Temi d'esame (Seconda prova) Alcuni testi e relative soluzioni

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Temi d'esame (Seconda prova) Alcuni testi e relative soluzioni"

Transcript

1 Unverstà d Rom "L Spenz" Fcoltà d Ingegner Corso d Lure n Ingegner Informtc Corso d Clcoltor Elettronc II Tem d'esme (Second prov) Alcun test e reltve soluzon

2 Appello del 23 luglo 2002 Tem n. 2 Un cche set-ssoctv d N ve, con blocch d B byte, h un cpctà totle d C byte d dt (tg esclus). L CPU d ess conness oper con ndrzz d k bt e con dt d 32 bt. Determnre n funzone d k, N, B, C: l numero d set n cu è suddvs l cche, l numero totle d bt necessr per l'mmgzznmento de tg, le funzon e le dmenson de vr cmp n cu vene suddvso l'ndrzzo nell'ccesso ll cche. (S ssum che N, B, C sno tutte potenze ntere d 2, e s trscurno nel clcolo bt d vldtà, drty, etc.) Soluzone Il numero totle L d blocch contenut nell cche è dto d L C/ B ; l numero d set S è llor S L/ N. Il cmpo ndce dell'ndrzzo pplcto ll cche rchede dunque un numero d bt dto d L C log2s log2 log2 N NB Se ssummo che l sngol prol s costtut d 32 bt, oss d 4 byte, 2 bt meno sgnfctv dell'ndrzzo non vengono utlzzt, mentre log 2( B / 4) bt determnno l poszone dell prol cerct ll'nterno d un blocco. Il numero d bt rservto l cmpo tg è llor dto d B t k (log2s + log2 + 2) 4 C B k (log2 + log2 + 2) BN 4 k (log2c log 2 N) C k log2 N Il numero totle d bt necessr per l'mmgzznmento de tg è nfne dto d L NSt N t Lt. N

3 Appello del 23 luglo 2002 Tem n. 3 Un sstem d memor vrtule h le seguent crtterstche: ndrzzo vrtule d 36 bt, pgne fsche d 4 Kbyte, memor fsc d Gbyte. Assumendo l byte come mnm untà ndrzzble, descrvere l meccnsmo d pgnzone corrspondente, e determnre le dmenson dell Pge Tble. (S trscur lo spzo necessro per bt d vldtà, drty, protezone, etc.; s trscur nche lo spzo necessro per le nformzon d puntmento l dsco rgdo.) Soluzone L'ndrzzo vrtule è suddvso n due cmp: offset, costtuto d log2 4K 2 bt, VPN (Vrtul Pge Number), costtuto d bt. 30 L'ndrzzo d pplcre d un memor fsc d Gbyte 2 byte rchede 30 bt, ed è nch'esso suddvso n due cmp: offset, ncor d log2 4K 2 bt, PPN (Physcl Pge Number), costtuto d bt. 24 L Pge Tble vrà dunque 2 element, cscuno de qul contene un'nformzone d 8 bt. Se ssummo che ogn PPN d 8 bt s mpccto n 3 byte, l dmensone totle dell Pge Tble srà d MB; se nvece, per rgon d llnemento, ssummo che ogn PPN veng mpccto n un doubleword d 32 bt, llor l Pge Tble srà costtut d MB.

4 Appello del 9 settembre 2002 Tem n. Il crco medo gornlero d un sstem d elborzone è rprtto per l 35% sull CPU, per l 45% sull memor e per l 20% sul dsco rgdo (l crco su ltr sottosstem può essere consderto trscurble). In vst d un possble upgrde del sstem, sono dsponbl le seguent opzon: Opzone n. Sottosstem sosttuto Accelerzone del sottosstem Costo dell sosttuzone (n Euro) CPU 25% Memor 5% Dsco rgdo 20% 50 Qule delle suddette opzon è d preferre, e per qul rgon? Soluzone L'opzone d preferre è quell cu è ssocto l mggor vlore del rpporto prestzon/costo, dove le prestzon possono essere stmte n termn d ccelerzone mednte l legge d Amdhl A β ( ) dove A è l'ccelerzone totle del sstem, è l'ccelerzone dell componente sosttut e β è l frzone d tempo n cu l componente è utlzzt. Indcndo per l k-esm opzone con: β k l frzone del tempo d utlzzo dell componente sosttut, k l'ccelerzone dell componente sosttut, A k l'ccelerzone del sstem conseguente ll sosttuzone, E k l costo dell'upgrde, R k l rpporto prestzon/costo Ak / E k e osservndo che:.25, β 0.35, E , β , E , β , E 50 ottenmo: opzone : R E 550 β( ) (0.35)( ).25 opzone 2: R E β2( ) (0.45)( ).5 opzone 3: R E 3 50 β3( ) (0.20)( ) 3.20 L'opzone d preferre è pertnto l 3 (sosttuzone del dsco rgdo). 2

5 Appello del 3 dcembre 2002 Tem n. In un sstem d elborzone l memor prncple e l memor d mss sono utlzzte rspettvmente per l 50% e per l 20% del tempo d esecuzone. Per rendere l sstem pù effcente, v è l possbltà d: ) sostture l bnco d memor prncple con uno pù veloce del 25%, oppure b) sostture l memor d mss con un l doppo pù veloce. Qule delle due lterntve è d preferre, e perché? Soluzone L'opzone d preferre è quell che fornsce l mssm ccelerzone del sstem. L'ccelerzone può essere clcolt mednte l legge d Amdhl: A β ( ) dove è l'ccelerzone dell componente sosttut e β è l frzone d tempo n cu ess è utlzzt prm dell sosttuzone. Tenendo presente che per l prm opzone è.25 5/ 4, β 0.5 / 2, s ottene 0 A 4 ( ) D'ltr prte, per l second opzone è 2, β 0.2 /5, d cu s ottene 0 A ( ) Pertnto, entrmbe le lterntve comportno l medesmo umento d prestzon.

