f df(p 0 ) lim = 0 f(x, y) dxdy =

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "f df(p 0 ) lim = 0 f(x, y) dxdy ="

Transcript

1 CORSO I LAUREA IN INGEGNERIA EILE - UNIVERSIÀ LA SAPIENZA, ROMA CORSO I ANALISI MAEMAICA 2 (LEERE M - Z) - a. a. 2007/ 08 FORMULARIO SINEICO I ANALISI MAEMAICA 2 Coordinate polari x = ρ cos(θ) y = ρ sin(θ), ρ [0, + ), θ [0, 2π) Coordinate polari centrate in P 0 (x 0, y 0 ) x = x0 + ρ cos(θ) y = y 0 + ρ sin(θ), ρ [0, + ), θ [0, 2π) Coordinate ellittiche x = aρ cos(θ) y = bρ sin(θ), ρ [0, + ), θ [0, 2π), a, b > 0 Coordinate ellittiche centrate in P 0 (x 0, y 0 ) x = x0 + aρ cos(θ) y = y 0 + bρ sin(θ), ρ [0, + ), θ [0, 2π), a, b > 0 ifferenziale totale e differenziabilità Sia f derivabile nel punto interno P 0 (x 0, y 0 ). df(p 0 ) := f x (P 0 )(x x 0 ) + f y (P 0 )(y y 0 ) = f x (P 0 )dx + f y (P 0 )dy = f(p 0 ) dp f è differenziabile in P 0 (x 0, y 0 ) se dove ρ = P = (x x0 ) 2 + (y y 0 ) 2. Formule di riduzione per gli integrali doppi f df(p 0 ) lim = 0 ρ 0 ρ Se è un dominio normale rispetto all asse x (o y-semplice): = (x, y) IR 2 a x b ; α(x) y β(x)}, α, β C 0 ([a, b]) f(x, y) dxdy = b dx β(x) a α(x) f(x, y)dy. Se è un dominio normale rispetto all asse y (o x-semplice): = (x, y) IR 2 c y d ; γ(y) x δ(y)}, γ, δ C 0 ([c, d]) 1

2 f(x, y) dxdy = d dy δ(y) c γ(y) f(x, y)dx. Area di un dominio normale Se è un dominio normale rispetto all asse x (o y-semplice): = (x, y) IR 2 a x b ; α(x) y β(x)}, α, β C 0 ([a, b]) Area( ) = b a [β(x) α(x)]dx. Se è un dominio normale rispetto all asse y (o x-semplice): = (x, y) IR 2 c y d ; γ(y) x δ(y)}, γ, δ C 0 ([c, d]) Area( ) = d c [δ(y) γ(y)]dy. Formule di trasformazione di coordinate nel piano ata la trasformazione invertibile di coordinate x = x(u, v) Φ :, Φ C 1 (A), A IR 2, J(u, v) = y = y(u, v) x u y u x v y v 0 in A, A = Φ( ), = Φ 1 (A), cioè tale che Coordinate polari: Φ 1 : u = u(x, y) v = v(x, y) x = ρ cos(θ) y = ρ sin(θ) f(x, y) dxdy = (x,y), J(x, y) = u x A v x u y v y 0, J(x, y) = 1 J(u, v), f(x(u, v), y(u, v)) J(u, v) dudv., ρ (0, + ), θ [0, 2π), J(ρ, θ) = ρ : f(x, y) dxdy = A(ρ,θ) f(x(ρ, θ), y(ρ, θ))ρ dρdθ. N.B.: in base a noti teoremi, la validità della formula di trasformazione in coordinate polari può essere estesa a (ρ, θ) [0, + ) [0, 2π]. Volume di un dominio normale rispetto al piano (x, y) ato il dominio = (x, y, z) IR 3 (x, y) A IR 2, α(x, y) z β(x, y), α, β C 0 (A)} 2

3 V ol( ) = [β(x, y) α(x, y)] dxdy. A Volume di un solido di rotazione ato il solido ottenuto ruotando attorno all asse z il rettangoloide R = (x, z) IR 2 z [c, d], 0 x f(z)}, detta x B l ascissa del baricentro di R, V ol( ) = 2π d dz f(z) x dx = π d c 0 c [f(z)] 2 dz = 2π x B Area(R) Formule di irichlet ata f C 0 (), IR 2, Caso I. Funzione pari nella variabile x (f(x, y) = f( x, y)) e dominio simmetrico rispetto all asse y: detto 1 = (x, y) IR 2 x 0} f(x, y) dxdy = 2 f(x, y) dxdy. 1 Caso II. Funzione dispari nella variabile x (f(x, y) = f( x, y)) e dominio simmetrico rispetto all asse y: f(x, y) dxdy = 0. Caso III. Funzione pari nella variabile y (f(x, y) = f(x, y)) e dominio simmetrico rispetto all asse x: detto 2 = (x, y) IR 2 y 0} f(x, y) dxdy = 2 f(x, y) dxdy. 2 Caso IV. Funzione dispari nella variabile y (f(x, y) = f(x, y)) e dominio simmetrico rispetto all asse x: f(x, y) dxdy = 0. Forme differenziali lineari ω(x, y) = X(x, y)dx + Y (x, y)dy forma differenziale F = (X(x, y), Y (x, y)) campo vettoriale associato alla forma Integrale curvilineo di forma differenziale Se X, Y C 0 (A), A IR 2 connesso, data la curva regolare del piano γ : x = x(t) y = y(t), t [t 1, t 2 ], P (t 1 ) = P 1, P (t 2 ) = P 2 3

4 allora ω := γ(p 1,P 2 ) t2 t 1 [X(x(t), y(t)) x (t) + Y (x(t), y(t)) y (t)] dt. Metodi per il calcolo delle primitive V (x, y) di una forma differenziale esatta Primo metodo: dato P 0 (x 0, y 0 ) e il generico punto P (x, y), P 0, P A, V (x, y) = x y X(t, y 0 )dt + Y (x, t)dt + C x 0 y 0 oppure V (x, y) = y x Y (x 0, t)dt + X(t, y)dt + C. y 0 x 0 Secondo metodo: oppure X(x, y)dx = V (x, y) + φ(y) dφ dy = V y + Y (x, y) Y (x, y)dy = V (x, y) + ψ(x) dψ dx = V x + X(x, y) Equazione della retta tangente a una curva regolare del piano nel punto di coordinate (x(t), y(t)) y y(t) y (t) = x x(t) x (t) Componenti del versore tangente a una curva regolare del piano nel punto di coordinate (x(t), y(t)) ( ) vers( x (t) τ ) = (x (t)) 2 + (y (t)), y (t). 2 (x (t)) 2 + (y (t)) 2 Componenti del versore della normale interna a una curva regolare del piano nel punto di coordinate (x(t), y(t)) ( ) vers( y (t) n i ) = (x (t)) 2 + (y (t)), x (t). 2 (x (t)) 2 + (y (t)) 2 Lunghezza di una curva regolare ata la curva regolare del piano γ : x = x(t) y = y(t), t [t 1, t 2 ], P (t 1 ) = P 1, P (t 2 ) = P 2 4

