Enrico Borghi LE VARIABILI DINAMICHE DEL CAMPO SCALARE REALE

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Enrico Borghi LE VARIABILI DINAMICHE DEL CAMPO SCALARE REALE"

Transcript

1 Enrio Borghi LE VARIABILI DINAMICHE DEL CAMPO SCALARE REALE

2 E. Borghi - Variabili dinamihe del ampo salare reale Rihiami a studi presenti in fisiarivisitata Leggendo Le variabili dinamihe del ampo salare reale si inontrano rihiami ai seguenti studi a L equazione di Klein-Gordon b Il teorema di Nöther he fanno parte di fisiarivisitata e he devono essere ben noti a hi si interessa alle variabili dinamihe del ampo salare reale seguendo la presentazione he di questo argomento viene data in questo studio. * * * Signifiato di aluni dei simboli usati in questo studio: ψr signifia ψx 0,x 1,x 2,x 3 ; ϕk signifia ϕk 0,k 1,k 2,k 3 dr signifia dx 0 dx 1 dx 2 dx 3 ; dk signifia dk 0 dk 1 dk 2 dk 3 R signifia x0 = t ; R = vettore posizione 3-dimensionale ±R ±R k signifia k0 = ω/ ; k = vettore numero d onde 3-dimensionale ±k ±k k R signifia k α R α = k α R α = ω t k R = ωt k R ; α = 0,1,2,3 2

3 Simboli usati in questo studio: m 0 = massa a riposo di una partiella; Meania pre-relativistia E. Borghi - Variabili dinamihe del ampo salare reale Premessa R = 3-vettore posizione newtoniana; U = 3-vettore veloità newtoniana; v = m 0 U = 3-vettore momento newtoniano; E = v 2 /2m 0 = energia newtoniana di una partiella libera; p = v + q A = momento generalizzato di una partiella on momento v e aria q soggetta a potenziale magnetio A; W = 1 2m 0 p q A2 + qϕ = energia di una partiella on massa m 0, aria q, momento generalizzato p e soggetta ai potenziali e.m. ϕ,a; Meania relativistia R = 4-vettore posizione; R = parte spaziale di R; R = t ±R Il doppio segno di R india ontrovarianza + e ovarianza ; U = 4-vettore veloità; U = parte spaziale di U; U = U0 ±U = 1 1 U2 2 ; U = ±U P = m 0 U = 4-vettore momento; P = parte spaziale di P; E = m P 2 = energia relativistia di una partiella libera; P = P0 = E/ v ; P = ±P ±P 1 U2 2 U 1 U2 2 p = P + q Φ = 4-momento generalizzato relativistio di una partiella on massa m 0, aria q, momento P e soggetta a 4-potenziale elettromagnetio Φ ϕ, ±A; P = parte spaziale di p; p = p0 ±P = P 0 + q ϕ E ± P + q A = + q ϕ ± P + q A W = qϕ + m P q A2 = energia relativistia di una partiella dotata di aria q e soggetta a potenziale Φ ϕ, ±A 3

4 E. Borghi - Variabili dinamihe del ampo salare reale Assumiamo ome densità lagrangiana del ampo salare reale ψ in assenza di potenziale l espressione seguente α,β,µ = 0,1,2,3 he risriviamo osì L ψ, ψ = 1 ψ i h i h ψ x α 2m 0 x µ x 1 µ 2 m 0ψ 2 ; [L] = MLT 1 [ψ 2 ] 1 L ψ, ψ = 1 ψ ψ x α i hgβµ i h 2m 0 xβ x 1 µ 2 m 0ψ 2 Poihé e L ψ = m 0ψ L ψ x α le equazioni di Lagrange espresse da = 1 2m 0 i hgαµ i h ψ x µ 1 2m 0 i hgβα i h ψ x β = 1 2m 0 i hi h αµ ψ ψ g + gβα x µ x β = 1 2m 0 i hi h αβ ψ ψ g + gαβ xβ x β = 1 ψ i hi h, m 0 x α 2 L ψ x α fornisono la seguente equazione del moto L = 0 ; α = 0,1,2,3 3 ψ x α m 0 ψ + 1 m 0 i hi h x α ψ x α = 0 he è uguale all equazione di Klein-Gordon v. eq. 32 dello studio a salvo il fatto he ora ψ è reale: 2 + m ; 2 4 x α x α Ci proponiamo ora di mostrare ome si riava la oordinata lagrangiana di un ampo salare reale integrando l equazione del moto di questo ampo. 4

5 Consideriamo il seguente integrale 4-dimensionale di Fourier: Sostituiamo nella 4 ϕke ik R dk ; ϕk = E. Borghi - Variabili dinamihe del ampo salare reale ψre ik R dr ; k = k 0 ±k m2 0 2 = = 2 + m2 0 2 ϕke ik R dk = m2 0 2 k 2 m2 0 2 ϕke ik R dk = 0 ϕke ik R dk = 0 ovvero k 2 m2 0 2 ϕk = 0 Da questa deduiamo he ϕk può essere diverso da zero solo se k 2 m2 0 2 = 0, il he equivale ad assumere ϕk = δ k 2 m2 0 2 ak 6 on ak arbitrario. Infatti, per definizione di funzione delta di Dira, se k 2 m2 0 2 = 0 si ha δ0 0 e quindi ϕk 0, mentre se k 2 m si ha δk 2 m2 0 2 = 0 e quindi ϕk = 0. La soluzione della 4 è dunque espressa da Infatti se inseriamo la 7 nella 4 otteniamo k 2 m2 0 2 δ k 2 m2 0 2 ake ik R dk 7 δ k 2 m2 0 2 ake ik R dk = 0 equazione he è verifiata per qualunque ak perhé l integrando ontiene un termine del tipo xδx he vale zero perhé se x 0, allora δx = 0 e quindi xδx = 0, mentre se x = 0, allora δ0 0, ma 0 δ0 = 0. Ora osserviamo he k 2 m2 0 2 = k 2 0 k 2 m

