COMPORTAMENTO DI UN SISTEMA IN REGIME SINUSOIDALE

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "COMPORTAMENTO DI UN SISTEMA IN REGIME SINUSOIDALE"

Transcript

1 COMPORTAMENTO DI UN SISTEMA IN REGIME SINUSOIDALE Un sistema risponde ad una sinusoide in ingresso con una sinusoide in uscita della stessa pulsazione. In generale la sinusoide d uscita ha una diversa ampiezza ed ha uno sfasamento rispetto alla sinusoide in ingresso. Il comportamento frequenziale di un sistema si descrive mediante due grafici: Il diagramma delle ampiezze: esso mostra il rapporto tra l ampiezza della sinusoide in uscita e quello della sinusoide in ingresso. Descrive l amplificazione/attenuamento introdotto dal sistema. Il diagramma delle fasi: esso mostra la differenza tra la fase della sinusoide in uscita e quella della sinusoide in ingresso. Descrive il ritardo sulle sinusoidi introdotto dal sistema Gli assi orizzontali (pulsazioni dei due diagrammi sono logaritmici, per potere esprimere sia i valori piccoli che quelli grandi. Tali assi sono cioè lineare nell esponente della potenza del, e gli intervalli vengono chiamate decadi. L asse verticale del diagramma dei moduli (guadagni è lineare in decibel. Il decibel è definito come: log(g dove G è il guadagno. La tabella seguente di conversione tra valore in db e il guadagno G può servire come esempio: 6db G= 4db G= db G= db G= -db G=, -4db G=, -6db G=, L asse verticale del diagramma delle fasi è tarato in gradi, alle volte in radianti. Il comportamento in frequenza di un sistema può essere dedotto in via simulativa, cioè in laboratorio, dando in ingresso al sistema sinusoidi con ampiezza costante ma pulsazione variabile, misurando poi quanto vale l ampiezza e lo sfasamento della sinusoide in uscita, al variare della pulsazione. Esiste però un metodo analitico per ricavare i due diagrammi precedenti. Tale metodo consiste nel ricavare la s del sistema, sostituire j al posto di s, e disegnare due diagrammi a partire dalla funzione F (j, quello del modulo e quello della fase. j è un numero complesso, variabile con, e si può dimostrare che il modulo di j corrisponde al guadagno del sistema al variare di, mentre la fase di j corrisponde allo sfasamento introdotto sulla sinusoide dal sistema sempre al variare di.

2 I diagrammi del modulo possono essere disegnati in maniera approssimata ricordando ad alcune regole. Il diagramma di Bode del guadagno si può approssimare ad una spezzata (insieme di semirette e segmenti Le pulsazioni di cambio inclinazione della spezzata si ricavano dai poli ed i zeri della s. Per trovare tali pulsazioni è sufficiente cambiare il segno ai poli ed agli zeri. 3 Se non esistono poli o zeri sull origine il diagramma parte con una semiretta orizzontale 4 Se esistono poli sull origine il diagramma parte con una semiretta in discesa 5 Se esistono zeri sull origine il diagramma parte con una semiretta in salita 6 Ogni polo introduce sulla spezzata una inclinazione in discesa di db/decade 7 Ogni zero introduce sulla spezzata una inclinazione in salita di db/decade 8 Se il diagramma parte orizzontale l altezza della semiretta iniziale si ricava trovando il guadagno per = (valutato in db 9 Se il diagramma parte in salita o in discesa la semiretta iniziale deve essere ricavata trovando un punto di passaggio. Questo punto si ottiene valutando il modulo per una sufficientemente piccola (almeno una decade più piccola della più piccola pulsazione di cambio inclinazione. Il guadagno per questa viene poi valutato in db. I diagrammi della fase possono essere disegnato in maniera approssimata ricordando le seguenti regole. Il diagramma di Bode della fase, si può approssimare ad una serie di gradini di altezza +/- 9 Le pulsazioni di cambio altezza si ricavano dai poli ed i zeri della s. E sufficiente cambiare il segno ai poli ed agli zeri. 3 Se non esistono poli o zeri sull origine il diagramma parte con una semiretta a fase zero. 4 Se esistono poli sull origine il diagramma parte con una semiretta orizzontale a fase 9 5 Se esistono zeri sull origine il diagramma parte con una semiretta orizzontale a fase +9 6 Ogni polo introduce un gradino in discesa di 9 7 Ogni zero introduce un gradino in salita di 9 8 Se vogliamo avere un approssimazione migliore le salite e le discese verticali del diagramma si devono sostituire con delle salite e discese a rampa che iniziano una decade prima della pulsazione di cambio fase e finiscono una decade dopo.

3 ESEMPI DI DIAGRAMMI DI BODE Esempio n. Tracciare il diagramma di Bode delle ampiezze per la seguente j: j = 3,6 ( + ( + j, j, ( + j, Si ricavano i poli e gli zeri di ( +,s s = 3,6 ( +,s ( +,s Non si hanno poli o zeri sull origine (s= ma sono presenti poli ed uno zero diversi da s=. +,s = s = =, +,s = sp = =, +,s = sp = =, Non c è nulla per s= quindi parte orizzontale e l altezza si calcola sostituendo s= nella s ( + F ( s = = 3,6 = 3,6 log(3,6=3db ( + ( + = rad P P = rad = rad il diagramma asintotico dei moduli parte orizzontale con altezza 3db, incontra un polo a rad/sec ed inizia a scendere di db/decade, poi incontra uno zero a rad/sec e torna orizzontale, infine incontra il secondo polo a rad/sec e torna a scendere con la pendenza di db/decade. Diagramma bode delle ampiezze

4 Esempio n. Tracciare il diagramma di Bode delle ampiezze per la seguente j: j = ( + 36, j, ( + j, Si ricavano i poli e gli zeri di s = 36, ( +,s ( +,s Non si hanno poli o zeri sull origine (s= ma sono presenti poli diversi da s=. +,s = s P = =, +,s = sp = =, Non c è nulla per s= quindi parte orizzontale e l altezza si calcola sostituendo s= nella s F ( s = = 36, = 36, log(36,=5db ( + ( + P P = rad = rad il diagramma dei moduli asintotico parte orizzontale con altezza 5db, incontra un polo a rad/sec ed inizia a scendere di db/decade, poi incontra il secondo polo a rad/sec e scendere con la pendenza di 4db/decade. Diagramma bode delle ampiezze Esempio n.3 j = ( + Tracciare il diagramma di Bode delle ampiezze per la seguente j: ( + j, j, ( + j, 4