5 allora l(γ) = t2 t 1 (x (t)) 2 + (y (t)) 2 dt. Se la curva γ è grafico della funzione y = f(x), f C 1 ([a, b]), allora l(γ) = b a 1 + (f (x)) 2 dx. Equazione del piano tangente Π P0 a una superficie regolare nel punto P 0 (x 0, y 0, z 0 ) ata la superficie S grafico della funzione z = f(x, y), f C 1 (A), A IR 2, il piano tangente Π P0 equazione z z 0 = f x (P 0) (x x 0 ) + f y (P 0) (y y 0 ) ha Componenti del versore della normale interna alla superficie regolare nel punto P 0 (x 0, y 0, z 0 ) ( ) vers( f x (P 0 ) n i ) = (fx (P 0 )) 2 + (f y (P 0 )) 2 + 1, f y (P 0 ) (fx (P 0 )) 2 + (f y (P 0 )) 2 + 1, 1 (fx (P 0 )) 2 + (f y (P 0 )) Area della superficie Area(S) = A (f x (x, y)) 2 + (f y (x, y)) dxdy Baricentri e momenti di inerzia utte le formule vanno intese per corpi aventi densità di massa uniforme e di massa unitaria. Coordinate del baricentro di un corpo γ filiforme nel piano, di equazione γ : x = x(t) y = y(t), t [t 1, t 2 ], P (t 1 ) = P 1, P (t 2 ) = P 2 x B = 1 t2 x(t) (x l(γ) (t)) 2 + (y (t)) 2 dt ; y B = 1 t2 y(t) (x t 1 l(γ) (t)) 2 + (y (t)) 2 dt. t 1 Coordinate del baricentro di un corpo bidimensionale: x B = 1 Area() x dxdy ; y B = 1 Area() y dxdy. Coordinate del baricentro di un dominio tridimensionale: x B = 1 V ol( ) x dxdydz ; y B = 1 V ol( ) y dxdydz ; z B = 1 V ol( ) z dxdydz. Momento d inerzia di un dominio tridimensionale rispetto a un punto P 0 (x 0, y 0, z 0 ): 5

6 I P0 = [dist(p 0, P )] 2 dxdydz = [(x x 0 ) 2 + (y y 0 ) 2 + (z z 0 ) 2 ] dxdydz. Momento d inerzia di un dominio tridimensionale rispetto all asse delle z (analogamente per i momenti d inerzia rispetto agli altri due assi): I = (x 2 + y 2 ) dxdydz. Momento d inerzia di un dominio tridimensionale rispetto al piano (x, y) (analogamente per i momenti d inerzia rispetto agli altri due piani coordinati): I = z 2 dxdydz. ivergenza e rotore ato il campo vettoriale F = (X(x, y), Y (x, y)) C 1 (), IR 2, div( F ) = F := X x + Y y ; rot( F ) = F := ( Y x X ) k. y ato il campo vettoriale F = (X(x, y, z), Y (x, y, z), Z(x, y, z)) C 1 ( ), IR 3, div( F ) = F := X x + Y y + Z z ; i j k rot( F ) = F = x y z = X(x, y, z) Y (x, y, z) Z(x, y, z) = ( Z y Y ) ( i X + z z Z ) ( j Y + x x X ) k y Formule di Gauss-Green in due dimensioni: ato un dominio regolare e limitato IR 2, considerate f, g C 1 (), f x dxdy = g f dy ; y dxdy = + + g dx ; Applicazioni Area() = x dy = y dx = (x dy y dx) eorema della ivergenza in due dimensioni: div( ( X F )dxdy = x + Y ) dxdy = (X dy Y dx) = F ne ds y + + 6

7 eorema del Rotore (o di Stokes) in due dimensioni: ( Y x X ) dxdy = (X dx + Y dy) y + eorema del Rotore (o di Stokes) in tre dimensioni: ata una superficie S, grafico della funzione regolare z = f(x, y), definita su un dominio regolare, fissato arbitrariamente l orientamento positivo del bordo +BS e orientati coerentemente S e il versore normale positivo n, considerato il campo vettoriale F = (X(x, y, z), Y (x, y, z), Z(x, y, z)) C 1 (A), S A IR 3, Φ S ( rot( F )) := rot( F ) n ds = X dx + Y dy + Z dz =: F τ ds S +BS +BS Equazioni differenziali a variabili separabili dy dx = f(x) g(y) ; f C0 (I x ), g C 0 (I y ). Metodo della separazione delle variabili: ponendo g(y) 0, si risolve dy g(y) = f(x)dx Eventuali soluzioni singolari: si ottengono risolvendo g(y) = 0. (integrale generale) Equazioni differenziali lineari del primo ordine a coefficienti continui y (x) = a(x) y(x) + b(x) ; a, b C 0 (I) Metodo del fattore integrante: e a(x)dx e a(x)dx [y (x) a(x) y(x)] = e a(x)dx b(x) d ] [e a(x)dx y(x) = e a(x)dx b(x) dx da cui [ a(x)dx y(x) = e e ] a(x)dx b(x)dx + C ovvero, usando la funzione integrale, x [ x a(t)dt x y(x) = e 0 e t ] a(τ)dτ x 0 b(t)dt + y0 x 0, x 0 I, dove, assegnato un Problema di Cauchy, y 0 = y(x 0 ). Equazioni differenziali di Bernoulli y (x) = a(x) y(x) + b(x) y α (x) ; a, b C 0 (I) ; α IR, α 0, 1}. Solo se α > 0, occorre tener conto anche della soluzione singolare y 0. 7