6 E. Borghi - Variabili dinamihe del ampo salare reale e poniamo osihé e dunque la 7 diviene ω 2 k 2 = k 2 + m k 2 m2 0 2 = k 2 0 ω2 k 2 10 δ k 2 0 ω2 k 2 e ik R akdk Tenendo presente la nota proprietà della funzione delta di Dira espressa da si può srivere 2ωk δ δx 2 a 2 = 1 {δx a + δx + a} ; a > 0 2a k 0 ωk e ik0t k R ak 0,kdk 0 dk+ + Integrando rispetto a k 0 si ottiene 2ωk δ 2ωk eiωkt k R aωk,kdk + k 0 ωk e ik0t k R ak 0,kdk 0 dk 2ωk ei ωkt k R a ωk,kdk Effettuiamo nel seondo integrale a membro destro la sostituzione k k. Tenendo onto del fatto he ωk non ambia segue Segue anora 2ωk eiωkt k R aωk,kdk + 2ωk aωk,keik R dk + 2ωk ei ωkt+k R a ωk, kd k 2ωk a ωk, ke ik R dk 11 on [ψ] = L 3/2 ; [aωk,k] = [a ωk, k] = L 1/2 6

7 E. Borghi - Variabili dinamihe del ampo salare reale Conviene porre aωk, k = ak ; a ωk, k = a k 12 osihé la 11 diviene Ora osserviamo he ψ R = 2ωk akeik R dk + 2ωk a ke ik R dk + 2ωk a ke ik R dk 13 2ωk a ke ik R dk 14 Avendo assunto he la oordinata lagrangiana he stiamo trattando sia reale, deve risultare ψ = ψ 15 e quindi osihé on a k = a k ; a k = ak 16 2ωk { ake ik R + a ke ik R} dk 17 ±ik R = i±k 0 t k R La 17 è l espressione della oordinata lagrangiana he i eravamo proposti di determinare. Ora poniamo ψ + R = ψ R = 2ωk akeik R dk = 2ωk a ke ik R dk = 2ωk akei+k 0t k R dk 18 2ωk a ke i k 0t+k R dk 19 osihé ψ = ψ + Le ψ + R e ψ R, on riferimento al segno he preede k 0 he è onsiderato positivo, sono dette rispettivamente parte a frequenza positiva e parte a frequenza negativa della ψr. La 17 si può risrivere osì ψ + R + ψ R 20 7

8 E. Borghi - Variabili dinamihe del ampo salare reale Talvolta nella letteratura si trova ψ + sambiato on ψ in onseguenza del fatto he in luogo delle 18 e 19 si può srivere ψ R = ψ + R = 2ωk ake i k 0t+k R dk = 2ωk a ke i+k 0t k R dk = 2ωk akeik R dk 2ωk a ke ik R dk 21 on ik R = i k 0 t ± k R 22 Infine nel quadrispazio R R,it, poihé è k k 1,k 2,k 3,k 4 k,i ω, si ha ±ik R = ±ik R + k 4 R 4 = { i±k R ± k4 R 4 i k R k 4 R 4 osihé oppure ±ik R = i±k R ± i ω it 23 ±ik R = i k R i ω it 24 e quindi, se faiamo riferimento al segno he preede iω/ nella 23, le parti a frequenza positiva e negativa sono espresse da ψ + R = ψ R = 2ωk akeik R+i ω it dk = 2ωk a ke i k R i ω it dk = 2ωk akeik R ωt dk 2ωk a ke i k R+ωt dk 25 Invee, se faiamo riferimento al segno he preede iω/ nella 24 si ha ψ + R = ψ R = 2ωk ake ik R+i ω it dk = 2ωk a ke i k R i ω it dk = 2ωk akei k R+ωt dk 2ωk a ke ik R ωt dk 26 * * * 8

9 E. Borghi - Variabili dinamihe del ampo salare reale Passiamo ora alla determinazione delle variabili dinamihe del ampo salare reale ψr. Il tensore densità di energia-momento si riava dall eq. 21dello studio b: T α β = 1 ψ ψ i hi h m 0 x α x β δα βl 27 Riordiamo he T α β può essere onsiderato il tensore densità di energia-momento perhé ψ è un ampo salare v. pag. 8 dello studio b. Da T α β si ottiene il quadrivettore energia-momento: P β = T 0 βdr = h2 ψ ψ m 0 t x dr β δ0 β LdR ; β = 0,1,2,3 28 L energia si riava da P 0 = h2 ψ m 0 t = h2 ψ m 0 t { = h2 ψ m 0 t { = h2 ψ 2m 0 t 2 dr h2 ψ ψ dr + 1 2m 0 x µ x µ 2 m 0 ψ 2 dr 2 { 2 dr h2 ψ ψ ψ} 2m 0 t 2 1 } 2 ψ t 2 ψ ψ + m ψ2 dr } 2 + ψ ψ + m2 0 2 ψ2 e vale W = P 0. La parte spaziale del quadrivettore energia-momento è espressa da P k = dr m 0 ψ 2 dr dr 29 T 0 h2 ψ ψ kdr = dr ; k = 1,2,3 30 m 0 t xk Poihé T α β è il tensore densità di energia-momento del ampo, il tensore Jγαβ, densità di momento angolare, è espresso da Il tensore momento angolare vale J αβ = J γαβ = T γα x β T γβ x α 31 J 0αβ dr = T 0α x β T 0β x α dr 32 Lo spin del ampo è nullo v. pag. 8 dello studio b. La orrente assoiata al ampo, espressa dall eq. 66 dello studio b, è nulla perhé il ampo è reale. 9

Enrico Borghi LE VARIABILI DINAMICHE DEL CAMPO DI MAXWELL

Enrico Borghi LE VARIABILI DINAMICHE DEL CAMPO DI MAXWELL Enrio Borghi LE VARIABILI DINAMICHE DEL CAMPO DI MAXWELL E. Borghi - Le variabili dinamihe del ampo di Maxwell Rihiami a studi presenti in fisiarivisitata Leggendo Le variabili dinamihe del ampo di Maxwell

Dettagli

1 La Lagrangiana di una particella in una campo di forze potenziale

1 La Lagrangiana di una particella in una campo di forze potenziale Introduzione alle equazioni di Eulero-Lagrange e ai potenziali generalizzati G.Falqui, Dipartimento di Matematia e Appliazioni, Università di Milano Bioa. Corso di Sistemi Dinamii e Meania Classia, a.a.

