Capitolo III Cenni di cinematica dei fluidi

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Capitolo III Cenni di cinematica dei fluidi"

Transcript

1 Capitolo III Cenni di cinematica dei flidi III. Elementi caratteristici del moto. Nella descriione del moto di n flido è tile far riferimento a particolari famiglie di cre, nel segito sinteticamente descritte. III..-Traiettorie Per traiettoria di n elemento flido si intende il logo geometrico delle posiioni occpate dall elemento drante il moto. La traiettoria del singolo elemento è data in forma parametrica in fnione del tempo e delle coordinate del pnto occpato dall elemento nell istante iniiale: X Y Z (,,, t) (,,, t) (,,, t) () Le coordinate del pnto iniiale ariano nel dominio descriente la configraione del corpo flido nell istante iniiale, fornendo così la famiglia delle traiettorie del corpo flido considerato. In pratica le traiettorie possono essere ottente a partire dalla definiione del ettore spostamento elementare: d dt. In componenti cartesiane si ha: d dt d dt d dt Le traiettorie si ottengono pertanto integrando le (), a partire dalla posiione iniiale. III..-Linee di flsso Si consideri, in n dato istante t, il campo di elocità del corpo flido, caratteriato in ogni pnto da modlo, direione e erso. Le linee tangenti in ogni loro pnto al ettore elocità sono dette linee di flsso. L eqaione delle linee di flsso è fornita dalla condiione di parallelismo imposta tra il ettore di elocità (di componenti cartesiane,, ) e il ettore elemento d arco ds (di componenti cartesiane d, d, d) della linea di flsso considerata: ds ( 3) Tale condiione, tiliando le componenti cartesiane dei ettori, assme la segente espressione: d d d ( 4) Si ricorda infatti che il prodotto ettoriale tra de ettori, ds pò essere calcolato per componenti tramite lo silppo i j k del determinante: rispetto agli elementi della prima riga. Si ha pertanto: d d d ds ( d d) i ( d d) j ( d d)k. Imponendo che le tre componenti siano nlle si ottiene la condiione (4).

2 La conformaione delle linee di flsso aria da istante a istante: solo se il moto è permanente, la famiglia delle linee di flsso resta costante e coincide con la famiglia delle traiettorie. III..3-Linee di emissione o di fmo Si consideri n pnto fisso P rispetto al corpo flido in moimento. Ad n dato istante t si consideri il logo geometrico dei pnti occpati dagli elementi flidi passati per il pnto fisso P, negli istanti che precedono t. Tale logo geometrico è detto linea di emissione o di fmo, all istante considerato. La conformaione delle linee di emissione aria da istante a istante. Se il moto è permanente la famiglia delle linee di emissione coincide con la famiglia delle traiettorie. III. Il campo di elocità nell intorno di n pnto. Si consideri n pnto P all interno di n corpo flido, definito dal ettore posiione. Sia la elocità in tale pnto. La elocità nell intorno di P, ossia nella posiione indiidata dal ettore d, di componenti d,d,d, pò essere espressa dalla: ( d, d, d) (,,) d d d () 5 in ci l espansione in serie di Talor iene arrestata al primo ordine e il resto iene trascrato. Per semplicità di notaione si è omessa la dipendena esplicita dal tempo. Si noti che dalla (5) si ricaa la ariaione spaiale del ettore elocità, espressa come na combinaione lineare delle se deriate spaiali con coefficienti le qantità infinitesime d,d,d: d ( d, d, d) (,,) d d d ( 6) d, in qanto è la differena delle elocità agli estremi del segmento d di componenti d,d,d (figra III.) rappresenta fisicamente la ariaione nel tempo di qest ltimo: ossia la elocità con ci si deforma. (d) d P d () d(d)- () (d) -() Figra III. Rappresentaione della ariaione di elocità nell intorno del pnto P. Le componenti cartesiane di d sono date da:

3 3 7 d d d d d d d d d d d d Le qali possono essere iste come il risltato del prodotto (riga per colonna) della matrice: () 8 per il ettore colonna di componenti d,d,d. La matrice (8) pò essere decomposta nel segente modo, con semplici operaioni di somma e sottraione: (9) Si osseri che la prima matrice a secondo membro è na matrice simmetrica, mentre la seconda matrice a secondo membro è anti-simmetrica: ossia l elemento appartenente alla i ma riga e j ma colonna (con i dierso da j) ha modlo gale e segno opposto all elemento appartenente alla j ma riga e i ma colonna. Gli elementi delle righe della matrice (8) coincidono con le componenti cartesiane del gradiente delle componenti cartesiane della elocità. Tale matrice iene pertanto indicata come grad(). Le matrici a secondo membro della (9) engono indicate rispettiamente con i simboli D,W i ci elementi d ω, si possono ottenere dalle espressioni (9), per confronto:

4 d, d ω ω, d, d ω, ω ω Si ha pertanto: grad D W espressa dalla: d, d, ω ω d, d d, ω ω. Di consegena la ariaione spaiale di elocità (6) pò essere d Dd Wd d grad Gli elementi d. ω hanno dimensioni fisiche coincidenti con qelle di na elocità per nità di lnghea (s - ). Il loro significato fisico pò essere illstrato considerandone separatamente gli effetti s n corpo flido definito in modo opportno. A tale scopo si consideri n elemento flido piano, di forma circolare, di raggio dr, centrato attorno nell origine degli assi (figra III.). Poichè l elemento flido è piano, non dipende dalla coordinata. ddr cos(α) α ddr sin(α) Figra III.. L elemento flido circolare Si spponga inoltre che l nico coefficiente non nllo sia d e si calcoli l incremento di elocità si pnti della circonferena. Applicando la () e tenendo conto del fatto che: d dr cos α, d dr sin α, si ha: d d d dr cos La ariaione di elocità tende a far contrarre o dilatare l elemento flido nella direione dell asse a seconda che sia: d > o d <. In figra III.3 è rappresentata schematicamente la ariaione di elocità dota ad n d >. Analogo risltato si arebbe ato con d, con na 4