6 Appello del 7 luglo 2003 Tem n. 2 In un CPU con clock 250 MHz, l 30% del tempo d esecuzone d un progrmm è utlzzto per ccess ll memor, ognuno de qul rchede 6 ccl d clock. Supponendo che tr CPU e memor veng nterpost un cche con seguent prmetr:! Ht Tme cclo d clock! Mss Penlty 2 ccl d clock! Mss Rte 5% stmre l'umento dell veloctà d esecuzone del progrmm stesso. Soluzone Dl punto d vst dell'umento d prestzon, l'nsermento d un cche è e- quvlente ll sosttuzone dell memor con un pù veloce. L'ccelerzone dell componente memor può essere vlutt come rpporto tr l tempo d ccesso prm ( T 6 ) e dopo l sosttuzone. Quest'ultmo può essere stmto come tempo medo d ccesso ll cche: T' HT + MR MP dove HT è l'ht Tme, MR 0.05 è l Mss Rte e MP 2 è l Mss Penlty. L'ccelerzone dell componente memor è llor dt d: T T ' + (0.05)(2) Essendo not l frzone del tempo d utlzzo dell memor ( β 0.3 ) è possble stmre l'umento d prestzon del sstem mednte l legge d Amdhl: A.282 β ( ) (0.3)( ) 3.75 L veloctà d esecuzone del progrmm umenterà dunque del 28.2%. (S not come l frequenz d clock dell CPU s rrlevnte n questo contesto.)

7 Appello del 2 luglo 2003 Tem n. Msurzon effettute su un sstem d elborzone ndcno che l 40% del tempo vene utlzzto per ccess ll memor prncple e l 30% per trnszon sul dsco rgdo, l qule h un tempo medo d ccesso pr 3.6 mllsec. Per degure l sstem soprggunte nuove esgenze, s decde d sostture l memor prncple con un pù veloce del 50%, e d rmpzzre l dsco rgdo con uno d cpctà qudrupl m con tempo medo d ccesso leggermente superore, pr 4 mllsec. Come vrernno le prestzon del sstem? Soluzone L legge d Amdhl fornsce l'ccelerzone d un sstem n conseguenz dell sosttuzone d un su componente. Qu occorre nvece vlutre l'umento d prestzon dovuto ll sosttuzone contemporne d due component. Indcndo con T e T' l tempo totle rspettvmente prm e dopo le sosttuzon, T' può essere espresso come somm d tre termn: T' T' mem + T' dsk + Tnc dove T' mem Tmem / Amem Tβmem / Amem T' dsk Tdsk / Adsk Tβdsk / Adsk Tnc T( βmem βdsk ) è l tempo utlzzto d tutte le component dverse dl dsco e dll memor, che rmne ovvmente nvrto dopo le sosttuzon essendo β mem /5 e β dsk 0.3 3/0 l frzone del tempo d utlzzo rspettvmente dell memor e del dsco, e A mem.50 3/ 2 e A dsk 3.6/ /0 le rspettve ccelerzon. L'ccelerzone totle del sstem è llor dt d T T A T ' T ' mem + T ' dsk + T nc T Tβmem Tβ + dsk + T ( βmem βdsk ) Amem Adsk βmem ( ) βdsk ( ) Amem Adsk Effettundo le sosttuzon numerche, rsult 0 A ( ) ( ) L veloctà del sstem ument pertnto dell'.%.

8 Appello del 0 settembre 2003 Tem n. Rcvre un'espressone per l legge d Amdhl generlzzt, che determn l'ccelerzone totle A d un sstem nel qule vengno sosttute N component, cscun con un suo β (frzone del tempo d utlzzo) e con un su A (ccelerzone dell componente). Soluzone Il tempo totle dopo le sosttuzon è dto d T' T' + T nc dove T ' è l tempo fnle d utlzzo dell componente -esm e T nc è l tempo utlzzto dlle component non sosttute, che nturlmente rmne nvrto. Detto T l tempo totle prm delle sosttuzon, s h β T' T A Sosttuendo, s ottene e n defntv T nc T( β ) β T' T + T( β ) A T β A T A T ' β A

9 Appello del 0 settembre 2003 Tem n. 3 Un sstem d memor vrtule h le seguent crtterstche: ndrzzo vrtule d 34 bt, pgne fsche d 4 Kbyte, memor fsc d 2 Gbyte. Assumendo l byte come mnm untà ndrzzble, descrvere l meccnsmo d pgnzone corrspondente. Determnre qund le dmenson dell Pge Tble, trscurndo lo spzo necessro s per bt d vldtà, drty, protezone, etc., che per le nformzon d puntmento ll memor d mss. Soluzone L'ndrzzo vrtule è suddvso n due cmp: offset, costtuto d log2 4K 2 bt, VPN (Vrtul Pge Number), costtuto d bt. 3 L'ndrzzo d pplcre d un memor fsc d 2 Gbyte 2 byte rchede 3 bt, ed è nch'esso suddvso n due cmp: offset, ncor d log2 4K 2 bt, PPN (Physcl Pge Number), costtuto d bt. 22 L Pge Tble vrà dunque 2 element, cscuno de qul contene un'nformzone d 9 bt. Se ssummo che ogn PPN d 9 bt s mpccto n 3 byte, l dmensone totle dell Pge Tble srà d MB; se nvece, per rgon d llnemento, ssummo che ogn PPN veng mpccto n un doubleword d 32 bt, llor l Pge Tble srà costtut d MB.