Dettagli

Spin. La hamiltoniana classica di una particella di massa m e carica q in presenza di un potenziale elettromagnetico (Φ, A) si scrive.

Spin. La hamiltoniana classica di una particella di massa m e carica q in presenza di un potenziale elettromagnetico (Φ, A) si scrive. Spin La hamiltoniana lassia di una partiella di massa m e aria q in presenza di un potenziale elettromagnetio Φ, A si srive Sviluppando il quadrato si ha H = H = p q A 2 + qφ p 2 + A 2 2q A p + qφ 2 Se

Dettagli

Lagrangiana del campo elettromagnetico. Il campo elettromagnetico nel vuoto è descritto dalle equazioni di Maxwell (in unità MKSA)

Lagrangiana del campo elettromagnetico. Il campo elettromagnetico nel vuoto è descritto dalle equazioni di Maxwell (in unità MKSA) Lagrangiana del ampo elettromagnetio Il ampo elettromagnetio nel vuoto è desritto dalle equazioni di Maxwell (in unità MKSA) B = 0 () E = B (2) E = ϱ (3) ɛ 0 B = µ 0 j + µ 0 ɛ 0 E L equazione di ontinuità

Dettagli

NOTE SULLE EQUAZIONI DI MAXWELL E IL CORPO NERO

NOTE SULLE EQUAZIONI DI MAXWELL E IL CORPO NERO NOTE SULLE EQUAZIONI DI MAXWELL E IL CORPO NERO G. Martinelli Abstrat Questi appunti ostituisono un sommario delle prinipali formule relative alla trattazione del orpo nero. 1 Le Equazioni di Maxwell Le

Dettagli

DISTRIBUZIONI SINGOLARI E FUNZIONE DENSITÀ

DISTRIBUZIONI SINGOLARI E FUNZIONE DENSITÀ 2/3 DISTRIBUZIONI SINGOLARI E "FUNZIONE" DELTA DI DIRAC 0/ DISTRIBUZIONI SINGOLARI E FUNZIONE DENSITÀ Consideriamo una distribuzione continua di una data quantità Q ad esempio la carica elettrica o la

Dettagli

Lezione 23: Sistemi a più gradi di libertà: sistemi continui (3)

Lezione 23: Sistemi a più gradi di libertà: sistemi continui (3) Lezione 3: Sistemi a più gradi di libertà: sistemi continui 3) Federico Cluni maggio 5 Oscillazioni forzate Si è visto che, nel caso di oscillazioni libere, il moto della trave è dato dalla funzione vx,

Dettagli

APPUNTI SULLA RELATIVITA RISTRETTA (2/2) a) Quantità di moto e massa relativistica. b) Seconda legge di Newton ed energia

APPUNTI SULLA RELATIVITA RISTRETTA (2/2) a) Quantità di moto e massa relativistica. b) Seconda legge di Newton ed energia APPUNTI SULLA RELATIVITA RISTRETTA (2/2) 1. Dinamia relativistia a) Quantità di moto e massa relativistia b) Seonda legge di Newton ed energia ) L equivalenza fra massa ed energia d) Unità di misura per

Dettagli

Problema (tratto dal 7.42 del Mazzoldi 2)

Problema (tratto dal 7.42 del Mazzoldi 2) Problema (tratto dal 7.4 del azzoldi Un disco di massa m D e raggio R ruota attorno all asse verticale passante per il centro con velocità angolare costante ω. ll istante t 0 viene delicatamente appoggiata

Dettagli

TEORIE RELATIVISTICHE. Dispensa N. 2 CINEMATICA E DINAMICA RELATIVISTICHE

TEORIE RELATIVISTICHE. Dispensa N. 2 CINEMATICA E DINAMICA RELATIVISTICHE TEORIE RELATIVISTICHE Dispensa N. CINEMATICA E DINAMICA RELATIVISTICHE . CINEMATICA RELATIVISTICA. Trasformazione delle veloità In questo paragrafo useremo le trasformazioni di Lorentz per mettere in relazione

Dettagli

Esercizio (tratto dal problema 7.36 del Mazzoldi 2)

Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Un disco di massa m D = 2.4 Kg e raggio R = 6 cm ruota attorno all asse verticale passante per il centro con velocità angolare costante ω = 0 s. ll istante

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

Derivata materiale (Lagrangiana) e locale (Euleriana)

Derivata materiale (Lagrangiana) e locale (Euleriana) ispense di Meccanica dei Fluidi 0 0 det 0 = [ (0 ) + ( ( ) ) + (0 0 ) ] = 0. Pertanto, v e µ sono indipendenti tra loro e costituiscono una nuova base. Con essi è possibile descrivere altre grandezze,

Dettagli

Relatività ristretta. Capitolo Equazioni di Maxwell

Relatività ristretta. Capitolo Equazioni di Maxwell Amadori-Lussardi Introduzione alla teoria della relatività Capitolo Relatività ristretta Fra l Ottoento ed il Noveento la meania lassia entrò in una grave risi he portò ad una ritia profonda dei suoi fondamenti.

