Algoritmi di Classificazione e Reti Neurali

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Algoritmi di Classificazione e Reti Neurali"

Transcript

1 Algoritmi di Classificazione e Reti Neurali Lezione introduttiva (3 ore) A cura di L. Palagi 26/10/2010 1

2 Struttura del corso Il corso è in co-docenza (3 + 3 cfu) proff. L. Grippo e L. Palagi Sono previsti dei seminari dott.ssa S. Canale (6 ore) dr. F. Rinaldi (2 ore) Calendario delle lezioni dettagliato in rete 26/10/2010 2

3 Contenuti del corso Introduzione alla teoria dell`apprendimento statistico ( imparare dai dati ) Apprendimento supervisionato Support Vector Machines (L. Palagi) 19 ottobre - 30 novembre Reti Neurali (L. Grippo) 2 dicembre 27 gennaio Apprendimento non supervisionato (S. Canale) novembre, 7 dicembre ore 15:45 Esempi e software (F. Rinaldi) 14 dicembre ore 15:45 26/10/2010 3

4 Contenuti del corso SVM (Palagi) Support Vector Machines per la Classificazione e la regressione SVM Lineari SVM Non lineari (Kernel) SVM e ottimizzazione Programmazione quadratica Cenni teoria dualita` e Duale di Wolfe Algoritmi di decomposizione per il problema duale 26/10/2010 4

5 Contenuti del corso RN (Grippo) Addestramento del Perceptron Reti multistrato e metodo di backpropagation Proprieta` di approssimazione Algoritmi di addestramento Reti RBF e algoritmi di decoposizione 26/10/2010 5

6 Imparare da esempi La teoria dell apprendimento statistico ha come obiettivo principale quello di trovare la descrizione analitica di una dipendenza sconosciuta tra la misura di alcuni oggetti e le proprieta` di tali oggetti. Le misure, sono dette variabili di input e si suppone che siano disponibili per tutti gli oggetti di interesse. Le proprietà degli oggetti sono dette variabili di output e sono normalmente conosciute solo per un sottoinsieme degli oggetti che rappresentano gli esempi Stimare il tipo di dipendenza tra input-output serve per poter determinare il valore delle variabili di output su tutti i dati di interesse (non solo gli esempi) 26/10/2010 6

7 Esempio: riconoscimento di caratteri manoscritti Le misure (variabili di input) sono le immagini di un carattere (disponibili per tutti gli esempi) 26/10/2010 7

8 Riconoscimento di caratteri manoscritti Ogni elemento di ingresso corrisponde a un immagine pxp (28x28, 256x256) pixel e quindi e` rappresentabile da un vettore a p 2 (=784, 65536) valori reali che rappresentano i livelli di grigio (0=bianco, 1=nero) rappresentabili ad es. con 8-bit Le proprietà (variabili di uscita) mi indicano il tipo di carattere ovvero uno degli elementi dell insieme {0,1,2.,9} Gli esempi sono i caratteri scritti da alcune persone. Lo scopo è riconoscere caratteri scritti da terzi La difficoltà è l alta variabilità delle forme e l alto numero di diversi elementi (2 28 x28 x8,2 256 x256 x8 ) 26/10/2010 8

9 Classificazione La classificazione individua l appartenenza di un elemento ad una classe. Con la classificazione l output predetto (la classe) e categorico ossia puo assumere solo un numero finito di possibili valori come {Sì, No}, {Alto, Medio, Basso}, ecc. Per esempio un modello di classificazione consiste nel predire se un potenziale cliente X con determinate caratteristiche risponderà in modo positivo a negativo ad un offerta di mercato. 26/10/2010 9

10 Approssimazione/regressione Esistono modelli di apprendimento dai dati il cui output NON è l appartenenza ad una classe ma un valore numerico. In questo caso si parla di approssimazione/regressione. 1 I dati di ingresso sono coppie di valori reali di (x,t) e si suppone che esista una funzione t=f(x) incognita 0-1 Si vuole determinare la funzione che meglio approssima questi dati /10/

11 Approssimazione o Regressione I valori dei dati di input possono essere alterati da un (basso) valore di rumore. Si parla di approssimazione in assenza di rumore. Le variabili in uscita possono assumere un numero illimitato di valori. Spesso queste variabili in uscita sono indicate come continue anche se talvolta non lo sono nel senso matematico del termine (ad esempio l età di una persona) Ad esempio un modello di regressione consiste nel predire il profitto Y in euro che uno specifico cliente X porterà un nel corso di un determinato periodo di tempo. Tipicamente classificazione e regressione vengono usate per lo sviluppo di modelli matematici per il supporto decisionale* *Ricerca Operativa 26/10/

12 Apprendimento e statistica Inferenza Statistica data una collezione di dati empirici originati secondo una qualche legge di dipendenza funzionale, inferire (dedurre) tale legge Si distinguono due approcci principale inferenza parametrica, che vuole individuare semplici metodi di inferenza per classi particolari di problemi reali inferenza generale, che vuole individuare un metodo induttivo per qualunque problema di inferenza statistica 26/10/

13 Inferenza parametrica Inizio Gli anni golden age modelli basati su principi primi: si suppone di conoscere la legge fisica che regola le proprietà stocastiche dei dati e che tale funzione sia definita da un numero finito (basso) di parametri di tipo noto. stimare i parametri (quelli non misurabili in modo diretto) utilizzando i dati e verificare la veridicità del modello individuato è l essenza di un problema di inferenza statistica I modelli parametrici utilizzati sono tipicamente lineari nei parametri; tali parametri sono determinati con il metodo della massima verosimiglianza (maximum likelihood method) 26/10/

14 La decadenza del modello di IP I modelli di inferenza parametrica sono semplici e ben si adattavano alle risorse di calcolo disponibili prima del Si basano su tre risultati principali teorema di Weierstass per cui ogni funzione continua può essere approssimata su un intervallo finito ad un qualunque grado di accuratezza da un polinomio (ovvero una funzione lineare nei parametri) Il teorema del valore centrale per cui la somma di un gran numero di variabili random è approssimata dalla legge di distribuzione normale il metodo della massima verosimiglianza è un buon strumento per la stima dei parametri La decadenza Curse of dimensionality (R. Bellman) se la funzione non è abbastanza contin. derivabile per ottenere il grado di accuratezza desiderato sono necessari un numero esponenziale di termini del polinomio (ovvero di variabili) molti problemi reali non possono essere descritti con le leggi classiche di distribuzione il metodo della massima verosimiglianza non è un buon metodo anche in casi semplici 26/10/

15 Oltre il classico paradigma modelli di inferenza generale: non si hanno informazioni a priori sui principi primi che regolano la legge statistica sottostante la distribuzione dei dati o della funzione che si vuole approssimare si cerca un metodo (induttivo) in grado di inferire una funzione approssimante dati gli esempi. uso dei dati per derivare il modello stesso modelli non predefiniti e non lineari nei parametri data analysis/data mining 26/10/

16 Storicamente Nel 1958 Rosenblatt (un fisiologo) propone una macchina di apprendimento (ovvero un programma di calcolo) chiamato Perceptron per risolvere un semplice problema di calssificazione. Il Perceptron rifletteva alcuni modelli neurofisiologici di apprendimento. Il perceptron può generalizzare (ovvero impara) : Reti neurali Successivamente sono state proposte molte altre macchine per apprendimento (programmi di calcolo) che non hanno analogia con il neurone biologico. Esiste un principio di inferenza induttiva comune a queste macchine? (1992-oggi) ritorno alla teoria di inferenza statistica: principio generale di induzione 26/10/

17 Terminologia comune regressione (statistica) classificazione (statistica) o pattern recognition (ingegneria) riconoscimento di configurazioni Reti neurali SVM clustering intelligenza artificiale (utilizzo logica simbolica) (computer science = informatica) 26/10/

