Prima esercitazione progettuale Progetto di un capannone industriale in acciaio

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Prima esercitazione progettuale Progetto di un capannone industriale in acciaio"

Transcript

1 Corso di Tecnica dee Costruzioni II Teoria dee Esercitazioni Bozza de 1//11 Prima esercitazione progettuae Progetto di un capannone industriae in acciaio 1 Verifica di stabiità fesso-torsionae dea capriata.... Definizione dea Rigidezza Rotazionae de coegamento arcareccio-capriata Un esempio numerico... 9 a cura di Enzo Martinei 1 Anno accademico 5/

2 Corso di Tecnica dee Costruzioni II Teoria dee Esercitazioni Bozza de 1//11 1 VERIFICA DI STABILITÀ FLESSO-TORSIONALE DELLA CAPRIATA. La presenza di un sistema di controvento di fada (trasversae e ongitudinae) e verticae conferisce aa copertura un carattere di corpo rigido determinando, per conseguenza, i fatto che e distanze reciproche tra i nodi superiori dee diverse capriate rimane invariata nea configurazione indeformata. Questo fatto, peratro, rende ecita a sceta che si è fatta a atto dea verifica di stabiità dee aste di assumere come unghezza ibera di infessione proprio a distanza tra i due nodi ai quai esse sono connesse. A stretto rigore, poiché ipotesi di impacato rigido di cui si è detto riguarda a stretto rigore sotanto i nodi dea copertura e non quei reativi a corrente inferiore, è necessario verificare che i vincoo offerto da compesso di barcarecci e controventi di fada sia vaido anche per i vincoi de corrente inferiore (tramite e aste di parete), controando, cioè, che non si verifichino fenomeni di instabiità fesso-torsionae dea capriata ne suo compesso. Tai fenomeni possono verificarsi a partire da un certo vaore de carico appicato sua capriata in corrispondenza de quae può determinarsi a biforcazione de equiibrio rispetto aa configurazione banae secondo a quae i nodi dea capriata dovrebbero rimanere ne piano dea stessa. Figura 1: Configurazione instabie dea capriata. a cura di Enzo Martinei Anno accademico 5/

3 Corso di Tecnica dee Costruzioni II Teoria dee Esercitazioni Bozza de 1//11 La vautazione de carico critico q cr che determina questo tipo di fenomeno di instabiità, si può determinare sua base di un approccio energetico che faccia derivare i carico critico a instabiità fesso-torsionae in corrispondenza di un minimo reativo de energia potenziae Π dato daa differenza tra energia di deformazione U (determinata sua configurazione deformata) ed i avoro W prodotto dai carichi: Π = U W. (1) L energia di deformazione, o megio a sua variazione a partire daa configurazione di equiibrio banae, può essere espressa in funzione dea deformata fuori piano de corrente inferiore u(z) e dea rigidezza rotazionae che si oppone aa rotazione fuori piano θ(z) dea capriata: EI y d u 1 K a = + [ ( ) ] U dz θ z dz, () dz ia e poiché risuta u( z) = θ( z) h, (3) si ottiene a seguente espressione per energia di deformazione U EI y d u 1 K a u U = dz + dz. () dz ia h Quanto a avoro dee forze esterne W, si può assumere che un carico uniforme e equivaete q ottenuto come: ottenendo a seguente espressione: Poiché risuta: n nodi i= 1 P q =, i ( z) ( z) W = q v dz. () θ u v( z) = ( 1 cos θ) h h =, (7) h a () si può esprimere come segue: q W = [ u( z) ] dz. (8) h In definitiva, risuta: EI y ( ) d u 1 K a u( z) q Π = + [ ( ) ] u dz dz u z dz. (9) dz ia h h Ipotizzando per espressione di u una forma sinusoidae compatibie con e condizioni di vincoo ae estremità, si può assumere a seguente reazione: πz u( z) = u sin. (1) Sostituendo a (1) nea (9) si ottiene a seguente espressione per i funzionae energia potenziae: π ( ) 1 π 1 K a q + z Π u = EI y u sin dz. (11) i h ah (5) a cura di Enzo Martinei 3 Anno accademico 5/

