Argomento 2 IIparte Funzioni elementari e disequazioni

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Argomento 2 IIparte Funzioni elementari e disequazioni"

Transcript

1 Argomento IIparte Funzioni elementari e disequazioni Applicazioni alla risoluzione di disequazioni Disequazioni di I grado Per la risoluzione delle disequazioni di primo grado per via algebrica, si veda Minimat - Lezione. Qui presentiamo il cosiddetto metodo grafico. Nel caso di disequazioni di primo grado, ci si riduce ad una espressione del tipo: a + c>0 (oppure a + c 0, < 0, 0, rispettivamente). Quindi il problema è determinare gli intervalli in cui la retta di equazione y = a + c si trova nel semipiano positivo (oppure non negativo, e così via). Esempio.1 Risolvere la disequazione +< 0. Disegnamo la retta y = + nel piano cartesiano, e vediamo che essa sta nel semipiano negativo per >, quindi la soluzione è: (, + ) Disequazioni di II grado y = + Sia ora da risolvere una disequazione di II grado, cioè un espressione che, semplificata, si presenta nella forma: a + b + c>0 (analogo il procedimento nel caso 0,<0, 0). Per risolverla dovremo studiare il segno della funzione, cioè stabilire in quali intervalli la parabola f() =a + b + c si trova al di sopra dell asse delle ascisse. Si presentano tre casi: (1) > 0 : l equazione a + b + c = 0 ha due soluzioni reali e distinte: La parabola interseca l asse in due punti 1 e e supponiamo che 1 <. Se a>0ungrafico possibile èilseguente: Si vede che f() > 0per< 1 eper>. () = 0 : l equazione a + b + c = 0 ha una sola radice reale α (doppia). La parabola è tangente all asse nel punto di ascissa α. Un grafico possibile (per a>0) èil seguente: 1

2 Quindi la disequazione è soddisfatta = α. () < 0: l equazione a + b + c = 0 non ha radici reali. La parabola giace completamente ne semipiano positivo (se a>0) Una situazione possibile è la seguente: Quindi la disequazione è soddisfatta. Dunque, in corrispondenza al caso f() =a + b + c>0 vale lo schema: discriminante radici di a + b + c =0 a>0: f() > 0 a<0: f() > 0 > 0 1 < (, 1 ) (, + ) ( 1, ) =0 1 = = 1 per nessun valore di < 0 nessuna radice reale per nessun valore di Esempio. Risolvere la disequazione + 15 > 0 Poichè ilcoefficiente di è positivo, la parabola è convessa (rivolta verso l alto). Inoltre le soluzioni dell equazione + 15 = 0 sono 1 = 5, =, e queste sono le intersezioni della parabola con l asse delle ascisse. Non ci servono informazioni più dettagliate per risolvere la disequazione: infatti un grafico accettabile è il seguente, che ci permette di concludere che la disequazione è verificata negli intervalli (, 5) (, + ) y = + 15 Osservazione.1 Se la disequazione da risolvere fosse: + 15 < 0, alloralesoluzioni sarebbero tutti i valori di ( 5, ). Osservazione. Se il coefficiente del termine è negativo, conviene cambiare segno a tutti i termini della disequazione (ricordandosi di cambiare verso alla disuguaglianza). Esempio. Siadarisolvereladisequazione 5 +> 0. Si considera la disequazione equivalente 1 +5 < 0 esiprocedecomedettoprima. Diamo 1 Due equazioni, due disequazioni o anche due sistemi si dicono equivalenti se le soluzioni del primo sono tutte e sole le soluzioni del secondo.

3 il grafico di entrambe le parabole: y = 5 + (spesso); Soluzione: (, 1/). Esempio.4 Siadarisolvereladisequazione Le radici sono 1, = 1. Come si vede dal grafico, la parabola non è mai nel semipiano negativo. L unica soluzione è = 1. Attenzione: < 0 non ha soluzioni y = Esempio.5 Siadarisolvereladisequazione Abbiamo il grafico: y = + +7 e quindi la disequazione èverificata. Attenzione: non ha soluzioni. Disequazioni razionali Siano date due funzioni a() eb(). Una disequazione del tipo l incognita compare al denominatore. a() b() si dice razionale fratta se

4 Quindi la disequazione +5 < < 5 non è una disequazione razionale fratta, mentre lo è Perquantoriguardalateoriaeimetodidi soluzione si veda Minimat - Lezione 4, in cui sono trattate le disequazioni e i sistemi lineari. Qui affronteremo varie altre situazioni, a cominciare dal caso in cui il numeratore e/o il denominatore hanno grado maggiore di 1. Esempio. Si debba risolvere la disequazione +5 ( 4)( +1) 0. Si ha: N 0per 5,D>0per>4 (comprende anche la condizione di esistenza = 4, mentre il fattore ( +1) èsempre> 0). Le soluzioni sono l unione delle soluzioni dei due sistemi ½ ½ ½ ½ N 0 N 0 D<0 e D>0 cioè 5 5 e e quindi tutti gli (, >4 <4 5 ) (4, + ). Si può ottenere il risultato usando lo schema introdotto in Minimat - Lezione 4 eprecisamente 5/ 4 p p N() D() N()/D() + + Esempio.7 Si debba risolvere la disequazione ½Si ha: N 0per 5eper ½ 1. Inoltre D>0per>. Dunque 5e 1 5 << 1 e, da cui si ottiene (, 5] ( < 1]. <. >. 5 1 p p p N() D() N()/D() + + Disequazioni irrazionali Si dice irrazionale una disequazione in cui l incognita compare, almeno una volta, sotto il segno di radice. Esempio.8 Siadarisolverelaseguentedisequazioneirrazionale 1 <. Per prima cosa osserviamo che 1 è definita solo per l argomento 1 0 (trattandosi di radice di indice pari) e quindi per 1. Inoltre, sempre perchè si tratta di radice di indice pari, la quantità 1 èsempre 0. Quindi se il secondo membro ènegativola risposta è immediata: non ci sono soluzioni. Se invece il secondo membro è anch esso non negativo bisogna procedere per decidere quando è soddisfatta la disequazione. In questo caso si possono elevare al quadrato entrambi i membri della disuguaglianza e si ottiene una disugualianza equivalente alla data; nel nostro caso otteniamo il sistema: 4