5 ariaione di elocità diretta come l asse delle, di dilataione o contraione per l elemento, a seconda che: d > o d <. d dr cos Figra III.3. Variaione di elocità di pra dilataione. Si spponga ora che l nico coefficiente non nllo sia d e si calcoli l incremento di elocità si pnti della circonferena. Applicando la () si ottengono le segenti componenti della ariaione di elocità: d d d d d d d d dr sin dr cos ( 3) illstrate schematicamente in figra III.4: d d dr cos d d dr sin Figra III.4. Variaione di elocità di pra distorsione Il campo di elocità (3) tende a far cambiare forma all elemento flido, ma non ne altera il olme: si tratta perciò di n campo di elocità di pra distorsione. 5

6 Infine si spponga che l nico coefficiente non nllo sia componenti di elocità risltano le segenti: d ω d ω dr sin d ω d ω dr cos ω e che ω < : le ( 4) illstrate schematicamente in figra III.5: d ω dr cos d ω dr sin Figra III.5. Campo di elocità di pra rotaione. L effetto è qello di tendere a far rotare l elemento flido, sena ariarne il olme e la forma. Si tratta perciò dell effetto tipico di n campo di elocità di rotaione rigida. I risltati così ottenti possono essere generaliati: gli elementi d, d, d, generano campi di elocità di pra dilataione o contraione nelle direioni,, ; gli elementi d, d, d, generano campi di elocità di pra distorsione, sena ariaione di olme, si piani,, ; gli elementi ω, ω, ω generano campi di elocità di rotaione di corpo rigido si piani,,; Vale la pena soffermarsi breemente sl contribto dato dalla rotaione rigida. La elocità si pnti esterni dell elemento circolare pò essere definita come il prodotto ettoriale di n ettore elocità di rotaione Ω, perpendicolare al piano, e del ettore posiione d del pnto slla circonferena. Definendo il ettore Ω come: i Ω j k k ( 5) La ariaione di elocità rislta espressa dalla: 6

7 7 6 d Ω d Il discorso pò essere generaliato al caso di moti tridimensionali, definendo il ettore Ω come: 7 k j i k j i Ω Il ettore Ω, le ci componenti sono definite dalla (7), pò essere isto come la elocità di rotaione rigida definita nel pnto occpato dall elemento flido ed è definito dal prodotto ettoriale del ettore nabla per il ettore elocità o rotore della elocità: 8 Ω Il ettore Ω è detto orticità. Va fatta infine na importante osseraione. Ttti i risltati consegiti, in particolare le definiioni degli elementi delle matrici e delle componenti di Ω algono in n riferimento cartesiano ortogonale. In riferimenti differenti (ad esempio sferico o cilindrico) ciò che si consera è la linearità della relaione tra il campo di elocità nell intorno di n pnto e il ettore spostamento che definisce l intorno del pnto, mentre le espressioni delle singole componenti di D,W e Ω ariano a seconda del sistema di riferimento adottato.

Corso di Chimica-Fisica A.A. 2008/09. Prof. Zanrè Roberto Oggetto: corso chimica-fisica. Esercizi: i Vettori

Corso di Chimica-Fisica A.A. 2008/09. Prof. Zanrè Roberto   Oggetto: corso chimica-fisica. Esercizi: i Vettori Corso di Chimica-Fisica A.A. 2008/09 Prof. Zanrè Roberto E-mail: roberto.anre@gmail.com ggetto: corso chimica-fisica Esercii: i Vettori Appnti di leione Indice Somma di vettori 2 Differena di vettori 3

Dettagli

) di componenti: dx,dy, dz, uscenti da. Dopo la deformazione, essi sono stati trasformati in una terna di elementi

) di componenti: dx,dy, dz, uscenti da. Dopo la deformazione, essi sono stati trasformati in una terna di elementi DEFORMAZON 6. DEFORMAZON Si è visto che le eqaioni che esprimono l eqilibrio, le qali sono indipendenti dalla deformaione del corpo, sono indeterminate. Qindi il problema del corpo rigido, per il qale

Dettagli

CINEMATICA DEI CONTINUI. Versione provvisoria

CINEMATICA DEI CONTINUI. Versione provvisoria CINEMATICA DEI CONTINUI Versione proisoria Si consideri n meo contino i ci pnti nella configraione iniiale C siano riferiti alla terna cartesiana ortogonale O. Si spponga ora che ciascn pnto del corpo

Dettagli

Vettori. Un vettore il cui modulo è uguale a zero è detto vettore nullo ed è notato 0 G. vettori pag. 1

Vettori. Un vettore il cui modulo è uguale a zero è detto vettore nullo ed è notato 0 G. vettori pag. 1 Vettori La noione di ettore, cioè di segmento orientato di retta, che pò rappresentare la grandea e la direione di na fora, di na elocità o di n acceleraione, entrò nella matematica discretamente. Aristotele

Dettagli

2. ANALISI DELLA DEFORMAZIONE

2. ANALISI DELLA DEFORMAZIONE . ANALISI DELLA DEFORMAZIONE Un elemento monodimensionale soggetto ad na forza di trazione o compressione sbisce na variazione di lnghezza Δl (rispettivamente n allngamento o n accorciamento) rispetto

Dettagli

23(5$725,',))(5(1=,$/,9(7725,$/,/,1($5,'(/35,0225',1(

23(5$725,',))(5(1=,$/,9(7725,$/,/,1($5,'(/35,0225',1( 3(5$75,',))(5(1,$/,9(775,$/,/,1($5,'(/35,05',1( Sia Ω na regione nello spaio in ci, in ogni so pnto, sia definita na grandea J. La regione Ω si dice allora soggetta ad n campo. Un campo pò essere scalare,

Dettagli

+ + = 3 = = = + + ESERCIZIO 4A: Calcolare l antitrasformata Zeta della seguente funzione F(z)