5 Si ricavano i poli e gli zeri di ( +,s s = ( +,s( +,s Non si hanno poli o zeri sull origine (s= ma sono presenti poli ed uno zero diversi da s=. +,s = s = = s, +,s = sp = = s, +,s = sp = = s, Non c è nulla per s= quindi parte orizzontale e l altezza si calcola sostituendo s= nella s ( + F ( s = = = log( = = db ( + ( + = rad P P = rad /sec = rad il diagramma asintotico dei moduli parte orizzontale con altezza db, incontra uno zero in rad/sec ed inizia a salire di db/decade, poi incontra un polo a rad/sec e torna orizzontale, infine incontra il secondo polo a rad/sec e torna a scendere con la pendenza di db/decade. Diagramma bode delle ampiezze pulsazione rad Esempio n.4 Tracciare il diagramma di Bode delle ampiezze per la seguente j: (, j + j =, ( + j( +, j (,s + Si ricavano i poli e gli zeri di s =, ( + s( +,s 5

6 Non si hanno poli o zeri sull origine (s= ma sono presenti poli ed uno zero diversi da s=.,s + = s = = s, + = s = s s P +,s = sp = = s, Non c è nulla per s= quindi parte orizzontale e l altezza si calcola sostituendo s= nella s ( + F ( s = =, =, =, log(, = ( 3 = 6db ( + ( + = rad P P = rad /sec = rad il diagramma asintotico dei moduli parte orizzontale con altezza -6db, incontra uno zero in rad/sec ed inizia a salire di db/decade, poi incontra un polo a rad/sec e torna orizzontale, infine incontra il secondo polo a rad/sec e torna a scendere con la pendenza di db/dec. Diagramma bode delle ampiezze Esempio n.5 Tracciare il diagramma di Bode delle ampiezze per la seguente j: ( j + j = j( +, j ( s + Si ricavano i poli e gli zeri di s = s( +,s Non si hanno poli o zeri sull origine (s= ma sono presenti poli ed uno zero diversi da s=. s + = s = sec 6

7 ,s = s = = sec, + P = rad P = rad C è un polo per s= quindi parte in discesa con pendenza db/decade. Per poter disegnare il grafico devo trovare il valore del diagramma per una pulsazione. Si prende un pulsazione volte più piccola della più piccola pulsazione di cambio inclinazione (escluso quella nell origine e cioè,rad/sec F ( j, =,, + + (,, =, = log( = (3 = 6db il diagramma asintotico dei moduli parte in discesa con inclinazione db/decade e vale 6db per pulsazione, rad/sec. Incontra poi uno zero in rad/sec e diventa orizzontale, poi incontra un polo a rad/sec e torna a scendere con la pendenza di db/dec. Diagramma di Bode delle ampiezze ,,,,,, Esempio n.6 Tracciare il diagramma di Bode delle ampiezze per la seguente j: j = j(, j + ( j + ( +, j Si ricavano i poli e gli zeri di s(,s + s =, ( s + ( +,s Si ha uno zero sull origine (s= e sono presenti poli ed uno zero diversi da s=.,s + = s = = sec, + s = sp = sec 7

8 +,s = sp = = sec, = rad P P = rad /sec = rad C è uno zero per s= quindi parte in salita. Si calcola il guadagno per pulsazione rad/sec F ( j, =, (, (, =,, =, = =, log(, = ( 4 = 8db il diagramma asintotico dei moduli parte in salita con pendenza db/dec e vale -8db per la pulsazione rad/sec. Poi incontra uno zero in rad/sec sale di 4db/decade, poi incontra un polo a rad/sec e sale di db/decade, infine incontra il secondo polo a rad/sec e torna orizzontale. Diagramma di Bode delle ampiezze,,,,,, Esempio n.7 Tracciare il diagramma di Bode delle ampiezze per la seguente s: (,s + s =, ( s + ( +,s Si ricavano i poli e gli zeri. Non si hanno zeri o poli sull origine (s= ma sono presenti poli ed uno zero diversi da s=. 8

9 ,s + = s = = sec, s + P = s = sec +,s = sp = = sec, = rad P P = rad = rad Non c è nulla per s= quindi il diagramma parte orizzontale. Si calcola il guadagno per pulsazione nulla ( +, F ( j =, =, =, = =, ( + ( + log(, = ( 3 = 6db il diagramma asintotico dei moduli parte orizzontale e vale 6db. Poi incontra un polo in rad/sec e scende di db/decade, poi incontra uno zero a rad/sec e torna orizzontale, infine incontra il secondo polo a rad/sec e scende di db/decade. Diagramma di Bode delle ampiezze,, -,,,, Esempio n.8 Tracciare il diagramma di Bode delle ampiezze per la seguente s: (,5s + s =,5 3 ( s +,(5 + s Si ricavano i poli e gli zeri. Non si hanno zeri o poli sull origine (s= ma sono presenti poli ed uno zero diversi da s=.,5s + = s = = 4sec,5 9

10 s + P 5, = s =,sec 3 + s = sp 5 = = 5sec = 4rad /sec P P =,rad = 5rad /sec Non c è nulla per s= quindi il diagramma parte orizzontale. (,5s + Si calcola il guadagno per pulsazione nulla s =,5 3 ( s +,(5 + s ( +, F ( j = 5 = 5 = =,3 ( +, (5 + 5 log(,3 = ( 3 db il diagramma asintotico dei moduli parte orizzontale e vale db. Poi incontra un polo in,rad/sec e scende di db/decade, poi incontra uno zero a 4rad/sec e torna orizzontale, infine incontra il secondo polo a 5rad/sec e scende di db/decade. Diagramma di Bode delle ampiezze,, -,,,,,

Esercizio 1. (s 1) (s 0.5)(s 1) G(s) 28. p1 = -0.5 (sx) p2 = -1 (sx) Tipo: g=0. G(0) = 56 = 20log10(56) ~ 35 db

Esercizio 1. (s 1) (s 0.5)(s 1) G(s) 28. p1 = -0.5 (sx) p2 = -1 (sx) Tipo: g=0. G(0) = 56 = 20log10(56) ~ 35 db Esercizio 1 2 G(s) 28 (s 1) (s.5)(s 1) Poli: p1 = -.5 p2 = -1 zeri: z1 = 1 (dx) Tipo: g= Guadagno: G() = 56 = 2log1(56) ~ 35 db Bode del Modulo 3 Scala 4 6 5 4 3 Magnitude (db) 2 1-1 -2 1.1.2.3 1 1 Piazzamento

Dettagli

Diagrammi di Bode. Esempio: j. 1+ s. 1+j ω. Diagrammi di Bode: ω Diagramma dei moduli. Ampiezza [db] Diagramma delle fasi.