5 1 < 0 1 cioè + 1 > e quindi (essendo 1 = 1 5, = 1+ 5, le radici dell equazione + 1=0), le soluzioni saranno i valori di che soddisfano contemporaneamente le tre condizioni < 1 5,> Poichè tali valori devono essere comprese nell intervallo (0, 1], scartiamo 1 5 perchè è negativo. Concludiamo che la disequazione data è soddisfatta per ogni ( 1+ 5, 1]. In generale vale il seguente Schema di risoluzione di disequazioni irrazionali: radicale di indice n Icaso np a() <b() a() 0 (condizione di realtà) b() 0 a() < [b()] n Le eventuali soluzioni saranno i valori di che soddisfano contemporaneamente le tre disuguaglianze. Ribadiamo che, come nell esempio precedente, se b() < 0, non ci sono soluzioni perchè np a() 0 e non potrà mai essere minore di una quantità negativa. II caso np a() >b(). In questo caso le soluzioni saranno l unione delle soluzioni di ciascuno dei seguenti sistemi: a() 0 (condizione di realtà) b() 0 a() > [b()] n ½ a() 0 (condizione di realtà) b() < 0 Osservazione. Seiradicalisonopiú d uno, le disequazioni si trattano in modo analogo, anche se i calcoli possono diventare molto complicati. Radicali di indice dispari. Il caso in cui compaiono soltanto radicali di indice dispari èpiù semplice in quanto non ci sono limitazioni al dominio (dovute alla presenza della radice). Consideriamo soltanto due situazioni: 1. La disequazione contiene una sola radice cioè è del tipo: k+1 p a() >b(); in tal caso possiamo risolvere la disequazione equivalente a() > [b()] k+1.. Si devono confrontare due radici di indice diverso (entrambe dispari): k+1 p a() > h+1p b() In questo caso, detto t = m.c.m.(k +1, h +1)siottiene q q t a() t t k+1 > b() t h+1 e quindi la disequazione equivalente a() t t k+1 >b() 5 h+1.

6 Esempio.9 Si risolva la disuguaglianza +1> 1. Essa è equivalente alla disequazione: +1> ( 1) = + 1, dacuisiottiene 4 +> 0, che è soddisfatta per ogni valore di R. q q Esempio.10 Risolvere la disequazione seguente: + < Poichè i denominatori debbono essere = 0,sihalacondizione =,=. Elevando a potenza si ottiene q 15 q + 5 < 15 + ³ 5 ³ ³ 5 ³ + + < + + ( 1)( ) ( ) < ( 1)(+) (+) Poichè =,=, si possono semplificare dei fattori nelle frazioni e risulta ½ =,= ( 1) 5 < ( 1) Se = 1, la seconda espressione non èverificata. Se invece = 1,sipuòsemplificare ottenendo ( 1) < 1 e quindi +1< 1cioè = ( ) < 0. Soluzione: (0, 1) (1, ). Disequazioni esponenziali e logaritmiche Vediamo ora alcune applicazioni delle funzioni esponenziali e logaritmiche allo studio delle disequazioni. Esempio.11 Siadarisolvereladisequazione 5+8 > Per le proprietà delle potenze si ha che 9 = : quindi la disequazione diventa 5+8 > ( ) +1 = 5+8 > (+1) = +. Poichè lafunzionef() = è monotòna crescente (perchè labaseè > 1), la disequazione di partenza è equivalente alla disequazione che ha soluzioni: >. 5 +8> + Criterio.1 In generale se si deve risolvere la disequazione a f() >a g(), per la monotonia della funzione esponenziale, le soluzioni saranno tutti e soli i valori di chesoddisfanoladisequazione f() >g() se a>1; mentresarannotuttiesoliivaloridi che soddisfano la disequazione f() <g() se a<1. Esempio.1 Siadarisolvereladisequazione > 1 1. Essa èequivalentea:( 1 )(+1) > ( 1 1 ) dacuisiottiene(poichè 1 < 1) la disequazione: +< 1, che èverificata per (, 1) ( + 1, + ). Criterio. Data una funzione reale di variabile reale F, sia da risolvere una disequazione del tipo: F (a ) >k, ove k R.

7 ½ F (t) >k In questo caso si pone a = t e si risolve il sistema equivalente di disequazioni t>0. Esempio.1 Risolvere la disequazione + < 0. (i) Poniamo = t. La disequazione si trasforma nel sistema: ½ t + t < 0. t>0 (ii) Le radici dell equazione associata ( t + t =0) sonot 1 =, t =1. Quindi (ii) è soddisfatto per i valori 0 <t<1. ½ 0 < Sostituendo si ottiene: 0 < < 1, che è equivalente al sistema. < 1. Poichè la funzione f() = è sempre positiva, la prima disequazione èverificata per ogni valore di e quindi resta da risolvere la seconda. Si ottiene così <0. Esempio.14 Risolvere la disequazione 5 +> 0. (i) Poniamo = t. La disequazione equivale al sistema ½ t 5t +> 0. t>0 (ii) Le radici dell equazione associata (t 5t +=0)sonot 1 =,t =. Quindi (ii) è soddisfatto per i valori t<, t>. Sostituendo, si ottiene: < oppure >. Poichè> 1, la funzione f() =log è crescente; quindi si ottiene log < log, log > log, da cui <log, >1. Osservando che log < 1, si trovano le soluzioni: <log,>1. Criterio. In generale se si deve risolvere la disequazione log a (f()) > log a (g()), per la monotonia della funzione logaritmica, le soluzioni saranno tutti e soli i valori di che soddisfano la disequazione f() >g() > 0 se a>1; mentre saranno tutti e soli i valori di che soddisfano la disequazione 0 <f() <g() se 0 <a<1. Esempio.15 Si risolva la disequazione (log ) log > 0 (iii) Poniamo log () =t e otteniamo la disequazione (ausiliaria) t t > 0 che ha soluzioni per t< 1 e t>. Sostituendo si ottiene: < 1 e >4. (iv) log < 1 elog >, equindi 7