+ + = 3 = = = + + ESERCIZIO 4A: Calcolare l antitrasformata Zeta della seguente funzione F(z) ESERCIZIO : Calcolare l antitrasformata Zeta della segente fnione F F La fnione F è raionale fratta col denominatore di grado maggiore del grado del nmeratore. La procedra di antitrasformaione consiste

Dettagli

,1752'8=,21($//2678',2'(,&$03,

,1752'8=,21($//2678',2'(,&$03, ,175'8,1($//678','(,&$03, Sia Ω na regione nello spaio in ci, in ogni so pnto, sia definita na grandea J. La regione Ω si dice allora soggetta ad n campo. Un campo pò essere scalare, vettoriale o tensoriale,

Dettagli

I VETTORI DELLO SPAZIO

I VETTORI DELLO SPAZIO I VETTORI DELLO SPAZIO Riferimento cartesiano ortogonale nello spaio Bisogna assegnare nello spaio un punto O (detto origine e tre rette per esso a due a due perpendicolari e orientate in modo concorde

Dettagli

7. Integrazione delle funzioni di più variabili (II)

7. Integrazione delle funzioni di più variabili (II) 7. Integraione delle funioni di più variabili (II) http://eulero.ing.unibo.it/~baroi/scam/scam-tr.7b.pdf 7.5 Area del parallelogramma costruito su due vettori. Volume del parallelepipedo costruito su tre

Dettagli

Lezione 2 Teoria dei vettori Sistemi di forze

Lezione 2 Teoria dei vettori Sistemi di forze 1 Facoltà di Ingegneria di Messina Corso di Scienza delle Costrzioni 1 Lezione 2 Teoria dei ettori Sistemi di forze Prof. Ing.. Giseppe Ricciardi A.A. 2010-2011 2011 2 Teoria dei ettori 3 Teoria dei ettori

Dettagli

Controlli automatici

Controlli automatici Controlli atomatici Sistemi a tempo discreto Prof. Paolo Rocco (paolo.rocco@polimi.it) Politecnico di Milano Dipartimento di Elettronica, Informaione e Bioingegneria Introdione Un sistema dinamico a tempo

Dettagli

Appunti di Meccanica dei Fluidi M. Tregnaghi

Appunti di Meccanica dei Fluidi M. Tregnaghi M. regnaghi 0. CINEMAICA: ENSORE DELLE VELOCIÀ DI DEFORMAZIONE ENSORE DEVIAORE DEGLI SFORZI Il tensore degli sfori può essere scritto come la somma di un tensore sferico (caso idrostatico) e di un tensore

Dettagli

UNIVERSITA POLITECNICA DELLE MARCHE. FACOLTA di INGEGNERIA. DIPARTIMENTO di SCIENZE MATEMATICHE

UNIVERSITA POLITECNICA DELLE MARCHE. FACOLTA di INGEGNERIA. DIPARTIMENTO di SCIENZE MATEMATICHE UNIVERSITA POLITECNICA ELLE MARCHE ACOLTA di INENERIA IPARTIMENTO di SCIENZE MATEMATICHE ANALISI II CALCOLO IERENZIALE Uniersità Politecnica delle Marce acoltà Ingegneria ipartimento Sciene Matematice

Dettagli

Prodotto Cross. Prodotto Vettoriale ("cross-product", "external product"): Proprietà. Prodotto cross

Prodotto Cross. Prodotto Vettoriale (cross-product, external product): Proprietà. Prodotto cross Marco Tarini - Grafica comptaionale Leione 3 1 M a r c o T a r i n i C o m p t e r G r a p h i c s 2 0 1 6 / 1 7 U n i e r s i t à d e l l I n s b r i a Prodotto Cross Prodotto Vettoriale "cross-prodct",

Dettagli

Funzioni di più variabili a valori vettoriali n t m

Funzioni di più variabili a valori vettoriali n t m Funzioni di più variabili a valori vettoriali n t m Definizione f(x 1, x 2,...x n )=[f 1 (x 1, x 2,...x n ), f 2 (x 1, x 2,...x n ),...f m (x 1, x 2,...x n )] Funzione definita n d m Dove: n = dominio

Dettagli

che sommato ai vettori v

che sommato ai vettori v CALCOLO VETTORIALE EX 1 Due vettori a e b soddisfano le seguenti condiioni: i) a b 1, ii) ( a + b ) a 1, iii) ( a + b ) b 8. Calcolare i moduli dei vettori e l angolo compreso. EX Un vettore a di modulo

Dettagli

INGEGNERIA DELLE TELECOMUNICAZIONI

INGEGNERIA DELLE TELECOMUNICAZIONI INGEGNERIA DELLE TELECOMUNICAZIONI FONDAMENTI DI AUTOMATICA Prof. Marcello Farina ESERCIZI SUGLI SCHEMI A BLOCCHI ESERCIZIO 1 Si consideri il segente schema a blocchi: v dove a) Si calcoli la fnione di

Dettagli

Cenni di geometria differenziale delle superfici.

Cenni di geometria differenziale delle superfici. Cenni di geometria differenziale delle superfici. 1. Superfici parametrizzate nello spazio. Definizione. Una superficie parametrizzata in IR 3 è un applicazione S: Ω IR 3, (u, S 1(u, S 2 (u,, S 3 (u, doe

Dettagli

EQUAZIONE DELLA RETTA

EQUAZIONE DELLA RETTA EQUAZIONE DELLA RETTA EQUAZIONE DEGLI ASSI L equazione dell asse x è 0. L equazione dell asse y è 0. EQUAZIONE DELLE RETTE PARALLELE AGLI ASSI L equazione di una retta r parallela all asse x è cioè è uguale

Dettagli

Elementi di calcolo vettoriale

Elementi di calcolo vettoriale Mathit Elementi di calcolo ettoriale Nozione di ettore Grandezze ettoriali e grandezze scalari Segmenti orientati e ettori Definizioni Operazioni con i ettori Somma e differenza di ettori Moltiplicazione