Scrivere 2.1 cm implica dire che la misura sia compresa nell intervallo mm

Scrivere 2.1 cm implica dire che la misura sia compresa nell intervallo mm Il lto d un ddo è pr. cm. Usndo le cfre sgnfctve per stmre l errore clcolre l volume del cuo. Supponendo che l devzone stndrd nell msur del lto s d mm clcolre l devzone stndrd che ssoct ll msur del volume.

Dettagli

Campi Elettromagnetici e Circuiti I Teoremi delle reti elettriche

Campi Elettromagnetici e Circuiti I Teoremi delle reti elettriche Fcoltà d Ingegner Unverstà degl stud d Pv Corso d ure Trennle n Ingegner Elettronc e Informtc Cmp Elettromgnetc e Crcut I Teorem delle ret elettrche Cmp Elettromgnetc e Crcut I.. 04/5 Prof. uc Perregrn

Dettagli

MATEMATICA FINANZIARIA 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI

MATEMATICA FINANZIARIA 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI MATEMATICA FINANZIARIA Pro. Andre Berrd 999 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 PROGETTO ECONOMICO-FINANZIARIO Un progetto economco-nnzro è un

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Unverstà d Npol Prthenope Fcoltà d Ingegner Corso d Trsmssone Numerc docente: Prof. Vto Psczo 3 Lezone: /0/004 4 Lezone: /0/004 Sommro Quntzzzone sclre (unforme e non unforme) Quntzzzone vettorle (VQ)

Dettagli

Teoremi su correnti e tensioni

Teoremi su correnti e tensioni Teorem su corrent e tenson 1) ombnzone lnere efnzone: n un crcuto, ogn corrente e tensone è dt un combnzone lnere d genertor: V = K 1 $ g 1 K 2 $ g 2 K 3 $ g 3... I = K 1 $ g 1 K 2 $ g 2 K 3 $ g 3... oe

Dettagli

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale Gnmr Mrtn UNIVERSITÀ DEGLI STUDI DI BERGAMO Fcoltà d Ingegner Isttuzon d Econom Lure Trennle n Ingegner Gestonle Lezone 9 Domnd del mercto Prof. Gnmr Mrtn Unverstà degl Stud d Bergmo Fcoltà d Ingegner

Dettagli

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso.

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso. I vettor B Un segmento orentto è un segmento su cu è stto fssto un verso B d percorrenz, d verso oppure d verso. A A Il segmento orentto d verso è ndcto con l smolo. Due segment orentt che hnno l stess

Dettagli

METODI ITERATIVI PER LA RISOLUZIONE DI SISTEMI LINEARI

METODI ITERATIVI PER LA RISOLUZIONE DI SISTEMI LINEARI METODI ITERATIVI PER LA RISOLUZIONE DI SISTEMI LINEARI Per l rsoluzone d un sstem lnere A b, oltre metod drett, è possble utlzzre nche metod tertv che rggungono l soluzone estt come lmte d un procedmento

Dettagli

FORMULE DI AGGIUDICAZIONE

FORMULE DI AGGIUDICAZIONE Clssfczone: domno pubblco Formule d ggudczone Mnule d supporto ll utlzzo d Sntel per stzone ppltnte FOMULE DI AGGIUDICAZIONE Formule d ggudczone 18 Ottobre 2016 Pgn 1 d 29 Indce AZIENDA EGIONALE CENTALE

Dettagli

I vettori. Grandezze scalari: Grandezze vettoriali

I vettori. Grandezze scalari: Grandezze vettoriali Grndee sclr: I ettor engono defnte dl loro lore numerco esemp: lunghe d un segmento, re d un fgur pn, tempertur d un corpo, ecc. Grndee ettorl engono defnte, oltre che dl loro lore numerco, d un dreone

Dettagli

B - ESERCIZI: IP e TCP:

B - ESERCIZI: IP e TCP: Unverstà d Bergamo Dpartmento d Ingegnera dell Informazone e Metod Matematc B - ESERCIZI: IP e TCP: F. Martgnon Archtetture e Protocoll per Internet Eserczo b. S consder l collegamento n fgura A C =8 kbt/s

Dettagli

Misura masse molecolari

Misura masse molecolari Msur msse molecolr Le propretà de mterl polmerc dpendono dll mss molecolre. E possble conoscere l mss molecolre de sstem polmerc msurndo tl propretà Qul propretà? meccnche, fsche, n soluzone? Qule mss

Dettagli

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni:

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni: Anals ammortzzata Anals ammortzzata S consdera l tempo rchesto per esegure, nel caso pessmo, una ntera sequenza d operazon. Se le operazon costose sono relatvamente meno frequent allora l costo rchesto

Dettagli

Il procedimento di linearizzazione consiste nell'usare una funzione delle variabili anziché le variabili stesse.