8 Disequazioni trigonometriche Esempio.1 Risolvereleseguentidisequazioni,per ( π, π): 5 (a) sin ; (b) sin> ; (c) sin<1/. Poichè vale 1 sin 1 per ogni reale, la disequazione (a) èsempreverificata. Analogamente, la (b) nonpuò essere verificata per nessun reale, perchè 5 > 1. Perquantoriguardala(c), osserviamo (aiutandoci con il grafico di sin e con la tabella) che la disequazione èverificata se π <<π/ oppure se 5π/ <<π Esempio.17 Risolvere la disequazione 1 tg 0 nei seguenti casi: (a) per ( π/, π/); (b)per R. (a) Siha ½ tg ( π/, π/) ½ π/ ( π/, π/) π/ <π/. (b) Poichè la funzione tg è periodica di periodo π, la soluzione si ottiene da quella del punto (a), estendendo per periodicità il risultato: π/+kπ <π/+kπ, per ogni k Z. Pertantolasoluzioneè data dall unione di tutti gli intervalli del tipo [π/ +kπ, (k +1/)π), al variare di k Z. Esempio.18 Risolvere la disequazione: sin sin +1< 0, per [0, π]. Ponendo t =sin, si ottiene una disequazione di II grado: t t +1< 0, che ha come soluzioni 1/ <t<1. Pertanto la soluzione èdatada ½ 1/ <t=sin<1 [0, π] π/ <<5π/, = 1. Esempio.19 Risolvere la disequazione: cos +sin > 0, per [0, π]. Conviene, quando è possibile, riportarsi al caso in cui l espressione dipende soltanto da sin oppure cos. Qui ad esempio, usando l identità fondamentale, si può sostituire cos =1 sin ed ottenere cos +sin = sin +sin 1 > 0cheè equivalente alla disequazione dell esempio precedente. 8

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

3 Equazioni e disequazioni.

3 Equazioni e disequazioni. 3 Equazioni e disequazioni. 3. Equazioni. Una equazione algebrica è un uguaglianza tra espressioni letterali soddisfatta per alcuni valori attribuiti alle lettere che vi compaiono. Tali valori sono detti

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI

ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI Risolvere le seguenti disequazioni: ( 1 ) x < x + 1 1) 4x + 4 x ) x + 1 > x 4x x 10 ) x 4 x 5 4x + > ; 4) ; 5) 0; ) x 1 x + 1 x

Dettagli

Scheda elaborata dalla prof.ssa Biondina Galdi Docente di Matematica

Scheda elaborata dalla prof.ssa Biondina Galdi Docente di Matematica Tutorial - Studio di una funzione reale di variabile reale f : x R y = f (x) R Una funzione può essere: - 1 - algebrica ( razionale o irrazionale, intera o fratta) Classificare la trascendentale ( esponenziale,

Dettagli

Argomento 7. Studio di funzione

Argomento 7. Studio di funzione Argomento 7 Studio di funzione Studiare una funzione significa ottenere, mediante strumenti analitici (iti, derivate, ecc.) informazioni utili a disegnare un grafico qualitativo della funzione data. I

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

FUNZIONI E INSIEMI DI DEFINIZIONE

FUNZIONI E INSIEMI DI DEFINIZIONE FUNZIONI E INSIEMI DI DEFINIZIONE In matematica, una funzione f da X in Y consiste in: ) un insieme X detto insieme di definizione I.d.D. (o dominio) di f 2) un insieme Y detto codominio di f 3) una legge

Dettagli

1 Fattorizzazione di polinomi

1 Fattorizzazione di polinomi 1 Fattorizzazione di polinomi Polinomio: un polinomio di grado n nella variabile x, è dato da p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0 con a n 0, a 0 è detto termine noto, a k è detto coefficiente

Dettagli

Esercizi svolti. g(x) = sono una l inversa dell altra. Utilizzare la rappresentazione grafica di f e f 1 per risolvere l equazione f(x) = g(x).

Esercizi svolti. g(x) = sono una l inversa dell altra. Utilizzare la rappresentazione grafica di f e f 1 per risolvere l equazione f(x) = g(x). Esercizi svolti. Discutendo graficamente la disequazione > 3 +, verificare che l insieme delle soluzioni è un intervallo e trovarne gli estremi.. Descrivere in forma elementare l insieme { R : + > }. 3.

Dettagli

Funzioni elementari: funzioni potenza

Funzioni elementari: funzioni potenza Funzioni elementari: funzioni potenza Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Funzioni elementari: funzioni potenza 1 / 36 Funzioni lineari Come abbiamo già visto,

Dettagli

Le funzioni reali di una variabile reale

Le funzioni reali di una variabile reale Le funzioni reali di una variabile reale Prof. Giovanni Ianne DEFINIZIONE DI FUNZIONE REALE DI UNA VARIABILE REALE Dati due insiemi non vuoti A, B R, una funzione f da A in B è una relazione fra A e B

Dettagli

1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari

1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari Secondo modulo: Algebra Obiettivi 1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari 2. risolvere equazioni intere e frazionarie di primo grado, secondo grado, grado superiore

Dettagli

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2 Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in CTF - anno acc. 2013/2014 docente: Giulia Giantesio, gntgli@unife.it Esercizi 8: Studio di funzioni Studio