8 Supposto y 0, si pone z(x) = y 1 α (x), da cui z (x) = (1 α)a(x)z(x) + (1 α)b(x). Equazioni differenziali lineari del secondo ordine a coefficienti costanti y (x) + ay (x) + by(x) = f(x) y (x) + ay (x) + by(x) = 0 equazione non omogenea o completa equazione omogenea Integrale generale y 0 (x) dell equazione omogenea: chiamiamo λ 1 e λ 2 le soluzioni dell equazione caratteristica (o secolare) λ 2 + aλ + b = 0. I caso ( > 0, λ 1, λ 2 IR, λ 1 λ 2 ) (radici reali e distinte): y 0 (x) = C 1 e λ1 x + C 2 e λ2 x, C 1, C 2 IR. II caso ( = 0, λ 1 = λ 2 = λ IR) (radici reali e coincidenti): y 0 (x) = C 1 e λ x + C 2 x e λ x, C 1, C 2 IR. III caso ( < 0, λ 1 = α + iβ, λ 2 = α iβ = λ 1 IC) (radici complesse coniugate): y 0 (x) = e α x [C 1 cos(βx) + C 2 sin(βx)], C 1, C 2 IR. Integrale generale y(x) dell equazione non omogenea: detti y 0 (x) = C 1 y 1 (x) + C 2 y 2 (x) l integrale generale dell equazione omogenea associata e y(x) un integrale particolare dell equazione non omogenea, y(x) = y 0 (x) + y(x) Metodo di Lagrange della variazione delle costanti y(x) = C 1 (x)y 1 (x) + C 2 (x)y 2 (x), dove ovvero dove W (x) = y 1(x) y 1(x) C 1(x)y 1 (x) + C 2(x)y 2 (x) = 0 C 1(x)y 1(x) + C 2(x)y 2(x) = f(x) f(x)y2 (x) C 1 (x) = dx ; C 2 (x) = W (x) y 2 (x) y 2(x) è il Wronskiano di y 1 e y 2. f(x)y1 (x) W (x) dx Metodo di somiglianza Si vedano anche le due pagine in fondo al formulario. 8

9 1) f(x) = P m (x), con P m (x) polinomio di grado m in x: y(x) = p m (x) x h, dove h è la molteplicità (eventualmente nulla) della soluzione λ = 0 dell equazione caratteristica e p m (x) è un generico polinomio di grado m in x. 2) f(x) = e ηx P m (x), dove η IR, P m (x) polinomio di grado m in x: y(x) = e ηx q m (x) x h, dove h è la molteplicità (eventualmente nulla) della soluzione λ = η dell equazione caratteristica e q m (x) è un generico polinomio di grado m in x. 3) f(x) = e ηx [P m (x) cos(µx) + Q k (x) sin(µx)], dove η, µ IR, P m (x), Q k (x) polinomi rispettivamente di grado m e k in x: y(x) = e ηx [p n (x) cos(µx) + q n (x) sin(µx)] x h, dove h è la molteplicità (eventualmente nulla) della soluzione λ = η + iµ dell equazione caratteristica e p n (x), q m (x) sono generici polinomi di grado n = maxk, m} in x. Principio di sovrapposizione ata la generica equazione differenziale di ordine n lineare L(y) = f, con f = f 1 + f 2, se esistono y 1 e y 2 tali che L(y 1 ) = f 1 e L(y 2 ) = f 2, allora la funzione y = y 1 + y 2 soddisfa l equazione L(y) = f. 9

10 Punti critici liberi (da M. Bramanti, C.. Pagani, S. Salsa, Matematica, Zanichelli, 2004)

11 Metodo di somiglianza (da Krasnov, Kiselyov, Makarenko A book of problems in ordinary differential equations)

12

ESERCIZI DI ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 2006/2007

ESERCIZI DI ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 2006/2007 ESERCIZI I ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 006/007 1 FUNZIONI IN UE VARIABILI (I parte) Insiemi di definizione eterminare gli insiemi di definizione delle seguenti funzioni in due

Dettagli

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo ANALISI VETTORIALE OMPITO PER LE VAANZE DI FINE D ANNO Esercizio Sia r(t) la curva regolare a tratti x = t, y = t, t [, ] e x = t, y = t, t [, ]. alcolare la lunghezza di r, calcolare, dove esistono, i

Dettagli

Capitolo 1. Integrali multipli. 1.1 Integrali doppi su domini normali. Definizione 1.1.1 Si definisce dominio normale rispetto all asse

Capitolo 1. Integrali multipli. 1.1 Integrali doppi su domini normali. Definizione 1.1.1 Si definisce dominio normale rispetto all asse Contenuti 1 Integrali multipli 2 1.1 Integralidoppisudomininormali... 2 1.2 Cambiamento di variabili in un integrale doppio. 6 1.3 Formula di Gauss-Green nel piano e conseguenze. 7 1.4 Integralitripli...

Dettagli

ESERCIZI DI ANALISI II Ingegneria per l Ambiente e il Territorio a.a. 2006/2007

ESERCIZI DI ANALISI II Ingegneria per l Ambiente e il Territorio a.a. 2006/2007 ESERCIZI I ANALISI II Ingegneria per l Ambiente e il Territorio a.a. 006/007 FUNZIONI IN UE VARIABILI Insiemi di definizione eterminare gli insiemi di definizione delle seguenti funzioni in due variabili

Dettagli

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2

Dettagli

Esercizi di Analisi Matematica 3. Prima parte

Esercizi di Analisi Matematica 3. Prima parte Esercizi di Analisi Matematica 3 per le Facoltà di Ingegneria Prima parte Corrado Lattanzio e Bruno Rubino Versione preliminare L Aquila, ottobre 5 Indice 1 Curve, superfici e campi vettoriali 3 1.1 Curve

Dettagli

Integrali multipli - Esercizi svolti

Integrali multipli - Esercizi svolti Integrali multipli - Esercizi svolti Integrali di superficie. Si calcoli l integrale di superficie Σ z +y +4(x +y ) dσ, dove Σ è la parte di superficie di equazione z = x y che si proietta in = {(x,y)

Dettagli

Prima prova di verifica in itinere di ANALISI MATEMATICA II. 12 Marzo 2008 Compito A. 1 (punti 3)

Prima prova di verifica in itinere di ANALISI MATEMATICA II. 12 Marzo 2008 Compito A. 1 (punti 3) anno accademico 007-008 Prima prova di verifica in itinere di ANALISI MATEMATICA II Marzo 008 Compito A (punti ) y = x + xy + y x. (punti 4) y + y x = ln x x y. (punti ) y = y + y ln y. 4 (punti 6) Determinare

Dettagli

Forme differenziali e campi vettoriali: esercizi svolti

Forme differenziali e campi vettoriali: esercizi svolti Forme differenziali e campi vettoriali: esercizi svolti 1 Esercizi sul Teorema di Green......................... 2 2 Esercizi sul Teorema di Stokes......................... 4 3 Esercizi sul Teorema di

Dettagli

Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008. Dott.ssa G. Bellomonte

Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008. Dott.ssa G. Bellomonte Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008 Dott.ssa G. Bellomonte Indice 1 Introduzione 2 2 Equazioni differenziali lineari del primo ordine

Dettagli

LEZIONI DI ANALISI MATEMATICA I. Equazioni Differenziali Ordinarie. Sergio Lancelotti

LEZIONI DI ANALISI MATEMATICA I. Equazioni Differenziali Ordinarie. Sergio Lancelotti LEZIONI DI ANALISI MATEMATICA I Equazioni Differenziali Ordinarie Sergio Lancelotti Anno Accademico 2006-2007 2 Equazioni differenziali ordinarie 1 Equazioni differenziali ordinarie di ordine n.................