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA Sia dato un sistema con vincoli lisci, bilaterali e FISSI. Ricaviamo, dall equazione simbolica della dinamica, il teorema

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA SECONDO ESONERO - 5 GIUGNO 6 Si svolgano cortesemente i seguenti Problemi. PRIMO PROBLEMA (PUNTEGGIO: 3/3) Dati due operatori hermitiani  and ˆB in uno spazio di Hilbert

Dettagli

FACOLTÀ DI INGEGNERIA. ESAME DI MECCANICA RAZIONALE Corso di Laurea in Ingegneria Meccanica PROF. A. PRÁSTARO 21/01/2013

FACOLTÀ DI INGEGNERIA. ESAME DI MECCANICA RAZIONALE Corso di Laurea in Ingegneria Meccanica PROF. A. PRÁSTARO 21/01/2013 FACOLTÀ DI INGEGNERIA ESAME DI MECCANICA RAZIONALE Corso di Laurea in Ingegneria Meania PROF A PRÁSTARO /0/03 Fig Diso D, ruotante, on rihiamo elastio radiale in un piano vertiale π, e portatore di aria

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

Le simmetrie nell elettromagnetismo

Le simmetrie nell elettromagnetismo Le simmetrie nell elettromagnetismo Adriana Pecoraro N94/56 Lucia Trozzo N94/51 1 Introduzione In questa tesina saranno trattate le simmetrie del campo elettromagnetico libero. Nella prima sezione saranno

Dettagli

CAPITOLO 14. u v = v u u: u v = 0 v = 0.

CAPITOLO 14. u v = v u u: u v = 0 v = 0. CAPITOLO 14 La metrica Come già sappiamo, una varietà (semi)riemanniana è caratterizzata da una metrica. Possiamo ora darne una definizione precisa. Definizione: Diremo metrica un prodotto scalare sui

Dettagli

1 FORMA GENERALE DELLE ONDE PIANE

1 FORMA GENERALE DELLE ONDE PIANE 1 FORMA GENERALE DELLE ONDE PIANE Quando abbiamo ricavato le equazioni delle onde piane, abbiamo scelto il sistema di riferimento in direzione z, e questo ha condotto, per una onda che si propaga in direzione

Dettagli

Potenza in regime sinusoidale

Potenza in regime sinusoidale 26 Con riferimento alla convenzione dell utilizzatore, la potenza istantanea p(t) assorbita da un bipolo è sempre definita come prodotto tra tensione v(t) e corrente i(t): p(t) = v(t) i(t) Considerando

Dettagli

Precorso di Matematica

Precorso di Matematica UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 4-10 Ottobre 2005 INDICE 1. ALGEBRA................................. 3 1.1 Equazioni

Dettagli

Sistemi dinamici lineari

Sistemi dinamici lineari Capitolo 1. INTRODUZIONE 1.19 Sistemi dinamici lineari La funzione di stato che descrive un sistema dinamico lineare, è rappresentabile in forma matriciale nel seguente modo: Per sistemi continui: Per

Dettagli

11. Misure con segno.

11. Misure con segno. 11. Misure con segno. 11.1. Misure con segno. Sia Ω un insieme non vuoto e sia A una σ-algebra in Ω. Definizione 11.1.1. (Misura con segno). Si chiama misura con segno su A ogni funzione ϕ : A R verificante

Dettagli

BLv. BdA BLvdt. L v c) La fem relativa al primo magnete non cambia; il segno della fem relativa al secondo magnete e` opposto rispetto al punto (a).

BLv. BdA BLvdt. L v c) La fem relativa al primo magnete non cambia; il segno della fem relativa al secondo magnete e` opposto rispetto al punto (a). Elettroinamia Una spira quarata i lato L e` montata su un nastro hiuso he sorre on veloita` v tra le espansioni polari i ue magneti (vei igura). Sia l la lunghezza el nastro e (>L) la larghezza elle espansioni

Dettagli

Esercizi sulle reti elettriche in corrente continua

Esercizi sulle reti elettriche in corrente continua serizi sulle reti elettrihe in orrente ontinua serizio 1: eterminare la P erogata generatore, e la P R assorita resistore R del iruito in figura 4 Ω Ω Ω 15 Ω 5 Ω Ω R Ω 10 Ω Soluzione: P = 150 W P R =.08

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

1 Lagrangiana e Hamiltoniana di una particella carica in campo elettromagnetico

1 Lagrangiana e Hamiltoniana di una particella carica in campo elettromagnetico 1 Lagrangiana e Hamiltoniana i una partiella aria in ampo elettromagnetio L equazione el moto i una partiella i massa m e aria q in un ampo elettrio E e magnetio B é t m v = q E + q ) v B 1) Determiniano

Dettagli

PRIMITIVA DI UNA FUNZIONE. INTEGRALE INDEFINITO. INTEGRALI IMMEDIATI O RICONDUCIBILI AD IMMEDIATI. METODI DI INTEGRAZIONE.

PRIMITIVA DI UNA FUNZIONE. INTEGRALE INDEFINITO. INTEGRALI IMMEDIATI O RICONDUCIBILI AD IMMEDIATI. METODI DI INTEGRAZIONE. PRIMITIVA DI UNA FUNZIONE. INTEGRALE INDEFINITO. INTEGRALI IMMEDIATI O RICONDUCIBILI AD IMMEDIATI. METODI DI INTEGRAZIONE. DEF. Una funzione F() si die primitiva di una funzione y f() definita nell intervallo

Dettagli

Indice slides. 1 Oscillatore semplice 5. 2 Equazione caratteristica 6. 3 Radici complesse 7. 4 Integrale generale 8. 5 Forza Peso 9.

Indice slides. 1 Oscillatore semplice 5. 2 Equazione caratteristica 6. 3 Radici complesse 7. 4 Integrale generale 8. 5 Forza Peso 9. Moto di Oscillatori Pietro Pantano Dipartimento di Matematica Università della Calabria Slides 1 di 27 Slides 2 di 27 1 Oscillatore semplice 5 2 Equazione caratteristica 6 3 Radici complesse 7 4 Integrale

Dettagli

Matematica II. Risolvere o integrare una e.d. significa trovarne tutte le soluzione, che costituiscono il cosidetto integrale generale.

Matematica II. Risolvere o integrare una e.d. significa trovarne tutte le soluzione, che costituiscono il cosidetto integrale generale. Definizione Si dice equazione differenziale di ordine n nella funzione incognita y = y (x) una relazione fra y, le sue derivate y,..., y (n), e la variabila indipendente x Risolvere o integrare una e.d.