Il procedimento di linearizzazione consiste nell'usare una funzione delle variabili anziché le variabili stesse. Y Lnerzzzone Il dgrmm d dspersone suggersce che le funzone d nterpolzone de dt non sono lner, m presentno un ndmento che n un cso (dots ner) potree essere d tpo esponenzle, mentre nell ltro cso (dots ross)

Dettagli

MISURE DELL ACCELERAZIONE DI GRAVITÁ g 1) PENDOLO REVERSIBILE DI KATER

MISURE DELL ACCELERAZIONE DI GRAVITÁ g 1) PENDOLO REVERSIBILE DI KATER MISURE DELL ACCELERAZIONE DI GRAVIÁ In questo espermento s vuole msurre l ccelerzone d rvtà. Dvers sono mod possl. S consderno qu le oscllzon d un pendolo fsco e l cdut ler d pllne d cco. All fne del esperment

Dettagli

Azionamenti Elettrici Parte 2 Tipologie dei motori e relativi azionamenti: Motori a collettore e Sincroni

Azionamenti Elettrici Parte 2 Tipologie dei motori e relativi azionamenti: Motori a collettore e Sincroni Azonment Elettrc Prte 2 Tpologe de motor e reltv zonment: Motor collettore e Sncron Prof. Alberto Tonell DEIS - Unverstà d Bologn Tel. 051-6443024 E-ml ml: tonell@des des.unbo.tt Prte 1 Indce generle del

Dettagli

Campi Elettromagnetici e Circuiti I Leggi Fondamentali

Campi Elettromagnetici e Circuiti I Leggi Fondamentali Fcoltà d Ingegner Unerstà degl stud d P Corso d Lure Trennle n Ingegner Elettronc e Informtc Cmp Elettromgnetc e Crcut I Legg Fondmentl Cmp Elettromgnetc e Crcut I.. 06/7 Prof. Luc Perregrn Legg fondmentl,

Dettagli

Capitolo 5. Il Sistema Satellitare GPS

Capitolo 5. Il Sistema Satellitare GPS Cptolo 5 Il stem telltre GP 5. Descrzone del sstem L nvgzone stelltre nsce con l lnco dello putn d prte dell U nell ottobre 957; l osservzone dello shft-doppler sull frequenz delle converszon dllo putn

Dettagli

Noi investiamo in qualità della vita e Tu?

Noi investiamo in qualità della vita e Tu? No nvestmo n qultà dell vt e Tu? sosttuzone de serrment SI NO - RISPARMIO IN BOLLETTA - COMFORT - QUALITÀ DELLA VITA + - lvor d rqulfczone lvor d rqulfczone + eff cen 10 nn relzzzone del cppotto z e nerg

Dettagli

Modellazione e Identificazione Dinamica della Cupola della Basilica di S. Gaudenzio in Novara

Modellazione e Identificazione Dinamica della Cupola della Basilica di S. Gaudenzio in Novara Modellzone e Identfczone Dnmc dell Cupol dell Bslc d S. Gudenzo n Novr Ing. Slvno Erlcher Sommro Nell prm prte dell rtcolo s present un modello gl element fnt dell Cupol dell Bslc d S. Gudenzo. S mostrno

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 2)

Esercizi sulle reti elettriche in corrente continua (parte 2) Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola

Dettagli

Aritmetica e architetture

Aritmetica e architetture Unverstà degl stud d Parma Dpartmento d Ingegnera dell Informazone Poltecnco d Mlano Artmetca e archtetture Sommator Rpple Carry e CLA Bozza da completare del 7 nov 03 La rappresentazone de numer Rappresentazone

Dettagli

" Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6

 Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6 CAPITOLO 6 Clcolo integrle 6. Integrle indefinito L nozione fondmentle del clcolo integrle è quell di funzione primitiv di un funzione f (). Tle nozione è in qulche modo speculre ll nozione di funzione

Dettagli

5. Coperture in acciaio: applicazione

5. Coperture in acciaio: applicazione 5. Coperture n cco: pplczone Le coperture n cco, d solto rservte costruzon non bttve, hnno tpologe costruttve bbstnz tpche ( FIGURA 1). Gl element costruttv ordnr sono: sol; le trv, sezone pen (rcrecc)

Dettagli

Elementi di statistica

Elementi di statistica Element d statstca Popolazone statstca e campone casuale S chama popolazone statstca l nseme d tutt gl element che s voglono studare (ndvdu, anmal, vegetal, cellule, caratterstche delle collettvtà..) e

Dettagli

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model Rcerca Operatva e Logstca Dott. F.Carrabs e Dott.ssa M.Gentl Modell per la Logstca: Sngle Flow One Level Model Mult Flow Two Level Model Modell d localzzazone nel dscreto Modell a Prodotto Sngolo e a Un

Dettagli

INTERPOLAZIONE STATISTICA

INTERPOLAZIONE STATISTICA ITERPOLAZIOE STATISTICA ell esme d fenomen collettv spesso c trovmo confrontre le coppe d vlor tr due vrl potzzndo v s un relzone tr loro; è noto, d esempo, v s relzone tr prezzo e domnd d un ene, reddto

Dettagli

6. Il telerilevamento passivo.

6. Il telerilevamento passivo. 6. Il telerlevmento pssvo. Il telerlevmento h lo scopo rlevre stnz le crtterstche fsco/chmche un oggetto trmte un sensore che s n gro msurre l energ elettromgnetc che l superfce ell oggetto rr nello spzo

Dettagli

In secondo luogo, dovremo registrare il pagamento del maxicanone iniziale. IVA sul maxicanone: x 20% = Canoni leasing IVA nostro credito

In secondo luogo, dovremo registrare il pagamento del maxicanone iniziale. IVA sul maxicanone: x 20% = Canoni leasing IVA nostro credito Esercitzione Lesing (B) Metodo Ptrimonile A) In dt /2006 si stipul un contrtto di lesing per l'cquisizione di un mcchinrio di produzione lle seguenti condizioni: costo complessivo 23.100 (+ IVA 20%) d

Dettagli

8 Controllo di un antenna

8 Controllo di un antenna 8 Controllo di un ntenn L ntenn prbolic di un rdr mobile è montt in modo d consentire un elevzione compres tr e =2. Il momento d inerzi dell ntenn, Je, ed il coefficiente di ttrito viscoso, f e, che crtterizzno