4 Corso di Tecnica dee Costruzioni II Teoria dee Esercitazioni Bozza de 1//11 I vaore de carico critico si ottiene determinando i punto di stazionarietà di P rispetto a u ne caso in cui u è non nuo (ovvero quando si verifica una biforcazione de equiibrio). In quee condizioni risuta: 1 π 1 K a q EI y cr + =, (1) i h h a da cui EI y K a qcr = π h +. (13) ia h I vaore de carico critico q cr eastico, o corrispondentemente i momento critico rispetto M cr, qcr M cr =. (1) 8 1 (a sceta de denominatore dipende dao schema dea capriata: 8 si riferisce a caso di capriata sempicemente appoggiata in assenza di sbazi aterai) può essere utiizzato per a determinazione dea sneezza adimensionae rispetto a fenomeno di instabiità fessotorsionae: M x,e,rk λ LT =. (15) M cr dove M x,e,rk è i vaore caratteristico de momento resistente (eastico) dea sezione dea capriata. Quest utimo, può essere sempicemente determinato come segue: M x,e,rk = Wx,ef yk. (1) essendo evidentemente Wx,e,Rk i moduo di resistenza eastico dea sezione attorno a asse y (queo ortogonae a piano di soecitazione dea capriata secondo quanto rappresentato nea Figura 1). Dette A c,sup e A c,inf e aree totai dei correnti superiore ed inferiore, rispettivamente, e h a distanza tra i oro baricentri, a distanza d G de baricentro dea sezione trasversae equivaente dea capriata da queo de corrente superiore può determinarsi come segue: Ac,inf dg = h, (17) Ac,sup + Ac,inf i momento d inerzia dea medesima sezione rispetto a asse x vae: I x,g = Ac,sup dg + Ac,inf ( h dg ), (18) e, in definitiva, i moduo di resistenza coinvoto nea reazione (15) si determina come segue: Ix,G Wx,e =. (19) max(d G ; h dg ) La verifica di stabiità fesso-torsionae può, dunque, essere condotta secondo quanto previsto a punto dea NTC D.M. 1/1/8, definendo come segue un vaore di cacoo de momento resistente: χlt Wx,ef yk M b,rd =, () γ M1 e confrontando i corrispondente vaore deo sforzo normae agente sui correnti dea travatura reticoare: N b,rd N b,rd =, (1) h con i vaore di cacoo N Ed dea soecitazione assiae desunta da anaisi: N. () Ed N b,rd a cura di Enzo Martinei Anno accademico 5/

5 Corso di Tecnica dee Costruzioni II Teoria dee Esercitazioni Bozza de 1//11 DEFINIZIONE DELLA RIGIDEZZA ROTAZIONALE DEL COLLEGAMENTO ARCARECCIO-CAPRIATA. a cura di Enzo Martinei 5 Anno accademico 5/

6 Corso di Tecnica dee Costruzioni II Teoria dee Esercitazioni Bozza de 1//11 a cura di Enzo Martinei Anno accademico 5/

7 Corso di Tecnica dee Costruzioni II Teoria dee Esercitazioni Bozza de 1//11 a cura di Enzo Martinei 7 Anno accademico 5/

8 Corso di Tecnica dee Costruzioni II Teoria dee Esercitazioni Bozza de 1//11 a cura di Enzo Martinei 8 Anno accademico 5/