Dettagli

Disequazioni - ulteriori esercizi proposti 1

Disequazioni - ulteriori esercizi proposti 1 Disequazioni - ulteriori esercizi proposti Trovare le soluzioni delle seguenti disequazioni o sistemi di disequazioni:. 5 4 >. 4. < 4. 4 9 5. 9 > 6. > 7. < 8. 5 4 9. > > 4. < 4. < > 9 4 Non esitate a comunicarmi

Dettagli

3. Segni della funzione (positività e negatività)

3. Segni della funzione (positività e negatività) . Segni della funzione (positività e negatività) Questo punto, qualora sia possibile algebricamente, ci permette di stabilire il segno che assume la variabile dipendente y (che esprime il valore della

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

Disequazioni di secondo grado

Disequazioni di secondo grado Disequazioni di secondo grado. Disequazioni Definizione: una disequazione è una relazione di disuguaglianza tra due espressioni. Detti p() e g() due polinomi definiti in un insieme A, una disequazione

Dettagli

La domanda che ci si deve porre innanzitutto per iniziare a risolvere questa disequazione è la seguente:

La domanda che ci si deve porre innanzitutto per iniziare a risolvere questa disequazione è la seguente: Disequazioni: caso generale Consideriamo ora la risoluzione di disequazioni che presentino al suo interno valori assoluti e radici. Cercheremo di stabilire con degli esempio delle linee guida per la risoluzione

Dettagli

Precorso di Matematica

Precorso di Matematica UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 4-10 Ottobre 2005 INDICE 1. ALGEBRA................................. 3 1.1 Equazioni

Dettagli

Equazioni e disequazioni. M.Simonetta Bernabei, Horst Thaler

Equazioni e disequazioni. M.Simonetta Bernabei, Horst Thaler Equazioni e disequazioni M.Simonetta Bernabei, Horst Thaler A(x)=0 x si chiama incognita dell equazione. Se oltre all incognita non compaiono altre lettere l equazione si dice numerica, altrimenti letterale.

Dettagli

Mutue posizioni della parabola con gli assi cartesiani

Mutue posizioni della parabola con gli assi cartesiani Mutue posizioni della parabola con gli assi cartesiani L equazione di una parabola generica è data da: Consideriamo l equazione che definisce i punti di intersezione della parabola con l asse delle ascisse

Dettagli

Argomento 2 Funzioni elementari e disequazioni

Argomento 2 Funzioni elementari e disequazioni Argomento Funzioni elementari e disequazioni Parte B - Applicazioni alla risoluzione di disequazioni Disequazioni algebriche di II grado Vogliamo risolvere una disequazione di II grado, cioè una disequazione

Dettagli

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Matematica Funzioni Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Le Funzioni e loro caratteristiche Introduzione L analisi di diversi fenomeni della natura o la risoluzione di problemi

Dettagli

( x) Definizione: si definisce dominio (o campo di esistenza) di una funzione f ( x) l insieme dei valori

( x) Definizione: si definisce dominio (o campo di esistenza) di una funzione f ( x) l insieme dei valori Definizione: si definisce dominio (o campo di esistenza) di una funzione f ( ) l insieme dei valori che la variabile può assumere affinché la funzione f ( ) abbia significato. Vediamo di individuare alcune

Dettagli

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.

Dettagli

ESERCITAZIONE: ESPONENZIALI E LOGARITMI

ESERCITAZIONE: ESPONENZIALI E LOGARITMI ESERCITAZIONE: ESPONENZIALI E LOGARITMI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Esercizio 1 In una coltura batterica, il numero di batteri triplica ogni ora. Se all inizio dell osservazione

Dettagli

Ripasso delle matematiche elementari: esercizi proposti

Ripasso delle matematiche elementari: esercizi proposti Ripasso delle matematiche elementari: esercizi proposti I Equazioni e disequazioni algebriche Esercizi sui polimoni.............................. Esercizi sulle equazioni di grado superiore al secondo............

Dettagli

I Compitino DI MATEMATICA Corso di Laurea in Farmacia, Facoltà di Farmacia, Università di Pisa 20 Novembre 2008

I Compitino DI MATEMATICA Corso di Laurea in Farmacia, Facoltà di Farmacia, Università di Pisa 20 Novembre 2008 1 I Compitino DI MATEMATICA Corso di Laurea in Farmacia, Facoltà di Farmacia, Università di Pisa 2 Novembre 28 Soluzioni Esercizio 1. (6 punti in totale) Il testo è molto lungo, e l esercizio ìn massima

Dettagli

1 Disquazioni di primo grado

1 Disquazioni di primo grado 1 Disquazioni di primo grado 1 1 Disquazioni di primo grado Si assumono assodate le regole per la risoluzione delle equazioni lineari Ricordando che una disuguaglianza è una scrittura tra due espressioni

Dettagli

Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n

Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n Si tratta del quadrato di un binomio. Si ha pertanto (x m y n ) 2 = x 2m 2x m y n + y 2n 4. La divisione (x 3 3x 2 + 5x 2) : (x 2) ha Q(x) = x 2 x + 3 e R = 4 Dalla divisione tra i polinomi risulta (x

Dettagli

EQUAZIONI, DISEQUAZIONI E SISTEMI

EQUAZIONI, DISEQUAZIONI E SISTEMI EQUAZIONI, DISEQUAZIONI E SISTEMI RICHIAMI DI TEORIA Definizione: sia f una funzione reale di variabile reale. Gli elementi del dominio di f su cui la funzione assume valore nullo costituiscono l' insieme

Dettagli

Esercizi 2016/17 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi

Esercizi 2016/17 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi Esercizi 06/7 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi Esercizio. Risolvere la seguente equazione: Soluzione. ) x+ ) x 7 x = 0 7 L equazione è definita per ogni x 0, valore in cui

Dettagli

Svolgimento degli esercizi del Capitolo 1

Svolgimento degli esercizi del Capitolo 1 Analisi Matematica a edizione Svolgimento degli esercizi del Capitolo a) Si ha perciò si distinguono due casi: I) se x < 7,siha x 7 se x 7 x 7 7 x se x < 7, x 7 7 x x x 5 x 5, e poiché 5 > 7 la disequazione

Dettagli

1. Funzioni reali di una variabile reale

1. Funzioni reali di una variabile reale Di cosa parleremo In questo capitolo introduttivo ci occuperemo di funzioni reali di una variabile reale; precisamente, daremo dei criteri per la determinazione del campo di esistenza delle varie tipologie

Dettagli

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che. Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti

Dettagli

Calcolo letterale. 1. Quale delle seguenti affermazioni è vera?

