GEOMETRIA EUCLIDEA La parola geometria deriva dalle parole greche geo (terra) e metron (misura) ed è nata per risolvere problemi di misurazione dei terreni al tempo degli antichi Egizi nel VI secolo a.c.

Dettagli

Il problema di Marzo 2007

Il problema di Marzo 2007 FLATlandia Il problema di Marzo 2007 1) Sia u una arbitraria unità di misura di lunghezza. Ritagliare da un cartoncino un semicerchio di diametro 20u e con esso formare un cono. Quali caratteristiche presenta

Dettagli

Giocando intorno a Pitagora

Giocando intorno a Pitagora 12 SEMINARIO NAZIONALE SUL CURRICOLO VERTICALE per una educazione alla cittadinanza Giocando intorno a Pitagora Roma, lì 23 Maggio 2017 BUGLIA GIOVANNI LUIGI Contesto Scuola secondaria di primo grado Classe

Dettagli

Matematica creativa e packaging

Matematica creativa e packaging Matematica creativa e packaging Elena Marchetti - Luisa Rossi Costa Dipartimento di Matematica F. Brioschi Politecnico di Milano Piazza Leonardo da Vinci, 32-20133 Milano POLIGONI E TASSELLAZIONI DEL PIANO

Dettagli

123. Poligoni, poliedri e politopi regolari di Andreana Zucco

123. Poligoni, poliedri e politopi regolari di Andreana Zucco Numero Dicembre 009 3. Poligoni, poliedri e politopi regolari di Andreana Zucco Premessa Se le definizioni di poligono ( dimensioni) e di poliedro (3 dimensioni) sono ben note, per poter parlare di oggetti

Dettagli

POLIGONI E NON POLIGONI: elementi caratteristici, proprietà e relazioni.

POLIGONI E NON POLIGONI: elementi caratteristici, proprietà e relazioni. POLIGONI E NON POLIGONI: elementi caratteristici, proprietà e relazioni. Il problema dell altezza. Clara Colombo Bozzolo, Carla Alberti,, Patrizia Dova Nucleo di Ricerca in Didattica della Matematica Direttore

Dettagli

Matematica classe 5 C a.s. 2012/2013

Matematica classe 5 C a.s. 2012/2013 Matematica classe 5 C a.s. 2012/2013 Asintoti e grafici 1) Una funzione y = f(x) gode delle seguenti caratteristiche: D / 4, y 0 se x 0 x 2, lim, 3. Rappresentare un grafico qualitativo della funzione.

Dettagli

LEZIONE 8. k e w = wx ı + w y j + w z. k di R 3 definiamo prodotto scalare di v e w il numero

LEZIONE 8. k e w = wx ı + w y j + w z. k di R 3 definiamo prodotto scalare di v e w il numero LEZINE 8 8.1. Prodotto scalare. Dati i vettori geometrici v = v x ı + v y j + v z k e w = wx ı + j + k di R 3 definiamo prodotto scalare di v e w il numero v, w = ( v x v y v z ) w x = v x + v y + v z.

Dettagli

Università degli Studi di Roma Tor Vergata. Principio di induzione matematica

Università degli Studi di Roma Tor Vergata. Principio di induzione matematica Università degli Studi di Roma Tor Vergata. Principio di induzione matematica Il Principio di induzione matematica è una tecnica di dimostrazione che permette la dimostrazione simultanea di infinite affermazioni.

Dettagli

SOLUZIONI. questa è l area della parte restante : è più grande o più piccola dell area del cerchio?

SOLUZIONI. questa è l area della parte restante : è più grande o più piccola dell area del cerchio? IV a GARA MATEMATICA CITTÀ DI PADOVA 15 aprile 1989 SOLUZIONI 1.- Indichiamo con l il lato del triangolo rettangolo isoscele : Area del triangolo = Area del cerchio inscritto = che si ottiene dalla doppia

Dettagli

Geometria delle similitudini

Geometria delle similitudini Istituzioni di matematiche 2 Diego Noja (diego.noja@unimib.it) 31 marzo 2009 Geometria delle similitudini CDL Scienze della Formazione Primaria Istituzioni di matematiche 2 pagina 1 CDL Scienze della Formazione

Dettagli

Appunti sullo sviluppo piano di figure solide

Appunti sullo sviluppo piano di figure solide Appunti sullo sviluppo piano di figure solide Indice 1. Cosa è un prisma 2. Prisma retto, parallelepipedo e cubo. 3. Sviluppo piano di un prisma 1. Cosa è un prisma Per effettuare lo sviluppo piano di