Dettagli

Forme differenziali lineari

Forme differenziali lineari Forme differenziali lineari Sia Ω R un insieme aperto e siano A, B, C: Ω R funzioni continue in Ω. Si definisce forma differenziale ω in Ω l espressione ω = A(x, y, z)dx + B(x, y, z)dy + C(x, y, z)dz Data

Dettagli

Università degli Studi di Salerno - Facoltà di Ingegneria Matematica II - Prova Scritta - 09/06/2006

Università degli Studi di Salerno - Facoltà di Ingegneria Matematica II - Prova Scritta - 09/06/2006 Matematica II - Prova Scritta - 09/06/2006 f(x, y) = (y x)e x2 y 2, 2. Risolvere le seguenti equazioni differenziali: y 2 = 1 1 (2x y) 2, y 2y + y 2y = e x (x 1). 3. Calcolare il seguente integrale curvilineo

Dettagli

ANALISI VETTORIALE ESERCIZI SULLE SUPERFICI

ANALISI VETTORIALE ESERCIZI SULLE SUPERFICI ANALII VETTORIALE EERCIZI ULLE UPERFICI Esercizio Calcolare l area della superficie dove Σ {(x, y, z) (x, y) E, z 2 + x 2 + y 2 } E {(x, y) x 2 + y 2 4}. Essendo la superficie Σ data come grafico di una

Dettagli

Analisi Matematica 2 Ingegneria Gestionale Docenti: B. Rubino e R. Sampalmieri L Aquila, 21 marzo 2005

Analisi Matematica 2 Ingegneria Gestionale Docenti: B. Rubino e R. Sampalmieri L Aquila, 21 marzo 2005 Analisi Matematica 2 Ingegneria Gestionale Docenti: B. Rubino e R. Sampalmieri L Aquila, 21 marzo 2005 Prova orale il: Docente: Determinare, se esistono, il massimo ed il minimo assoluto della funzione

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercizi sul calcolo integrale in IR N. Dott. Franco Obersnel

Università di Trieste Facoltà d Ingegneria. Esercizi sul calcolo integrale in IR N. Dott. Franco Obersnel Università di Trieste Facoltà d Ingegneria. Esercizi sul calcolo integrale in IR N. ott. Franco Obersnel Esercizio 1 Sia R = [a 1, b 1 ] [a, b ] [a 3, b 3 ] IR 3 un parallelepipedo di IR 3. Si diano le

Dettagli

Esercizi di riepilogo Matematica II Corso di Laurea in Ottica ed Optometria

Esercizi di riepilogo Matematica II Corso di Laurea in Ottica ed Optometria Esercizi di riepilogo Matematica II Corso di Laurea in Ottica ed Optometria Esercizio 1 Testo Sia F F 1 x,y),f x,y)) ) x 1 x y + 1 x, y 1 x y + 1 y un campo vettoriale. 1. Si determini il dominio in cui

Dettagli

Risolvere i problemi di Cauchy o trovare l integrale generale delle seguenti equazioni differenziali del II ordine lineari a coefficienti costanti:

Risolvere i problemi di Cauchy o trovare l integrale generale delle seguenti equazioni differenziali del II ordine lineari a coefficienti costanti: Risolvere i problemi di Cauchy o trovare l integrale generale delle seguenti equazioni differenziali del II ordine lineari a coefficienti costanti: 1. y 5y + 6y = 0 y(0) = 0 y (0) = 1 2. y 6y + 9y = 0

Dettagli

Raccolta di esercizi di ANALISI MATEMATICA III per il Corso di Laurea in Matematica a.a. 2013/2014. Silvano Delladio

Raccolta di esercizi di ANALISI MATEMATICA III per il Corso di Laurea in Matematica a.a. 2013/2014. Silvano Delladio Raccolta di esercizi di ANALISI MATEMATICA III per il Corso di Laurea in Matematica a.a. 2013/2014 Silvano Delladio September 8, 2014 Chapter 1 Integrali multipli 1.1 Sia B R 3 la palla di raggio 2 centrata

Dettagli

Esercizi. f(x, y, z) = exp(xz) + zy sin(xyz) + cos(xy 3 )

Esercizi. f(x, y, z) = exp(xz) + zy sin(xyz) + cos(xy 3 ) Esercizi 1. Determinare le derivate parziali di f(x, y, z) = exp(xz) + zy sin(xyz) + cos(xy 3 ) 2. Scrivere l equazione del piano tangente e della retta normale al grafico ln(xy) + cos(x + y) nel punto

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Secondo compito in itinere 3 Febbraio 2014

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Secondo compito in itinere 3 Febbraio 2014 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Secondo compito in itinere Febbraio 04 Cognome: Nome: Matricola: Compito A Es: 8 punti Es: 8 punti Es: 8 punti Es4: 8 punti Totale a) Determinare

Dettagli

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni Soluzioni dello scritto di Analisi Matematica II - /7/9 C.L. in Matematica e Matematica per le Applicazioni Proff. K. Payne, C. Tarsi, M. Calanchi Esercizio. a La funzione f è limitata e essendo lim fx

Dettagli

Teoremi di Stokes, della divergenza e di Gauss Green.

Teoremi di Stokes, della divergenza e di Gauss Green. Matematica 3 Esercitazioni eoremi di tokes, della divergenza e di Gauss Green. Esercizio 1 : Calcolare l area del dominio avente per frontiera la linea chiusa γ di equazioni parametriche x (1 t) t γ :,

Dettagli

Calcolo integrale in più variabili

Calcolo integrale in più variabili ppunti di nalisi II Calcolo integrale in più variabili Integrali doppi Nel caso di una funzione di una variabile f : a, b] R, supponendo f continua e fx) a, b], la quantità b a fx)dx indica l area fra

Dettagli

testi e soluzioni delle prove di esonero di Analisi Matematica II

testi e soluzioni delle prove di esonero di Analisi Matematica II testi e soluzioni delle prove di esonero di Analisi Matematica II A.R. Sambucini Dipartimento di Matematica e Informatica Via Vanvitelli - 63 Perugia - Italy copyright by the author(s) document created

Dettagli

1 Formula di Gauss-Green

1 Formula di Gauss-Green Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. (ocente: Federico Lastaria. Giugno 2011 1 Formula di Gauss-Green Teorema 1.1 (Formula di Gauss-Green nel piano.