Calcolo letterale. 1. Quale delle seguenti affermazioni è vera? Calcolo letterale 1. Quale delle seguenti affermazioni è vera? (a) m.c.m.(49a b 3 c, 4a 3 bc ) = 98a 3 b 3 c (b) m.c.m.(49a b 3 c, 4a 3 bc ) = 98a 3 b 3 c (XX) (c) m.c.m.(49a b 3 c, 4a 3 bc ) = 49a bc

Dettagli

Esercitazione su grafici di funzioni elementari e domini di funzioni

Esercitazione su grafici di funzioni elementari e domini di funzioni Esercitazione su grafici di funzioni elementari e domini di funzioni Davide Boscaini Queste sono le note da cui ho tratto le esercitazioni del giorno 0 Ottobre 0. Come tali sono ben lungi dall essere esenti

Dettagli

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 1. Esercizi 3 1. Studiare la seguente funzione FINO alla derivata prima, con tracciamento di grafico ed indicazione

Dettagli

Funzioni. Definizione Dominio e codominio Rappresentazione grafica Classificazione Esempi di grafici Esercizi

Funzioni. Definizione Dominio e codominio Rappresentazione grafica Classificazione Esempi di grafici Esercizi Funzioni Definizione Dominio e codominio Rappresentazione grafica Classificazione Esempi di grafici Esercizi Materia: Matematica Autore: Mario De Leo Definizioni Una quantità il cui valore può essere cambiato

Dettagli

Δ > 0, f(x)<0 quindi valori interni 0<x<4. Δ <0 f(x)>0 quindi sempre verificata

Δ > 0, f(x)<0 quindi valori interni 0<x<4. Δ <0 f(x)>0 quindi sempre verificata Classe TERZA A inf. MATEMATICA : SOSPENSIONE DEL GIUDIZIO Devi svolgere su di un quaderno tutti gli esercizi di queste pagine, anche quelli già risolti come esempio e consegnarmelo il giorno della prova

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

Equazioni esponenziali e logaritmi

Equazioni esponenziali e logaritmi Copyright c 2008 Pasquale Terrecuso Tutti i diritti sono riservati. Equazioni esponenziali e logaritmi 2 equazioni esponenziali..................................................... 3 casi particolari............................................................

Dettagli

STUDIO DEL GRAFICO DI UNA FUNZIONE

STUDIO DEL GRAFICO DI UNA FUNZIONE STUDIO DEL GRAFICO DI UNA FUNZIONE PROF.SSA ROSSELLA PISCOPO 2 di 35 Indice 1 SCHEMA PER LO STUDIO DEL GRAFICO DI FUNZIONE... 4 2 ESEMPI... 11 2.1 2.2 2.3 2.4 2.5 2.6 FUNZIONE ESPONENZIALE... 11 FUNZIONE

Dettagli

ESERCIZI SULLE DISEQUAZIONI I

ESERCIZI SULLE DISEQUAZIONI I ESERCIZI SULLE DISEQUAZIONI I Risolvere le seguenti disequazioni: 1 1) { x < x + 1 4x + 4 x ) { x + 1 > x 4x x 10 ) x 4 x 5 4x + > ; 4) ; 5) x 1 x + 1 x + 1 0 ) x > x 0 7) x > 4x + 1; 8) 4 5 x 1 < 1 x

Dettagli

CLASSE QUARTA RECUPERO PRIMO QUADRIMESTRE ANN

CLASSE QUARTA RECUPERO PRIMO QUADRIMESTRE ANN CLASSE QUARTA RECUPERO PRIMO QUADRIMESTRE ANN0 011-01 FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA Si dice campo di esistenza (C.E.) di una funzione y= f(x), l'insieme di tutti i valori reali

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

Liceo Scientifico Statale G. Stampacchia Tricase

Liceo Scientifico Statale G. Stampacchia Tricase Luigi Lecci\Compito 2D\Lunedì 10 Novembre 2003 1 Oggetto: compito in Classe 2D/PNI Liceo Scientifico Statale G. Stampacchia Tricase Tempo di lavoro 60 minuti Argomenti: Equazioni e disequazioni immediate

Dettagli

Funzioni. Capitolo Concetti preliminari. Definizione. Dati due insiemi A e B, si chiama funzione f da A a B, e la si indica col simbolo

Funzioni. Capitolo Concetti preliminari. Definizione. Dati due insiemi A e B, si chiama funzione f da A a B, e la si indica col simbolo Capitolo Funzioni. Concetti preliminari Definizione. Dati due insiemi A e B, si chiama funzione f da A a B, e la si indica col simbolo f : A B, una corrispondenza che associa ad ogni elemento A un unico

Dettagli

Equazione esponenziale a x = b con 0<a<1 oppure a>1; x R; b>0

Equazione esponenziale a x = b con 0<a<1 oppure a>1; x R; b>0 Equazione esponenziale a x = b con 00 Proprietà delle potenze: a n. b n = ( a. b ) n a n : b n = ( a : b ) n a n. a m = a n+m a n : a m = a n-m ( a n ) m = a n a n/m n a = a -n/m

Dettagli

Dicesi equazione irrazionale un equazione nella quale l incognita compare sotto il segno di radice

Dicesi equazione irrazionale un equazione nella quale l incognita compare sotto il segno di radice Equazioni Irrazionali pag Easy matematica Equazioni irrazionali Dicesi equazione irrazionale un equazione nella quale l incognita compare sotto il segno di radice Per risolvere un equazione irrazionale

Dettagli

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler)

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) La funzione esponenziale f con base a é definita da f(x) = a x dove a > 0, a 1, e x é un numero reale. Ad esempio, f(x) = 3 x e g(x) = 0.5

Dettagli

Prontuario degli argomenti di Algebra

Prontuario degli argomenti di Algebra Prontuario degli argomenti di Algebra NUMERI RELATIVI Un numero relativo è un numero preceduto da un segno + o - indicante la posizione rispetto ad un punto di riferimento a cui si associa il valore 0.