9 Corso di Tecnica dee Costruzioni II Teoria dee Esercitazioni Bozza de 1//11 3 UN ESEMPIO NUMERICO Consideriamo i caso in oggetto in cui sia i corrente inferiore che queo superiore siano reaizzati da due profii ad L x8x affiancati ad una distanza di 1 mm. Sia, inotre h=1 mm a distanza tra i baricentri dei due correnti. I momento d inerzia rispetto a asse y-y (ovvero queo paraeo a piano dea capriata in Figura 1) può essere cacoato come segue: s 1 I y = I y,c + A y,c e y + = = 1575 mm. (3) Le componenti deformabii K a,a e K a,b imputabii aa fessibiità de aa de arcareccio ed a suo coegamento con aa de corrente superiore ed i termine K p egato aa deformabiità de profio possono vautarsi come segue. Ipotizzando un arcareccio costituito da un profio IPE1 si può, dunque, assumere: K a,a 3 1 bc t 1 3 = Ea = 5 =.55 1 Nmm. b a 3 d 5 K a,b EaA b bc = = = Nmm. b 3 EIa K p = 3 = 3 =.5 1 Nmm. i c avendo assunto un interasse tra e capriate i c = mm. Poiché una componente è assai meno rigida dee atre si ottiene una rigidezza risutate definita come segue: 3 () (5) () K a K =.55 1 Nmm. (7) a,a I vaore de carico critico rispetto a instabiità fesso-torsionae dea capriata si ottiene dunque come segue: q cr = = π 1 + = N/mm, (8) 1 1 ( 1) che corrisponde sostanziamente ad un carico nodae pari a P = i q =. 1 = 13 N 1. kn. (9) cr a cr = Supponendo che a capriata abbia una uce L= cr =1 mm e due sbazi aterai di uce sb = mm, i momento fettente nea mezzeria dea trave equivaente dovuto a carico uniformemente ripartito q cr vae: ( L / 5) L L sb L 1 M cr = qcr = qcr qcr =. = Nmm = knm. (3) a cura di Enzo Martinei 9 Anno accademico 5/

10 Corso di Tecnica dee Costruzioni II Teoria dee Esercitazioni Bozza de 1//11 I vaore de moduo di resistenza può essere vautato facimente, essendo d G =h/ (per ovvie ragioni di simmetria), i vaore de moduo di resistenza W x,e, definito in generae daa (19), si può determinare come segue: Ix,G A c,sup (h / ) 3 c,sup G G Wx,e = = = A h = 89 1 =.89 1 mm max(d ;h d ) h / e, quindi, i vaore caratteristico de momento di snervamento si determina come segue: M = W f = Nmm = knm x,e,rk x,e yk Pertanto, a sneezza adimensionae si determina come segue: λ LT = = Un vaore così ato dea sneezza è di per sé indice di una struttura moto sensibie a possibie fenomeno di instabiità. Pertanto, a verifica, sebbene non condotta espicitamente, si ritiene non soddisfatta. Si decide, dunque, di disporre una crociera rompitratta posta nea mezzeria dee capriate, in modo da ridurne a uce ibera di infessione rispetto a fenomeno di instabiità fesso-torsionae cr =L/=15 mm. In questo modo i carico critico eastico si determina come segue: qcr = π 1 + = =.1 N/mm 1 1 ( 15) e (31) L 1 Mcr = qcr =.1 = Nmm = 88. knm λ LT = = Assumendo a curva di instabiità d (Tabea..VII dea NTC D.M. 1/1/8) come riferimento per i parametro dee imperfezioni (α=.7) è possibie determinare i vaore di χ LT daa reazione..51 dea NTC D.M. 1/1/8 (avendo anche imposto per sempicità ed a vantaggio di sicurezza λ. f=1 e β=1): LT, = Φ LT = 1 1 LT ( LT. ) LT.5 + α λ + λ = 1 1 χ LT = = =, 88 Φ + Φ λ + ( ) ( ) LT LT LT In definitiva, i vaore de momento resistente equivaente può determinarsi come segue: M b,rd ,8 = = 7. knm 1.5 a cura di Enzo Martinei 1 Anno accademico 5/