Dettagli

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 -

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 - PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE (Metodo delle Osservazon Indrette) - - SPECIFICHE DI CALCOLO Procedura software per la compensazone d una rete d lvellazone collegata

Dettagli

Elaborazione dei Dati Sperimentali

Elaborazione dei Dati Sperimentali Chmc Fsc Industrle Modulo A Teor degl error Elorzone de Dt Spermentl Lortoro d Chmc Fsc Teor degl error MISURA DIRETTA DI UA GRADEZZA FISICA Error d msur, mglore stm e ncertezz L msur drett d un grndezz

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

SISTEMI DI CONDOTTE: La verifica idraulica

SISTEMI DI CONDOTTE: La verifica idraulica SISTEMI DI CONDOTTE: L vefc dulc Clo Cpon Unvestà degl Stud d Pv Dptmento d Ingegne Idulc e Ambentle Poszone del del poblem Rete esstente d cu è not l geomet E pefsst l eogzone (ppocco DDA: Demnd Dven

Dettagli

SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia

SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO ECONOMIA INDUSTRIALE Unverstà degl Stud d Mlano-Bcocca Chrstan Garavagla Soluzone 7 a) L ndce d concentrazone C (o CR k ) è la somma delle uote d mercato (o share)

Dettagli

PROBLEMA 1. Soluzione. β = 64

PROBLEMA 1. Soluzione. β = 64 PROBLEMA alcolare l nclnazone β, rspetto al pano stradale, che deve avere un motocclsta per percorrere, alla veloctà v = 50 km/h, una curva pana d raggo r = 4 m ( Fg. ). Fg. Schema delle condzon d equlbro

Dettagli

Lezione 27. La legge di reciprocità quadratica.

Lezione 27. La legge di reciprocità quadratica. Lezone 7 Prereust: Congruenze modulo un ntero L legge d recroctà udrtc Dedchmo uest ultmo ctolo llo studo dell rsolubltà delle congruenze udrtche del to x (mod ), (*) dove è un ulss ntero e è un numero

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Effetti dell implementazione digitale

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Effetti dell implementazione digitale INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Effett dell mplementone dgtle Prof. Crlo Ross DEIS - Unverstà d Bologn Tel: 05 09300 eml: cross@des.unbo.t Implementone dgtle Introduone L mplementone degl

Dettagli

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez.

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez. Fcoltà di Economi - Università di Sssri Anno Accdemico 2004-2005 Dispense Corso di Econometri Docente: Lucino Gutierrez Algebr Linere Progrmm: 1.1 Definizione di mtrice e vettore 1.2 Addizione e sottrzione

Dettagli

Soluzione esercizio Mountbatten

Soluzione esercizio Mountbatten Soluzone eserczo Mountbatten I dat fornt nel testo fanno desumere che la Mountbatten utlzz un sstema d Actvty Based Costng. 1. Calcolo del costo peno ndustrale de tre prodott Per calcolare l costo peno

Dettagli

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2 RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A La rappresentazone n Complemento a Due d un numero ntero relatvo (.-3,-,-1,0,+1,+,.) una volta stablta la precsone che s vuole ottenere (coè l numero d

Dettagli

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive Prncp d ngegnera elettrca Lezone 6 a Anals delle ret resste Anals delle ret resste L anals d una rete elettrca (rsoluzone della rete) consste nel determnare tutte le corrent ncognte ne ram e tutt potenzal

Dettagli

Calcolo della concentrazione e della densità del Silicio Monocristallino

Calcolo della concentrazione e della densità del Silicio Monocristallino Clcolo dell concentrzone e dell denstà del Slco Monocrstllno Clcolo del numero d tom per cell Contrbuto de vertc: 8 1 8 1 Contrbuto delle superfc: 6 1 2 3 Contrbuto tom ntern: 4 1 4 Totle: 8 tom equvlent

Dettagli

LAVORO ESTIVO 4CO1 / 4 CO2

LAVORO ESTIVO 4CO1 / 4 CO2 LVORO ESTIVO CO / CO LE EQUZIONI ESPONENZILI 7 7 7 LE DISEQUZIONI ESPONENZILI 7 LE EQUZIONI LOGRITMICHE [ ] [ ] log log log log log log log log log ln ln ln ln ln ln log log log LE DISEQUZIONI LOGRITMICHE

Dettagli

Statistica descrittiva

Statistica descrittiva Statstca descrttva. Indc d poszone. Per ndc d poszone d un nseme d dat, ordnat secondo la loro randezza, s ntendono alcun valor che cadono all nterno dell nseme. Gl ndc pù usat sono: I. eda. II. edana.

Dettagli

Esercizio. Alcuni esercizi su algoritmi e programmazione. Schema a blocchi. Calcolo massimo, minimo e media

Esercizio. Alcuni esercizi su algoritmi e programmazione. Schema a blocchi. Calcolo massimo, minimo e media Alcun esercz su algortm e programmazone Fondament d Informatca A Ingegnera Gestonale Unverstà degl Stud d Bresca Docente: Prof. Alfonso Gerevn Scrvere l algortmo e l dagramma d flusso per l seguente problema:

Dettagli

Vettori. Le grandezze fisiche sono: scalari; vettoriali;

Vettori. Le grandezze fisiche sono: scalari; vettoriali; Vetto 1 Le gndee fsche sono: scl; vettol; Def: Gnde scle defnt unvocmente d un numeo (postvo o negtvo) (con oppotun untà d msu) es.: tempo, mss, tempetu, cc elettc, Def: Gnde vettole (vd. pgn seguente)