Dettagli

Equazioni differenziali

Equazioni differenziali 4 Equazioni differenziali Determinare le primitive di una funzione f(x) significa risolvere y (x) = f(x) dove l incognita è la funzione y(x). Questa equazione è un semplice esempio di equazione differenziale.

Dettagli

Capitolo 5 INTEGRALI DOPPI

Capitolo 5 INTEGRALI DOPPI Capitolo 5 INTEGRALI DOPPI Ci proponiamo di estendere alle funzioni reali di due variabili la nozione di integrale di Riemann nel caso dei domini normali. Vedremo che, in opportune ipotesi, il calcolo

Dettagli

I teoremi della funzione inversa e della funzione implicita

I teoremi della funzione inversa e della funzione implicita I teoremi della funzione inversa e della funzione implicita Appunti per il corso di Analisi Matematica 4 G. Mauceri Indice 1 Il teorema della funzione inversa 1 Il teorema della funzione implicita 3 1

Dettagli

2.9 Esercizi e prove d esame

2.9 Esercizi e prove d esame 65 R. Tauraso - Analisi Matematica II.9 Esercizi e prove d esame Esercizio.. Calcolare la lunghezza dell arco di catenaria data dal grafico della funzione f e + e, con, ]. L arco si parametrizza ponendo

Dettagli

Le derivate parziali

Le derivate parziali Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire

Dettagli

Matematica II. Risolvere o integrare una e.d. significa trovarne tutte le soluzione, che costituiscono il cosidetto integrale generale.

Matematica II. Risolvere o integrare una e.d. significa trovarne tutte le soluzione, che costituiscono il cosidetto integrale generale. Definizione Si dice equazione differenziale di ordine n nella funzione incognita y = y (x) una relazione fra y, le sue derivate y,..., y (n), e la variabila indipendente x Risolvere o integrare una e.d.

Dettagli

Equazioni differenziali lineari del secondo ordine a coefficienti costanti

Equazioni differenziali lineari del secondo ordine a coefficienti costanti Equazioni differenziali lineari del secondo ordine a coefficienti costanti 0.1 Introduzione Una equazione differenziale del secondo ordine è una relazione del tipo F (t, y(t), y (t), y (t)) = 0 (1) Definizione

Dettagli

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u.

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Definizione Una conica è il luogo dei punti, propri o impropri, reali o immaginari, che con le loro coordinate omogenee (x,

Dettagli

Appunti sul corso di Complementi di Matematica- modulo Analisi Prof. B.Bacchelli

Appunti sul corso di Complementi di Matematica- modulo Analisi Prof. B.Bacchelli Appunti sul corso di Complementi di Matematica- modulo Analisi Prof. B.Bacchelli 09- Integrale doppio: Riferimenti: R.Adams, Calcolo ifferenziale 2. Capitoli 5.1, 5.2, 5.4. Esercizi 5.3, 5.4 Integrale

Dettagli

COMPLEMENTI SUI DIFFERENZIALI ESATTI E L INTEGRAZIONE DI FORME DIFFERENZIALI

COMPLEMENTI SUI DIFFERENZIALI ESATTI E L INTEGRAZIONE DI FORME DIFFERENZIALI COMPLEMENTI SUI DIFFERENZIALI ESATTI E L INTEGRAZIONE DI FORME DIFFERENZIALI Sergio Console Derivate parziali (notazione) Data una funzione z = f(x, y), si può pensare di tener fissa la variabile y (considerandola

Dettagli

Durata della prova: 3h. 2 +y 4. tan y sin y lim = 1. (x 4 +y 2 )y 3

Durata della prova: 3h. 2 +y 4. tan y sin y lim = 1. (x 4 +y 2 )y 3 Università degli Studi di Napoli Federico II Corso di Laurea in Matematica Analisi Matematica II (Gruppo ), A.A. 22/3 Prova scritta del 28 gennaio 23 Durata della prova: 3h. sercizio (8 punti). Si consideri

Dettagli

Integrali doppi - Esercizi svolti

Integrali doppi - Esercizi svolti Integrali doppi - Esercizi svolti Integrali doppi senza cambiamento di variabili Si disegni il dominio e quindi si calcolino gli integrali multipli seguenti:... xy dx dy, con (x, y R x, y x x }; x + y

Dettagli

quando il limite delle somme di Riemann esiste. In tal caso diciamo che la funzione è integrabile sul rettangolo.

quando il limite delle somme di Riemann esiste. In tal caso diciamo che la funzione è integrabile sul rettangolo. Integrali multipli Consideriamo, inizialmente il caso degli integrali doppi. Il concetto di integrale doppio è l estensione della definizione di integrale per una funzione reale di una variabile reale

Dettagli

Massimi e minimi assoluti vincolati: esercizi svolti

Massimi e minimi assoluti vincolati: esercizi svolti Massimi e minimi assoluti vincolati: esercizi svolti Gli esercizi contrassegnati con il simbolo * presentano un grado di difficoltà maggiore. Esercizio 1. Determinare i punti di massimo e minimo assoluti

Dettagli

1 Cambiamenti di coordinate nel piano.

1 Cambiamenti di coordinate nel piano. Cambiamenti di coordinate nel piano.. Coordinate cartesiane Coordinate cartesiane su una retta. Sia r una retta: dare un sistema di coordinate su r significa fissare un punto O di r e un vettore u = U

Dettagli

Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria II assegnati da dicembre 2000 a dicembre 2003

Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria II assegnati da dicembre 2000 a dicembre 2003 Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria assegnati da dicembre 2000 a dicembre 2003 11/12/2000 n R 4 sono assegnati i punti A(3, 0, 1, 0), B(0, 0, 1, 0), C(2, 1, 0,

Dettagli

Esercizi sulle funzioni di due variabili: parte II

Esercizi sulle funzioni di due variabili: parte II ANALISI MATEMATICA T- (C.d.L. Ing. per l ambiente e il territorio) A.A.009-00 - Università di Bologna - Prof. G.Cupini Esercizi sulle funzioni di due variabili: parte II (Grazie agli studenti del corso

Dettagli

Corso di Analisi Matematica 2-9 CFU

Corso di Analisi Matematica 2-9 CFU Corsi di Laurea in Ingegneria Elettronica e Biomedica Corso di Analisi Matematica 2-9 CFU PRESENTAZIONE Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Prerequisiti e Testi

Dettagli

Superfici e integrali di superficie. 1. Scrivere una parametrizzazione per le seguenti superfici

Superfici e integrali di superficie. 1. Scrivere una parametrizzazione per le seguenti superfici Superfici e integrali di superficie 1. Scrivere una parametrizzazione per le seguenti superfici (a) Il grafico della funzione f(x, y) = x 2 y 3 (b) La superficie laterale di un cilindro di raggio R e altezza