Dettagli

L atomo di idrogeno (1) H T = p2 1 2m 1. + p2 2 2m 2. + V ( r 1 r 2 ) (2) Definiamo le nuove variabili: 1. La massa totale M M = m 1 + m 2 (3)

L atomo di idrogeno (1) H T = p2 1 2m 1. + p2 2 2m 2. + V ( r 1 r 2 ) (2) Definiamo le nuove variabili: 1. La massa totale M M = m 1 + m 2 (3) L atomo di idrogeno Il problema dell atomo di idrogeno é un problema esattamente risolubili ed i suoi risultati possono essere estesi agli atomi idrogenoidi, in cui solo c é solo un elettrone sottoposto

Dettagli

Massa, temperatura, volume, densità sono grandezze scalari. La forza è una grandezza vettoriale

Massa, temperatura, volume, densità sono grandezze scalari. La forza è una grandezza vettoriale Le forze (2 a parte) Massa, temperatura, volume, densità sono grandezze scalari La forza è una grandezza vettoriale Scalari e vettori Si definiscono SCALARI le grandezze fisiche che sono del tutto caratterizzate

Dettagli

Equazioni differenziali ordinarie (ODE) lineari del secondo ordine a coefficienti costanti

Equazioni differenziali ordinarie (ODE) lineari del secondo ordine a coefficienti costanti Equazioni differenziali ordinarie (ODE) lineari del secondo ordine a coefficienti costanti Fulvio Bisi Corso di Analisi Matematica A (ca) Università di Pavia Facoltà di Ingegneria 1 ODE lineari del secondo

Dettagli

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione Esercizi geometria analitica nello spazio Corso di Laurea in Informatica Docente: Andrea Loi Correzione 1. Denotiamo con P 1, P 13, P 3, P 1, P, P 3, P i simmetrici di un punto P rispetto ai piani coordinati

Dettagli

Le onde sismiche. La sismologia implica l analisi del moto del suolo provocato da una sorgente di energia posta all interno della Terra.

Le onde sismiche. La sismologia implica l analisi del moto del suolo provocato da una sorgente di energia posta all interno della Terra. Le onde sismiche La sismologia implica l analisi del moto del suolo provocato da una sorgente di energia posta all interno della Terra. L energia liberata a8raversa il mezzo Terra mediante la propagazione

Dettagli

Laurea Triennale in Matematica Fisica Matematica ore 14:30 15 Giugno 2017 Durata: 3 ore

Laurea Triennale in Matematica Fisica Matematica ore 14:30 15 Giugno 2017 Durata: 3 ore Laurea Triennale in Matematica Fisica Matematica ore 14:30 15 Giugno 2017 Durata: 3 ore Attenzione: Riconsegnerete DUE fogli (protocollo bianco, a 4 facciate), scriverete chiaramente cognome e nome, data

Dettagli

Esercizi sui sistemi di equazioni lineari.

Esercizi sui sistemi di equazioni lineari. Esercizi sui sistemi di equazioni lineari Risolvere il sistema di equazioni lineari x y + z 6 x + y z x y z Si tratta di un sistema di tre equazioni lineari nelle tre incognite x, y e z Poichè m n, la

Dettagli

Soluzioni I anno FisMat

Soluzioni I anno FisMat Soluzioni I anno FisMat ) La velocitá delle formiche puó essere separata in una componente tangenziale, v t e una radiale, v r Poiché ad ogni istante le formiche sono poste sul vertice del N-gono, esse

Dettagli

Meccanica quantistica (5)

Meccanica quantistica (5) Meccanica quantistica (5) 0/7/14 1-MQ-5.doc 0 Oscillatore armonico Se una massa è sottoposta ad una forza di richiamo proporzionale allo spostamento da un posizione di equilibrio F = kx il potenziale (

Dettagli

ossia Φ(x, y, z, t) è una grandezza scalare. Esempi di campi scalari le mappe di temperatura, di pressione, di densità e così via.

ossia Φ(x, y, z, t) è una grandezza scalare. Esempi di campi scalari le mappe di temperatura, di pressione, di densità e così via. PROGRAMMA DEL CORSO DI FENOMENI ONDULATORI STEFANO SIMONUCCI Sommario. Il modulo di 6 rediti ira 52 ore) tratta argomenti dei fenomeni ondulatori di vario tipo: onde meanihe, elettromagnetihe, onde di

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

0.1 Spazi Euclidei in generale

0.1 Spazi Euclidei in generale 0.1. SPAZI EUCLIDEI IN GENERALE 1 0.1 Spazi Euclidei in generale Sia V uno spazio vettoriale definito su R. Diremo, estendendo una definizione data in precedenza, che V è uno spazio vettoriale euclideo

Dettagli

Esercizi sulla soluzione dell equazione delle onde con il metodo della serie di Fourier

Esercizi sulla soluzione dell equazione delle onde con il metodo della serie di Fourier Esercizi sulla soluzione dell equazione delle onde con il metodo della serie di Fourier Corso di Fisica Matematica 2, a.a. 2013-2014 Dipartimento di Matematica, Università di Milano 13 Novembre 2013 1

Dettagli

1 1+e ξ, (1) P A (ξ) = P B (ξ) = 1 1+e ξ (3) In figura (1) riportiamo l andamento delle probabilità P A (ξ) e P B (ξ). P A,P B

1 1+e ξ, (1) P A (ξ) = P B (ξ) = 1 1+e ξ (3) In figura (1) riportiamo l andamento delle probabilità P A (ξ) e P B (ξ). P A,P B Algoritmo di Elo generalizzato AEg Marcello Colozzo Siano A e B due giocatori che eseguono un gioco a somma zero G. La probabilità di vittoria per A è: dove P A ξ = +e ξ ξ = βr A R B 2 In questa equazione

Dettagli

LA CIRCONFERENZA NEL PIANO CARTESIANO

LA CIRCONFERENZA NEL PIANO CARTESIANO 66 6. LA CIRCONFERENZA NEL PIANO CARTESIANO La circonferenza di centro C (, Pertanto la sua equazione si ottiene coi passaggi seguenti: PC = r (1 x x + y y =r ( x x + y y = r x xx+ x + y yy+ y = r x +