11 Corso di Tecnica dee Costruzioni II Teoria dee Esercitazioni Bozza de 1//11 cui corrisponde i seguente vaore de carico assiae: N b,rd Mb,Rd 7. = = = kn. h.1 Tae vaore va confrontato con i vaore di progetto de azione assiae soecitante N Ed (ovvero i massimo in vaore assouto degi sforzi normai che si destano nei correnti superiore o inferiore nee varie combinazioni di carico). Dovrà evidentemente risutare N Ed N b,rd. Ne caso in cui ciò non avvenga, si potrà agire su interasse dee crociere rompitratta riducendo cr e, dunque, aumentando q cr e, corrispondentemente, riducendo uteriormente λ. LT a cura di Enzo Martinei 11 Anno accademico 5/

Le Condizioni per l Equilibrio

Le Condizioni per l Equilibrio Le Condizioni per Equiibrio La Statica studia e condizioni di equiibrio dei corpi ovvero e eggi cui azioni e reazioni devono soddisfare affinché aa struttura sia garantita inamovibiità. Le strutture, soggette

Dettagli

Scrittura delle equazioni del moto di un sistema lineare viscoso a più gradi di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Scrittura delle equazioni del moto di un sistema lineare viscoso a più gradi di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Scrittura dee equazioni de moto di un sistema ineare viscoso a più gradi di ibertà Prof. Adofo Santini - Dinamica dee Strutture 1 Matrice di rigidezza Teoricamente, i coefficienti dea matrice di rigidezza

Dettagli

L EQUAZIONE DIFFERENZIALE DELLA LINEA ELASTICA

L EQUAZIONE DIFFERENZIALE DELLA LINEA ELASTICA http://www.itimarconi.ct.it/sezioni/didatticaonine/edie/ostruzioni/linea%0eastic... Pagina di 06/0/006 L EQUAZIONE DIFFERENZIALE DELLA LINEA ELASTIA. BREVI RIHIAMI SULLA TEORIA DELLE TRAVI INFLESSE Si

Dettagli

Studio dei vincoli di un solaio

Studio dei vincoli di un solaio Studio dei vincoi di un soaio ttraverso gi schemi statici per un determinato soaio, vengono definiti i gradi di vincoo per a vautazioni dee caratteristiche dee soecitazioni, agenti sua struttura. Tai vautazioni

Dettagli

RISOLUZIONE DI UN TELAIO CON IL METODO MATRICIALE

RISOLUZIONE DI UN TELAIO CON IL METODO MATRICIALE Università degi Studi di Paermo Facotà di Ingegneria Dipartimento di Ingegneria Strutturae e Geotecnica a.a. 5-6 RISOLUZIOE DI U TELAIO CO IL METODO MATRICIALE Si ringrazia Ing. Faio Di Trapani per a coaorazione

Dettagli

Esempio di risoluzione di struttura iperstatica col metodo misto. Complemento alla lezione 47/50: Telai a nodi mobili

Esempio di risoluzione di struttura iperstatica col metodo misto. Complemento alla lezione 47/50: Telai a nodi mobili Esempio di risouzione di struttura iperstatica co metodo misto ompemento aa ezione 47/50: Teai a nodi mobii La struttura in figura è soggetta ad un cedimento verticae dea cerniera. Tutto i teaio ha sezione

Dettagli

Equilibrio del corpo rigido

Equilibrio del corpo rigido Equiibrio de corpo rigido Probema1 Due sbarrette omogenee AB e BC aventi a stessa unghezza e a stessa massa di 6 kg, vengono sadate ne punto B in modo da formare un angoo di 90. Le due sbarrette così unite

Dettagli

Due incognite ipertstatiche con cedimento elastico lineare sul vincolo

Due incognite ipertstatiche con cedimento elastico lineare sul vincolo Dott. Ing aoo Serafini Cic per tutti gi appunti (AUTOAZIONE TRATTAENTI TERICI ACCIAIO SCIENZA dee COSTRUZIONI ) e-mai per suggerimenti Due incognite ipertstatiche con cedimento eastico ineare su vincoo

Dettagli

Figura 1.1. La struttura illustrata in figura risulta essere, dall analisi cinematica, una struttura due volte iperstatica a nodi spostabili.