Diagrammi di Bode. Esempio: j. 1+ s. 1+j ω. Diagrammi di Bode: ω Diagramma dei moduli. Ampiezza [db] Diagramma delle fasi. .. 3.2 Diagrammi di Bode La funzione di risposta armonica F(ω) = G(jω) può essere rappresentata graficamente in tre modi diversi: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols. I

Dettagli

Diagrammi asintotici di Bode: esercizi. Tracciare i diagrammi asintotici di Bode della seguente funzione G(s): s 2. s(s 30)(1+ s

Diagrammi asintotici di Bode: esercizi. Tracciare i diagrammi asintotici di Bode della seguente funzione G(s): s 2. s(s 30)(1+ s .. 3.2 1 Nyquist: Diagrammi asintotici di Bode: esercizi Tracciare i diagrammi asintotici di Bode della seguente funzione G(s): 6(s2 +.8s+4) s(s 3)(1+ s 2 )2. Pendenza iniziale: -2 db/dec. Pulsazioni critiche:

Dettagli

Diagrammi Di Bode. Prof. Laura Giarré https://giarre.wordpress.com/ca/

Diagrammi Di Bode. Prof. Laura Giarré https://giarre.wordpress.com/ca/ Diagrammi Di Bode Prof. Laura Giarré Laura.Giarre@UNIMORE.IT https://giarre.wordpress.com/ca/ Diagrammi di Bode e polari Problema della rappresentazione grafica di funzioni complesse di variabile reale

Dettagli

CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo. DIAGRAMMI DI BODE

CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo.  DIAGRAMMI DI BODE CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/controlliautomatici.html DIAGRAMMI DI BODE Ing. e-mail: luigi.biagiotti@unimore.it http://www.dii.unimore.it/~lbiagiotti

Dettagli

Diagrammi di Bode. Lezione 16 1

Diagrammi di Bode. Lezione 16 1 Diagrammi di Bode Lezione 16 1 Funzione di trasferimento da considerare Tracciare il diagramma di Bode (solo spettro di ampiezza) della funzione di trasferimento: H() s = Punti critici: ss ( + 500) ( s+

Dettagli

Come disegnare un diagramma di Bode

Come disegnare un diagramma di Bode Definizioni Teoriche Come disegnare un diagramma di Bode La risposta armonica è una funzione complessa a variabile reale che restituisce il rapporto tra i moduli e la differenza tra le fasi (cioè lo sfasamento).

Dettagli

Tracciamento dei Diagrammi di Bode

Tracciamento dei Diagrammi di Bode Tracciamento dei Diagrammi di Bode L. Lanari, G. Oriolo Dipartimento di Ingegneria Informatica, Automatica e Gestionale Sapienza Università di Roma October 24, 24 diagrammi di Bode rappresentazioni grafiche

Dettagli

La stabilità di un sistema non dipende dal segnale d ingresso, ma dipende solo dalla f.d.t. del sistema. Stabilità BIBO (Bound Input Bounded Output)

La stabilità di un sistema non dipende dal segnale d ingresso, ma dipende solo dalla f.d.t. del sistema. Stabilità BIBO (Bound Input Bounded Output) 8.1 GENERALITÀ La stabilità di un sistema non dipende dal segnale d ingresso, ma dipende solo dalla f.d.t. del sistema f.d.t. = U(s) E(s) Stabilità BIBO (Bound Input Bounded Output) Un sistema lineare

Dettagli

I DIAGRAMMI DI BODE. B.1 Diagramma del modulo B.2 Diagramma della fase

I DIAGRAMMI DI BODE. B.1 Diagramma del modulo B.2 Diagramma della fase B I DIAGRAMMI DI BODE B. Diagramma del modulo B. Diagramma della fase Appunti del corso Elettronica Analogica Prof. Marco Sampietro - POLIMI La funzione di trasferimento di un circuito elettronico, in

Dettagli

Controlli Automatici L-A - Esercitazione

Controlli Automatici L-A - Esercitazione Controlli Automatici L-A - Esercitazione 1. Si consideri lo schema a blocchi di figura. d(t) K d x(t) e(t) R(s) u(t) G(s) y(t) - R(s) = K τs + 1 s + 1, G(s) = K d = 2 s(s 2 + 6s + ), a) Considerando gli

Dettagli

Capitolo. Stabilità dei sistemi di controllo. 8.1 Generalità. 8.2 Criterio generale di stabilità. 8.3 Esercizi - Criterio generale di stabilità

Capitolo. Stabilità dei sistemi di controllo. 8.1 Generalità. 8.2 Criterio generale di stabilità. 8.3 Esercizi - Criterio generale di stabilità Capitolo 7 Stabilità dei sistemi di controllo 8.1 Generalità 8. Criterio generale di stabilità 8.3 Esercizi - Criterio generale di stabilità 8.4 Criterio di stabilità di Nyquist 8.5 Esercizi - Criterio

Dettagli

Esercizi- Risposta in frequenza

Esercizi- Risposta in frequenza esercizi 6, 1 Esercizi- Risposta in frequenza Diagrammi di Nyquist Data una funzione di trasferimento: Vogliamo ottenere la sua rappresentazione nel piano complesso al variare della frequenza. curva parametrizzata

Dettagli

FORMULARIO DI CONTROLLI AUTOMATICI

FORMULARIO DI CONTROLLI AUTOMATICI FORMULARIO DI CONTROLLI AUTOMATICI Sistema x (t) = A x (t) + B u (t) y (t) = C x (t) + D u (t) Funzione di trasferimento G (s) = y (s) / u (s) = C (si A) -1 B + D Sistema Serie G (s) = i G i (s) prodotto