Dettagli

S.Barbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie. Cap. 2. Cinematica del punto

S.Barbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie. Cap. 2. Cinematica del punto SBarbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie Cap 2 Cinematica del punto 21 - Posizione, velocitá e accelerazione di una particella La posizione di una particella puó essere definita, ad

Dettagli

(x B x A, y B y A ) = (4, 2) ha modulo

(x B x A, y B y A ) = (4, 2) ha modulo GEOMETRIA PIANA 1. Esercizi Esercizio 1. Dati i punti A(0, 4), e B(4, ) trovarne la distanza e trovare poi i punti C allineati con A e con B che verificano: (1) AC = CB (punto medio del segmento AB); ()

Dettagli

Vettori, tensori e matrici

Vettori, tensori e matrici Vettori, tensori e matrici Gianni Comini 22 febbraio 2013 1 Introduzione In gran parte dei testi di termofluidodinamica, le espressioni compatte delle equazioni di conserazione e trasporto sono riportate

Dettagli

CORSO DI COMPLEMENTI DI MECCANICA. Prof. Vincenzo Niola

CORSO DI COMPLEMENTI DI MECCANICA. Prof. Vincenzo Niola CORSO DI COMPLEMENTI DI MECCANICA Prof. Vincenzo Niola SISTEMI A DUE GRADI DI LIBERTÀ Lo studio dei sistemi a più gradi di libertà verrà affrontato facendo riferimento, per semplicità, solo a sistemi conservativi,

Dettagli

Geometria nello spazio

Geometria nello spazio Geometria nello spaio Operaioni con i ettori Siano dati due ettori Modulo di un ettore e e k R. Addiione e sottraione Se : Se : rodotto per uno scalare k k k k k k k k Due ettori sono paralleli se e solo

Dettagli

Introduzione. Supponiamo di avere una generatore di forza elettromotrice sinusoidale E, dotato di impedenza interna zg, collegato ad un carico z L:

Introduzione. Supponiamo di avere una generatore di forza elettromotrice sinusoidale E, dotato di impedenza interna zg, collegato ad un carico z L: Appnti di ampi elettromagnetici apitolo 8 parte III inee di trasmissione I PROBEMA DE ADATTAMENTO... 1 Introdione... 1 Gli adattatori di impedena... 4 Adattamento mediante linea lnga λ/4... 4 Adattamento

Dettagli

Corso di Fisica tecnica e ambientale a.a. 2011/ Docente: Prof. Carlo Isetti

Corso di Fisica tecnica e ambientale a.a. 2011/ Docente: Prof. Carlo Isetti CENNI DI CINEMATICA.1 GENERALITÀ La cinematica studia il moto dei corpi in relazione allo spazio ed al tempo indipendentemente dalle cause che lo producono. Un corpo si muove quando la sua posizione relativa

Dettagli

Esercizi commentati sugli schemi a blocchi

Esercizi commentati sugli schemi a blocchi Esercizi commentati sgli schemi a blocchi rno Picasso 1 Notazione e preliminari 1.1 Notazione on T 2 1 (s) iene indicata la fnzione di trasferimento dalla ariabile 1 alla ariabile 2. Se in n nodo della

Dettagli

COMUNICAZIONE OPZIONE SPORTIVA QUESTIONARIO QUESITO 1

COMUNICAZIONE OPZIONE SPORTIVA QUESTIONARIO QUESITO 1 www.matefilia.it COMUNICAZIONE OPZIONE SPORTIVA 2016 - QUESTIONARIO QUESITO 1 È noto che e x2 dx = π. Stabilire se il nmero reale, tale che e x2 dx = 1, è positivo o negativo. Determinare inoltre i valori

Dettagli

Soluzione degli esercizi della seconda prova in itinere di Meccanica del 13/01/2017

Soluzione degli esercizi della seconda prova in itinere di Meccanica del 13/01/2017 Soluione degli esercii della seconda prova in itinere di eccanica del 13/01/017 Eserciio 1 Un punto materiale di massa m 1 si muove con velocità di modulo v 1,i in direione 1,i rispetto alla direione x,

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI orso 01/013 METODO DEGI EEMENTI FINITI Analisi di Problemi di Instabilità (ckling) Il fenomeno dell'instabilità rigarda i corpi con almeno na dimensione molto piccola rispetto alle altre (ad esempio na

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO

UNIVERSITÀ DEGLI STUDI DI TERAMO UNIVERSITÀ DEGLI STUDI DI TERAMO CORSO DI LAUREA IN TUTELA E BENESSERE ANIMALE Corso di : FISICA MEDICA A.A. 015 /016 Docente: Dott. Chiucchi Riccardo mail:rchiucchi@unite.it Medicina Veterinaria: CFU

Dettagli

GRAFICI DI RETTE. Calcolando i valori delle coordinate è possibile trovare i punti e disegnare il grafico di una qualsiasi relazione come y = 2x 5.

GRAFICI DI RETTE. Calcolando i valori delle coordinate è possibile trovare i punti e disegnare il grafico di una qualsiasi relazione come y = 2x 5. GRAFICI DI RETTE Calcolando i valori delle coordinate è possibile trovare i pnti e disegnare il grafico di na qalsiasi relazione come = 2 5. ESEMPIO 1 - a. Completa le segenti coppie di coordinate relative

Dettagli

LICEO SCIENTIFICO 2016 - QUESTIONARIO QUESITO 1

LICEO SCIENTIFICO 2016 - QUESTIONARIO QUESITO 1 www.matefilia.it LICEO SCIENTIFICO 2016 - QUESTIONARIO QUESITO 1 È noto che e x2 dx = π. Stabilire se il nmero reale, tale che e x2 dx = 1, è positivo o negativo. Determinare inoltre i valori dei segenti

Dettagli

Costruzione di Interfacce Lezione 4 Sistemi di riferimento e trasformazioni. cignoni@iei.pi.cnr.it http://vcg.iei.pi.cnr.