Dettagli

Argomento interdisciplinare

Argomento interdisciplinare Pag. 20 Nomenclatura geometrica (colonna n 4) Da pag. 154 a pag. 164 Sviluppo solidi Argomento interdisciplinare Tecnologia-Matematica 1 Sono corpi TRIDIMENSIONALI, aventi cioè tre dimensioni: 1. Lunghezza

Dettagli

Si definisce poligono la parte di piano delimitata da una spezzata semplice chiusa. D contorno

Si definisce poligono la parte di piano delimitata da una spezzata semplice chiusa. D contorno I POLIGONI Si definisce poligono la parte di piano delimitata da una spezzata semplice chiusa. E D contorno La linea spezzata chiusa che delimita il F C poligono si chiama contorno I punti A, B, C, D,

Dettagli

Soluzione esercizi Gara Matematica 2009

Soluzione esercizi Gara Matematica 2009 Soluzione esercizi Gara Matematica 009 ( a cura di Stefano Amato, Emanuele Leoncini e Alessandro Martinelli) Esercizio 1 In una scacchiera di 100 100 quadretti, Carlo colora un quadretto di rosso, poi

Dettagli

Il Teorema di Napoleone per i Quadrilateri Convessi

Il Teorema di Napoleone per i Quadrilateri Convessi Il Teorema di Napoleone per i Quadrilateri Convessi Serena Donisi Giovanni Vincenzi Gaetano Vitale 1. Introduzione Un famoso teorema di Geometria sintetica afferma che assegnato un qulunque triangolo ABC,

Dettagli

Anno 1. Quadrilateri

Anno 1. Quadrilateri Anno 1 Quadrilateri 1 Introduzione In questa lezione impareremo a risolvere i problemi legati all utilizzo dei quadrilateri. Forniremo la definizione di quadrilatero e ne analizzeremo le proprietà e le

Dettagli

Prima puntata della gara a squadre. 21 Novembre 2002

Prima puntata della gara a squadre. 21 Novembre 2002 Prima puntata della gara a squadre. 1 Novembre 00 Soluzioni. Quesito 1. Nel piano, consideriamo due cerchi di raggio 3 cm e 1 cm tangenti esternamente. Determinare l area del più piccolo insieme convesso

Dettagli

La matematica e la scienza nelle bolle

La matematica e la scienza nelle bolle MATEMATICA TRASPARENTE COME BOLLE DI SAPONE Un percorso didattico-sperimentale per le scuole secondarie di primo grado Relatore I. Tamanini Laureanda Silvia Dirupo La matematica e la scienza nelle bolle

Dettagli

Apprendere insieme. Antonio Blotti e Francesco Giovannetti

Apprendere insieme. Antonio Blotti e Francesco Giovannetti Apprendere insieme Antonio Blotti e Francesco Giovannetti L idea Il progetto del Nucleo di Ricerca Didattica di Trieste La Matematica dei ragazzi: scambi di esperienza tra coetanei mostra che le metodologie

Dettagli

LA PERPENDICOLARITA NELLO SPAZIO. Nello spazio si definiscono la perpendicolarità sia tra una retta e un piano sia tra due piani.

LA PERPENDICOLARITA NELLO SPAZIO. Nello spazio si definiscono la perpendicolarità sia tra una retta e un piano sia tra due piani. 1 LA PERPENDICOLARITA NELLO SPAZIO Nello spazio si definiscono la perpendicolarità sia tra una retta e un piano sia tra due piani. 2.1 La perpendicolarità retta piano Nel piano la perpendicolarità tra

Dettagli

C = d x π (pi greco) 3,14. d = C : π (3,14) r = C : (π x 2)

C = d x π (pi greco) 3,14. d = C : π (3,14) r = C : (π x 2) circonferenza rettificata significa messa su una retta è un segmento che ha la stessa lunghezza della circonferenza formule: C = d x π (pi greco) 3,14 d = C : π (3,14) r = C : (π x 2) area del cerchio

Dettagli

Prodotto realizzato con il contributo della Regione Toscana nell'ambito dell'azione regionale di sistema. Laboratori del Sapere Scientifico

Prodotto realizzato con il contributo della Regione Toscana nell'ambito dell'azione regionale di sistema. Laboratori del Sapere Scientifico Prodotto realizzato con il contributo della Regione Toscana nell'ambito dell'azione regionale di sistema Laboratori del Sapere Scientifico DALLA REALTÀ AL MODELLO GEOMETRICO Un approccio operativo all