Dettagli

Forme differenziali lineari

Forme differenziali lineari Forme differenziali lineari Sia Ω R 3 un insieme aperto e siano A, B, C: Ω R funzioni continue in Ω. Si definisce forma differenziale ω in Ω l espressione ω = A x, y, z dx + B x, y, z dy + C x, y, z dz

Dettagli

Esercizi di Analisi 2. Nicola Fusco (Dipartimento di Matematica e Applicazioni, Università Federico II, Napoli) 1. Successioni e Serie di Funzioni

Esercizi di Analisi 2. Nicola Fusco (Dipartimento di Matematica e Applicazioni, Università Federico II, Napoli) 1. Successioni e Serie di Funzioni Esercizi di Analisi 2 Nicola Fusco (Dipartimento di Matematica e Applicazioni, Università Federico II, Napoli) 1. Successioni e Serie di Funzioni 1.1 Al variare di α IR studiare la convergenza della serie

Dettagli

Analisi 2 - funzioni di più variabili. Andrea Minetti - andrea.minetti@gmail.com

Analisi 2 - funzioni di più variabili. Andrea Minetti - andrea.minetti@gmail.com Analisi 2 - funzioni di più variabili Andrea Minetti - andrea.minetti@gmail.com January 28, 2011 Ciao a tutti, ecco i miei riassunti, ovviamente non posso garantire la correttezza (anzi garantisco la non

Dettagli

Fissiamo nello spazio un sistema di riferimento cartesiano ortogonale O, x, y, z, u.

Fissiamo nello spazio un sistema di riferimento cartesiano ortogonale O, x, y, z, u. Fissiamo nello spazio un sistema di riferimento cartesiano ortogonale O, x, y, z, u. Definizione Una quadriche è il luogo dei punti, propri o impropri, reali o immaginari, che con le loro coordinate omogenee

Dettagli

Capitolo 16 Esercizi sugli integrali doppi

Capitolo 16 Esercizi sugli integrali doppi Capitolo 6 sercizi sugli integrali doppi Brevi richiami di teoria Sia f : [a, b] [c, d] B IR una funzione limitata e non negativa, definita sul rettangolo R = [a, b] [c, d]. Dividiamo l intervallo [a,

Dettagli

Analisi Matematica II

Analisi Matematica II Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-7 Savona Tel. +39 9 64555 - Fax +39 9 64558 Analisi Matematica II Testi d esame e Prove parziali Analisi Matematica

Dettagli

Funzioni Complesse di variabile complessa

Funzioni Complesse di variabile complessa Funzioni Complesse di variabile complessa Docente:Alessandra Cutrì Richiami sui numeri complessi Indichiamo con C il campo dei Numeri complessi z = x + iy C, ses x, y R i := 1 (Rappresentazione cartesiana

Dettagli

Richiami sulle derivate parziali e definizione di gradiente di una funzione, sulle derivate direzionali. Regola della catena per funzioni composte.

Richiami sulle derivate parziali e definizione di gradiente di una funzione, sulle derivate direzionali. Regola della catena per funzioni composte. PROGRAMMA di Fondamenti di Analisi Matematica 2 (che sarà svolto fino al 7 gennaio 2013) A.A. 2012-2013, Paola Mannucci e Claudio Marchi, Canali 1 e 2 Ingegneria Gestionale, Meccanica-Meccatronica, Vicenza

Dettagli

Versione preliminare si prega di segnalare eventuali errori

Versione preliminare si prega di segnalare eventuali errori Analisi matematica (I mod) Ing. Elettronica PROFF. GIACOMELLI e VERGARA CAFFARELLI ESEMPI DI ESERCIZI D ESAME A.A.8/9 Versione preliminare si prega di segnalare eventuali errori *) Determinare (purché

Dettagli

ANALISI B alcuni esercizi proposti

ANALISI B alcuni esercizi proposti ANALISI B alcuni esercizi proposti G.P. Leonardi Parte II 1 Limiti e continuità per funzioni di 2 variabili Esercizio 1.1 Calcolare xy log(1 + x ) lim (x,y) (0,0) 2x 2 + 5y 2 Esercizio 1.2 Studiare la

Dettagli

1 Massimi e minimi per funzioni di n variabili

1 Massimi e minimi per funzioni di n variabili Corso di laurea in Fisica A.A. 2008/09 Contenuto sintetico del corso di Analisi Matematica II-B 1 Massimi e minimi per funzioni di n variabili 1.1 Massimi e minimi relativi 1.1.1 Condizioni al primo ordine

Dettagli

Note sulle equazioni differenziali

Note sulle equazioni differenziali Note sulle equazioni differenziali 6 gennaio 009 Queste note (molto) informali per il corso di Matematica raccolgono alcuni tra i risultati più importanti relativi alle equazioni differenziali ordinarie

Dettagli

Corso di laurea in Ingegneria civile - ambientale - edile Prova scritta del 3 febbraio Regole per lo svolgimento

Corso di laurea in Ingegneria civile - ambientale - edile Prova scritta del 3 febbraio Regole per lo svolgimento Corso di laurea in Ingegneria civile - ambientale - edile Prova scritta del febbraio 6 Regole per lo svolgimento (a) Gli studenti di ingegneria civile e edile -5 faranno gli esercizi,,. (b) Gli studenti

Dettagli

FABIO SCARABOTTI Note sulle equazioni differenziali ordinarie Ingegneria Meccanica - Corso di Analisi Matematica I - Canale L-Z. y(x) = f(x)dx + C (2)

FABIO SCARABOTTI Note sulle equazioni differenziali ordinarie Ingegneria Meccanica - Corso di Analisi Matematica I - Canale L-Z. y(x) = f(x)dx + C (2) FABIO SCARABOTTI Note sulle equazioni differenziali ordinarie Ingegneria Meccanica - Corso di Analisi Matematica I - Canale L-Z Introduzione. L esempio più semplice di equazione differenziale è dato dal

Dettagli

Esercizi di Analisi Matematica B. Massimo Cicognani

Esercizi di Analisi Matematica B. Massimo Cicognani Esercizi di Analisi Matematica B Massimo Cicognani ii Indice Testi. Serie numeriche e serie di potenze.................2 Funzioni di più variabili reali.................. 5.3 Equazioni differenziali......................

Dettagli

Esercizi di Analisi Matematica L-B

Esercizi di Analisi Matematica L-B Esercii di Analisi Matematica L-B Marco Alessandrini Gennaio-Maro 7 Indice Funioni di più variabili reali. Calcolo differeniale........................................... Ricerca di massimi e minimi.......................................