Costruzione di Interfacce Lezione 4 Sistemi di riferimento e trasformazioni. cignoni@iei.pi.cnr.it http://vcg.iei.pi.cnr. Costruzione di Interfacce Lezione 4 Sistemi di riferimento e trasformazioni cignoni@iei.pi.cnr.it http://cg.iei.pi.cnr.it/~cignoni Introduzione Punti e ettori sono due cose dierse Basi e sistemi di riferimento

Dettagli

CINEMATICA a.s.2007/08 Classe III C Scuola Media Sasso Marconi. SINTESI E APPUNTI Prof.ssa Elena Spera

CINEMATICA a.s.2007/08 Classe III C Scuola Media Sasso Marconi. SINTESI E APPUNTI Prof.ssa Elena Spera CINEMATICA a.s.2007/08 Classe III C Scuola Media Sasso Marconi SINTESI E APPUNTI Prof.ssa Elena Spera 1 SISTEMI DI RIFERIMENTO Il moto è relatio Ogni moto a studiato dopo aere fissato un sistema di riferimento,

Dettagli

7. Forze elastiche. Nella figura 1 il periodo è T = 2s e corrisponde ad un moto unidimensionale limitato tra i valori x = 0 ed x = 1.

7. Forze elastiche. Nella figura 1 il periodo è T = 2s e corrisponde ad un moto unidimensionale limitato tra i valori x = 0 ed x = 1. 1 Moti periodici 7. Forze elastiche Un caso particolare di moto accelerato è un moto periodico. In figura 1 è riportato un esempio di moto periodico unidimensionale. Un moto periodico si ripete identicamente

Dettagli

I CAMPI VETTORIALI Antonio Meloni (Per gli studenti di Introduzione alla Fisica della Terra Solida di Roma Tre, AA 05/06)

I CAMPI VETTORIALI Antonio Meloni (Per gli studenti di Introduzione alla Fisica della Terra Solida di Roma Tre, AA 05/06) e engono I CMPI VTTORILI ntonio Meloni Per gli studenti di Introduione alla Fisica della Terra olida di Roma Tre, 05/06 1 Introduione In questa nota engono introdotti i campi ettoriali al solo scopo di

Dettagli

Lezione 19 Propagazione di onde EM in un plasma freddo in presenza di campo magnetico

Lezione 19 Propagazione di onde EM in un plasma freddo in presenza di campo magnetico Leione 19 Propagaione di onde M in un plasma freddo in presena di campo magnetico G. Bosia Universita di Torino 1 Derivaione della relaione di dispersione In questa leione studiamo la propagaione di un

Dettagli

Insegnamento di SCIENZA DELLE COSTRUZIONI (12 CFU) Docente: Ing. Salvatore Sergio Ligarò

Insegnamento di SCIENZA DELLE COSTRUZIONI (12 CFU) Docente: Ing. Salvatore Sergio Ligarò Uniersità degli Stdi di isa nno ccademico orso di area in Ingegneria dile (oo Ordinamento) Insegnamento di SIZ D OSRUZIOI ( U) Docente: Ing. Salatore Sergio igarò (per segnalaioni e sggerimenti contattare

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche

Dettagli

LE EQUAZIONI DI MAXEWLL (Propedeutiche all Introduzione alle Teorie Dinamo) Antonio Meloni. Geofisica Generale ed Applicata. Univ. Roma Tre,

LE EQUAZIONI DI MAXEWLL (Propedeutiche all Introduzione alle Teorie Dinamo) Antonio Meloni. Geofisica Generale ed Applicata. Univ. Roma Tre, LE EQUAZIONI DI MAXEWLL (Propedeutiche all Introduzione alle Teorie Dinamo) Antonio Meloni Geofisica Generale ed Applicata Uni. Roma Tre, 2012-2013 (15 pagine) Le equazioni di Maxwell Le equazioni di Maxwell

Dettagli

VETTORI E SCALARI DEFINIZIONI. Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura.

VETTORI E SCALARI DEFINIZIONI. Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura. VETTORI E SCALARI DEFINIZIONI Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura. Un vettore è invece una grandezza caratterizzata da 3 entità:

Dettagli

I MOTI NEL PIANO. Vettore posizione e vettore spostamento

I MOTI NEL PIANO. Vettore posizione e vettore spostamento I MOTI NEL IANO Vettore posizione e vettore spostamento Si parla di moto in un piano quando lo spostamento non avviene lungo una retta, ma in un piano, e può essere descritto usando un sistema di riferimento

Dettagli

= τ MOTO ROTOTRASLATORIO DI UN CORPO RIGIDO. Equazioni cardinali. Prima equazione cardinale:

= τ MOTO ROTOTRASLATORIO DI UN CORPO RIGIDO. Equazioni cardinali. Prima equazione cardinale: MOTO ROTOTRASLATORO D UN CORPO RGDO Equaioni cardinali Prima equaione cardinale: dv c M Fet Esprime il teorema del moto del centro di massa: il moto del centro di massa del corpo rigido è quello di un

Dettagli

Processi di Deposizione

Processi di Deposizione Modelli di Dispersione degli Inqinanti in Aria 011 Parte 6 Processi di Deposiione dott. Roberto Soi dott. Andrea Bolignano li inqinanti emessi nel PBL, drante la loro dispersione in aria sbiscono processi

Dettagli

17. Elettromagnetismo

17. Elettromagnetismo 1 quaioni di Mawell 17. lettromagnetismo Nelle leioni precedenti abbiamo considerato i campi elettrico e magnetico statici, cioè abbiamo considerato fenomeni indipendenti dal tempo. I campi elettrico e

Dettagli

Equazione cartesiana della parabola con asse di simmetria parallelo all'asse delle ordinate Siano F(x F; y

Equazione cartesiana della parabola con asse di simmetria parallelo all'asse delle ordinate Siano F(x F; y LEZIONI PARABOLA Definizione Si definisce parabola il luogo geometrico dei punti del piano equidistanti da un punto fisso,, detto fuoco, e da una retta fissa, d, detta direttrice. La definizione data mette