Dettagli

DISEQUAZIONI DI SECONDO GRADO. Le disequazioni di secondo grado intere si presentano nella forma (o equivalgono ad essa):

DISEQUAZIONI DI SECONDO GRADO. Le disequazioni di secondo grado intere si presentano nella forma (o equivalgono ad essa): P. \ Disequazioni di secondo grado Maggio 0 Copyright-I.S. DISEQUAZIONI DI SECONDO GRADO DISEQUAZIONI INTERE DI SECONDO GRADO Le disequazioni di secondo grado intere si presentano nella forma (o equivalgono

Dettagli

Matematica di base. Lezioni in Aula D5 ogni Venerdi alle 14:30 BLOG: matematicadibase.wordpress.com

Matematica di base. Lezioni in Aula D5 ogni Venerdi alle 14:30 BLOG: matematicadibase.wordpress.com Matematica di base Lezioni in Aula D5 ogni Venerdi alle 14:30 BLOG: matematicadibase.wordpress.com Calendario 21 Ottobre Aritmetica ed algebra elementare 28 Ottobre Geometria elementare 4 Novembre Insiemi

Dettagli

Recupero primo quadrimestre CLASSE QUARTA FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA

Recupero primo quadrimestre CLASSE QUARTA FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA Recupero primo quadrimestre CLASSE QUARTA FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA Si dice campo di esistenza (C.E.) di una funzione = f(), l'insieme di tutti i valori reali che assegnati

Dettagli

LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI

LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI Autore: Enrico Manfucci - 6/05/0 LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI PREMESSA Per Studio di funzione si intende disegnare il grafico di una funzione data la sua espressione analitica. Questo significa

Dettagli

PIANO CARTESIANO:EQUAZIONI

PIANO CARTESIANO:EQUAZIONI PIANO CARTESIANO:EQUAZIONI {(x,c) x R} = {(x,y) R 2 y=c} R 2 è una retta parallela all asse delle ascisse L asse delle ascisse è una retta di equazione y=0 Analogamente {(c,y) y R} = {(x,y) R 2 x=c} R

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA EQUAZIONI E DISEQUAZIONI DI SECONDO GRADO Dr. Erasmo Modica erasmo@galois.it EQUAZIONI DI SECONDO GRADO Definizione: Dicesi

Dettagli

Breve formulario di matematica

Breve formulario di matematica Luciano Battaia a 2 = a ; lim sin = 1, se 0; sin(α + β) = sin α cos β + cos α sin β; f() = e 2 f () = 2e 2 ; sin d = cos + k; 1,2 = b± ; a m a n = 2a a n+m ; log a 2 = ; = a 2 + b + c; 2 + 2 = r 2 ; e

Dettagli

Premessa. retta orientata diseguaglianze diverso intervallo di estremi a e b 1) a < x < b aperto N.B.: 2) a x b chiuso N.B.: 3) a x < b semichiuso

Premessa. retta orientata diseguaglianze diverso intervallo di estremi a e b 1) a < x < b aperto N.B.: 2) a x b chiuso N.B.: 3) a x < b semichiuso Premessa. Ci sono problemi, alcuni appartenenti anche alla vita quotidiana, che possono essere risolti attraverso una disequazione, ossia un espressione algebrica formata da due membri, contenenti un incognita,

Dettagli

DISEQUAZIONI ALGEBRICHE

DISEQUAZIONI ALGEBRICHE DISEQUAZIONI ALGEBICHE Classe II a.s. 00/0 prof.ssa ita Schettino INTEVALLI DI Impariamo cosa sono gli intervalli di numeri reali Sono sottoinsiemi continui di numeri reali e possono essere limitati o

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA RADICALI Dr. Erasmo Modica erasmo@galois.it LE RADICI Abbiamo visto che l insieme dei numeri reali è costituito da tutti

Dettagli

rapporto tra l'incremento della funzione e l' incremento corrispondente della

rapporto tra l'incremento della funzione e l' incremento corrispondente della DERIVATA Sia y f() una funzione reale definita in un intorno di. Si consideri un incremento (positivo o negativo) di : h; la funzione passerà allora dal valore f( ) a quello di f( +h), subendo così un

Dettagli

Matematica I, Funzione inversa. Funzioni elementari (II).

Matematica I, Funzione inversa. Funzioni elementari (II). Matematica I, 02.10.2012 Funzione inversa. Funzioni elementari (II). 1. Sia f : A B una funzione reale di variabile reale (A, B R); se f e biiettiva, allora la posizione f 1 (b) = unico elemento a A tale

Dettagli

Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di

Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di DEFINIZIONE Espressione algebrica costituita dal prodotto tra una parte numerica (coefficiente) e una o più variabili e/o costanti (parte letterale). Variabili e costanti possono comparire elevate a potenza

Dettagli

LE DISEQUAZIONI LINEARI

LE DISEQUAZIONI LINEARI LE DISEQUAZIONI LINEARI Per ricordare H Una disequazione si rappresenta come una disuguaglianza fra due espressioni algebriche A e B ; essa assume dunque la forma A Per risolvere una disequazione

Dettagli

Esercizi 3. cos x ln(sin x), ln(e x 1 x ), ln( x 2 1), x sin x + x cos x + x, x 3 2x + 1. x 2 x + 2, x cos ex, x 2 e x.