Dettagli

Campi Elettromagnetici e Circuiti I Risposta in frequenza

Campi Elettromagnetici e Circuiti I Risposta in frequenza Facoltà di Ingegneria Università degli studi di Pavia Corso di aurea Triennale in Ingegneria Elettronica e Informatica Campi Elettromagnetici e Circuiti I isposta in frequenza Campi Elettromagnetici e

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondamenti di Controlli Automatici - A.A. 212/13 9 novembre 212 - Domande Teoriche Nome: Nr. Mat. Firma: Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni che si

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stabilità dei sistemi di controllo in retroazione Risposta in frequenza Rappresentazione grafica naturale Rappresentazione grafica modificata di fdt elementari Esempio 7 Politecnico di Torino 1 Risposta

Dettagli

Controlli Automatici T. Analisi Armonica. Parte 5 Aggiornamento: Settembre Prof. L. Marconi

Controlli Automatici T. Analisi Armonica. Parte 5 Aggiornamento: Settembre Prof. L. Marconi Parte 5 Aggiornamento: Settembre 2010 Parte 5, 1 Analisi Armonica Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: lmarconi@deis.unibo.it URL: www-lar.deis.unibo.it/~lmarconi Analisi

Dettagli

FILTRI in lavorazione. 1

FILTRI in lavorazione. 1 FILTRI 1 in lavorazione. Introduzione Cosa sono i filtri? C o II filtri sono dei quadripoli particolari, che presentano attenuazione differenziata in funzione della frequenza del segnale applicato in ingresso.

Dettagli

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale DIAGRAMMI DI BODE

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale DIAGRAMMI DI BODE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale DIAGRAMMI DI BODE Ing. Luigi Biagiotti Tel. 51 29334 / 51 29368 e-mail: lbiagiotti@deis.unibo.it http://www-lar.deis.unibo.it/~lbiagiotti e polari

Dettagli

Per un corretto funzionamento dei sistema si progetta un controllo a retroazione secondo lo schema di figura.

Per un corretto funzionamento dei sistema si progetta un controllo a retroazione secondo lo schema di figura. Tema di: SISTEMI ELETTRONICI AUTOMATICI Testo valevole per i corsi di ordinamento e per i corsi di progetto "SIRIO" - Indirizzo Elettronica e Telecomunicazioni 2001 Il candidato scelga e sviluppi una tra

Dettagli

Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione

Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione 0.0. 3.2 Diagrammi di Bode Possibili rappresentazioni grafiche della funzione di risposta armonica F (ω) = G(jω) sono: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols. I Diagrammi

Dettagli

STABILITÀ DEI SISTEMI Metodo di Bode e Nyquist

STABILITÀ DEI SISTEMI Metodo di Bode e Nyquist I.T.I. Modesto PANETTI B A R I Via Re David, 186-70125 BARI 080-542.54.12 - Fax 080-542.64.32 Internet http://www.itispanetti.it email : BATF05000C@istruzione.it INTRODUZIONE STABILITÀ DEI SISTEMI Metodo

Dettagli

Funzioni di trasferimento

Funzioni di trasferimento 1 Funzioni di trasferimento Introduzione 3 Cosa c è nell Unità 4 In questa sezione si affronteranno: introduzione uso dei decibel e delle scale logaritmiche diagrammi di Bode 4 Funzione di trasferimento

Dettagli

ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO. Schema generale di controllo in retroazione

ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO. Schema generale di controllo in retroazione ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO Schema generale di controllo in retroazione Requisiti di un sistema di controllo Stabilità in condizioni nominali Margine di guadagno e margine di fase

Dettagli

Azione Filtrante. Prof. Laura Giarré https://giarre.wordpress.com/ca/

Azione Filtrante. Prof. Laura Giarré https://giarre.wordpress.com/ca/ Azione Filtrante Prof. Laura Giarré Laura.Giarre@UNIMORE.IT https://giarre.wordpress.com/ca/ Sviluppo in serie di Fourier Qualunque funzione periodica di periodo T può essere rappresentata mediante sviluppo

Dettagli

Banda passante e sviluppo in serie di Fourier

Banda passante e sviluppo in serie di Fourier CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/controlliautomatici.html Banda passante e sviluppo in serie di Fourier Ing. e-mail: luigi.biagiotti@unimore.it

Dettagli

I diagrammi di Bode. Corso di Laurea in Ingegneria Meccanica Controlli Automatici L

I diagrammi di Bode. Corso di Laurea in Ingegneria Meccanica Controlli Automatici L Diagrammi di Bode - 1 Corso di Laurea in Ingegneria Meccanica I diagrammi di Bode DEIS-Università di Bologna Tel. 51 2932 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi Diagrammi di Bode

Dettagli

RAPPRESENTAZIONE GRAFICA DEI RISULTATI SPERIMENTALI INTERPOLAZIONE E CURVE DI REGRESSIONE

RAPPRESENTAZIONE GRAFICA DEI RISULTATI SPERIMENTALI INTERPOLAZIONE E CURVE DI REGRESSIONE RAPPRESENTAZIONE GRAFICA DEI RISULTATI SPERIMENTALI INTERPOLAZIONE E CURVE DI REGRESSIONE Rappresentazione grafica Visione d insieme di una grandezza, in funzione del tempo o di un altro parametro Tipicamente

Dettagli

CONTROLLO NEL DOMINIO DELLA FREQUENZA

CONTROLLO NEL DOMINIO DELLA FREQUENZA SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html Relazione tra specifiche e proprietà di L(s) Nell analisi dei sistemi in retroazione

Dettagli

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE Ing. Federica

Dettagli

Stabilità dei sistemi in retroazione. Diagrammi polari e teorema di Nyquist

Stabilità dei sistemi in retroazione. Diagrammi polari e teorema di Nyquist Stabilità dei sistemi in retroazione Diagrammi polari e teorema di Nyquist STABILITA DEI SISTEMI IN RETROAZIONE Vogliamo studiare la stabilità del sistema in retroazione a partire della conoscenza di L(s

Dettagli

Sistemi di Controllo Esempio di domande teoriche a risposta multipla. Esempio di problemi e quesiti a risposta aperta

Sistemi di Controllo Esempio di domande teoriche a risposta multipla. Esempio di problemi e quesiti a risposta aperta Sistemi di Controllo Esempio di domande teoriche a risposta multipla Per ciascuno dei seguenti quesiti, segnare con una crocetta le risposte che si ritengono corrette. Alcuni quesiti hanno più risposte

Dettagli

Le radici della D(s) forniscono i poli della funzione di trasferimento T(s).