Dettagli

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse Lezone 1. L equlbro del mercato fnanzaro: la struttura de tass d nteresse Ttol con scadenza dversa hanno prezz (e tass d nteresse) dfferent. Due ttol d durata dversa emess dallo stesso soggetto (stesso

Dettagli

Il Circuito Elementare

Il Circuito Elementare Corso d IMPIEGO INDUSRIALE dell ENERGIA L ener, ont, trsormzon ed us nl Impnt vpore I enertor d vpore Impnt turbos Ccl combnt e coenerzone Il mercto dell ener 1 Corso d IMPIEGO INDUSRIALE dell ENERGIA

Dettagli

MATEMATIKA OLASZ NYELVEN

MATEMATIKA OLASZ NYELVEN Mtemtik olsz nyelven középszint 061 É RETTSÉGI VIZSGA 007. október 5. MATEMATIKA OLASZ NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Indiczioni

Dettagli

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Integrazone numerca dell equazone del moto per un sstema lneare vscoso a un grado d lbertà Prof. Adolfo Santn - Dnamca delle Strutture 1 Introduzone 1/2 L equazone del moto d un sstema vscoso a un grado

Dettagli

B8. Equazioni di secondo grado

B8. Equazioni di secondo grado B8. Equzioni di secondo grdo B8.1 Legge di nnullmento del prodotto Spendo che b0 si può dedurre che 0 oppure b0. Quest è l legge di nnullmento del prodotto. Pertnto spendo che (-1) (+)0 llor dovrà vlere

Dettagli

Il dimensionamento dei sistemi di fabbricazione

Il dimensionamento dei sistemi di fabbricazione Il dmensonamento de sstem d fabbrcazone 1 Processo d progettazone d un sstema produttvo Anals della domanda Industralzzazone d prodotto e processo (dstnte e ccl d lavorazone) Scelta delle soluzon produttve

Dettagli

Formule di Integrazione Numerica

Formule di Integrazione Numerica Formule d Itegrzoe Numerc Itegrzoe umerc: geerltà Prolem: vlutre l tegrle deto: I d F F utlzzo opportue tecce umerce qudo: l prmtv d o e esprmle orm cus d esempo s/, ep- ; dcoltà el clcolre ltcmete l prmtv

Dettagli

InfoCenter Product A PLM Application

InfoCenter Product A PLM Application genes d un fra o Gestone de crcolazone dell'nformazone sa crcoscrtta entro Pdetermnat ambt settoral. L'ntegrazone de sstem e de odpartment azendal rchede nuove modaltà operatve, nuove t competenze e nuov

Dettagli

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli

Corso di Architettura (Prof. Scarano) 25/03/2002

Corso di Architettura (Prof. Scarano) 25/03/2002 Corso d rchtettura (Prof. Scarano) // Un quadro della stuazone Lezone Logca Dgtale (): Crcut combnator Vttoro Scarano rchtettura Corso d Lauren Informatca Unverstà degl Stud d Salerno Input/Output Regstr

Dettagli

Statistica e calcolo delle Probabilità. Allievi INF

Statistica e calcolo delle Probabilità. Allievi INF Statstca e calcolo delle Probabltà. Allev INF Proff. L. Ladell e G. Posta 06.09.10 I drtt d autore sono rservat. Ogn sfruttamento commercale non autorzzato sarà perseguto. Cognome e Nome: Matrcola: Docente:

Dettagli

5. Funzioni elementari trascendenti

5. Funzioni elementari trascendenti ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 5. Funzioni elementri trscendenti A. A. 2013-2014 1 FUNZIONI ESPONENZIALI Le più semplici funzioni esponenzili sono le funzioni f: R R definite

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE

SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE GIOVANNI CRUPI, ANDREA DONATO SUMMARY. We characterze a set of

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

LEZIONE 13 MINIMIZZAZIONE DEI COSTI. Condizione per la minimizzazione dei costi. Efficienza tecnica ed efficienza economica

LEZIONE 13 MINIMIZZAZIONE DEI COSTI. Condizione per la minimizzazione dei costi. Efficienza tecnica ed efficienza economica LEZIONE 3 MINIMIZZAZIONE DEI COSTI Lungo periodo Soluzione nlitic Condizione per l minimizzzione dei costi Efficienz tecnic ed efficienz economic Rppresentzione grfic Isocosto ed isoqunto Sentiero di espnsione

Dettagli

UN SISTEMA DI MODELLI PER LA SIMULAZIONE. Indice 1 INTRODUZIONE IL SISTEMA DI MODELLI DI INTERAZIONE TRASPORTO- TERRITORIO...

UN SISTEMA DI MODELLI PER LA SIMULAZIONE. Indice 1 INTRODUZIONE IL SISTEMA DI MODELLI DI INTERAZIONE TRASPORTO- TERRITORIO... UN SISTEMA DI MODELLI PER LA SIMULAZIONE DELLE INTERAZIONI TRASPORTI-TERRITORIO d Perlug Coppol Indce 1 INTRODUZIONE...2 2 IL SISTEMA DI MODELLI DI INTERAZIONE TRASPORTO- TERRITORIO...3 2.1 Il modello

Dettagli

POLITECNICO DI MILANO IV FACOLTÀ Ingegneria Aerospaziale I Appello di Fisica Sperimentale A+B 17 Luglio 2006

POLITECNICO DI MILANO IV FACOLTÀ Ingegneria Aerospaziale I Appello di Fisica Sperimentale A+B 17 Luglio 2006 POLITECNICO DI MILANO IV FACOLTÀ Ingegneri Aerospzile I Appello di Fisic Sperimentle A+B 7 Luglio 6 Giustificre le risposte e scrivere in modo chiro e leggibile. Sostituire i vlori numerici solo ll fine,