Esercizi 3. cos x ln(sin x), ln(e x 1 x ), ln( x 2 1), x sin x + x cos x + x, x 3 2x + 1. x 2 x + 2, x cos ex, x 2 e x. I seguenti quesiti ed il relativo svolgimento sono coperti dal diritto d autore, pertanto essi non possono essere sfruttati a fini commerciali o di pubblicazione editoriale senza autorizzazione esplicita

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

UNITÀ DIDATTICA 5 LA RETTA

UNITÀ DIDATTICA 5 LA RETTA UNITÀ DIDATTICA 5 LA RETTA 5.1 - La retta Equazione generica della retta Dalle considerazioni emerse nel precedente capitolo abbiamo compreso come una funzione possa essere rappresentata da un insieme

Dettagli

RICHIAMI SU RETTA, PARABOLA E DISEQUAZIONI. Angela Donatiello 1

RICHIAMI SU RETTA, PARABOLA E DISEQUAZIONI. Angela Donatiello 1 RICHIAMI SU RETTA, PARABOLA E DISEQUAZIONI Angela Donatiello 1 Una funzione del tipo f() = m + q, con m e q numeri reali, è una FUNZIONE LINEARE. Il numero q è detto INTERCETTA o ORDINATA ALL ORIGINE,

Dettagli

CLASSIFICAZIONE DELLE CONICHE AFFINI

CLASSIFICAZIONE DELLE CONICHE AFFINI CLASSIFICAZIONE DELLE CONICHE AFFINI Pre-requisiti necessari. Elementi di geometria analitica punti e rette nel piano cartesiano, conoscenza delle coniche in forma canonica). Risoluzione di equazioni e

Dettagli

Richiami di Matematica - Esercizi 21/98

Richiami di Matematica - Esercizi 21/98 Richiami di Matematica - Esercizi 1/98 ESERCIZI. Principi di equivalenza: 1) A(x) > B(x) A(x) + C(x) > B(x) + C(x) ) Se k > 0 allora A(x) > B(x) ka(x) > kb(x) 3) Se k < 0 allora A(x) > B(x) ka(x) < kb(x)

Dettagli

Secondo parziale di Matematica per l Economia (esempio)

Secondo parziale di Matematica per l Economia (esempio) Corso di Laurea in Economia e Management Secondo parziale di Matematica per l Economia (esempio) lettere E-Z, a.a. 206 207 prof. Gianluca Amato Regole generali Si svolga il primo esercizio e, a scelta

Dettagli

Soluzioni. 1. Calcolare la parte reale e immaginaria del numero complesso. z = i i. 3 (2 + i) = i i = i.

Soluzioni. 1. Calcolare la parte reale e immaginaria del numero complesso. z = i i. 3 (2 + i) = i i = i. 20 Roberto Tauraso - Analisi 2 Soluzioni 1. Calcolare la parte reale e immaginaria del numero complesso R. z = i + 3 2 i. z = i + 3 2 i 2 i = 6 5 + ( 1 + 3 5 3 (2 + i) = i + 2 4 + 1 ) i = 6 5 + 8 5 i.

Dettagli

L1 L2 L3 L4. Esercizio. Infatti, osserviamo che p non può essere un multiplo di 3 perché è primo. Pertanto, abbiamo solo due casi

L1 L2 L3 L4. Esercizio. Infatti, osserviamo che p non può essere un multiplo di 3 perché è primo. Pertanto, abbiamo solo due casi Sia p 5 un numero primo. Allora, p è sempre divisibile per 4. Scriviamo p (p ) (p + ). Ora, p 5 è primo e, quindi, dispari. Dunque, p e p + sono entrambi pari. Facciamo vedere anche che uno tra p e p +

Dettagli

LOGARITMI. Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA. L uguaglianza: a x = b

LOGARITMI. Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA. L uguaglianza: a x = b Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA LOGARITMI L uguaglianza: a x = b nella quale a e b rappresentano due numeri reali noti ed x un incognita, è un equazione

Dettagli

ESERCITAZIONE 11 : EQUAZIONI E DISEQUAZIONI

ESERCITAZIONE 11 : EQUAZIONI E DISEQUAZIONI ESERCITAZIONE 11 : EQUAZIONI E DISEQUAZIONI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: Martedi 16-18 Dipartimento di Matematica, piano terra, studio 126 18 Dicembre 2012 Esercizio

Dettagli

Le disequazioni frazionarie (o fratte)

Le disequazioni frazionarie (o fratte) Le disequazioni frazionarie (o fratte) Una disequazione si dice frazionaria (o fratta) se l'incognita compare al denominatore. Esempi di disequazioni fratte sono: 0 ; ; < 0 ; ; Come per le equazioni fratte,

Dettagli

Equazioni di primo grado ad un incognita

Equazioni di primo grado ad un incognita Equazioni di primo grado ad un incognita Identità Si dice IDENTITÀ un uguaglianza fra due espressioni letterali che è verificata per ogni valore attribuito alle lettere. 2 = 2 è un identità =3 2 3=2 3

Dettagli

Definizione 1.6 (di grado di una equazione) Si dice grado di una equazione intera ridotta in forma normale il massimo esponente dell incognita.

Definizione 1.6 (di grado di una equazione) Si dice grado di una equazione intera ridotta in forma normale il massimo esponente dell incognita. 1 Le equazioni Consideriamo espressioni algebriche contenenti una sola incognita, che indicheremo con x, le quali verranno indicate con i simboli f(x), g(x), h(x),.... Il valore assunto dall espressione

Dettagli

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Contenuti Coniche

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

3x + x 5x = x = = 4 + 3x ; che equivale, moltiplicando entrambi i membri per 2, a risolvere. 4x + 6 x = 4 + 3x.