Le radici della D(s) forniscono i poli della funzione di trasferimento T(s). F I L T R I A T T I V I D E L 2 O R D I N E I filtri del 2 ordine hanno la caratteristica di avere al denominatore della funzione di trasferimento una funzione di 2 grado nella variabile s: oppure nella

Dettagli

10 = 100s. s10. Disegna i diagrammi di Bode, del modulo e della fase, per le funzioni di trasferimento: Esercizio no.1. Esercizio no.2. Esercizio no.

10 = 100s. s10. Disegna i diagrammi di Bode, del modulo e della fase, per le funzioni di trasferimento: Esercizio no.1. Esercizio no.2. Esercizio no. Edutecnica Diagrammi di Bode Disegna i diagrammi di Bode, del modulo e della fase, per le funzioni di trasferimento: Esercizio no. soluzione a pag. + Esercizio no. soluzione a pag.3 0 + Esercizio no.3

Dettagli

Diagrammi di Bode. delle

Diagrammi di Bode. delle .. 3.2 delle Diagrammi di Bode La funzione di risposta armonica F(ω) = G(jω) può essere rappresentata graficamente in tre modi diversi: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols.

Dettagli

Risposta a segnali dotati di serie o trasformata di Fourier. Identificazione della risposta in frequenza. Azione filtrante dei sistemi dinamici

Risposta a segnali dotati di serie o trasformata di Fourier. Identificazione della risposta in frequenza. Azione filtrante dei sistemi dinamici RISPOSTA IN FREQUENZA Risposta esponenziale Risposta sinusoidale Risposta a segnali dotati di serie o trasformata di Fourier Identificazione della risposta in frequenza Diagrammi di Bode Diagrammi polari

Dettagli

Prova scritta di Controlli Automatici e sistemi elettrici lineari

Prova scritta di Controlli Automatici e sistemi elettrici lineari Prova scritta di Controlli Automatici e sistemi elettrici lineari Corso di Laurea in Ingegneria Meccatronica, AA 202 203 9 Settembre 203 Domande a Risposta Multipla Per ognuna delle seguenti domande a

Dettagli

MODULO 2. Rappresentazioni grafiche: Bode e Nyquist V ITI INFORMATICA CORSO DI SISTEMI. o Cenni sui logaritmi;

MODULO 2. Rappresentazioni grafiche: Bode e Nyquist V ITI INFORMATICA CORSO DI SISTEMI. o Cenni sui logaritmi; V ITI INFORMATICA CORSO DI SISTEMI a.s. 2012/13 MODULO 2 Rappresentazioni grafiche: Bode e Nyquist o Cenni sui logaritmi; U.D.2.2: o Rappresentazioni della F(s); U.D.2.3: o Diagrammi di Bode del modulo:

Dettagli

12. F.d.T. con uno ZERO nell'origine ed un POLO non nell origine: Derivatore invertente reale. Per prima cosa troviamo Z 1. Quindi: eq

12. F.d.T. con uno ZERO nell'origine ed un POLO non nell origine: Derivatore invertente reale. Per prima cosa troviamo Z 1. Quindi: eq Appunti di ELETTONIA lassi QUINTE Integratori e Derivatori attivi:.d.t., diagrammi di Bode, risposte nel tempo A.S. 999-000 - martedì 7 dicembre 999 Pagina n. 53..d.T. con uno EO nell'origine ed un POLO

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Analisi armonica e metodi grafici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 053 974839 E-mail: marcello.bonfe@unife.it pag. Analisi

Dettagli

Controlli Automatici 2 22/06/05 Compito a

Controlli Automatici 2 22/06/05 Compito a Controlli Automatici 2 22/6/5 Compito a a) Si consideri il diagramma di Bode (modulo e fase) di G(s) in figura 1. Si 5 Bode Diagram 5 15 45 9 135 18 3 2 1 1 2 3 Frequency (rad/sec) Figure 1: Diagrammi

Dettagli

Corso di laurea in Informatica. Regolatori. Marta Capiluppi Dipartimento di Informatica Università di Verona

Corso di laurea in Informatica. Regolatori. Marta Capiluppi Dipartimento di Informatica Università di Verona Corso di laurea in Informatica Regolatori Marta Capiluppi marta.capiluppi@univr.it Dipartimento di Informatica Università di Verona Scelta delle specifiche 1. Picco di risonanza e massima sovraelongazione

Dettagli

Analisi dei sistemi in retroazione

Analisi dei sistemi in retroazione Facoltà di Ingegneria di Reggio Emilia Corso di Controlli Automatici Corsi di laurea in Ingegneria Meccatronica ed in Ingegneria della Gestione Industriale Ing. Alessandro Macchelli e-mail: amacchelli@deis.unibo.it

Dettagli

Diagrammi di Bode e polari

Diagrammi di Bode e polari Marzo - Giugno Automation Robotics and System CONTROL Corso di laurea in Ingegneria Meccatronica DIAGRAMMI DI BODE Cesare Fantuzzi (cesare.fantuzzi@unimore.it) Cristian Secchi (cristian.secchi@unimore.it)

Dettagli

Tecniche di progetto di controllori

Tecniche di progetto di controllori Tecniche di progetto di controllori (ver..2) In questo capitolo sarà descritta una tecnica di progetto classica di controllori denominata sintesi per tentativi. Abbiamo visto precedentemente come calcolare

Dettagli

Lezione 19. Stabilità robusta. F. Previdi - Fondamenti di Automatica - Lez. 19 1

Lezione 19. Stabilità robusta. F. Previdi - Fondamenti di Automatica - Lez. 19 1 Lezione 19. Stabilità robusta F. Previdi - Fondamenti di Automatica - Lez. 19 1 Schema 1. Stabilità & incertezza 2. Indicatori di stabilità robusta 3. Margine di guadagno 4. Margine di fase 5. Criterio

Dettagli

LA RISPOSTA ARMONICA DEI SISTEMI LINEARI (regime sinusoidale) S o (t)

LA RISPOSTA ARMONICA DEI SISTEMI LINEARI (regime sinusoidale) S o (t) ELETTRONICA E TELECOMUNICAZIONI CLASSE QUINTA A INF LA RISPOSTA ARMONICA DEI SISTEMI LINEARI (regime sinusoidale) S i (t) Sistema LINEARE S o (t) Quando si considerano i sistemi lineari, per essi è applicabile

Dettagli

Controlli Automatici: Raccolta di Prove Scritte con Soluzione. Elena Zattoni

Controlli Automatici: Raccolta di Prove Scritte con Soluzione. Elena Zattoni Controlli Automatici: Raccolta di Prove Scritte con Soluzione Elena Zattoni Premessa Questo volumetto è rivolto agli Studenti dei corsi di Controlli Automatici e raccoglie una serie di prove scritte con

Dettagli

PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010

PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010 PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010 1) PIANO CARTESIANO serve per indicare, identificare, chiamare... ogni PUNTO del piano (ente geometrico) con una coppia di valori numerici (detti COORDINATE).