18 Data Mining (DM) (fonte: Wikipedia) Il data mining ha per oggetto l'estrazione di un sapere o di una conoscenza a partire da grandi quantità di dati (attraverso metodi automatici o semi-automatici) e l'utilizzazione industriale o operativa di questo sapere. Il termine data mining (letteralmente: estrazione di dati) è diventato popolare nei tardi anni '90 come versione abbreviata per estrazione di informazione utile da insiemi di dati di dimensione cospicua. Oggi il termine data mining ha una duplice valenza Estrazione, con tecniche analitiche, di informazione implicita, nascosta, da dati già strutturati, per renderla disponibile e direttamente utilizzabile; Esplorazione ed analisi, eseguita in modo automatico o semiautomatico, su grandi quantità di dati allo scopo di scoprire pattern (schemi/regole/configurazioni) caratterizzanti i dati e non evidenti. 26/10/

19 Sviluppo del Data Mining Crescita notevole degli strumenti e delle tecniche per generare e raccogliere dati (introduzione codici a barre, transazioni economiche tramite carta di credito, dati da satellite o da sensori remoti, servizi on line..) Sviluppo delle tecnologie per l immagazzinamento dei dati, tecniche di gestione di database e data warehouse, supporti piu capaci piu economici (dischi, CD) hanno consentito l archiviazione di grosse quantità di dati Simili volumi di dati superano di molto la capacità di analisi dei metodi manuali tradizionali, come le query ad hoc. Tali metodi possono creare report informativi sui dati ma non riescono ad analizzare il contenuto dei report per focalizzarsi sulla conoscenza utile. 26/10/

20 Il DM è la non banale estrazione di informazione implicita, precedentemente sconosciuta e potenzialmente utile attraverso l utilizzo di differenti approcci tecnici (Frawley, Piatetsky-Shapiro e Matheus, 1991). Il DM consiste nell uso di tecniche statistiche da utilizzare con i databases aziendali per scoprire modelli e relazioni che possono essere impiegati in un contesto di business (Trajecta lexicon). Il DM è l esplorazione e l analisi, attraverso mezzi automatici e semiautomatici, di grosse quantità di dati allo scopo di scoprire pattern (schemi/regole/configurazioni/modelli) significativi (Berry, Linoff, 1997). Il DM è la ricerca di relazioni e modelli globali che sono presenti in grandi database, ma che sono nascosti nell immenso ammontare di dati, come le relazioni tra i dati dei pazienti e le loro diagnosi mediche. Queste relazioni rappresentano una preziosa conoscenza del database e, se il database è uno specchio fedele, del mondo reale contenuto nel database. (Holshemier e Siebes,1994). Il DM si riferisce all uso di una varietà di tecniche per identificare pepite di informazione e di conoscenza per il supporto alla decision making. L estrazione di tale conoscenza avviene in modo che essa possa essere usata in diverse aree come supporto alle decisioni, previsioni e stime. I dati sono spesso voluminosi ma, così come sono, hanno un basso valore e nessun uso diretto può esserne fatto; è l informazione nascosta nei dati che è utile (Clementine user guide). 26/10/

21 Ambiti applicativi DM Marketing segmentazione della clientela: Individuzione raggruppamenti omogenei in termini di comportamento d acquisto e di caratteristiche socio-demografiche previsione dei comportamenti di acquisto identificazione dei target per promozioni di nuovi prodotti customer retention: Individuazione clienti a rischio di abbandono Fraud detection (identificazione di frodi) Individuazione di comportamenti frudolenti Credit risk detection Individuazione di rischio per la concessine di credito Analisi delle associazioni individuazione dei prodotti acquistati congiuntamente Analisi di testi Diagnostica medica 26/10/

22 Altri esempi di problemi tipici (esempio tratto da lezioni di T. Mitchell) previsione dei comportamenti di acquisto Individuazione clienti a rischio di abbandono Ottimizzazione di processo 26/10/

23 Credit risk detection (esempio tratto da lezioni di T. Mitchell) 26/10/

24 Diagnostica medica (esempio tratto da lezioni di T. Mitchell) 26/10/

25 Data Mining Data Mining è solo una parte del processo di estrazione della conoscenza Il termine knowledge discovery in databases, o KDD, indica l'intero processo di ricerca di nuova conoscenza dai dati, cioè l insieme di tecniche e strumenti per assistere in modo intelligente e automatico gli utenti decisionali nell'estrazione di elementi di conoscenza dai dati. Il processo di KDD prevede Formulazione del problema Generazione dei dati Cleaning dei dati e preprocessing Data mining Interpretazione del modello (analisi dei pattern) Il termine di data mining (DM) si riferisce ad una fase fondamentale del processo KDD tanto che spesso è difficile distinguere il processo KDD dal DM che possono essere usati come sinonimi 26/10/

26 Formulazione del problema di apprendimento Distribuzione degli esempi (Sampling distribution) fattori non osservabili che influenzano output Generatore esempi con densità di probabilità sconosciuta e fissata Sistema Produce un output con densità di probabilità condizionale sconosciuta e fissata Il sistema di apprendimento NON ha controllo sul processo di generazione dei dati Outliers presenza di dati spuri non consistenti con la maggior parte delle osservazioni (dovuti a errori di misura grossolani, errori di codifica/memorizzazione, casi abnormali). 26/10/

27 Apprendimento statistico Distinguiamo due fasi in un sistema di apprendimento automatico fase di apprendimento/stima (dai dati di esempio) fase di utilizzo/predizione su esempi nuovi. Due tipi di apprendimento supervisionato non supervisionato 26/10/

28 Apprendimento automatico nel DM Supervisionato = esiste un insegnante Classificazione (pattern recognition) sono noti a priori dei pattern rappresentativi di diverse classi, cioè per ogni valore di input è noto un valore di output Regressione/Approssimazione sono note a priori delle coppie (punto,valore) (pattern,target) rappresentative di un funzione incognita a valori reali. Non supervisionato = nessun insegnante Clustering non sono noti a priori i valori di output cioè i pattern rappresentativi delle classi. Si vuole determinare il numero di classi di similitudine e la corrispondente classe di appartenenza. 26/10/

29 ESEMPIO DI CLASSIFICAZIONE SUPERVISIONATA (riconoscimento di caratteri) Dati un insieme di N elementi manoscritti rappresentati dalla matrice di pixel, ovvero dai vettori e la Categoria di appartenenza {0,1,2,3,4,5,6,7,8,9} Dati di esempio o training set classificazione generalizzazione 26/10/

30 ESEMPIO DI CLASSIFICAZIONE NON SUPERVISIONATA (riconoscimento di caratteri) Dati: un insieme di N elementi manoscritti rappresentati dalla matrice di pixel, ovvero dai vettori training set clustering 26/10/

31 ESEMPIO DI CLASSIFICAZIONE NON SUPERVISIONATA (diagnosi medica) Pattern: paziente afflitto da una determinata patologia e descritto da M fattori clinici (caratteristiche) Dati disponibili: insieme di N pazienti Obiettivo: raggruppare i pazienti in K gruppi i cui elementi presentino caratteristiche simili 26/10/

32 ESEMPIO DI APPROSSIMAZIONE Input: vettore a valore reali a N componenti rappresentate correnti elettriche che circolano in un dispositivo magnetico Output: valore del campo magnetico in un determinato punto interno al dispositivo Obiettivo: determinare una funzione analitica che approssimi il legame funzionale tra il campo magnetico e il valore delle correnti 26/10/

33 Apprendimento supervisionato I dati sono coppie input-output generati in modo indipendente e identicamente distribuiti (i.i.d) secondo una funzione di probabilita (sconosciuta) Il problema di apprendimento supervisionato: dato il valore di un vettore ottenere una buona predizione del vero output Una macchina per apprendimento osserva i dati di training e costruisce una funzione in grado di fornire una predizione dell output per un qualunque valore di input Learning Machine 26/10/

34 Macchina per apprendimento Più formalmente una macchina per apprendimento realizza una classe di funzioni, che dipende dalla struttura della macchina scelta, in cui α rappresenta un vettore di parametri che individua una particolare funzione nella classe. La macchina è deterministica 26/10/

35 Macchina per apprendimento La scelta ideale della funzione di approssimazione dovrebbe riflettere la conoscenza a priori sul sistema, MA in problemi di DM questa conoscenza è difficile o impossibile. Metodi adattativi del DM utilizzano una classe molto ampia e flessibile di funzioni di approssimazione Modelli non lineari nei parametri 26/10/