Dettagli

Derivata di una funzione

Derivata di una funzione Derivata di una funzione Prof. E. Modica http://www.galois.it erasmo@galois.it Il problema delle tangenti Quando si effettua lo studio delle coniche viene risolta una serie di esercizi che richiedono la

Dettagli

Stabilità BIBO Risposta impulsiva (vedi Marro par. 2.3, vedi Vitelli-Petternella par. III.1, vedi es. in LabView) Poli sull asse immaginario

Stabilità BIBO Risposta impulsiva (vedi Marro par. 2.3, vedi Vitelli-Petternella par. III.1, vedi es. in LabView) Poli sull asse immaginario Stabilità BIBO Risposta impulsiva (vedi Marro par..3, vedi Vitelli-Petternella par. III., vedi es. in LabView) Poli sull asse immaginario Criteri per la stabilità (vedi Marro Par. 4. a 4., vedi Vitelli-Petternella

Dettagli

Esercizio (tratto dal Problema 2.8 del Mazzoldi 2)

Esercizio (tratto dal Problema 2.8 del Mazzoldi 2) 1 Esercizio (tratto dal Problema.8 del Mazzoldi ) Una particella si muove lungo una circonferenza di raggio R 50 cm. Inizialmente parte dalla posizione A (θ 0) con velocità angolare nulla e si muove di

Dettagli

Note sulla correttezza di RSA e sulla complessità degli attacchi

Note sulla correttezza di RSA e sulla complessità degli attacchi Note sulla orrettezza di RSA e sulla omplessità degli attahi P. Bonatti 21 novembre 2016 1 Rihiami elementari di algebra Elevamento a potenza di binomi Riordiamo la definizione di oeffiiente binomiale:

Dettagli

TC. Trasformazioni canoniche

TC. Trasformazioni canoniche TC. Trasformazioni canoniche Funzione generatrice Consideriamo le equazioni di Hamilton: q h = H, ṗ h = H (TC.1) per le variabili canoniche q h, p h, relative ad un hamiltoniana generica H(q h, p h, t),

Dettagli

Funzioni vettoriali di variabile scalare

Funzioni vettoriali di variabile scalare Capitolo 11 Funzioni vettoriali di variabile scalare 11.1 Curve in R n Abbiamo visto (capitolo 2) come la posizione di un punto in uno spazio R n sia individuata mediante le n coordinate di quel punto.

Dettagli

Fisica 1 Anno Accademico 2011/2012

Fisica 1 Anno Accademico 2011/2012 Matteo Luca Ruggiero DISAT@Politecnico di Torino Anno Accademico 2011/2012 (7 Maggio - 11 Maggio 2012) Sintesi Abbiamo introdotto riformulato il teorema dell energia cinetica in presenza di forze non conservative,

Dettagli

Calcolo di integrali definiti utilizzando integrali dipendenti da parametri

Calcolo di integrali definiti utilizzando integrali dipendenti da parametri Calcolo di integrali definiti utilizzando integrali dipendenti da parametri Mosè Giordano 6 novembre Introduzione I seguenti esercizi mostrano alcuni esempi di applicazioni degli integrali dipendenti da

Dettagli

Fisica Quantistica III Esercizi Natale 2009

Fisica Quantistica III Esercizi Natale 2009 Fisica Quantistica III Esercizi Natale 009 Philip G. Ratcliffe (philip.ratcliffe@uninsubria.it) Dipartimento di Fisica e Matematica Università degli Studi dell Insubria in Como via Valleggio 11, 100 Como

Dettagli

SIMULAZIONE - 29 APRILE QUESITI

SIMULAZIONE - 29 APRILE QUESITI www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione

Dettagli

Dato un intervallo limitato A di estremi a e b con a b, si definisce misura dell intervallo il numero b a e si indica con :

Dato un intervallo limitato A di estremi a e b con a b, si definisce misura dell intervallo il numero b a e si indica con : E-school di Arrigo Amadori Analisi I Integrali di Riemann 01 Introduzione. L integrale è, oltre alla derivata, l altro oggetto fondamentale che sta alla base del calcolo differenziale. Con gli integrali

Dettagli

Esercitazioni di Elettrotecnica

Esercitazioni di Elettrotecnica Eseritazioni di Elettrotenia a ura dell Ing ntonio Maffui Parte III: iruiti in eoluzione dinamia 00/003 Eseritazioni di Elettrotenia 00/003 Maffui ESEITZIONE N0: eti dinamihe del primo ordine ESEIZIO 0

Dettagli

ESERCITAZIONE 9: INTEGRALI DEFINITI. CALCOLO DELLE AREE E ALTRE APPLICAZIONI

ESERCITAZIONE 9: INTEGRALI DEFINITI. CALCOLO DELLE AREE E ALTRE APPLICAZIONI ESERCITAZIONE 9: INTEGRALI DEFINITI. CALCOLO DELLE AREE E ALTRE APPLICAZIONI Tiziana Raparelli 5/5/9 CONOSCENZE PRELIMINARI Vogliamo calcolare f ( x, ax + bx + c ) dx. Se a =, allora basta porre bx + c

Dettagli

S.Barbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie. Cap. 2. Cinematica del punto

S.Barbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie. Cap. 2. Cinematica del punto SBarbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie Cap 2 Cinematica del punto 21 - Posizione, velocitá e accelerazione di una particella La posizione di una particella puó essere definita, ad

Dettagli

Equazioni di secondo grado intere letterali

Equazioni di secondo grado intere letterali Equazioni di seondo grado intere letterali Esempio. k ) x k + )x + k + 0 a k b k + ) k + Disussione. Se k 0 k l equazione si abbassa di grado. Disutiamo il aso a 0 aso in ui l equazione diventa di primo

Dettagli

CAPITOLO 16. (nella (16 2) gli indici i, k a secondo membro non possono essere 0 causa l antisimmetria