Dettagli

CONTROLLI AUTOMATICI Ingegneria Gestionale ANALISI ARMONICA

CONTROLLI AUTOMATICI Ingegneria Gestionale  ANALISI ARMONICA CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI ARMONICA Ing. Federica Grossi Tel. 059 2056333 e-mail: federica.grossi@unimore.it

Dettagli

Parte 7, 1. Prof. Thomas Parisini. Parte 7, 3. Prof. Thomas Parisini. Parte 7, 5 - Risposta allo scalino: I ordine. B) Non strettamente proprio

Parte 7, 1. Prof. Thomas Parisini. Parte 7, 3. Prof. Thomas Parisini. Parte 7, 5 - Risposta allo scalino: I ordine. B) Non strettamente proprio Parte 7, 1 Parte 7, 2 - Risposta allo scalino Studio dei sistemi dinamici tramite FdT - Risposta allo scalino In sistemi asint. stabili descrive la transizione da un equilibrio ad un altro Parte 7, 3 -

Dettagli

Controlli automatici e controllo dei processi Docente: Davide M. Raimondo Prova scritta: 01/03/2013 Durata: 3h. Cognome Nome Matricola

Controlli automatici e controllo dei processi Docente: Davide M. Raimondo Prova scritta: 01/03/2013 Durata: 3h. Cognome Nome Matricola Controlli automatici e controllo dei processi Docente: Davide M. Raimondo Prova scritta: 01/03/2013 Durata: 3h Cognome Nome Matricola Esercizio 3: Si determini, motivando brevemente, la corrispondenza

Dettagli

s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile;

s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile; 1 Esercizi svolti Esercizio 1. Con riferimento al sistema di figura, calcolare: ut) + K s s + 6 s 3 yt) a) la funzione di trasferimento a ciclo chiuso tra ut) e yt); b) i valori di K per i quali il sistema

Dettagli

5. Per ω = 1/τ il diagramma reale di Bode delle ampiezze della funzione G(jω) =

5. Per ω = 1/τ il diagramma reale di Bode delle ampiezze della funzione G(jω) = Fondamenti di Controlli Automatici - A.A. 211/12 3 luglio 212 - Domande Teoriche Cognome Nome: Matricola: Corso di Laurea: Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni

Dettagli

Spettri e banda passante

Spettri e banda passante Banda passante - Corso di Laurea in Ingegneria Meccanica Controlli Automatici L Spettri e banda passante DEIS-Università di Bologna Tel. 5 2932 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi

Dettagli

Soluzione degli esercizi del Capitolo 9

Soluzione degli esercizi del Capitolo 9 Soluzione degli esercizi del Capitolo 9 Soluzione dell Esercizio 9.1 Il diagramma polare associato alla funzione L(s) = µ/s, µ > comprende l intero semiasse reale negativo. È quindi immediato concludere

Dettagli

ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO. Schema generale di controllo in retroazione. Margine di guadagno e margine di fase

ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO. Schema generale di controllo in retroazione. Margine di guadagno e margine di fase ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO Schema generale di controllo in retroazione Requisiti di un sistema di controllo Stabilità in condizioni nominali Margine di guadagno e margine di fase

Dettagli

Esercizi di Controlli Automatici

Esercizi di Controlli Automatici Esercizi di Controlli Automatici L. Magni Esercizio Si studi la stabilità dei seguenti sistemi retroazionati negativamente con guadagno d anello L(s) al variare di > utilizzando il luogo delle radici e

Dettagli

Controlli Automatici Compito del - Esercizi

Controlli Automatici Compito del - Esercizi Compito del - Esercizi. Data la funzione di trasferimento G(s) = s (s +),sicalcoli a) La risposta impulsiva g(t); b) L equazione differenziale associata al sistema G(s); c) Si commenti la stabilità del

Dettagli

Diagrammi di Nyquist o polari

Diagrammi di Nyquist o polari 0.0. 3.3 1 qualitativa Ampiezza Diagrammi di Nyquist o polari Esempio di diagramma polare senza poli nell origine: 40 20 G(s) = 100(1+ s 50 ) (1+ s 10 )2 (1+ s 20 )(1+ s 100 ) Imag 0 20 15 20 30 80 0.1

Dettagli

ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica

ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI ARMONICA Analisi

Dettagli

Corso di Fondamenti di Automatica A.A. 2015/16. Diagrammi di Bode

Corso di Fondamenti di Automatica A.A. 2015/16. Diagrammi di Bode 1 Coro di Fondamenti di Automatica A.A. 015/16 Diagrammi di Bode Prof. Carlo Coentino Dipartimento di Medicina Sperimentale e Clinica Univerità degli Studi Magna Graecia di Catanzaro tel: 0961-3694051

Dettagli

SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo. RETI CORRETTRICI

SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo.  RETI CORRETTRICI SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html RETI CORRETTRICI Ing. Luigi Biagiotti e-mail: luigi.biagiotti@unimore.it http://www.dii.unimore.it/~lbiagiotti

Dettagli

Amplificatori operazionali

Amplificatori operazionali Amplificatori operazionali Parte 3 www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 6--) Integratore Dato che l ingresso invertente è virtualmente a massa si ha vi ( t) ir ( t) R Inoltre i

Dettagli

Regolazione e Controllo dei Sistemi Meccanici

Regolazione e Controllo dei Sistemi Meccanici Regolazione e Controllo dei Sistemi Meccanici 3--24 Numero di matricola =ρ =ɛ =β Si consideri il razzo vettore riportato in fig.. Figure : Vettore ARIANE-V. La dinamica planare semplificata e linearizzata