Figura 1.1. La struttura illustrata in figura risulta essere, dall analisi cinematica, una struttura due volte iperstatica a nodi spostabili. TEMI ESAME Esercizio 1 Tema d esame de 1/09/1998 Si consideri a struttura iustrata in figura, con EJ costante. I vaore de azione concentrata F è pari a: Figura 1.1 1 F p 4 La struttura iustrata in figura

Dettagli

ELEMENTI COSTRUTTIVI DI MACCHINE BIOMEDICHE

ELEMENTI COSTRUTTIVI DI MACCHINE BIOMEDICHE ELEMENTI COSTRUTTIVI DI MACCHINE BIOMEDICHE PROBLEMA DELLA LINEA ELASTICA INSTABILITA DELLA TRAVE A CARICO DI PUNTA (PROBLEMA BUCKLING O DI EULERO) A cura di ing. Andrea Spezzaneve Ph.D. Mechanica Engineer

Dettagli

Stabilità dell'equilibrio *

Stabilità dell'equilibrio * Introduzione aa stabiità de equiibrio Stabiità de'equiibrio * I probemi di stabiità de'equiibrio sono di tipo fondamentamente diverso dai probemi di equiibrio, sia in campo eastico, sia in campo easto-pastico.

Dettagli

IL PENDOLO REVERSIBILE DI KATER

IL PENDOLO REVERSIBILE DI KATER IL PENDOLO REVERSIBILE DI KATER I periodo dee osciazioni de pendoo sempice è dato daa formua: T 0 = π g Questa reazione è vaida per e piccoe osciazioni, quando, cioè, si può assimiare i seno de'angoo massimo

Dettagli

l B 1. la velocità angolare dell asta un istante prima dell urto; 2. la velocità v 0 ; 3. l energia cinetica dissipata nell urto;

l B 1. la velocità angolare dell asta un istante prima dell urto; 2. la velocità v 0 ; 3. l energia cinetica dissipata nell urto; 1 Esercizio (tratto da Probema 8.29 de Mazzodi 2) Un asta di unghezza 1.2 m e massa M 0.5 Kg è incernierata ne suo estremo A ad un perno fisso e può osciare senza attrito in un piano verticae. A istante

Dettagli

Un metodo di calcolo per le strutture monodimensionali piane

Un metodo di calcolo per le strutture monodimensionali piane www.carosantagata.it n metodo di cacoo per e strutture monodimensionai piane bstract. Si propone un metodo di cacoo per a determinazione dea configurazione di equiibrio dee strutture monodimensionai piane.

Dettagli

Si supponga ora che, con le stesse condizioni iniziali, l urto avvenga elasticamente. Calcolare in questo caso:

Si supponga ora che, con le stesse condizioni iniziali, l urto avvenga elasticamente. Calcolare in questo caso: 1 Esercizio (tratto da Probema 8.21 de Mazzodi 2) Un asta rigida di sezione trascurabie, unga = 1 m e di massa M = 12 Kg è imperniata ne centro ed è ibera di ruotare in un piano orizzontae xy. Contro un

Dettagli

Organi di collegamento

Organi di collegamento Organi di coegamento Linguette Ciavette Aeri scanaati Organi di coegamento - Carmine apoi pag. 1 di 10 LIGUETTA Per inguetta si intende un organo meccanico caettato in opportune cave degi aeri ed utiizzato

Dettagli

Esercitazione 4 - Forze distribuite

Esercitazione 4 - Forze distribuite Università degi Studi di ergamo orso di Laurea in Ingegneria essie orso di Eementi di eccanica Esercitazione 4 - Forze distribuite Esercizio n. acoare e reazioni vincoari e e azioni interne per asta di

Dettagli

Effetto di carichi distribuiti

Effetto di carichi distribuiti Effetto di carichi distribuiti In acune appicazioni non si può più considerare carichi appicati mediante forze concentrate per a determinazione dee azioni interne. Si pensi a peso proprio (soai, bracci