36 Il neurone formale Il neurone formale (perceptron) è una semplice macchina per apprendimento che realizza la classe di funzioni Gli ingressi sono moltiplicati per dei pesi, rappresentativi dell entitá delle connessioni sinaptiche, e la loro sommma algebrica viene confrontata con una soglia. L uscita è 1 se la somma pesata è > della soglia, -1(o 0) altrimenti 26/10/

37 Processo di apprendimento Fissata una macchina per apprendimento ovvero una classe di funzioni Il processo di apprendimento consiste nello scegliere un particolare valore dei parametri α* che seleziona una funzione f α* nella classe scelta. L obiettivo è creare un modello del processo che sia in grado di dare risposte corrette e coerenti anche (e soprattutto) su dati mai analizzati (generalizzazione) e non di interpolare (= riconoscere con certezza ) i dati di training (FUNZIONE PREDITTIVA) 26/10/

38 Misura di qualità Per scegliere tra tutte le possibili funzioni del parametro α è necessario definire un criterio di qualità da ottimizzare. Si definisce la Loss function una funzione che misura la discrepanza tra il valore previsto f α (x) e il valore effettivo y. Per definizione la perdita è non negativa, quindi valori positivi alti significano cattiva approssimazione. Assegnati i parametri α, il valore della loss function (intesa come funzione delle sole x, y) quantifica l ERRORE risultante dalla realizzazione della coppia (x, y) 26/10/

39 Esempi di funzioni di perdita (Loss functions) classificazione con 26/10/

40 Esempi di funzioni di perdita (Loss functions) regressione 26/10/

41 Minimizzazione del rischio Il criterio di qualità per scegliere i parametri α èilvalore atteso dell errore dovuto alla scelta di una particolare funzione di perdita Il valore atteso della perdita dipende dalla distribuzione P ed è dato dall integrale La funzione è il rischio effettivo che vorremmo minimizzare al variare di α (cioè al variare di ) 26/10/

42 Apprendimento determinare la funzione che minimizza il rischio effettivo nella classe di funzioni supportate dalla macchina per l apprendimento, utilizzando un numero finito di dati di training è inerentemente mal posto La difficoltà è scegliere la giusta complessità per descrivere i dati a disposizione Principi induttivi minimizzazione del rischio empirico structural risk minimization early stopping rules 26/10/

43 Il rischio empirico Il rischio effettivo non si può calcolare (né quindi minimizzare) perché la funzione di distribuzione di probabilità è sconosciuta ma sono note solo l osservazioni corrispondenti a variabili random i.i.d Cerchiamo una funzione che approssimi il rischio effettivo e richieda solo l uso dei dati disponibili 26/10/

44 Il rischio empirico Scelta una classe di funzioni e definita una funzione di perdita (loss) si definisce rischio empirico Il rischio empirico dipende SOLO dai dati e dalla funzione La distribuzione di probabilità non interviene nella definizione del rischio empirico che fissati è un valore preciso (errore di training). 26/10/

45 Principio Induttivo (Empirical Risk Minimization) Allo scopo di ottenere una buona capacità di generalizzazione su esempi futuri (test), il principio di minimizzazione del rischio empirico (ERM) utilizza una funzione di decisione che minimizza l errore sui dati di training: determina la funzione che minimizza il rischio tra tutte le 26/10/

46 Macchina per apprendimento: regressione parametrica Consideriamo dati generati artificialmente dalla funzione corrotta da rumore Usiamo come approssimatori i polinomiodi gradofissatom 26/10/

47 Ancora l esempio Regressione parametrica Scelto un modello (ad esempio un polinomio di grado M) Si può valutare l errore quadratico; detti i valori noti si ha: L errore sui dati di training può idealmente diventare nullo, ma che succede su dati nuovi (dati di test)? 26/10/

48 Regressione parametrica Aumento il grado del polinomio M da 3 a 9 Quale dei due è meglio? Si può valutare l errore quadratico; detti i valori noti si ha: L errore sui dati di training può idealmente diventare nullo, ma che succede su dati nuovi (dati di test)? 26/10/

49 Andamento errore Graficando l andamento dell errore sui dati di training e di test Ridurre errore di training può significare errori significativi sui dati di test: fenomeno di Over-fitting 26/10/

50 Regressione parametrica Aumentoilnumerodi datidi training Polinomio di grado M=9: andamento migliore 26/10/

51 Regressione parametrica Aumentoilnumerodi datidi training Polinomio di grado M=9: l andamento riesce quasi a seguire la funzione sottostante La maggiore complessità della macchina (grado del polinomio) in relazione al miglior uso predittivo dipendono dal numero di dati disponibili 26/10/

52 Consistenza del rischio empirico In generale Interesse: trovare una relazione tra le soluzioni dei problemi di ottimizzazione imponderabile calcolabile La speranza è che l errore sui dati di traning possa fornire delle indicazioni sulla probabilità di errore su una nuova istanza 26/10/

53 Minimizzazione del rischio empirico Quando l è finito la minimizzazione del rischio empirico può non garantire una minimizzazione del rischio effettivo La scelta della funzione in una classe che minimizza il rischio empirico non è unica Entrambe le funzioni hanno Rischio empirico nullo Il rischioeffettivosu nuove istanze è diverso 26/10/

54 Complessità della classe Un altro aspetto correlato alla minimizzazione del rischio empirico è la complessità della classe di funzioni Una funzione molto complessa può descrivere molto bene i dati di training, ma può non generalizzare bene su nuovi dati più complessa più semplice 26/10/

55 Over and under fitting Dati di training: 2 classi più semplice più complessa Aggiungo nuovi dati underfitting classe f α troppo semplice overfitting classe f α troppo complessa 26/10/

56 (lez.1) Il principio induttivo della minimizzazione del rischio empirico (ERM) Si definisce rischio empirico Si minimizza al variare di α il rischio empirico In generale calcolabile Esiste e qual è la relazione tra le soluzioni dei problemi di ottimizzazione? 26/10/

57 (lez.1) Oltre il principio della (ERM) È possibile dimostrare che con probabilità (1-η) con η in (0,1) risulta è un parametro che che descrive una nuova proprietà generale della classe di funzioni scelta che si chiama capacità/complessità 26/10/

58 Teoria di Vapnik Chervonenkis (VC) VC hanno sviluppato la teoria per determinare il valore di ε che compare nella disuguaglianza ovvero per determinare un bound sull errore di generalizzazione della classe di funzioni. Questo bound è stato utilizzato per sviluppare un nuovo principio induttivo basato sul trade-off tra la complessità della classe di funcioni scelta e il valore del rischio empirico che si può ottenere utilizzando tale classe 26/10/

59 Complessità della classe di funzioni Questa analisi ha portato alla definizione di un nuovo funzionale da minimizzare diverso dal rischio empirico. In particolare si introduce di un termine per il controllo della complessità Termine di penalizzazione di complessità Teoria di Vapnik Chervonenkis (VC) VC dimension VC confidence 26/10/

60 VC dimension La dimensione di Vapnik Chervonenkis (VC dimension) h>0 è una misura della capacità di classificazione espressa dalla macchina rappresentata dall'insieme di funzioni La VC dimension h misura il massimo numero di punti x i (di training) che possono essere classificati per qualunque assegnazione di etichette ±1 (shattered= frammentati ) usando una funzione nella classe Insieme frammentabile questi 3 punti in R 2 possono essere separati con un iperpiano orientato 26/10/

61 VC dimension Se la VC dimension di una classe è h significa che esiste almeno un insieme di h punti che possono essere frammentati, ma in generale non è vero che un qualsiasi insieme di h punti può essere classificato da Insieme di 3 punti in R 2 non frammentabile Nessun insieme di 4 punti in R 2 può essere frammentato da una funzione affine La dimensione di VC della classe in R 2 è h=3 26/10/

62 Un bound superiore per il rischio VC dimension èilparametro mancante VC Confidence termine di penalità sulla complessità Il nuovo funzionale da minimizzare è Si minimizza rispetto alla classe e non solo ai parametri 26/10/