Dettagli

Regime di interesse semplice

Regime di interesse semplice Formule d usre : I = interesse ; C = cpitle; S = sconto ; K = somm d scontre V = vlore ttule ; i = tsso di interesse unitrio it i() t = it () 1 ; s () t = ( 2) 1 + it I() t = Cit ( 3 ) ; M = C( 1 + it)

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

Laboratorio 1 Impianto idraulico

Laboratorio 1 Impianto idraulico MODELLI NUMERICI DI IMPIANTI AERONAUTICI.. 0/3 Lbortoro Impnto drulco Oggetto Relzzre un progrmm d smulzone dell mpnto drulco ndcto nello schem e consstente n un genertore d potenz dove l pressone, controllt

Dettagli

La ripartizione trasversale dei carichi

La ripartizione trasversale dei carichi La rpartzone trasversale de carch La dsposzone de carch da consderare ne calcol della struttura deve essere quella pù gravosa, ossa quella che determna massm valor delle sollectazon. Tale aspetto nveste

Dettagli

La costituzione d azienda

La costituzione d azienda L costituzione d ziend Esercizio1 In dt 15/01/X si costituisce, per volontà dei soci Alf e Bet, l Eridice S.p.A. Il cpitle socile, costituito d 40.000 zioni ordinrie d 10 euro nominli ciscun, viene sottoscritto

Dettagli

Esercitazione Dicembre 2014

Esercitazione Dicembre 2014 Esercitzione 10 17 Dicembre 2014 Esercizio 1 Un economi chius è crtterizzt di seguenti dti: A = 400 M = 250 γ = 1.5 (moltiplictore dell politic fiscle) β = 0.8 moltiplictore dell politic monetri z = 0.25

Dettagli

VALORI MEDI (continua da Lezione 5)

VALORI MEDI (continua da Lezione 5) VALORI MEDI (cotu d Lezoe 5) Dott.ss Pol Vcrd 6. L ed rtetc è lere coè è vrte per trsforzo ler de dt. S u dstrbuzoe utr d ed A. Effettuo u trsforzoe lere delle osservzo coè b c d dove c e d soo due costt

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

MODELLISTICA DI SISTEMI DINAMICI

MODELLISTICA DI SISTEMI DINAMICI CONTROLLI AUTOMATICI Ingegnera Gestonale http://www.automazone.ngre.unmore.t/pages/cors/controllautomatcgestonale.htm MODELLISTICA DI SISTEMI DINAMICI Ing. Federca Gross Tel. 059 2056333 e-mal: federca.gross@unmore.t

Dettagli

Progetto di travi in c.a.p isostatiche Il tracciato del cavi e il cavo risultante

Progetto di travi in c.a.p isostatiche Il tracciato del cavi e il cavo risultante Unverstà degl Stud d Roma Tre - Facoltà d Ingegnera Laurea magstrale n Ingegnera Cvle n Protezone Corso d Cemento Armato Precompresso A/A 2015-16 Progetto d trav n c.a.p sostatche Il traccato del cav e

Dettagli

5. Baricentro di sezioni composte

5. Baricentro di sezioni composte 5. Barcentro d sezon composte Barcentro del trapezo Il barcentro del trapezo ( FIURA ) s trova sull asse d smmetra oblqua (medana) della fgura; è suffcente, qund, determnare la sola ordnata. A tal fne,

Dettagli

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO LA A.A Esame Scritto del 10/12/2004 Soluzione (sommaria) degli esercizi

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO LA A.A Esame Scritto del 10/12/2004 Soluzione (sommaria) degli esercizi INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO LA A.A. 2004-05 Esame Scrtto del 10/12/2004 Soluzone (sommara) degl esercz Eserczo 1: S vuole acqusre e convertre n dgtale la msura d deformazone d una

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1 APAT Agenza per la Protezone dell Ambente e per Servz Tecnc Dpartmento Dfesa del Suolo / Servzo Geologco D Itala Servzo Tecnologe del sto e St Contamnat * * * Nota nerente l calcolo della concentrazone

Dettagli

Potenzialità degli impianti

Potenzialità degli impianti Unverstà degl Stud d Treste a.a. 2009-2010 Impant ndustral Potenzaltà degl mpant Impant ndustral Potenzaltà degl mpant 1 Unverstà degl Stud d Treste a.a. 2009-2010 Impant ndustral Defnzone della potenzaltà

Dettagli

Esercizi sulle serie di Fourier

Esercizi sulle serie di Fourier Esercizi sulle serie di Fourier Corso di Fisic Mtemtic,.. 3- Diprtimento di Mtemtic, Università di Milno Novembre 3 Sviluppo in serie di Fourier (esponenzile) In questi esercizi, si richiede di sviluppre

Dettagli

Alcune proprietà dei circuiti lineari

Alcune proprietà dei circuiti lineari Unerstà degl Stud d Cssno lcune propretà de crcut lner ntono Mffucc, Fo Vllone 00/00 er 09/00 IL PINCIPIO DI SOVPPOSIZION DGLI FFTTI Il prncpo d sorpposzone degl effett è forse l pù mportnte conseguenz

Dettagli

La retroazione negli amplificatori

La retroazione negli amplificatori La retroazone negl amplfcator P etroazonare un amplfcatore () sgnfca sottrarre (o sommare) al segnale d ngresso (S ) l segnale d retroazone (S r ) ottenuto dal segnale d uscta (S u ) medante un quadrpolo

Dettagli

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo UNIVERSITA DEGLI STUDI DI BASILICATA FACOLTA DI ECONOMIA Corso d laurea n Economa Azendale Lezon d Statstca (25 marzo 2013) Docente: Massmo Crstallo QUARTILI Dvdono la dstrbuzone n quattro part d uguale

Dettagli

TEST DI MATEMATICA. Funzioni in una, Funzioni in due variabili Integrali Equazioni differenziali. 1) Il valore del limite seguente. e e. e 1.