Dettagli

7. Travi appoggiate: metodo generale

7. Travi appoggiate: metodo generale 7. Travi aoggiate: metodo generae Se si riesce a trasformare a trave aoggiata in una mensoa, e sue deformazioni si ossono cacoare con gi stessi criteri de aragrafo recedente. Deve trattarsi naturamente

Dettagli

Risoluzione di un telaio iperstatico col metodo degli spostamenti

Risoluzione di un telaio iperstatico col metodo degli spostamenti Risouzione di un teaio iperstatico co etodo degi spostaenti opeento aa ezione 9/50: enni sugi eeenti finiti per 'anaisi strutturae La struttura in figura è soggetta ad una coppia appicata ne nodo. I teaio

Dettagli

Sfruttando le considerazioni appena fatte come misureresti il coefficiente di attrito statico μ s?

Sfruttando le considerazioni appena fatte come misureresti il coefficiente di attrito statico μ s? MISURA DEL COEFFICIENTE DI ATTRITO STATICO Materiae occorrente: piano incinato monete Nota a unghezza de piano, qua è a reazione che sussiste fra i coefficiente di attrito statico μ s e a configurazione

Dettagli

METODO DEGLI SPOSTAMENTI

METODO DEGLI SPOSTAMENTI Corso / MTODO DGLI SPOSTAMNTI.. Introuzione ee conizioni a contorno e souzione Per trovare gi spostamenti incogniti ei noi bisogna introurre nea reazione matriciae i equiibrio e conizioni a contorno, espresse

Dettagli

Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 3 DIAGRAMMA DELLE SOLLECITAZIONI INTERNE

Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 3 DIAGRAMMA DELLE SOLLECITAZIONI INTERNE Istituto Professionae Statae per 'Industria e 'rtigianato "L.. berti" Rimini nno Scoastico 009/010 orso di Meccanica, Macchine e Impianti Termici PITOLO 3 DIGRMM DELLE SOLLEITZIONI INTERNE Prof. Matteo

Dettagli

Lezione 2 Equazioni famose

Lezione 2 Equazioni famose Moduo 7 U.D. Lez. Laura Citrini - Matematica de continuo Lezione Equazioni amose Matematica de continuo Moduo 7 - Funzioni di più variabii Unità didattica 4 Equazioni dierenziai Laura Citrini Università

Dettagli

ROTAZIONI DEGLI ESTREMI DI UNA TRAVE PRISMATICA APPOGGIATA ALLE ESTREMITÁ E SOGGETTA AD UN CARICO VERTICALE

ROTAZIONI DEGLI ESTREMI DI UNA TRAVE PRISMATICA APPOGGIATA ALLE ESTREMITÁ E SOGGETTA AD UN CARICO VERTICALE M. G. USTO ROTZIONI DEGLI ESTREMI DI UN TRVE PRISMTIC PPOGGIT LLE ESTREMITÁ E SOGGETT D UN CRICO VERTICLE CSO DEI CRICHI TRINGOLRE, UNIFORME E CONCENTRTO mgbstudio.net PGIN INTENZIONLMENTE VUOT SOMMRIO

Dettagli

Compito scritto di Elettricità e Magnetismo ed Elettromagnetismo 24 Giugno 2004

Compito scritto di Elettricità e Magnetismo ed Elettromagnetismo 24 Giugno 2004 Compito scritto di Eettricità e Magnetismo ed Eettromagnetismo 4 Giugno 4 ecupero I (II) esonero di Eettromagnetismo: esercizio C (D) in due ore Prova scritta di Eettricità e Magnetismo: esercizi A e B

Dettagli

Appunti delle lezioni di Tecnica delle costruzioni

Appunti delle lezioni di Tecnica delle costruzioni ppunti dee ezioni di Tecnica dee costruzioni Teoria dee strutture La souzione eastica. La trascurabiità dea deformazione tagiante rispetto a uea fessionae: considerazioni e imiti. La trascurabiità dea