63 Il principio di minimizzazione L implicazione pratica dell esistenza del bound è che la macchina per l apprendimento dovrebbe essere costruita in modo tale minimizzare il valore empirico il termine di VC confidence Mononicamente crescente in h Complessità h In pratica l andamento delle due funzioni è opposto, quindi lo scopo è cercare il miglior trade-off tra la minimizzazione del rischio effettivo, e la minimizzazione dell VC confidence 26/10/

64 Minimizzazione del rischio strutturale Osserviamo che la VC confidence dipende solo dalla classe di funzioni scelta, mentre il rischio empirico (e quindi il rischio effettivo) dipende dalla particolare funzione scelta durante la procedura di training Procedura euristica per la minimizzazione La dimensione di VC è un valore intero. Si definiscono classi di funzioni annidate con VC dimension NON decrescente N.B. bisogna essere in grado di calcolare h per ogni classe 26/10/

65 Principio di Minimizzazione del rischio strutturale per ogni classe con dimensione di VC si determina la soluzione ottima del problema Si calcola il valore dell upper bound Si sceglie la classe di funzioni per cui è minimo il valore dell upper bound 26/10/

66 Calcolo del termine di confidenza Per calcolare il termine di confidenza è necessario conoscereilvaloredi h per una classe di funzioni. N.B. il numero di parametri non è un indicazione utile, infatti h non è proporzionale al # di parametri Non è vero che macchine di apprendimento con molti parametri hanno una dimensione di VC alta, e anche viceversa che macchine di apprendimento con pochi parametri hanno una dimensione di VC bassa 26/10/

67 Calcolo del termine di confidenza soli parametri, ma esiste un insieme di punti allineati può essere separato per qualunque assegnazione di etichette scegliendo opportunamento frequenza e fase. Dunque h infinita NOTA BENE: nonostante VC infinita, esiste un insieme di soli 4 punti che non possono essere frammentati 26/10/

68 Fonti bibliografiche e siti di interesse Pattern Recognition and Machine Learning C. Bishop, Springer (2006). Learning from Data: Concepts, theory, and Methods - V. Cherkassky, F. Mulier, John Wiley and Sons, Inc. (1998). Statistical Learning Theory V. Vapnik, John Wiley and Sons, Inc., 1998 Machine Learning, T. Mitchell, Morgan Kaufmann, Machine learning Group at Yahoo! Research Silicon Valley Cineca Consorzio Interuniversitario La Gestione delle Informazioni e della Conoscenza 26/10/

Algoritmi di Classificazione e Reti Neurali

Algoritmi di Classificazione e Reti Neurali 06/03/2009 1 Algoritmi di Classificazione e Reti Neurali Lezione introduttiva 4 MARZO 2009 Struttura del corso Il corso è in co-docenza proff. L. Grippo e L. Palagi http://www.dis.uniroma1.it/~grippo/

Dettagli

Algoritmi di Classificazione e Reti Neurali

Algoritmi di Classificazione e Reti Neurali 29/01/2008 1 Algoritmi di Classificazione e Reti Neurali Lezione introduttiva 15 gennaio 2008 Contenuti del corso Introduzione alla teoria dell`apprendimento imparare dai dati Reti neurali (L. Grippo)

Dettagli

Lezione introduttiva su reti neurali e SVM Veronica Piccialli. Corso di Ottimizzazione a.a (seconda parte)

Lezione introduttiva su reti neurali e SVM Veronica Piccialli. Corso di Ottimizzazione a.a (seconda parte) Lezione introduttiva su reti neurali e SVM Veronica Piccialli Corso di Ottimizzazione a.a. 2009-10 (seconda parte) Ottimizzazione Statistica Fisica Biologia Reti Neurali Matematica Psicologia Informatica

Dettagli

Reti Neurali in Generale

Reti Neurali in Generale istemi di Elaborazione dell Informazione 76 Reti Neurali in Generale Le Reti Neurali Artificiali sono studiate sotto molti punti di vista. In particolare, contributi alla ricerca in questo campo provengono

Dettagli

Riconoscimento automatico di oggetti (Pattern Recognition)

Riconoscimento automatico di oggetti (Pattern Recognition) Riconoscimento automatico di oggetti (Pattern Recognition) Scopo: definire un sistema per riconoscere automaticamente un oggetto data la descrizione di un oggetto che può appartenere ad una tra N classi

Dettagli

Machine Learning: apprendimento, generalizzazione e stima dell errore di generalizzazione

Machine Learning: apprendimento, generalizzazione e stima dell errore di generalizzazione Corso di Bioinformatica Machine Learning: apprendimento, generalizzazione e stima dell errore di generalizzazione Giorgio Valentini DI Università degli Studi di Milano 1 Metodi di machine learning I metodi

Dettagli

Reti Neurali. Corso di AA, anno 2016/17, Padova. Fabio Aiolli. 2 Novembre Fabio Aiolli Reti Neurali 2 Novembre / 14. unipd_logo.

Reti Neurali. Corso di AA, anno 2016/17, Padova. Fabio Aiolli. 2 Novembre Fabio Aiolli Reti Neurali 2 Novembre / 14. unipd_logo. Reti Neurali Corso di AA, anno 2016/17, Padova Fabio Aiolli 2 Novembre 2016 Fabio Aiolli Reti Neurali 2 Novembre 2016 1 / 14 Reti Neurali Artificiali: Generalità Due motivazioni diverse hanno spinto storicamente

Dettagli

Algoritmi di Classificazione e Reti Neurali

Algoritmi di Classificazione e Reti Neurali Algoritmi di Classificazione e Reti Neurali Lezione introduttiva (3 ore) A cura di L. Palagi 02/10/2013 1 Struttura del corso Il materiale del corso (6 cfu) http://www.dis.uniroma1.it/~or/gestionale/svm/

Dettagli

Modelli matematici e Data Mining

Modelli matematici e Data Mining Modelli matematici e Data Mining Introduzione I modelli matematici giocano un ruolo critico negli ambienti di business intelligence e sistemi di supporto alle decisioni. Essi rappresentano un astrazione

Dettagli

Training Set Test Set Find-S Dati Training Set Def: Errore Ideale Training Set Validation Set Test Set Dati

Training Set Test Set Find-S Dati Training Set Def: Errore Ideale Training Set Validation Set Test Set Dati " #!! Suddivisione tipica ( 3 5 6 & ' ( ) * 3 5 6 = > ; < @ D Sistemi di Elaborazione dell Informazione Sistemi di Elaborazione dell Informazione Principali Paradigmi di Apprendimento Richiamo Consideriamo

Dettagli

Intelligenza Artificiale. Soft Computing: Reti Neurali Generalità

Intelligenza Artificiale. Soft Computing: Reti Neurali Generalità Intelligenza Artificiale Soft Computing: Reti Neurali Generalità Neurone Artificiale Costituito da due stadi in cascata: sommatore lineare (produce il cosiddetto net input) net = S j w j i j w j è il peso

Dettagli

Indice generale. Introduzione. Capitolo 1 Essere uno scienziato dei dati... 1

Indice generale. Introduzione. Capitolo 1 Essere uno scienziato dei dati... 1 Introduzione...xi Argomenti trattati in questo libro... xi Dotazione software necessaria... xii A chi è rivolto questo libro... xii Convenzioni utilizzate... xiii Scarica i file degli esempi... xiii Capitolo

Dettagli

Intelligenza Artificiale. Clustering. Francesco Uliana. 14 gennaio 2011

Intelligenza Artificiale. Clustering. Francesco Uliana. 14 gennaio 2011 Intelligenza Artificiale Clustering Francesco Uliana 14 gennaio 2011 Definizione Il Clustering o analisi dei cluster (dal termine inglese cluster analysis) è un insieme di tecniche di analisi multivariata

Dettagli

I vantaggi ottenibili nei campi applicativi attraverso l uso di tecniche di data mining

I vantaggi ottenibili nei campi applicativi attraverso l uso di tecniche di data mining Dipartimento di Informatica e Sistemistica I vantaggi ottenibili nei campi applicativi attraverso l uso di tecniche di data mining Renato Bruni bruni@dis.uniroma1.it Antonio Sassano sassano@dis.uniroma1.it

Dettagli

Cenni di apprendimento in Reti Bayesiane

Cenni di apprendimento in Reti Bayesiane Sistemi Intelligenti 216 Cenni di apprendimento in Reti Bayesiane Esistono diverse varianti di compiti di apprendimento La struttura della rete può essere nota o sconosciuta Esempi di apprendimento possono