TEST DI MATEMATICA. Funzioni in una, Funzioni in due variabili Integrali Equazioni differenziali. 1) Il valore del limite seguente. e e. e 1. TEST DI MATEMATICA Funzioni in un, Funzioni in due vriili Integrli Equzioni differenzili ) Il vlore del limite seguente e e e lim è ) Il vlore del limite seguente 5 lim 5 è : ) L derivt prim dell funzione

Dettagli

Inps - Messaggio 27 marzo 2009, n. 6952

Inps - Messaggio 27 marzo 2009, n. 6952 Fondo Tesorer: v lber ll procedur per l pgmento dretto delle prestzon Antonno Cnnoto Esperto n mter prevdenzle Guseppe Mccrone Consulente del lvoro n Rom Inps - Messggo 27 mrzo 2009, n. 6952 Oggetto: Erogzone

Dettagli

IL RUMORE NEGLI AMPLIFICATORI

IL RUMORE NEGLI AMPLIFICATORI IL RUMORE EGLI AMPLIICATORI Defnzon S defnsce rumore elettrco (electrcal nose) l'effetto delle fluttuazon d corrente e/o d tensone sempre present a termnal degl element crcutal e de dspostv elettronc.

Dettagli

32. I CUSCINETTI A ROTOLAMENTO

32. I CUSCINETTI A ROTOLAMENTO 32. I CUSCINETTI A OTOAMENTO G. Petrucc ezon d Costruzone d Mcchne I cuscnett sono component meccnc che fungono d supporto per component rotnt come gl lber. Tpcmente l elemento rotnte può essere schemtzzto

Dettagli

ELETTRONICA dei SISTEMI DIGITALI Universita di Bologna, sede di Cesena. Fabio Campi

ELETTRONICA dei SISTEMI DIGITALI Universita di Bologna, sede di Cesena. Fabio Campi ELETTROICA de SISTEMI DIGITALI Unversta d Bologna, sede d Cesena Fabo Camp Aa 3-4 Artmetca Computazonale S studano possbl archtetture hardware (ASIC) per realzzare operazon Matematche su segnal compost

Dettagli

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3 Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Esponenzili e ritmi ESPONENZIALI Potenze con esponente rele L potenz è definit: se > 0, per ogni R se 0, per tutti e soli gli R se < 0, per tutti e soli gli Z Sono definite: ( ) ( ) ( ) 7 7 Non sono definite:

Dettagli

Esercitazioni Capitolo 11 Impianti di condizionamento

Esercitazioni Capitolo 11 Impianti di condizionamento serczon Cpolo Impn d condzonmeno ) S suppon ce r emperur 0 C e umdà rel 80% en rffredd fno ll emperur d 0 C. Vlure l qunà d pore condenso per d r secc l lello del mre (P 000 (P) ) ed ll quo d 000 (m )

Dettagli

Strutture deformabili torsionalmente: analisi in FaTA-E

Strutture deformabili torsionalmente: analisi in FaTA-E Strutture deformabl torsonalmente: anals n FaTA-E Il comportamento dsspatvo deale è negatvamente nfluenzato nel caso d strutture deformabl torsonalmente. Nelle Norme Tecnche cò vene consderato rducendo

Dettagli

PROBLEMI DI TRASPORTO

PROBLEMI DI TRASPORTO Metod e modell per l supporto lle decso Prof Ferddo Pezzell - Ig Lug De Gov PROBLEMI DI TRSPORTO OFFERT IMPINTI UTENTI DOMND ( ) (org) (destzo) ( b ) (5) (8) (2) 2 2 (2) (3) 3 3 (9) 4 (9) c COSTO UNITRIO

Dettagli

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità:

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità: ESERCIZIO. S consder una popolazone consstente delle quattro msurazon,, e descrtta dalla seguente dstrbuzone d probabltà: X P(X) ¼ ¼ ¼ ¼ S estrae casualmente usando uno schema d camponamento senza rpetzone

Dettagli

Partner locali. Basilicata. Comune di Potenza

Partner locali. Basilicata. Comune di Potenza Prtner lcl del prgett Regne Bslct Cmune d Ptenz c v Regne Bslct Cmune d Ptenz t s Grupp d Lvr Regnle - Uffc Trsprt Ing. Angel Snt LUONGO - Drgente Uffc Trsprt Ing. Dnt ARCIERI - Respnsble Prgett Dtt. Guseppe

Dettagli

Integrale definito. Introduzione: il problema delle aree

Integrale definito. Introduzione: il problema delle aree Integrle definito Introduzione: il prolem delle ree Il prolem delle ree è uno dei tre grndi prolemi che ci sono stti trmndti dgli ntichi, che lo definivno come il prolem dell qudrtur del cerchio: trovre,

Dettagli

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli:

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli: Acidi Deboli Si definisce cido debole un cido con < 1 che risult perciò solo przilmente dissocito in soluzione. Esempi di cidi deboli: Acido cetico (H OOH) 1.75 1-5 Acido scorbico (vitmin ) 1 6.76 1-5.5

Dettagli

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz LEZIONE e 3 La teora della selezone d portafoglo d Markowtz Unverstà degl Stud d Bergamo Premessa Unverstà degl Stud d Bergamo Premessa () È puttosto frequente osservare come gl nvesttor tendano a non

Dettagli