Dettagli

Prova scritta di Controlli Automatici e sistemi elettrici lineari

Prova scritta di Controlli Automatici e sistemi elettrici lineari Prova scritta di Controlli Automatici e sistemi elettrici lineari Corso di Laurea in Ingegneria Meccatronica, AA 23 24 9 Giugno 24 NOTA BENE: In caso di punteggio inferiore od uguale a /3 nel compito scritto,

Dettagli

Esercizio 1. Si consideri la funzione di trasferimento. G(s) = K 1 + st

Esercizio 1. Si consideri la funzione di trasferimento. G(s) = K 1 + st Esercizio. Si consideri la funzione di trasferimento G(s) = K + st + sτ. Si dimostri che, qualunque siano i valori dei parametri reali K, T e τ, il relativo diagramma di Nyquist è una circonferenza. Si

Dettagli

08. Analisi armonica. Controlli Automatici

08. Analisi armonica. Controlli Automatici 8. Analisi armonica Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Alessio Levratti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it http://www.arscontrol.org/teaching

Dettagli

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale RETI CORRETTRICI

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale RETI CORRETTRICI CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale RETI CORRETTRICI Ing. Luigi Biagiotti Tel. 51 29334 / 51 29368 e-mail: lbiagiotti@deis.unibo.it http://www-lar.deis.unibo.it/~lbiagiotti Regolatori

Dettagli

Sistemi Elementari. Prof. Laura Giarré https://giarre.wordpress.com/ca/

Sistemi Elementari. Prof. Laura Giarré https://giarre.wordpress.com/ca/ Sistemi Elementari Prof. Laura Giarré Laura.Giarre@UNIMORE.IT https://giarre.wordpress.com/ca/ Rappresentazioni di una funzione di trasferimento Una funzione di trasferimento espressa in forma polinomiale

Dettagli

Capacità parassita. Quindi ci si aspetta che la funzione di trasferimento dipenda dalla frequenza

Capacità parassita. Quindi ci si aspetta che la funzione di trasferimento dipenda dalla frequenza Esperienza n. 10 Partitore resistivo e sua compensazione in c.a. Partitore resistivo-capacitivo Partitore resistivo: abbiamo visto che in regime di corrente continua il rapporto di partizione è costante:

Dettagli

Controlli Automatici T Regolatori PID

Controlli Automatici T Regolatori PID Parte 10bis Aggiornamento: Settembre 2010 Parte 3, 1 Regolatori PID Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: lmarconi@deis.unibo.it URL: www-lar.deis.unibo.it/~lmarconi

Dettagli

SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo.

SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo. SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html Banda passante e sviluppo in serie di Fourier Ing. Luigi Biagiotti e-mail:

Dettagli

LA FUNZIONE DI TRASFERIMENTO

LA FUNZIONE DI TRASFERIMENTO LA FUNZIONE DI TRASFERIMENTO Può essere espressa sia nel dominio della s che nel dominio della j Definizione nel dominio della s. è riferita ai soli sistemi con un ingresso ed un uscita 2. ha per oggetto

Dettagli

MODELLO COMPLETO PER IL CONTROLLO. D r (s) U(s) Y (s) d m (t): disturbi misurabili. d r (t): disturbi non misurabili

MODELLO COMPLETO PER IL CONTROLLO. D r (s) U(s) Y (s) d m (t): disturbi misurabili. d r (t): disturbi non misurabili MODELLO COMPLETO PER IL CONTROLLO D m (s) D r (s) Y o (s) U(s) P (s) Y (s) d m (t): disturbi misurabili d r (t): disturbi non misurabili y o (t): andamento desiderato della variabile controllata u(t):

Dettagli

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/controlliautomatici.html SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE Ing. e-mail: luigi.biagiotti@unimore.it

Dettagli

Esercizi sul luogo delle radici

Esercizi sul luogo delle radici FA Esercizi 6, 1 Esercizi sul luogo delle radici Analisi di prestazioni a ciclo chiuso, progetto di regolatori facendo uso del luogo delle radici. Analisi di prestazioni FA Esercizi 6, 2 Consideriamo il

Dettagli

Soluzione degli esercizi del Capitolo 13

Soluzione degli esercizi del Capitolo 13 Soluzione degli esercizi del Capitolo 3 Soluzione dell Esercizio 3. Il luogo diretto è costituito da due rami posizionati sull asse reale. Uno di essi si sposta dal polo in a e l altro percorre il segmento

Dettagli

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm SISTEMI ELEMENTARI DEL o

Dettagli

Stabilità e risposte di sistemi elementari

Stabilità e risposte di sistemi elementari Parte 4 Aggiornamento: Settembre 2010 Parte 4, 1 Stabilità e risposte di sistemi elementari Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: lmarconi@deis.unibo.it URL: www-lar.deis.unibo.it/~lmarconi

Dettagli

Progetto del controllore

Progetto del controllore Parte 10, 1 - Problema di progetto Parte 10, 2 Progetto del controllore Il caso dei sistemi LTI a tempo continuo Determinare in modo che il sistema soddisfi alcuni requisiti - Principali requisiti e diagrammi

Dettagli

Nyquist Diagrams Real Axis

Nyquist Diagrams Real Axis Nome e Cognome: Anno di frequenza: Esame di Regolazione e Controllo dei Sistemi Meccanici { 7{{ Numero di matricola { { =, =, =, =, A (pt. 3) Tracciare i diagrammi di Bode, Nyquist e Nichols relativi al

Dettagli

un sistema è stabile se, in conseguenza di una sollecitazione esterna limitata, la sua risposta (variazione dell uscita) è limitata (Bounded Input

un sistema è stabile se, in conseguenza di una sollecitazione esterna limitata, la sua risposta (variazione dell uscita) è limitata (Bounded Input un sistema è stabile se, in conseguenza di una sollecitazione esterna limitata, la sua risposta (variazione dell uscita) è limitata (Bounded Input Bounded Output) Un sistema si dice asintoticamente stabile

Dettagli

Risposta armonica Analisi nel dominio del tempo: caratterizzazione del sistema osservando la sua risposta (forzata) ad ingressi significativi