Dettagli

Dinamica Rotazionale

Dinamica Rotazionale Dinamica Rotazionale Richiamo: cinematica rotazionale, velocità e accelerazione angolare Energia cinetica rotazionale: momento d inerzia Equazione del moto rotatorio: momento delle forze Leggi di conservazione

Dettagli

LEZIONE 7. k definiamo prodotto scalare di v e w il numero. = v x w x + v y w y + v z w z. w z

LEZIONE 7. k definiamo prodotto scalare di v e w il numero. = v x w x + v y w y + v z w z. w z LEZINE 7 7.1. Prodotto scalare. Fissiamo un sistema di riferimento ı j k in S 3. Dati i ettori geometrici = ı + y j + k e w = w ı + j + k definiamo prodotto scalare di e w il numero, w = ( y ) w = + y

Dettagli

LE TRASFORMAZIONI CONFORMI E L EQUAZIONE DI LAPLACE

LE TRASFORMAZIONI CONFORMI E L EQUAZIONE DI LAPLACE LE TRASFORMAZIONI CONFORMI E L EQUAZIONE DI LAPLACE Un alto potente metodo pe deteminae le solioni dell eqaione di Laplace si basa slla teoia delle nioni analitiche Anche in qesto caso si tilieà n appoccio

Dettagli

A UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 13 giugno 2011

A UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 13 giugno 2011 A UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Stdi in Ingegneria Informatica Ricerca Operativa Seconda prova intermedia gigno Nome: Cognome: Matricola: voglio sostenere la prova orale il giorno venerdì //

Dettagli

Nota sull iperbole equilatera

Nota sull iperbole equilatera Paolo iviglia Nota sll iperbole eqilatera Un eqazione del tipo = rappresenta na crva detta iperbole eqilatera, la qale è costitita da de rami sitati nel primo e terzo qadrante se > 0, nel secondo e qarto

Dettagli

Vettori. May 24, 2015

Vettori. May 24, 2015 Vettori May 24, 2015 1 Vettori geometrici Richiamo breemente gli aspetti geometrici della teoria dei ettori nel piano e nello spazio (tridimensionale). Ricordo che n ettore è na grandezza caratterizzata

Dettagli

ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3d (ultima modifica 01/10/2012)

ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3d (ultima modifica 01/10/2012) ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3d (ultima modifica 01/10/01) Soluioni di problemi elettrostatici I problemi elettrostatici riguardano lo studio degli effetti delle cariche

Dettagli

Teoria dei mezzi continui

Teoria dei mezzi continui Teoria dei mezzi continui Il modello di un sistema continuo è un modello fenomenologico adatto a descrivere sistemi fisici macroscopici nei casi in cui le dimensione dei fenomeni osservati siano sufficientemente

Dettagli

Capitolo II VETTORI GEOMETRICI E SISTEMI DI RIFERIMENTO

Capitolo II VETTORI GEOMETRICI E SISTEMI DI RIFERIMENTO Capitolo II VETTRI GEMETRICI E SISTEMI DI RIFERIMENT 1. Vettori applicati Il lettore arà certamente familiarità col concetto di ettore, usato nei corsi di fisica per indiiduare alcune grandezze (elocità,

Dettagli

La meccanica quantistica come modello matematico.

La meccanica quantistica come modello matematico. La meccanica qantistica come modello matematico. (Da I fondamenti concettali della meccanica qantistica di Abner Shimony, La nova Fisica a cra di Pal Davis Bollati Boringhieri ). A) La conoscena dello

Dettagli

Fenomeni di rotazione

Fenomeni di rotazione Fenomeni di rotazione Si e visto che nel caso di un fluido, data la proprietà di deformarsi quando sottoposti a sforzi di taglio, gli angoli di rotazione di un elemento di fluido rispetto ad sistema di

Dettagli

Cinematica ed equilibrio del corpo rigido

Cinematica ed equilibrio del corpo rigido omportamento meccanico dei materiali inematica piana omportamento meccanico dei materiali inematica ed equilibrio del corpo rigido inematica piana Equilibrio esterno aratteristiche di sollecitazione 2

Dettagli

Sfera in E 3 (R) x 2 +y 2 +z 2 +ax+by+cz+d=0 a,b,c,d R di centro e raggio

Sfera in E 3 (R) x 2 +y 2 +z 2 +ax+by+cz+d=0 a,b,c,d R di centro e raggio Sfera in E 3 (R) x axbcd a,b,c,d R di centro e raggio a b c 1 C,, r a b c 4d Oppure (x-x c ) (- c ) (- c ) r Eserciio 1 Determinare, se esiste,l equaione della sfera passante per O(,,), (-,,), B(,6,) e

Dettagli

Modelli di Dispersione degli Inquinanti in Aria 2011 Richiami di Micrometeorologia

Modelli di Dispersione degli Inquinanti in Aria 2011 Richiami di Micrometeorologia Modelli di Dispersione degli Inqinanti in Aria 011 Richiami di Micrometeorologia dott. Roberto Soi dott. Andrea Bolignano Casa Prima dell inqinamento atmosferico Emissioni di inqinanti di origine - Antropica

Dettagli

Dinamica del corpo rigido

Dinamica del corpo rigido Dinamica del corpo rigido Antonio Pierro Definizione di corpo rigido Moto di un corpo rigido Densità Momento angolare Momento d'inerzia Per consigli, suggerimenti, eventuali errori o altro potete scrivere

Dettagli

Lezione 8 Dinamica del corpo rigido

Lezione 8 Dinamica del corpo rigido Lezione 8 Dinamica del corpo rigido Argomenti della lezione:! Corpo rigido! Centro di massa del corpo rigido! Punto di applicazione della forza peso! Punto di applicazione della forza peso! Momento della