Dettagli

COS È UN PRISMA. Due POLIGONI congruenti e paralleli, come basi. È UN POLIEDRO DELIMITATO DA

COS È UN PRISMA. Due POLIGONI congruenti e paralleli, come basi. È UN POLIEDRO DELIMITATO DA PRISMI E PIRAMIDI COS È UN PRISMA È UN POLIEDRO DELIMITATO DA Due POLIGONI congruenti e paralleli, come basi. Tanti PARALLELOGRAMMI quanti sono i lati del poligono di base (come facce laterali). PRISMA

Dettagli

Monomi L insieme dei monomi

Monomi L insieme dei monomi Monomi 10 10.1 L insieme dei monomi Definizione 10.1. Un espressione letterale in cui numeri e lettere sono legati dalla sola moltiplicazione si chiama monomio. Esempio 10.1. L espressione nelle due variabili

Dettagli

Superfici. V. Tibullo, rev.1, 04/04/2006.

Superfici. V. Tibullo, rev.1, 04/04/2006. uperfici. Tibullo, rev.1, 04/04/2006. 1 Integrali di superficie Consideriamo una superficie nello spazio tridimensionale R 3. Il concetto di superficie è noto dalla geometria elementare e non se ne darà

Dettagli

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ. ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio

Dettagli

Alunno/a Pag La figura indica quanti romanzi leggono gli alunni di una classe in un mese. Quanti sono gli alunni che leggono almeno 2 romanzi?

Alunno/a Pag La figura indica quanti romanzi leggono gli alunni di una classe in un mese. Quanti sono gli alunni che leggono almeno 2 romanzi? Alunno/a Pag. Esercitazione Alunno/a in preparazione alla PROVA d ESAME Classe III.. 2008 Buon Lavoro Prof.ssa Elena Spera. Quale tra le seguenti proposizioni è FALSA? A. La somma di due numeri dispari

Dettagli

Cupole geodetiche e Fullerene

Cupole geodetiche e Fullerene Cupole geodetiche e Fullerene 14 dicembre 2011 Una cupola geodetica è una struttura semisferica composta da aste che si intersecano in triangoli. Dal punto di vista matematico possiamo definire cupola

Dettagli

Partiamo da un informazione comune a tutti gli alunni della scuola italiana: La somma degli angoli interni di un triangolo è 180.

Partiamo da un informazione comune a tutti gli alunni della scuola italiana: La somma degli angoli interni di un triangolo è 180. 1 Partiamo da un informazione comune a tutti gli alunni della scuola italiana: La somma degli angoli interni di un triangolo è 180. Come giustificare questo fatto? Con delle prove sperimentali, ad esempio.

Dettagli

Esercizi svolti di aritmetica

Esercizi svolti di aritmetica 1 Liceo Carducci Volterra - Classi 1A, 1B Scientifico - Francesco Daddi - 15 gennaio 29 Esercizi svolti di aritmetica Esercizio 1. Dimostrare che il quadrato di un numero intero che finisce per 25 finisce

Dettagli

Lezione introduttiva allo studio della GEOMETRIA SOLIDA

Lezione introduttiva allo studio della GEOMETRIA SOLIDA Lezione introduttiva allo studio della GEOMETRIA SOLIDA Geometria solida Lo spazio euclideo è un insieme infinito di elementi detti punti e contiene sottoinsiemi propri ed infiniti : le rette e i piani..

Dettagli

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n NOTE DI ALGEBRA LINEARE 2- MM 9 NOVEMBRE 2 Combinazioni lineari e generatori Sia K un campo e V uno spazio vettoriale su K Siano v,, v n vettori in V Definizione Un vettore v V si dice combinazione lineare

Dettagli

SCIENZE MATEMATICHE. Finalità educative Area scientifico-tecnologica

SCIENZE MATEMATICHE. Finalità educative Area scientifico-tecnologica SCIENZE MATEMATICHE Finalità educative Area scientifico-tecnologica L alunno alla fine del primo ciclo dovrà essere in grado di: 1. Riflettere con spirito critico per poi affrontare in modo logico i vari

Dettagli

Proposta di esercitazione per le vacanze Geometria ed aritmetica. Ricordo che a settembre verrà effettuata la verifica sul ripasso.

Proposta di esercitazione per le vacanze Geometria ed aritmetica. Ricordo che a settembre verrà effettuata la verifica sul ripasso. Proposta di esercitazione per le vacanze Geometria ed aritmetica Ricordo che a settembre verrà effettuata la verifica sul ripasso. 1) Un prisma retto, alto 7 cm, ha per base un triangolo isoscele;

Dettagli