Risposta armonica Analisi nel dominio del tempo: caratterizzazione del sistema osservando la sua risposta (forzata) ad ingressi significativi Risposta armonica Analisi nel dominio del tempo: caratterizzazione del sistema osservando la sua risposta (forzata) ad ingressi significativi Ipotesi: il sistema ha f.d.t. G(s)=N(s)/D(s) e la corrispondente

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 1 febbraio 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 1 febbraio 2017 Testi 1 Analisi Matematica I per Ingegneria Gestionale, a.a. 206-7 Scritto del secondo appello, febbraio 207 Testi Prima parte, gruppo.. Trovare le [0, π] che risolvono la disequazione sin(2) 2. 2. Dire se esistono

Dettagli

L amplificatore Williamson

L amplificatore Williamson L amplificatore Williamson Nel 1947 l inglese D.T.N. Williamson propose un amplificatore audio che è da molti considerato il primo amplificatore ad alta fedeltà. Pur essendo realizzato con tubi elettronici,

Dettagli

Brevi appunti di Fondamenti di Automatica 1. prof. Stefano Panzieri Dipartimento di Informatica e Automazione Universitï 1 degli Studi ROMA TRE

Brevi appunti di Fondamenti di Automatica 1. prof. Stefano Panzieri Dipartimento di Informatica e Automazione Universitï 1 degli Studi ROMA TRE Brevi appunti di Fondamenti di Automatica 1 prof. Dipartimento di Informatica e Automazione Universitï 1 degli Studi ROMA TRE 2 ROMA TRE UNIVERSITÀ DEGLI STUDI 4 marzo 215 1 Rev..2 INDICE Indice 1 Esercizi

Dettagli

Compito di Fondamenti di Automatica - 13 luglio 2006 Versione A Esercizio 1A. Dato lo schema seguente (operazionali ideali)

Compito di Fondamenti di Automatica - 13 luglio 2006 Versione A Esercizio 1A. Dato lo schema seguente (operazionali ideali) Compito di Fondamenti di Automatica - 1 luglio 2006 Versione A Esercizio 1A. Dato lo schema seguente (operazionali ideali) C v in 2 vout é richiesto di calcolare la funzione di trasferimento G(s) tra v

Dettagli

Corso di Laurea in Ingegneria Meccatronica SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE

Corso di Laurea in Ingegneria Meccatronica SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE Automation Robotics and System CONTROL Università degli Studi di Modena e Reggio Emilia Corso di Laurea in Ingegneria Meccatronica SISTEMI ELEMENTARI DEL o E 2 o ORDINE CA 5 Cesare Fantuzzi (cesare.fantuzzi@unimore.it)

Dettagli

Rappresentazione grafica delle funzioni di trasferimento: diagrammi di Bode

Rappresentazione grafica delle funzioni di trasferimento: diagrammi di Bode Capitolo 7 Rappresentazione grafica delle funzioni di trasferimento: diagrammi di Bode 7. Rappresentazione grafica di funzioni di trasferimento razionali La funzione di trasferimento e una funzione di

Dettagli

Filtri. - I filtri passivi, usano solo componenti passivi (resistenze, condensatori e induttanze).

Filtri. - I filtri passivi, usano solo componenti passivi (resistenze, condensatori e induttanze). Filtri Un filtro è un circuito selettivo in frequenza che lascia passare i segnali in una certa banda e blocca, oppure attenua, I segnali al di fuori di tale banda. I filtri possono essere attivi o passivi.

Dettagli

Margini di stabilità. Corso di Laurea in Ingegneria Meccanica. Controlli AutomaticiL. Schema a blocchi di un sistema di controllo

Margini di stabilità. Corso di Laurea in Ingegneria Meccanica. Controlli AutomaticiL. Schema a blocchi di un sistema di controllo Margini distabilità - 1 Corso di Laurea in Ingegneria Meccanica Controlli Automatici L Margini di stabilità DEIS-Università di Bologna Tel. 51 2932 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi

Dettagli

Margini di stabilità. Corso di Laurea in Ingegneria Meccanica Controlli Automatici L

Margini di stabilità. Corso di Laurea in Ingegneria Meccanica Controlli Automatici L Margini distabilità - 1 Corso di Laurea in Ingegneria Meccanica Margini di stabilità DEIS-Università di Bologna Tel. 51 2932 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi Schema a blocchi

Dettagli

Filtri passivi. V OUT Z 2

Filtri passivi. V OUT Z 2 Filtri passivi. I filtri sono dispositivi quadripolari (due dipoli) che hanno la funzione di modificare lo spettro del segnale al loro ingresso, fornendo in uscita un segnale attenuato in modo diverso

Dettagli

Stabilità e retroazione

Stabilità e retroazione 0.0. 4.1 1 iagramma Stabilità e retroazione Stabilità dei sistemi dinamici lineari: Un sistema G(s) è asintoticamente stabile se tutti i suoi poli sono a parte reale negativa. Un sistema G(s) è stabile

Dettagli

Soluzione degli esercizi del Capitolo 7

Soluzione degli esercizi del Capitolo 7 Soluzione degli esercizi del Capitolo 7 Soluzione dell Esercizio 7.1 La trasformata di Laplace dell uscita del sistema è da cui, per t, Y(s) = G(s)U(s) = 2 3.2 1+5ss 2 +.16 = = 64 1 5s +12.8 s+.2 s 2 +.16

Dettagli

Lezione 8. Stabilità dei sistemi di controllo

Lezione 8. Stabilità dei sistemi di controllo Lezione 8 Stabilità dei sistemi di controllo Poli di un sistema di controllo Riprendiamo lo schema a blocchi di un sistema di controllo in retroazione: d y + + + y L(s) + + n Fig. 1 : Sistema di controllo

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (9 crediti) SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (9 crediti) SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (9 crediti) Prova scritta 16 luglio 2014 SOLUZIONE ESERCIZIO 1. Dato il sistema con: si determinino gli autovalori della forma minima. Per determinare la forma minima

Dettagli

FONDAMENTI DI AUTOMATICA (Ingegneria Gestionale) Prof. Matteo Corno

FONDAMENTI DI AUTOMATICA (Ingegneria Gestionale) Prof. Matteo Corno POLITECNICO DI MILANO FONDAMENTI DI AUTOMATICA (Ingegneria Gestionale) Anno Accademico 2014/15 Seconda Prova in Itinere 12/02/2015 COGNOME... NOME... MATRICOLA... FIRMA.... Verificare che il fascicolo

Dettagli