Dettagli

Esercitazione di Analisi Matematica II

Esercitazione di Analisi Matematica II Esercitazione di Analisi Matematica II Barbara Balossi 06/04/2017 Esercizi di ripasso Esercizio 1 Sia data l applicazione lineare f : R 3 R 3 definita come f(x, y, z) = ( 2x + y z, x 2y + z, x y). a) Calcolare

Dettagli

Prof. R. Capone Esercitazioni di Matematica IV Corso di studi in Matematica

Prof. R. Capone Esercitazioni di Matematica IV Corso di studi in Matematica Forme differeniali lineari in tre variabili Sia Ω R 3 un insieme aperto e siano, B, C: Ω R funioni continue in Ω. Consideriamo la forma differeniale ω in Ω ω = (, y, )d + B(, y, )dy + C(, y, )d Si dice

Dettagli

2

2 1 2 3 4 5 6 7 Esempi di atto di moto rotatorio Consideriamo un disco che ruota attorno al centro fisso. Sia R il raggio del disco e P il punto generico della periferia. j v P v = wl(p-) = f kl(p-) P i

Dettagli

Geometria BATR-BCVR Esercizi 9

Geometria BATR-BCVR Esercizi 9 Geometria BATR-BCVR 2015-16 Esercizi 9 Esercizio 1. Per ognuna delle matrici A i si trovi una matrice ortogonale M i tale che Mi ta im sia diagonale. ( ) 1 1 2 3 2 A 1 = A 2 1 2 = 1 1 0 2 0 1 Esercizio

Dettagli

IL PROGETTO DELLE ARMATURE

IL PROGETTO DELLE ARMATURE Capitolo 4 IL PROGETTO DELLE ARATURE 4.1 Armatre a flessione dei traversi Per la progettazione delle armatre a sezione assegnata si fa normalmente riferimento alle eqazioni di eqilibrio interno (alla traslazione

Dettagli

Coordinate 3D. Coordinate cartesiane. Coordinate 3D. Coordinate cartesiane. Coordinate cartesiane. Sinistrorsa. Destrorsa

Coordinate 3D. Coordinate cartesiane. Coordinate 3D. Coordinate cartesiane. Coordinate cartesiane. Sinistrorsa. Destrorsa 200 Coordinate D Anche nella grafica D gli oggetti da visualiare vengono codificati a partire da primitive che collegano punti. I punti appartengono ad uno spaio tridimensionale. Vengono memoriati utiliando

Dettagli

Le trasformazioni geometriche nel piano cartesiano. x = ϕ(x', y') τ 1 : G(x', y') = 0. la sua inversa.

Le trasformazioni geometriche nel piano cartesiano. x = ϕ(x', y') τ 1 : G(x', y') = 0. la sua inversa. τ : P P' oppure P'=τ(P) P immagine di P trasformato di P secondo τ se α è una figura geometrica α =τ(α) è la figura geometrica trasformata x' = f (x, y) τ : y' = g(x, y) espressione analitica della trasformazione

Dettagli

Compito di Meccanica Razionale M-Z

Compito di Meccanica Razionale M-Z Compito di Meccanica Razionale M-Z 11 giugno 213 1. Tre piastre piane omogenee di massa m aventi la forma di triangoli rettangoli con cateti 4l e 3l sono saldate lungo il cateto più lungo come in figura

Dettagli

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione Esercizi geometria analitica nello spazio Corso di Laurea in Informatica Docente: Andrea Loi Correzione 1. Denotiamo con P 1, P 13, P 3, P 1, P, P 3, P i simmetrici di un punto P rispetto ai piani coordinati

Dettagli

Liceo Ginnasio Luigi Galvani Classe 3GHI (scientifica) PROGRAMMA di FISICA a.s. 2016/2017 Prof.ssa Paola Giacconi

Liceo Ginnasio Luigi Galvani Classe 3GHI (scientifica) PROGRAMMA di FISICA a.s. 2016/2017 Prof.ssa Paola Giacconi Liceo Ginnasio Luigi Galvani Classe 3GHI (scientifica) PROGRAMMA di FISICA a.s. 2016/2017 Prof.ssa Paola Giacconi 1) Cinematica 1.1) Ripasso: Il moto rettilineo Generalità sul moto: definizione di sistema

Dettagli

MP. Moti rigidi piani

MP. Moti rigidi piani MP. Moti rigidi piani Quanto abbiamo visto a proposito dei moti rigidi e di moti relativi ci consente di trattare un esempio notevole di moto rigido come il moto rigido piano. Un moto rigido si dice piano

Dettagli

Unità didattica 2. Seconda unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 2. Seconda unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 2 Dinamica Leggi di Newton.. 2 Le forze 3 Composizione delle forze 4 Esempio di forza applicata...5 Esempio: il piano inclinato.. 6 Il moto del pendolo.. 7 La forza gravitazionale 9 Lavoro

Dettagli

Calcolo vettoriale e cinematica del punto materiale

Calcolo vettoriale e cinematica del punto materiale Calcolo vettoriale e cinematica del punto materiale Grandee scalari e vettoriali In isica tutte le grandee si suddividono in quantità scalari, vettoriali, o ancora più complesse (es. matrici). Come conseguena

Dettagli

FISICA APPLICATA 2 FENOMENI ONDULATORI - 1

FISICA APPLICATA 2 FENOMENI ONDULATORI - 1 FISICA APPLICATA 2 FENOMENI ONDULATORI - 1 DOWNLOAD Il pdf di questa lezione (onde1.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/tsrm/ 08/10/2012 FENOMENI ONDULATORI Una classe di fenomeni

Dettagli

Cenni sulle coniche 1.

Cenni sulle coniche 1. 1 Premessa Cenni sulle coniche 1. Corso di laurea in Ingegneria Civile ed Edile Università degli Studi di Palermo A.A. 2013/2014 prof.ssa Paola Staglianò (pstagliano@unime.it) Scopo della geometria analitica

Dettagli

1 Sistemi di riferimento

1 Sistemi di riferimento Università di Bologna - Corsi di Laurea Triennale in Ingegneria, II Facoltà - Cesena Esercitazioni del corso di Fisica Generale L-A Anno accademico 2006-2007 1 Sistemi di riferimento Le grandezze usate

Dettagli

Formulario di Geometria Analitica a.a

Formulario di Geometria Analitica a.a Formulario di Geometria Analitica a.a. 2006-2007 Dott. Simone Zuccher 23 dicembre 2006 Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all autore zuccher@sci.univr.it).