Dettagli

Apprendimento Automatico (Lezione 1)

Apprendimento Automatico (Lezione 1) Apprendimento Automatico (Lezione 1) Fabio Aiolli www.math.unipd.it/~aiolli Sito web del corso www.math.unipd.it/~aiolli/corsi/1516/aa/aa.html Orario 40 ore di lezione in aula (5cfu) 8 ore di laboratorio

Dettagli

Classificazione bio-molecolare di tessuti e geni come problema di apprendimento automatico e validazione dei risultati

Classificazione bio-molecolare di tessuti e geni come problema di apprendimento automatico e validazione dei risultati Classificazione bio-molecolare di tessuti e geni come problema di apprendimento automatico e validazione dei risultati Giorgio Valentini e-mail: valentini@dsi.unimi.it DSI Dip. Scienze dell'informazione

Dettagli

Lezioni di Ricerca Operativa

Lezioni di Ricerca Operativa Lezioni di Ricerca Operativa Massimo Paolucci Dipartimento di Informatica, Sistemistica e Telematica (DIST) Università di Genova paolucci@dist.unige.it Anno accademico 2000/2001 La Ricerca Operativa (Operation

Dettagli

VALIDAZIONE DEL MODELLO

VALIDAZIONE DEL MODELLO VALIDAZIONE DEL MODELLO Validazione del Modello Non è sufficiente stimare il vettore θ per dichiarare concluso il processo di identificazione. E necessario ottenere una misura della sua affidabilità L

Dettagli

Regressione Lineare e Regressione Logistica

Regressione Lineare e Regressione Logistica Regressione Lineare e Regressione Logistica Stefano Gualandi Università di Pavia, Dipartimento di Matematica email: twitter: blog: stefano.gualandi@unipv.it @famo2spaghi http://stegua.github.com 1 Introduzione

Dettagli

Reti Neurali in Generale

Reti Neurali in Generale Apprendimento Automatico 123 Reti Neurali in Generale Le Reti Neurali Artificiali sono studiate sotto molti punti di vista. In particolare, contributi alla ricerca in questo campo provengono da: Biologia

Dettagli

Introduzione alla Ricerca Operativa. Cos è la Ricerca Operativa? Modellazione di problemi decisionali Fasi di uno studio di RO Applicazioni della RO

Introduzione alla Ricerca Operativa. Cos è la Ricerca Operativa? Modellazione di problemi decisionali Fasi di uno studio di RO Applicazioni della RO Introduzione alla Ricerca Operativa Cos è la Ricerca Operativa? Modellazione di problemi decisionali Fasi di uno studio di RO Applicazioni della RO Cos è la Ricerca Operativa? La Ricerca Operativa è la

Dettagli

Classificazione e regressione per mezzo di Support Vector Machine

Classificazione e regressione per mezzo di Support Vector Machine Classificazione e regressione per mezzo di Support Vector Machine Felice Andrea Pellegrino Dipartimento di Elettrotecnica Elettronica e Informatica Università degli Studi di Trieste Il presente documento

Dettagli

Lezione 10: Interpolazione lineare Corso di Statistica Facoltà di Economia Università della Basilicata. Prof. Massimo Aria

Lezione 10: Interpolazione lineare Corso di Statistica Facoltà di Economia Università della Basilicata. Prof. Massimo Aria Lezione 10: Interpolazione lineare Corso di Statistica Facoltà di Economia Università della Basilicata Prof. Massimo Aria aria@unina.it Il concetto di interpolazione In matematica, e in particolare in

Dettagli

Tecniche di riconoscimento statistico

Tecniche di riconoscimento statistico On AIR s.r.l. Tecniche di riconoscimento statistico Applicazioni alla lettura automatica di testi (OCR) Parte 9 Alberi di decisione Ennio Ottaviani On AIR srl ennio.ottaviani@onairweb.com http://www.onairweb.com/corsopr

Dettagli

Statistica Metodologica Avanzato Test 1: Concetti base di inferenza

Statistica Metodologica Avanzato Test 1: Concetti base di inferenza Test 1: Concetti base di inferenza 1. Se uno stimatore T n è non distorto per il parametro θ, allora A T n è anche consistente B lim Var[T n] = 0 n C E[T n ] = θ, per ogni θ 2. Se T n è uno stimatore con

Dettagli

Corso di Intelligenza Artificiale A.A. 2016/2017

Corso di Intelligenza Artificiale A.A. 2016/2017 Università degli Studi di Cagliari Corsi di Laurea Magistrale in Ing. Elettronica Corso di Intelligenza rtificiale.. 26/27 Esercizi sui metodi di apprendimento automatico. Si consideri la funzione ooleana

Dettagli

Luigi Santoro. Hyperphar Group S.p.A., MIlano

Luigi Santoro. Hyperphar Group S.p.A., MIlano Come modellare il rischio Luigi Santoro Hyperphar Group S.p.A., MIlano Gli argomenti discussi Le definizioni del termine rischio L utilità di un modello predittivo di rischio Come costruire modelli predittivi

Dettagli

Mugno Eugenio Matematica 2F

Mugno Eugenio Matematica 2F Docente Materia Classe Mugno Eugenio Matematica 2F Programmazione Preventiva Anno Scolastico 2012/2013 Data 25/11/2012 Obiettivi Cognitivi OBIETTIVI MINIMI U.D.1: FRAZIONI ALGEBRICHE conoscere la definizione

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Il best fitting In molte applicazioni accade di avere una certa quantità di dati (solitamente elevata) e di voler descrivere l andamento del fenomeno che ha

Dettagli

Prefazione Ringraziamenti dell'editore Il sito web dedicato al libro Test online: la piattaforma McGraw-Hill Education Guida alla lettura

Prefazione Ringraziamenti dell'editore Il sito web dedicato al libro Test online: la piattaforma McGraw-Hill Education Guida alla lettura INDICE GENERALE Prefazione Ringraziamenti dell'editore Il sito web dedicato al libro Test online: la piattaforma McGraw-Hill Education Guida alla lettura XI XIV XV XVII XVIII 1 LA RILEVAZIONE DEI FENOMENI

Dettagli

Distribuzioni e inferenza statistica

Distribuzioni e inferenza statistica Distribuzioni e inferenza statistica Distribuzioni di probabilità L analisi statistica spesso studia i fenomeni collettivi confrontandoli con modelli teorici di riferimento. Tra di essi, vedremo: la distribuzione

Dettagli

Capitolo 8. Intervalli di confidenza. Statistica. Levine, Krehbiel, Berenson. Casa editrice: Pearson. Insegnamento: Statistica

Capitolo 8. Intervalli di confidenza. Statistica. Levine, Krehbiel, Berenson. Casa editrice: Pearson. Insegnamento: Statistica Levine, Krehbiel, Berenson Statistica Casa editrice: Pearson Capitolo 8 Intervalli di confidenza Insegnamento: Statistica Corso di Laurea Triennale in Economia Dipartimento di Economia e Management, Università

Dettagli

Presentazione dell edizione italiana

Presentazione dell edizione italiana 1 Indice generale Presentazione dell edizione italiana Prefazione xi xiii Capitolo 1 Una introduzione alla statistica 1 1.1 Raccolta dei dati e statistica descrittiva... 1 1.2 Inferenza statistica e modelli

Dettagli

Introduzione al data mining. Sistemi di elaborazione delle informazioni 2 Anno Accademico Prof. Mauro Giacomini

Introduzione al data mining. Sistemi di elaborazione delle informazioni 2 Anno Accademico Prof. Mauro Giacomini Introduzione al data mining Sistemi di elaborazione delle informazioni 2 Anno Accademico 2007-2008 Prof. Mauro Giacomini Definizione Processo che impiega una o più tecniche di apprendimento computerizzate

Dettagli

Lez. 5 La Programmazione. Prof. Salvatore CUOMO

Lez. 5 La Programmazione. Prof. Salvatore CUOMO Lez. 5 La Programmazione Prof. Salvatore CUOMO 1 2 Programma di utilità: Bootstrap All accensione dell elaboratore (Bootsrap), parte l esecuzione del BIOS (Basic Input Output System), un programma residente