CAPITOLO 16. (nella (16 2) gli indici i, k a secondo membro non possono essere 0 causa l antisimmetria CAPITOLO 16 E finalmente torniamo alla fisica Riprendiamo il filo del discorso dal Cap. 1, dove abbiamo visto che in un RIL la fisica è (localmente) lorentziana. Dunque possiamo trovare coordinate {x α

Dettagli

CORSO DI LAUREA IN FISICA

CORSO DI LAUREA IN FISICA CORSO DI LAUREA IN FISICA ANALISI MATEMATICA I BREVI RICHIAMI DELLA TEORIA DEI LIMITI. Confronto di infinitesimi. Sia A sottoinsieme di R, sia 0 punto di accumulazione di A nella topologia di R quindi

Dettagli

Origine fisica di equazioni alle derivate parziali

Origine fisica di equazioni alle derivate parziali Origine fisica di equazioni alle derivate parziali Equazione del calore Dato un corpo nello spazio, rappresentato con un sottoinsieme A di 3, indichiamo con u(, y, z, t) la temperatura del corpo nel punto(,

Dettagli

Università degli Studi di Teramo Facoltà di Scienze Politiche

Università degli Studi di Teramo Facoltà di Scienze Politiche Università degli Studi di Teramo Faoltà di Sienze Politihe Corso di Laurea in Statistia Lezioni del Corso di Matematia a ura di D. Tondini a.a. 3/4 CAPITOLO II LE EQUAZIONI DIFFERENZIALI. GENERALITÀ È

Dettagli

parametri della cinematica

parametri della cinematica Cinematica del punto Consideriamo il moto di una particella: per particella si intende sia un corpo puntiforme (ad es. un elettrone), sia un qualunque corpo esteso che si muove come una particella, ovvero

Dettagli

Soluzioni IV anno Fis prima prova

Soluzioni IV anno Fis prima prova Soluzioni IV anno Fis prima prova ) All interno dello strato a < x < a, la densità di corrente è data da J x < a) = c 4 π rot B = c 4 π, B o a, ) ; analogamente, all esterno dello strato x > a) la densità

Dettagli

Applicazioni delle leggi della meccanica: moto armnico

Applicazioni delle leggi della meccanica: moto armnico Applicazioni delle leggi della meccanica: moto armnico Discutiamo le caratteristiche del moto armonico utilizzando l esempio di una molla di costante k e massa trascurabile a cui è fissato un oggetto di

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I

TEMI D ESAME DI ANALISI MATEMATICA I TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare

Dettagli

Derivate. Rette per uno e per due punti. Rette per uno e per due punti

Derivate. Rette per uno e per due punti. Rette per uno e per due punti Introduzione Rette per uno e per due punti Rette per uno e per due punti Rette secanti e tangenti Derivata d una funzione in un punto successive Derivabilità a destra e a sinistra Rette per uno e per due

Dettagli

ESERCITAZIONE SUI PUNTI STAZIONARI DI FUNZIONI LIBERE E SULLE FUNZIONI OMOGENEE

ESERCITAZIONE SUI PUNTI STAZIONARI DI FUNZIONI LIBERE E SULLE FUNZIONI OMOGENEE ESERCITAZIONE SUI PUNTI STAZIONARI DI FUNZIONI LIBERE E SULLE FUNZIONI OMOGENEE 1 Funzioni libere I punti stazionari di una funzione libera di più variabili si ottengono risolvendo il sistema di equazioni

Dettagli

Decomposizione LU di una matrice quadrata

Decomposizione LU di una matrice quadrata Appendice al Cap. 5 Decomposizione LU di una matrice quadrata Una qualunque matrice quadrata M = {m ij } di ordine N, reale, invertibile, i cui minori principali siano tutti non nulli, si può sempre decomporre

Dettagli

CIRCUITI IN CORRENTE CONTINUA

CIRCUITI IN CORRENTE CONTINUA IUITI IN ONT ONTINUA Un induttanza e tre resistenze 2 J J 2 L Il circuito sta funzionando da t = con l interruttore aperto. Al tempo t = 0 l interruttore viene chiuso. alcolare le correnti. Per t 0 circola

Dettagli

La notazione di Dirac

La notazione di Dirac La notazione di Dirac Marcello Colozzo http://www.extrabyte.info 1 Introduzione. Il Teorema di Riesz Assegnato uno spazio di Hilbert H, consideriamo il suo spazio duale: 1 INTRODUZIONE. IL TEOREMA DI RIESZ

Dettagli

SERIE NUMERICHE FAUSTO FERRARI

SERIE NUMERICHE FAUSTO FERRARI SERIE NUMERICHE FAUSTO FERRARI Materiale propedeutico alle lezioni di Analisi Matematica per i corsi di Laurea in Ingegneria Energetica e Meccanica N-Z dell Università di Bologna. Anno Accademico 2003/2004.

Dettagli

Test Esame di Fisica

Test Esame di Fisica Test Esame di Fisica NOTA: per le domande a risposta multipla ogni risposta corretta viene valutata con un punto mentre una errata con -0.5 punti. 1) Una sola delle seguenti uguaglianze non e corretta?

Dettagli

Le derivate parziali

Le derivate parziali Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire

Dettagli

Viceversa stabilito il flusso dei pagamenti/incassi se esiste un unico tasso t per cui

Viceversa stabilito il flusso dei pagamenti/incassi se esiste un unico tasso t per cui 1 TIR/IRR Esistenza del TIR (unico ecc ) Operazioni ai tempi 0,.n rappresentate da un vettore di dimensione n+1 Ogni componente a i rappresenta i pagamenti (se 0) relativi all operazione.

Dettagli

Esempio di applicazione del principio di d Alembert: determinazione delle forze di reazione della strada su un veicolo.