Dettagli

La retta nel piano. Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione.

La retta nel piano. Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione. La retta nel piano Equazioni vettoriale e parametriche di una retta Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione. Condizione

Dettagli

Dinamica dei fluidi viscosi

Dinamica dei fluidi viscosi Dinamica dei flidi viscosi Secondo l'eqazione di Bernolli, qando n flido scorre con regime stazionario in n lngo e stretto condotto orizzontale avente sezione trasversale costante, la pressione lngo il

Dettagli

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Contenuti Coniche

Dettagli

4.2 Sforzo normale e flessione, (presso-flessione e tenso-flessione)

4.2 Sforzo normale e flessione, (presso-flessione e tenso-flessione) DIDTTIC DI DISEGNO E PROGETTZIONE DELLE COSTRUZIONI PROF. CRMELO MORN ING. LUR SGRBOSS MODULO QUTTRO IL PROBLEM DELL TRVE DI DE SINT VENNT (PRTE D) MTERILE DIDTTICO D UTILIZZRE IN UL (SCUOL SUPERIORE)

Dettagli

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo ANALISI VETTORIALE OMPITO PER LE VAANZE DI FINE D ANNO Esercizio Sia r(t) la curva regolare a tratti x = t, y = t, t [, ] e x = t, y = t, t [, ]. alcolare la lunghezza di r, calcolare, dove esistono, i

Dettagli

MOMENTI DI INERZIA PER CORPI CONTINUI

MOMENTI DI INERZIA PER CORPI CONTINUI MOMENTI D INERZIA E PENDOLO COMPOSTO PROF. FRANCESCO DE PALMA Indice 1 INTRODUZIONE -------------------------------------------------------------------------------------------------------------- 3 2 MOMENTI

Dettagli

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 Grandezze angolari Lineare Angolare Relazione x θ x = rθ v ω v = ωr a α a = αr m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 2 Iω 2 Energia cinetica In forma vettoriale: v = ω r questa collega la velocità angolare

Dettagli

Stati di tensione. Associando un sistema di riferimento e scomponendo secondo di esso i vettori di forze per ogni faccia

Stati di tensione. Associando un sistema di riferimento e scomponendo secondo di esso i vettori di forze per ogni faccia Stati di tensione Se si opera un taglio su di un corpo qualunque soggetto ad un sistema di sollecitaioni esterne, sappiamo già che i due elementi separati si scambiano aioni interne in forma di fore e

Dettagli

TEORIA DELLA CONSOLIDAZIONE DEI TERRENI A GRANA FINE

TEORIA DELLA CONSOLIDAZIONE DEI TERRENI A GRANA FINE TEORIA DELLA CONSOLIDAZIONE DEI TERRENI A GRANA FINE Schema riassuntio 1) Premessa a. Descriione e definiione della fenomenologia ) Teoria di Teraghi (consolidaione monodimensionale) a. Ipotesi di base

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Dinamica dei sistemi materiali Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli

R. Capone Analisi Matematica Integrali multipli

R. Capone Analisi Matematica Integrali multipli Integrali multipli Consideriamo, inizialmente il caso degli integrali doppi. Il concetto di integrale doppio è l estensione della definizione di integrale per una funzione reale di una variabile reale

Dettagli

Lezione 5 Moti di particelle in un campo magnetico

Lezione 5 Moti di particelle in un campo magnetico Lezione 5 Moti di particelle in un campo magnetico G. Bosia Universita di Torino G. Bosia - Fisica del plasma confinato Lezione 5 1 Moto di una particella carica in un campo magnetico Il confinamento del

Dettagli

Calcolo vettoriale. Versore: vettore u adimensionale di modulo unitario (rapporto tra un vettore e il suo modulo)

Calcolo vettoriale. Versore: vettore u adimensionale di modulo unitario (rapporto tra un vettore e il suo modulo) Grandezze scalari: caratterizzate da un valore numerico in una unità di misura scelta (ex: massa, temperatura, ecc) Grandezze vettoriali: oltre al valore numerico necessitano della definizione di una direzione

Dettagli

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2

Dettagli

2. SIGNIFICATO FISICO DELLA DERIVATA

2. SIGNIFICATO FISICO DELLA DERIVATA . SIGNIFICATO FISICO DELLA DERIVATA Esempi 1. Un auto viaggia lungo un percorso rettilineo, con velocità costante uguale a 70 km/h. Scrivere la legge oraria s= s(t) e rappresentarla graficamente. 1. Scriviamo

Dettagli

Descrizione vettoriale dell esperimento di risonanza magnetica

Descrizione vettoriale dell esperimento di risonanza magnetica Descriione vettoriale dell esperimento di risonana magnetica oto di un momento magnetico in campo magnetico. Un momento magnetico (associato ad un momento angolare) in un campo magnetico è soggetto ad

Dettagli

FORZE MAGNETICHE SU CORRENTI ELETTRICHE

FORZE MAGNETICHE SU CORRENTI ELETTRICHE Fisica generale, a.a. 013/014 SRCTAZON D: FORZ MAGNTCH SU FORZ MAGNTCH SU CORRNT LTTRCH D.1. Una spira rettangolare di dimensioni a 10 cm e b 5 cm, percorsa da una corrente s 5 A, è collocata in prossimità

Dettagli

C I R C O N F E R E N Z A...

C I R C O N F E R E N Z A... C I R C O N F E R E N Z A... ESERCITAZIONI SVOLTE 3 Equazione della circonferenza di noto centro C e raggio r... 3 Equazione della circonferenza di centro C passante per un punto A... 3 Equazione della

Dettagli