Dettagli

ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI. (Visione 3D)

ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI. (Visione 3D) ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI () Calibrazione intrinseca Spesso risulta utile calibrare la sola componente intrinseca di un sistema di visione (matrice K), e non si dispone di oggetti di forma

Dettagli

Apprendimento Automatico (Feature Selection e Kernel Learning)

Apprendimento Automatico (Feature Selection e Kernel Learning) Apprendimento Automatico (Feature Selection e Kernel Learning) Fabio Aiolli www.math.unipd.it/~aiolli Sito web del corso www.math.unipd.it/~aiolli/corsi/1516/aa/aa.html Servono tutti gli attributi? Gli

Dettagli

Università di Siena. Corso di STATISTICA. Parte seconda: Teoria della stima. Andrea Garulli, Antonello Giannitrapani, Simone Paoletti

Università di Siena. Corso di STATISTICA. Parte seconda: Teoria della stima. Andrea Garulli, Antonello Giannitrapani, Simone Paoletti Università di Siena Corso di STATISTICA Parte seconda: Teoria della stima Andrea Garulli, Antonello Giannitrapani, Simone Paoletti Master E 2 C Centro per lo Studio dei Sistemi Complessi Università di

Dettagli

Apprendimento basato sulle istanze

Apprendimento basato sulle istanze Apprendimento basato sulle istanze Apprendimento basato sulle istanze Apprendimento: semplice memorizzazione di tutti gli esempi Classificazione di una nuova istanza x j : reperimento degli

Dettagli

PROBABILITÀ - SCHEDA N. 3 VARIABILI ALEATORIE CONTINUE E SIMULAZIONE

PROBABILITÀ - SCHEDA N. 3 VARIABILI ALEATORIE CONTINUE E SIMULAZIONE PROBABILITÀ - SCHEDA N. 3 VARIABILI ALEATORIE CONTINUE E SIMULAZIONE (da un idea di M. Impedovo Variabili aleatorie continue e simulazione Progetto Alice n. 15, ) 1. La simulazione Nelle schede precedenti

Dettagli

Tipi di variabili. Indici di tendenza centrale e di dispersione

Tipi di variabili. Indici di tendenza centrale e di dispersione Tipi di variabili. Indici di tendenza centrale e di dispersione L. Boni Variabile casuale In teoria della probabilità, una variabile casuale (o variabile aleatoria o variabile stocastica o random variable)

Dettagli

Elementi di Statistica

Elementi di Statistica Università degli Studi di Palermo Dipartimento di Ingegneria Informatica Informatica ed Elementi di Statistica 3 c.f.u. Anno Accademico 2010/2011 Docente: ing. Salvatore Sorce Elementi di Statistica Statistica

Dettagli

CURRICOLO VERTICALE PER COMPETENZE DISCIPLINARI. Scuola Secondaria di Primo Grado Matematica -

CURRICOLO VERTICALE PER COMPETENZE DISCIPLINARI. Scuola Secondaria di Primo Grado Matematica - CURRICOLO VERTICALE PER COMPETENZE DISCIPLINARI Scuola Secondaria di Primo Grado Matematica - Classe Prima COMPETENZA CHIAVE EUROPEA: COMPETENZA MATEMATICA Profilo dello studente al termine del Primo ciclo

Dettagli

Statistica Applicata all edilizia: il modello di regressione

Statistica Applicata all edilizia: il modello di regressione Statistica Applicata all edilizia: il modello di regressione E-mail: orietta.nicolis@unibg.it 27 aprile 2009 Indice Il modello di Regressione Lineare 1 Il modello di Regressione Lineare Analisi di regressione

Dettagli

Riconoscimento e recupero dell informazione per bioinformatica

Riconoscimento e recupero dell informazione per bioinformatica Riconoscimento e recupero dell informazione per bioinformatica Teoria della decisione di Bayes Manuele Bicego Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona Sommario

Dettagli

Linguaggi e Ambienti di Programmazione

Linguaggi e Ambienti di Programmazione Linguaggi e Ambienti di Programmazione Principi e tecniche diffuse che si incontrano spesso nelle applicazioni dell informatica. Compilatori Editor di struttura: riceve in input una sequenza di comandi

Dettagli

Stima della qualità dei classificatori per l analisi dei dati biomolecolari

Stima della qualità dei classificatori per l analisi dei dati biomolecolari Stima della qualità dei classificatori per l analisi dei dati biomolecolari Giorgio Valentini e-mail: valentini@dsi.unimi.it Rischio atteso e rischio empirico L` apprendimento di una funzione non nota

Dettagli

Classificazione Mario Guarracino Laboratorio di Sistemi Informativi Aziendali a.a. 2006/2007

Classificazione Mario Guarracino Laboratorio di Sistemi Informativi Aziendali a.a. 2006/2007 Classificazione Introduzione I modelli di classificazione si collocano tra i metodi di apprendimento supervisionato e si rivolgono alla predizione di un attributo target categorico. A partire da un insieme

Dettagli

lezione 10 AA Paolo Brunori

lezione 10 AA Paolo Brunori AA 2016-2017 Paolo Brunori Redditi svedesi - il dataset contiene i dati di reddito di 838 individui - il dataset contiene le variabili: sex = sesso age = età edu = anni di istruzione y_gross = reddito

Dettagli

Serie storiche Mario Guarracino Laboratorio di Sistemi Informativi Aziendali a.a. 2006/2007

Serie storiche Mario Guarracino Laboratorio di Sistemi Informativi Aziendali a.a. 2006/2007 Serie storiche Introduzione Per alcuni dataset, l attributo target è soggetto ad un evoluzione temporale e risulta associato ad istanti di tempo successivi. I modelli di analisi delle serie storiche si

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Risoluzione di Equazioni Algebriche Le equazioni algebriche sono equazioni del tipo P(x) = 0 dove P è un polinomio di grado n cioé P(x) = a 1 x n + a 2 x n

Dettagli

Il calcolo del VAR operativo mediante la metodologia stocastica parametrica. Simona Cosma

Il calcolo del VAR operativo mediante la metodologia stocastica parametrica. Simona Cosma Il calcolo del VAR operativo mediante la metodologia stocastica parametrica Simona Cosma Contenuti Il VAR operativo: inquadramento concettuale La metodologia attuariale EVT (Extreme Value Theory) Il VAR

Dettagli

ISTITUTO OMNICOMPRENSIVO ALTO ORVIETANO FABRO PROGRAMMAZIONE ANNUALE MATEMATICA CLASSE II SECONDARIA I GRADO

ISTITUTO OMNICOMPRENSIVO ALTO ORVIETANO FABRO PROGRAMMAZIONE ANNUALE MATEMATICA CLASSE II SECONDARIA I GRADO ISTITUTO OMNICOMPRENSIVO ALTO ORVIETANO FABRO PROGRAMMAZIONE ANNUALE MATEMATICA CLASSE II SECONDARIA I GRADO MACRO INDICA TORI OBIETTIVI DI APPRENDIMENTO Curricolo verticale OBIETTIVI DI APPRENDIMENTO

Dettagli

Programmazione disciplinare per competenze (Rif.to ALLEGATI del DPR 15 marzo 2010 n. 89)

Programmazione disciplinare per competenze (Rif.to ALLEGATI del DPR 15 marzo 2010 n. 89) Programmazione disciplinare per competenze (Rif.to ALLEGATI del DPR 15 marzo 2010 n. 89) Secondo biennio Indirizzo: IPSSAR Disciplina: MATEMATICA 1. 1 Asse culturale: matematico 1. utilizzare il linguaggio

Dettagli

Area di Istruzione Generale Attività e Insegnamenti Generali. Disciplina: MATEMATICA

Area di Istruzione Generale Attività e Insegnamenti Generali. Disciplina: MATEMATICA Area di Istruzione Generale Attività e Insegnamenti Generali Disciplina: MATEMATICA PRIMO BIENNIO Padroneggiare le tecniche e le procedure del calcolo aritmetico ed algebrico e saperle applicare in contesti