Esempio di applicazione del principio di d Alembert: determinazione delle forze di reazione della strada su un veicolo. Esempio di applicazione del principio di d Alembert: determinazione delle forze di reazione della strada su un veicolo. C Si consideri il veicolo rappresentato in figura per il quale valgono le seguenti

Dettagli

Dinamica Rotazionale

Dinamica Rotazionale Dinamica Rotazionale Richiamo: cinematica rotazionale, velocità e accelerazione angolare Energia cinetica rotazionale: momento d inerzia Equazione del moto rotatorio: momento delle forze Leggi di conservazione

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Meccanica analitica I parte Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli

Risoluzione di sistemi lineari sparsi e di grandi dimensioni

Risoluzione di sistemi lineari sparsi e di grandi dimensioni Risoluzione di sistemi lineari sparsi e di grandi dimensioni Un sistema lineare Ax = b con A R n n, b R n, è sparso quando il numero di elementi della matrice A diversi da zero è αn, con n α. Una caratteristica

Dettagli

Compito del 14 giugno 2004

Compito del 14 giugno 2004 Compito del 14 giugno 004 Un disco omogeneo di raggio R e massa m rotola senza strisciare lungo l asse delle ascisse di un piano verticale. Il centro C del disco è collegato da una molla di costante elastica

Dettagli

Espansione dell Universo e redshift

Espansione dell Universo e redshift Espansione dell Universo e redshift Primo Galletti Aldo Aluigi Roma, 21 Settembre 2002 In un Universo in ui avviene ontinuamente la nasita e la morte della materia 1 l ipotesi di una grande esplosione

Dettagli

1. Considerare il seguente sistema di vettori applicati:

1. Considerare il seguente sistema di vettori applicati: 1 Università di Pavia Facoltà di Ingegneria Corso di Laurea in Ingegneria Industriale Correzione prova scritta Esame di Fisica Matematica febbraio 011 1. Considerare il seguente sistema di vettori applicati:

Dettagli

1 Trasformazione di vettori e 1-forme per cambiamenti

1 Trasformazione di vettori e 1-forme per cambiamenti PRIMA ESERCITAZIONE Trasformazione di vettori e -forme per cambiamenti di coordinate Consideriamo lo spazio di Minkowski in coordinate cartesiane {x } (x,x,x 2,x 3 ). La sua metrica è ds 2 (dx ) 2 +(dx

Dettagli

Principi di Fisica - Relatività Speciale; grafici spazio-temporali Carlo Cosmelli 2013

Principi di Fisica - Relatività Speciale; grafici spazio-temporali Carlo Cosmelli 2013 Prinipi di Fisia - Relatività Speiale; grafii spazio-temporali Carlo Cosmelli 0 Definizione dei simboli utilizzati - S(,): Sistema di riferimento inerziale on origine in, e assi (, ); = veloità della lue

Dettagli

ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA Foglio 4 Esempio. Sia V = P 5 (R) lo spazio dei polinomi di grado strettamente minore di 5. Si considerino i seguenti sottoinsiemi di V (i) Dimostrare

Dettagli

12 L equazione delle onde in una dimensione

12 L equazione delle onde in una dimensione 1 L equazione delle onde in una dimensione 1.1 L equazione omogenea delle onde L equazione delle onde è l equazione che descrive lo sviluppo di un onda che si propaga in un mezzo. Descrive, per esempio,

Dettagli

Test Esame di Fisica

Test Esame di Fisica Test Esame di Fisica NOTA: per le domande a risposta multipla ogni risposta corretta viene valutata con un punto mentre una errata con -0.5 punti. 1) Una sola delle seguenti uguaglianze non e corretta?

Dettagli

Esercitazione 6 - Soluzione

Esercitazione 6 - Soluzione Anno Accademico 28-29 Corso di Algebra Lineare e Calcolo Numerico per Ingegneria Meccanica Esercitazione 6 - Soluzione Immagine, nucleo. Teorema di Rouché-Capelli. Esercizio Sia L : R 3 R 3 l applicazione

Dettagli

CORSO DI LAUREA IN MATEMATICA

CORSO DI LAUREA IN MATEMATICA CORSO DI LAUREA IN MATEMATICA ESERCITAZIONI DI ANALISI MATEMATICA I BREVI RICHIAMI DELLA TEORIA DEI LIMITI. Confronto di infinitesimi. Sia A sottoinsieme di R, sia 0 punto di accumulazione di A nella topologia

Dettagli

Densità di probabilità del prodotto di due variabili casuali distribuite uniformemente

Densità di probabilità del prodotto di due variabili casuali distribuite uniformemente Firenze - Dip. di Fisica 2 agosto 2008 Densità di probabilità del prodotto di due variabili casuali distribuite uniformemente In questa dispensa, che presentiamo a semplice titolo di esercizio e applicazione

Dettagli

Stati fondamentali per le equazioni non lineari di Klein-Gordon-Maxwell

Stati fondamentali per le equazioni non lineari di Klein-Gordon-Maxwell Stati fondamentali per le equazioni non lineari di Klein-Gordon-Maxwell Alessio Pomponio Dipartimento di Matematica, Politecnico di Bari IperBA09 XIII Incontro Nazionale Problemi di Tipo Iperbolico Bari

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

Studiamo adesso il comportamento di f(x) alla frontiera del dominio. Si. x 0 lim f(x) = lim. x 2 +

Studiamo adesso il comportamento di f(x) alla frontiera del dominio. Si. x 0 lim f(x) = lim. x 2 + Esercizi del 2//09. Data la funzione f(x) = ln(x 2 2x) (a) trovare il dominio, gli eventuali asintoti e gli intervalli in cui la funzione cresce o decresce. Disegnare il grafico della funzione. (b) Scrivere

Dettagli

1 Simmetrie e teorema di Noether

1 Simmetrie e teorema di Noether 1 Simmetrie e teorema di Noether L analisi delle simmetrie di un sistema fisico è una strategia molto utile per identificare le equazioni del moto del sistema sotto studio. Si può definire il concetto

Dettagli

Punti di massimo o di minimo per funzioni di n variabili reali

Punti di massimo o di minimo per funzioni di n variabili reali Punti di massimo o di minimo per funzioni di n variabili reali Dati f : A R n R ed X 0 A, X 0 si dice : punto di minimo assoluto se X A, f ( x ) f ( X 0 ) punto di massimo assoluto se X A, f ( x ) f (

Dettagli