Dettagli

ALCUNE SOLUZIONI DI ESERCIZI SU CAMPI VETTORIALI

ALCUNE SOLUZIONI DI ESERCIZI SU CAMPI VETTORIALI ALCUNE SOLUZIONI DI ESERCIZI SU CAMPI VETTORIALI Appello Febbraio 995 ( F (( + y i y (( + y j. ( Stabilire se F è conservativo e in caso affermativo trovarne un ( Calcolare il lavoro compiuto dal campo

Dettagli

GEOMETRIA B Esercizi

GEOMETRIA B Esercizi GEOMETRIA B 2016-17 BARBARA NELLI A.A. 2016-17 Alcuni degli esercizi sono presi dal libro DC [1]. 1. Esercizi Esercizio 1.1. Sia α : I R 3 una curva parametrizzata e sia v R 3 un vettore fissato. Assumiamo

Dettagli

Calcolare l area di una superficie. 2. Calcolare l area della porzione del piano 3x + 2y + z = 7 all interno al cilindro x 2 + y 2 = 1.

Calcolare l area di una superficie. 2. Calcolare l area della porzione del piano 3x + 2y + z = 7 all interno al cilindro x 2 + y 2 = 1. Calcolare l area di una superficie. Calcolare l area della porzione del piano x + 2y + z = 5 sopra il cono z = 3(x 2 + y 2 ). 2. Calcolare l area della porzione del piano 3x + 2y + z = 7 all interno al

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = log(1 + x 2 y) lim x 2 x

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = log(1 + x 2 y) lim x 2 x Analisi Matematica II Corso di Ingegneria Gestionale Compito del -7-14 Esercizio 1. (14 punti) Data la funzione = log(1 + x y) i) determinare il dominio e studiare l esistenza del ite (x,y) (,) x x ii)

Dettagli

Il teorema dei lavori virtuali, l elasticità lineare ed il problema dell equilibrio elastico

Il teorema dei lavori virtuali, l elasticità lineare ed il problema dell equilibrio elastico 5 Il teorema dei lavori virtuali, l elasticità lineare ed il problema dell equilibrio elastico Tema 5.1 Si consideri un corpo continuo libero nello spazio, di forma parallelepipedica e di dimensioni a

Dettagli

DIFFERENZIAZIONE. Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim

DIFFERENZIAZIONE. Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim DIFFERENZIAZIONE 1 Regola della catena Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim = f (x 0 ). x x 0 x x 0 Questa

Dettagli

LE EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE

LE EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE LE EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE 1. EQUAZIONI DIFFERENZIALI LE EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE ESEMPIO Della funzione y = f(x) si sa che y' 2x = 1. Che cosa si può dire della funzione

Dettagli

3. Vettori, Spazi Vettoriali e Matrici

3. Vettori, Spazi Vettoriali e Matrici 3. Vettori, Spazi Vettoriali e Matrici Vettori e Spazi Vettoriali Operazioni tra vettori Basi Trasformazioni ed Operatori Operazioni tra Matrici Autovalori ed autovettori Forme quadratiche, quadriche e

Dettagli

Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Bacchelli - a.a. 2010/2011.

Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Bacchelli - a.a. 2010/2011. Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Baccelli - a.a. 2010/2011. 06 - Derivate, differenziabilità, piano tangente, derivate di ordine superiore. Riferimenti: R.Adams, Calcolo

Dettagli

Equazioni differenziali ordinarie di ordine n

Equazioni differenziali ordinarie di ordine n Equazioni differenziali ordinarie di ordine n Indice Indice 1 1 ODE 1 Equazioni differenziali ordinarie del primo ordine 1 Equazioni differenziali a variabili separabili Equazioni differenziali del primo

Dettagli

Alcuni esercizi: funzioni di due variabili e superfici

Alcuni esercizi: funzioni di due variabili e superfici ANALISI MATEMATICA T- (C.d.L. Ing. per l ambiente e il territorio) - COMPL. DI ANALISI MATEMATICA (A-K) (C.d.L. Ing. Civile) A.A.008-009 - Prof. G.Cupini Alcuni esercizi: funzioni di due variabili e superfici

Dettagli

ed é dato, per P (t) una qualsiasi parametrizzazione di cui sopra, da

ed é dato, per P (t) una qualsiasi parametrizzazione di cui sopra, da 1 Integrali su una curva regolare Sia C R N una curva regolare, ossia: (1) C é l immagine di una funzione P (t) definita in un intervallo [a, b] (qui preso chiuso e limitato), tipicamente chiuso e limitato,

Dettagli

Esercizi svolti e assegnati su integrali doppi e tripli

Esercizi svolti e assegnati su integrali doppi e tripli Esercizi svolti e assegnati su integrali doppi e tripli Esercizio. ove R R xy x + y + x + y dxdy } x, y R : x, y, x x + y x Svolgimento. Passo : per disegnare R, studiamo C : x + y x, C : x + y x Completando

Dettagli

(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica.

(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica. 5 luglio 010 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

CALENDARIO BOREALE 1 EUROPA 2015 QUESITO 1

CALENDARIO BOREALE 1 EUROPA 2015 QUESITO 1 www.matefilia.it Indirizzi: LI0, EA0 SCIENTIFICO; LI0 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE EUROPA 05 QUESITO La funzione f(x) è continua per x [ 4; 4] il suo grafico è la spezzata

Dettagli

Richiami su norma di un vettore e distanza, intorni sferici in R n, insiemi aperti, chiusi, limitati e illimitati.

Richiami su norma di un vettore e distanza, intorni sferici in R n, insiemi aperti, chiusi, limitati e illimitati. PROGRAMMA di Fondamenti di Analisi Matematica 2 (DEFINITIVO) A.A. 2010-2011, Paola Mannucci, Canale 2 Ingegneria gestionale, meccanica e meccatronica, Vicenza Testo Consigliato: Analisi Matematica, M.

Dettagli

Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 3.4, 3.9. Esercizi 3.4, 3.9.

Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 3.4, 3.9. Esercizi 3.4, 3.9. Appunti sul corso di Complementi di Matematica - mod Analisi prof. B.Baccelli 200/ 07 - Funzioni vettoriali, derivata della funzione composta, formula di Taylor. Riferimenti: R.Adams, Calcolo Differenziale

Dettagli

LA PARABOLA E LA SUA EQUAZIONE

LA PARABOLA E LA SUA EQUAZIONE LA PARABOLA E LA SUA EQUAZIONE Prof. Giovanni Ianne CHE COS È LA PARABOLA DEFINIZIONE Parabola Scegliamo sul piano un punto F e una retta d. Possiamo tracciare sul piano i punti equidistanti da F e da

Dettagli

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame COGNOME NOME Matr. A Analisi Matematica (Corso di Laurea in Informatica e Bioinformatica) Firma dello studente Tempo: 3 ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

Introduzione al Metodo agli Elementi Finiti (FEM) (x, y) Γ Tale formulazione viene detta Formulazione forte del problema.