Dettagli

Programmazione Dipartimento Area Scientifica T. Rossi A.S. 2015/2016

Programmazione Dipartimento Area Scientifica T. Rossi A.S. 2015/2016 Programmazione Dipartimento Area Scientifica T. Rossi A.S. 2015/2016 INDIRIZZO ISTITUTO TECNICO DISCIPLINA MATEMATICA- Competenze Abilità Conoscenze Utilizzare il linguaggio e i metodi propri della matematica

Dettagli

IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA

IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA Metodi per l Analisi dei Dati Sperimentali AA009/010 IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA Sommario Massima Verosimiglianza Introduzione La Massima Verosimiglianza Esempio 1: una sola misura sperimentale

Dettagli

TEORIA DEI SISTEMI E DEL CONTROLLO LM in Ingegneria Informatica e Ingegneria Elettronica

TEORIA DEI SISTEMI E DEL CONTROLLO LM in Ingegneria Informatica e Ingegneria Elettronica TEORIA DEI SISTEMI E DEL CONTROLLO LM in Ingegneria Informatica e Ingegneria Elettronica http://www.dii.unimore.it/~lbiagiotti/teoriasistemicontrollo.html Stima dello stato in presenza di disturbi: il

Dettagli

Introduzione alle Reti Neurali

Introduzione alle Reti Neurali Introduzione alle Reti Neurali Stefano Gualandi Università di Pavia, Dipartimento di Matematica email: twitter: blog: stefano.gualandi@unipv.it @famo2spaghi http://stegua.github.com Reti Neurali Terminator

Dettagli

SVM. Veronica Piccialli. Roma 11 gennaio 2010. Università degli Studi di Roma Tor Vergata 1 / 14

SVM. Veronica Piccialli. Roma 11 gennaio 2010. Università degli Studi di Roma Tor Vergata 1 / 14 SVM Veronica Piccialli Roma 11 gennaio 2010 Università degli Studi di Roma Tor Vergata 1 / 14 SVM Le Support Vector Machines (SVM) sono una classe di macchine di che derivano da concetti riguardanti la

Dettagli

Naïve Bayesian Classification

Naïve Bayesian Classification Naïve Bayesian Classification Di Alessandro rezzani Sommario Naïve Bayesian Classification (o classificazione Bayesiana)... 1 L algoritmo... 2 Naive Bayes in R... 5 Esempio 1... 5 Esempio 2... 5 L algoritmo

Dettagli

Statistical learning methods for classification and profiling

Statistical learning methods for classification and profiling Statistical learning methods for classification and profiling AGCom Workshop on the impact of online platforms on information freedom and media pluralism: Fake News and Other regulatory challenges Antonio

Dettagli

Problemi, algoritmi, calcolatore

Problemi, algoritmi, calcolatore Problemi, algoritmi, calcolatore Informatica e Programmazione Ingegneria Meccanica e dei Materiali Università degli Studi di Brescia Prof. Massimiliano Giacomin Problemi, algoritmi, calcolatori Introduzione

Dettagli

Luigi Piroddi

Luigi Piroddi Automazione industriale dispense del corso (a.a. 2008/2009) 10. Reti di Petri: analisi strutturale Luigi Piroddi piroddi@elet.polimi.it Analisi strutturale Un alternativa all analisi esaustiva basata sul

Dettagli

Alberi Decisionali Per l analisi del mancato rinnovo all abbonamento di una rivista

Alberi Decisionali Per l analisi del mancato rinnovo all abbonamento di una rivista Alberi Decisionali Per l analisi del mancato rinnovo all abbonamento di una rivista Il problema L anticipazione del fenomeno degli abbandoni da parte dei propri clienti, rappresenta un elemento fondamentale

Dettagli

( ) le colonne della matrice dei coefficienti, con. , risulta A 3 = A 1 + 4A 2 + 4A 5, A 4 = A 1 + A 2,

( ) le colonne della matrice dei coefficienti, con. , risulta A 3 = A 1 + 4A 2 + 4A 5, A 4 = A 1 + A 2, 1 Elementi di Analisi Matematica e Ricerca Operativa prova del 6 luglio 2016 1) Discutere il seguente problema di Programmazione Lineare: Trovare il massimo di p x 1, x 2, x 3, x 4 # x 2 + 4 x 3 + x 4

Dettagli

Parole note, nuovi significati: linguaggio, determinismo e infinito

Parole note, nuovi significati: linguaggio, determinismo e infinito Parole note, nuovi significati: linguaggio, determinismo e infinito Angelo Montanari Dipartimento di Matematica e Informatica Università degli Studi di Udine Ciclo di seminari su un Vocabolario Filosofico

Dettagli

Introduzione al Calcolo Scientifico

Introduzione al Calcolo Scientifico Introduzione al Calcolo Scientifico Francesca Mazzia Dipartimento di Matematica Università di Bari Francesca Mazzia (Univ. Bari) Introduzione al Calcolo Scientifico 1 / 14 Calcolo Scientifico Insieme degli

Dettagli

Informatica Generale 1 - Esercitazioni Flowgraph, algebra di Boole e calcolo binario

Informatica Generale 1 - Esercitazioni Flowgraph, algebra di Boole e calcolo binario Informatica Generale 1 - Esercitazioni Flowgraph, algebra di Boole e calcolo binario Daniele Pighin pighin@fbk.eu FBK Via Sommarive, 18 I-38050 Trento, Italy February 27, 2008 Outline 1 Algebra di Boole

Dettagli

Lez. 8 La Programmazione. Prof. Pasquale De Michele (Gruppo 2) e Raffaele Farina (Gruppo 1) 1

Lez. 8 La Programmazione. Prof. Pasquale De Michele (Gruppo 2) e Raffaele Farina (Gruppo 1) 1 Lez. 8 La Programmazione Prof. Pasquale De Michele (Gruppo 2) e Raffaele Farina (Gruppo 1) 1 Dott. Pasquale De Michele Dott. Raffaele Farina Dipartimento di Matematica e Applicazioni Università di Napoli

Dettagli

Sintesi Sequenziale Sincrona Sintesi Comportamentale di reti Sequenziali Sincrone

Sintesi Sequenziale Sincrona Sintesi Comportamentale di reti Sequenziali Sincrone Sintesi Sequenziale Sincrona Sintesi Comportamentale di reti Sequenziali Sincrone Il problema dell assegnamento degli stati versione del 9/1/03 Sintesi: Assegnamento degli stati La riduzione del numero

Dettagli

Fondamenti di Automatica Prof. Giuseppe Oriolo. Introduzione

Fondamenti di Automatica Prof. Giuseppe Oriolo. Introduzione Fondamenti di Automatica Prof. Giuseppe Oriolo Introduzione cos è automatica: disciplina che studia le modalità attraverso le quali una sequenza di eventi desiderati avviene in maniera autonoma (Wikipedia)

Dettagli

L A B C di R. Stefano Leonardi c Dipartimento di Scienze Ambientali Università di Parma Parma, 9 febbraio 2010

L A B C di R. Stefano Leonardi c Dipartimento di Scienze Ambientali Università di Parma Parma, 9 febbraio 2010 L A B C di R 0 20 40 60 80 100 2 3 4 5 6 7 8 Stefano Leonardi c Dipartimento di Scienze Ambientali Università di Parma Parma, 9 febbraio 2010 La scelta del test statistico giusto La scelta della analisi

Dettagli

Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti

Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti Docente: Anna Valeria Germinario Università di Bari A.V.Germinario (Università di

Dettagli

18/05/2014. Università di Ferrara Corso di Ingegneria del Software AA 2013/2014

18/05/2014. Università di Ferrara Corso di Ingegneria del Software AA 2013/2014 Università di Ferrara Corso di Ingegneria del Software AA 2013/2014 La misura come strumento scientifico Misure, metriche e indicatori Metriche del software Metriche per software orientato agli oggetti

Dettagli

4. Matematica applicata all economia opzione

4. Matematica applicata all economia opzione V. Matematica e scienze sperimentali 171 4. Matematica applicata all economia opzione 4.1. Considerazioni generali 4.1.1. Scopi L opzione ha lo scopo di evidenziare il ruolo della matematica come strumento