3x + x 5x = x = = 4 + 3x ; che equivale, moltiplicando entrambi i membri per 2, a risolvere. 4x + 6 x = 4 + 3x. 1 Soluzioni esercizi 1.1 Equazioni di 1 e grado Risolvere le seguenti equazioni di 1 grado: 1) 3x 5x = 1 x. Abbiamo: 3x + x 5x = 1 + x = 1 + 4 x = 5. ) x + 3 x = + 3x. Facciamo il m.c.m. : 4x + 6 x = 4

Dettagli

Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio

Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio Liceo Classico D. Alighieri A.S. 0-3 y Data la funzione: Studio di Funzione tracciatene il grafico nel piano cartesiano. Prof. A. Pisani Esempio ) Tipo e grado della funzione La funzione è analitica, data

Dettagli

quindi, applicando la legge di annullamento del prodotto, si ottiene l insieme delle soluzioni: x x da cui:

quindi, applicando la legge di annullamento del prodotto, si ottiene l insieme delle soluzioni: x x da cui: ) Risolvi le seguenti equazioni e scrivi le soluzioni reali in ordine crescente, indicando se sono multiple e quante sono le eventuali soluzioni non reali: ( ) ( ) per risolvere questa equazione si applica

Dettagli

Indice. Prefazione. Fattorizzazione di A + B Fattorizzazione di trinomi particolari 22 2

Indice. Prefazione. Fattorizzazione di A + B Fattorizzazione di trinomi particolari 22 2 Prefazione XI Test di ingresso 1 Capitolo 1 Insiemi numerici, intervalli e intorni 5 1.1 Introduzione 5 1.2 Insiemi generici 5 1.2.1 Relazioni e operazioni tra insiemi 7 1.3 Insiemi numerici 8 1.3.1 Rappresentazione

Dettagli

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 03 - I Numeri Reali Anno Accademico 2015/2016 M. Tumminello,

Dettagli

LE EQUAZIONI DI SECONDO GRADO

LE EQUAZIONI DI SECONDO GRADO LE EQUAZIONI DI SECONDO GRADO Definizione: un equazione è di secondo grado se, dopo aver applicato i principi di equivalenza, si può scrivere nella forma, detta normale: ax + bx + c 0!!!!!con!a 0 Le lettere

Dettagli

Verso il concetto di funzione

Verso il concetto di funzione Verso il concetto di funzione Il termine funzione già appare in alcuni scritti del matematico Leibniz (1646-1716). Tuttavia, in un primo momento tale termine venne usato in riferimento a espressioni analitiche

Dettagli

Precorso CLEF-CLEI, esercizi di preparazione al test finale con soluzioni

Precorso CLEF-CLEI, esercizi di preparazione al test finale con soluzioni Precorso CLEF-CLEI, esercizi di preparazione al test finale con soluzioni ARITMETICA 1. Scomporre in fattori primi 2500 e 5600. Soluzione: Osserviamo che entrambi i numeri sono multipli di 100 = 2 2 5

Dettagli

Elenco moduli Argomenti Strumenti / Testi Letture / Metodi. partecipazione degli alunni. 2 Completamento equazioni e disequazioni.

Elenco moduli Argomenti Strumenti / Testi Letture / Metodi. partecipazione degli alunni. 2 Completamento equazioni e disequazioni. Pagina 1 di 5 DISCIPLINA: MATEMATICA E LABORATORIO INDIRIZZO: IGEA CLASSE: IV FM DOCENTE : Cornelio Terreni Elenco moduli Argomenti Strumenti / Testi Letture / Metodi 1 Matematica RIPASSO e COMPLETAMENTO:

Dettagli

I teoremi della funzione inversa e della funzione implicita

I teoremi della funzione inversa e della funzione implicita I teoremi della funzione inversa e della funzione implicita Appunti per il corso di Analisi Matematica 4 G. Mauceri Indice 1 Il teorema della funzione inversa 1 Il teorema della funzione implicita 3 1

Dettagli

1 Ampliamento del piano e coordinate omogenee

1 Ampliamento del piano e coordinate omogenee 1 Ampliamento del piano e coordinate omogenee Vogliamo dare una idea, senza molte pretese, dei concetti che stanno alla base di alcuni calcoli svolti nella classificazione delle coniche. Supponiamo di

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2007/2008

Soluzioni dei problemi della maturità scientifica A.S. 2007/2008 Soluzioni dei problemi della maturità scientifica A.S. 007/008 Nicola Gigli Sunra J.N. Mosconi 19 giugno 008 Problema 1 (a) Determiniamo in funzione di a i lati del triangolo. Essendo l angolo BĈA retto

Dettagli

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler)

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) La funzione esponenziale f con base a é definita da f(x) = a x dove a > 0, a 1, e x é un numero reale. Ad esempio, f(x) = 3 x e g(x) = 0.5

Dettagli

Sistemi di 1 grado in due incognite

Sistemi di 1 grado in due incognite Sistemi di 1 grado in due incognite Problema In un cortile ci sono polli e conigli: in totale le teste sono 7 e zampe 18. Quanti polli e quanti conigli ci sono nel cortile? Soluzione Indichiamo con e con

Dettagli

Proprietà delle funzioni. M.Simonetta Bernabei, Horst Thaler

Proprietà delle funzioni. M.Simonetta Bernabei, Horst Thaler Proprietà delle funzioni M.Simonetta Bernabei, Horst Thaler Funzioni crescenti e decrescenti Una funzione f è crescente (non decrescente) in un intervallo I se f ( 1 ) < f ( ) (f ( 1 ) f ( )), quando 1

Dettagli

FUNZIONI ALGEBRICHE PARTICOLARI

FUNZIONI ALGEBRICHE PARTICOLARI FUNZIONI ALGEBRICHE PARTICOLARI (al massimo di secondo grado in x) Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4 B) September 9, 003 1. FUNZIONI

Dettagli