Introduzione al Metodo agli Elementi Finiti (FEM) (x, y) Γ Tale formulazione viene detta Formulazione forte del problema. Introduzione al Metodo agli Elementi Finiti (FEM) Consideriamo come problema test l equazione di Poisson 2 u x 2 + 2 u = f(x, y) u = f y2 definita su un dominio Ω R 2 avente come frontiera la curva Γ,

Dettagli

Note sulle funzioni di variabile complessa

Note sulle funzioni di variabile complessa Note sulle funzioni di variabile complessa Carlo Sinestrari Dipartimento di Matematica, Università di Roma Tor Vergata Queste note contengono alcuni risultati sulle funzioni di variabile complessa esposti

Dettagli

variabili. se i limiti esistono e si chiamano rispettivamente derivata parziale rispetto ad x e rispetto ad y.

variabili. se i limiti esistono e si chiamano rispettivamente derivata parziale rispetto ad x e rispetto ad y. Funzioni di più variabili Derivate parziali Qui saranno considerate soltanto funzioni di due variabili, ma non c è nessuna difficoltà ad estendere le nuove nozioni a funzioni di n ( > variabili ( Definizione:

Dettagli

Ingegneria Civile. Compito di Geometria del 06/09/05. E assegnato l endomorfismo f : R 3 R 3 mediante le relazioni

Ingegneria Civile. Compito di Geometria del 06/09/05. E assegnato l endomorfismo f : R 3 R 3 mediante le relazioni Ingegneria Civile. Compito di Geometria del 06/09/05 E assegnato l endomorfismo f : R 3 R 3 mediante le relazioni I f(,, 0) = (h +,h+, ) f(,, ) = (h,h, h) f(0,, ) = (,h, h) con h parametro reale. ) Studiare

Dettagli

Analisi Matematica II (Prof. Paolo Marcellini)

Analisi Matematica II (Prof. Paolo Marcellini) Analisi Matematica II Prof. Paolo Marcellini) Università degli Studi di Firenze Corso di laurea in Matematica Esercitazione del 5//14 Michela Eleuteri 1 eleuteri@math.unifi.it web.math.unifi.it/users/eleuteri

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

Corso di Geometria III - A.A. 2016/17 Esercizi

Corso di Geometria III - A.A. 2016/17 Esercizi Corso di Geometria III - A.A. 216/17 Esercizi (ultimo aggiornamento del file: 2 ottobre 215) Esercizio 1. Calcolare (1 + 2i) 3, ( ) 2 + i 2, (1 + i) n + (1 i) n. 3 2i Esercizio 2. Sia z = x + iy. Determinare

Dettagli

Compito del 14 giugno 2004

Compito del 14 giugno 2004 Compito del 14 giugno 004 Un disco omogeneo di raggio R e massa m rotola senza strisciare lungo l asse delle ascisse di un piano verticale. Il centro C del disco è collegato da una molla di costante elastica

Dettagli

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 18 febbraio 2010 Tema A

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 18 febbraio 2010 Tema A Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 18 febbraio 21 Tema A Tempo a disposizione: 2 ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio va iniziato all inizio

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1. EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema

Dettagli

Determinare estremo superiore ed estremo inferiore dell insieme ( 1) n A = n + 1 : n IN

Determinare estremo superiore ed estremo inferiore dell insieme ( 1) n A = n + 1 : n IN Prima prova di verifica in itinere di ANALISI MATEMATICA Gennaio 00 Determinare estremo superiore ed estremo inferiore dell insieme { } ( ) n A = n + : n IN specificando se si tratta rispettivamente di

Dettagli

Compito di Meccanica Razionale M-Z

Compito di Meccanica Razionale M-Z Compito di Meccanica Razionale M-Z 11 giugno 213 1. Tre piastre piane omogenee di massa m aventi la forma di triangoli rettangoli con cateti 4l e 3l sono saldate lungo il cateto più lungo come in figura

Dettagli

1. Calcolare gli invarianti ortogonali e riconoscere le seguenti quadriche.

1. Calcolare gli invarianti ortogonali e riconoscere le seguenti quadriche. Algebra Lineare e Geometria Analitica Politecnico di Milano Ingegneria Quadriche Esercizi 1. Calcolare gli invarianti ortogonali e riconoscere le seguenti quadriche. (a) x + y + z + xy xz yz 6x 4y + z

Dettagli

Analisi Matematica II (Prof. Paolo Marcellini) 1 Esercizi tratti da temi d esame di anni precedenti

Analisi Matematica II (Prof. Paolo Marcellini) 1 Esercizi tratti da temi d esame di anni precedenti Analisi Matematica II (Prof. Paolo Marcellini) Università degli Studi di Firenze Corso di laurea in Matematica Esercitazione del 8// Michela Eleuteri eleuteri@math.unifi.it web.math.unifi.it/users/eleuteri

Dettagli

x(y + z)dx dy dz y(x 2 + y 2 + z 2 )dx dy dz y 2 zdx dy dz Esempio di insieme non misurabile secondo Lebesgue.

x(y + z)dx dy dz y(x 2 + y 2 + z 2 )dx dy dz y 2 zdx dy dz Esempio di insieme non misurabile secondo Lebesgue. /3/23 Calcolare dove x(y + z)dx dy dz = {(x, y, z) R 3 : x, y, z, x + y + z }. Calcolare y(x 2 + y 2 + z 2 )dx dy dz dove = {(x, y, z) R 3 : x 2 + y 2 + z 2 z, x 2 + y 2 + z 2 3zx y }. Calcolare dove y

Dettagli

Elementi di Algebra Lineare. Spazio Vettoriale (lineare)

Elementi di Algebra Lineare. Spazio Vettoriale (lineare) Elementi di Algebra Lineare Spazio Vettoriale (lineare) Uno spazio vettoriale su un corpo F è una quadrupla (X, F, +, ) costituita da: un insieme di elementi X, detti vettori, un corpo F, i cui elementi

Dettagli

Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno

Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno Programma del Corso di Matematica A Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno Premessa (D) dopo un teorema o una proposizione citati sta ad

Dettagli

Analisi Matematica 2, Scritto Generale, Per quali valori di > e uniformemente convergente per ogni x 2 [; +) la serie di funzioni n x + n 4 x

Analisi Matematica 2, Scritto Generale, Per quali valori di > e uniformemente convergente per ogni x 2 [; +) la serie di funzioni n x + n 4 x Analisi Matematica 2, Scritto Generale, 6-5-994. Consideriamo la serie di Fourier f (x) = a k= [a k cos(kx) + b k sen (kx)] ; dove f (x) = jxj per x 2 ( ; ) e una funzione pari. a. Calcolare i coecienti

Dettagli

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.

Dettagli