Dettagli

Università degli Studi Roma Tre Anno Accademico 2016/2017 ST410 Statistica 1

Università degli Studi Roma Tre Anno Accademico 2016/2017 ST410 Statistica 1 Università degli Studi Roma Tre Anno Accademico 2016/2017 ST410 Statistica 1 Lezione 1 - Mercoledì 28 Settembre 2016 Introduzione al corso. Richiami di probabilità: spazi di probabilità, variabili aleatorie,

Dettagli

TOPOGRAFIA 2013/2014. Prof. Francesco-Gaspare Caputo

TOPOGRAFIA 2013/2014. Prof. Francesco-Gaspare Caputo TOPOGRAFIA 2013/2014 L operazione di misura di una grandezza produce un numero reale che esprime il rapporto della grandezza stessa rispetto a un altra, a essa omogenea, assunta come unità di misura. L

Dettagli

Metodi & Modelli per le Scelte Economiche

Metodi & Modelli per le Scelte Economiche Metodi & Modelli per le Scelte Economiche [domande di teoria utilizzate in passato per la prova scritta le soluzioni NON vengono fornite, occorrerà quindi verificare la esattezza delle diverse possibili

Dettagli

Apprendimento Automatico (Intro)

Apprendimento Automatico (Intro) Apprendimento Automatico (Intro) Fabio Aiolli www.math.unipd.it/~aiolli Sito web del corso www.math.unipd.it/~aiolli/corsi/1617/aa/aa.html Orario 40 ore di lezione in aula (5cfu) 8 ore di laboratorio (1cfu)

Dettagli

Algoritmo di Branch & Bound

Algoritmo di Branch & Bound Sapienza Università di Roma - Dipartimento di Ingegneria Informatica, Automatica e Gestionale Algoritmo di Branch & Bound Docente: Renato Bruni bruni@dis.uniroma.it Corso di: Ottimizzazione Combinatoria

Dettagli

MATEMATICA e COMPLEMENTI di MATEMATICA

MATEMATICA e COMPLEMENTI di MATEMATICA ALLEGATO N.8_b MATEMATICA e COMPLEMENTI di MATEMATICA DESTINATARI gli studenti delle classi: terze e quarte nuovo ordinamento RISULTATI DI APPRENDIMENTO DELL OBBLIGO D ISTRUZIONE, CHIAVE EUROPEA Padroneggiare

Dettagli

Appunti su Indipendenza Lineare di Vettori

Appunti su Indipendenza Lineare di Vettori Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis Dipartimento di Matematica, Informatica e Economia Università della Basilicata a.a. 2014-15 Introduzione La MATEMATICA è uno strumento

Dettagli

L efficienza e la valutazione delle performance Concetti ed introduzione alla D.E.A.

L efficienza e la valutazione delle performance Concetti ed introduzione alla D.E.A. L efficienza e la valutazione delle performance Concetti ed introduzione alla D.E.A. Corso di Economia Industriale Lezione dell 8/01/2010 Valutazione delle peformance Obiettivo: valutare le attività di

Dettagli

Esercizio 1. Esercizio 2

Esercizio 1. Esercizio 2 Sia data la matrice A A(α) = Esercizio α 2 2α 2 2, α R.) determinare per quali valori del parametro reale α é verificata la condizione necessaria e sufficiente di convergenza per il metodo di Jacobi;.2)

Dettagli

Corso di Laurea Specialistica in Ingegneria Informatica

Corso di Laurea Specialistica in Ingegneria Informatica UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI INGEGNERIA Corso di Laurea Specialistica in Ingegneria Informatica Ragionamento Qualitativo e Apprendimento Automatico per l'analisi di Dati di Genomica RELATORE:

Dettagli

Teoria e tecniche dei test

Teoria e tecniche dei test Teoria e tecniche dei test Lezione 9 LA STANDARDIZZAZIONE DEI TEST. IL PROCESSO DI TARATURA: IL CAMPIONAMENTO. Costruire delle norme di riferimento per un test comporta delle ipotesi di fondo che è necessario

Dettagli

MATEMATICA e COMPLEMENTI di MATEMATICA

MATEMATICA e COMPLEMENTI di MATEMATICA ALLEGATO N.8_b MATEMATICA e COMPLEMENTI di MATEMATICA DESTINATARI gli studenti delle classi: terze e quarte nuovo ordinamento RISULTATI DI APPRENDIMENTO DELL OBBLIGO D ISTRUZIONE, CHIAVE EUROPEA Padroneggiare

Dettagli

0 altimenti 1 soggetto trova lavoroentro 6 mesi}

0 altimenti 1 soggetto trova lavoroentro 6 mesi} Lezione n. 16 (a cura di Peluso Filomena Francesca) Oltre alle normali variabili risposta che presentano una continuità almeno all'interno di un certo intervallo di valori, esistono variabili risposta

Dettagli

Esercizi di Programmazione Lineare - Dualità

Esercizi di Programmazione Lineare - Dualità Esercizi di Programmazione Lineare - Dualità Esercizio n1 Dato il seguente problema 3 + 3 2 2 + a scriverne il duale; b risolvere il duale (anche geometricamente indicando cosa da esso si può dedurre sul

Dettagli

Università degli Studi di Roma Tor Vergata

Università degli Studi di Roma Tor Vergata Funzioni kernel Note dal corso di Machine Learning Corso di Laurea Specialistica in Informatica a.a. 2010-2011 Prof. Giorgio Gambosi Università degli Studi di Roma Tor Vergata 2 Queste note derivano da

Dettagli

Maria Prandini Dipartimento di Elettronica e Informazione Politecnico di Milano

Maria Prandini Dipartimento di Elettronica e Informazione Politecnico di Milano Note relative a test di bianchezza rimozione delle componenti deterministiche da una serie temporale a supporto del Progetto di Identificazione dei Modelli e Analisi dei Dati Maria Prandini Dipartimento

Dettagli

Il processo inferenziale consente di generalizzare, con un certo grado di sicurezza, i risultati ottenuti osservando uno o più campioni

Il processo inferenziale consente di generalizzare, con un certo grado di sicurezza, i risultati ottenuti osservando uno o più campioni La statistica inferenziale Il processo inferenziale consente di generalizzare, con un certo grado di sicurezza, i risultati ottenuti osservando uno o più campioni E necessario però anche aggiungere con

Dettagli

Regole associative Mario Guarracino Laboratorio di Sistemi Informativi Aziendali a.a. 2006/2007

Regole associative Mario Guarracino Laboratorio di Sistemi Informativi Aziendali a.a. 2006/2007 Regole associative Mario Guarracino Laboratorio di Sistemi Informativi Aziendali a.a. 26/27 Introduzione Le regole associative si collocano tra i metodi di apprendimento non supervisionato e sono volte

Dettagli

Distribuzione Gaussiana - Facciamo un riassunto -

Distribuzione Gaussiana - Facciamo un riassunto - Distribuzione Gaussiana - Facciamo un riassunto - Nell ipotesi che i dati si distribuiscano seguendo una curva Gaussiana è possibile dare un carattere predittivo alla deviazione standard La prossima misura

Dettagli

Simulazione. D.E.I.S. Università di Bologna DEISNet

Simulazione. D.E.I.S. Università di Bologna DEISNet Simulazione D.E.I.S. Università di Bologna DEISNet http://deisnet.deis.unibo.it/ Introduzione Per valutare le prestazioni di un sistema esistono due approcci sostanzialmente differenti Analisi si basa

Dettagli

3.1 Classificazione dei fenomeni statistici Questionari e scale di modalità Classificazione delle scale di modalità 17

3.1 Classificazione dei fenomeni statistici Questionari e scale di modalità Classificazione delle scale di modalità 17 C L Autore Ringraziamenti dell Editore Elenco dei simboli e delle abbreviazioni in ordine di apparizione XI XI XIII 1 Introduzione 1 FAQ e qualcos altro, da leggere prima 1.1 Questo è un libro di Statistica

Dettagli

Grandezze fisiche e loro misura

Grandezze fisiche e loro misura Grandezze fisiche e loro misura Cos è la fisica? e di che cosa si occupa? - Scienza sperimentale che studia i fenomeni naturali suscettibili di sperimentazione e caratterizzati da entità o grandezze misurabili.

Dettagli