Dettagli

ESERCIZI IN PREPARARZIONE ALLA PROVA PER IL SUPERAMENTO DEL DEBITO DI FISICA. CLASSE 1TGC2

ESERCIZI IN PREPARARZIONE ALLA PROVA PER IL SUPERAMENTO DEL DEBITO DI FISICA. CLASSE 1TGC2 ESERCIZI IN PREPARARZIONE ALLA PROVA PER IL SUPERAMENTO DEL DEBITO DI FISICA. 1) Risovere e seguenti equivaenze CLASSE 1TGC2 1 5 m = mm 6 44 km 2 = m 2 2 34,5 dam 2 = dm 2 7 9 cm 3 = m 3 3 5 cm 2 = m 2

Dettagli

Comportamento meccanico dei materiali Unità 4: Cinematica ed equilibrio del corpo rigido

Comportamento meccanico dei materiali Unità 4: Cinematica ed equilibrio del corpo rigido omportamento meccanico dei materiai Unità 4: inematica ed equiibrio de corpo rigido Definizioni Gradi di ibertà Numero minimo di coordinate con e quai è possibie definire in modo non ambiguo a posizione

Dettagli

I materiali. I materiali. Introduzione al corso. Tecnologia di produzione I materiali La misura della durezza. Le prove meccaniche distruttive

I materiali. I materiali. Introduzione al corso. Tecnologia di produzione I materiali La misura della durezza. Le prove meccaniche distruttive I materiai I materiai Introduzione a corso Tecnoogia di produzione I materiai La misura dea durezza Prove non distruttive La meccanica dei materiai 2 26 Poitecnico di Torino 1 Obiettivi dea ezione Conoscere

Dettagli

3. elementi di linee elettriche: LINEE R-L

3. elementi di linee elettriche: LINEE R-L . eementi di inee eettriche: LINEE R-L cacoo eettrico dee inee R-L cacoo di progetto e verifica criterio dea perdita di potenza ammissibie criterio dea temperatura ammissibie criterio dea caduta di tensione

Dettagli

SOLAIO IN LEGNO-CALCESTRUZZO ESEMPIO PROGETTUALE

SOLAIO IN LEGNO-CALCESTRUZZO ESEMPIO PROGETTUALE SOLAIO IN LEGNO-CALCESTRUZZO ESEMPIO PROGETTUALE Ing. Piero Gei Dipartimento i Ingegneria Civie Via Branze N. 8 51 BRESCIA - ITALY Te. ++ 9-00715.509 Fax ++ 9-00715.50 e-mai: gei@bsing.ing.unibs.it http://civserv.ing.unibs.it/utenti/gei

Dettagli

Esercitazione 7 del corso di Statistica 2

Esercitazione 7 del corso di Statistica 2 Esercitazione 7 de corso di Statistica Prof. Domenico Vistocco Dott.ssa Paoa Costantini 9 Giugno 008 Esercizio La distribuzione dei pesi dei pesi pacchetti per confezionare per confezionare e caramee,

Dettagli

C è in realtà un quarto sistema, meno utilizzato, che è quello del cavo.

C è in realtà un quarto sistema, meno utilizzato, che è quello del cavo. 0c - Principi costruttivi degi edifici Sua base di quanto appena detto, e interazioni tra gi eementi costruttivi (o strutturai) degi edifici portano a distinguere tre diversi principi statico-costruttivi,

Dettagli

DIDATTICA DI DISEGNO E DI PROGETTAZIONE DELLE COSTRUZIONI PROF. CARMELO MAJORANA ING. LAURA SGARBOSSA MODULO DUE

DIDATTICA DI DISEGNO E DI PROGETTAZIONE DELLE COSTRUZIONI PROF. CARMELO MAJORANA ING. LAURA SGARBOSSA MODULO DUE DIDTTIC DI DISEGNO E DI PROGETTZIONE DELLE COSTRUZIONI PROF. CRELO ORN ING. LUR SGRBOSS ODULO DUE IL PROBLE DELL TRVE DI DE SINT VENNT (PRTE B) ODULI PER LO SPECILIZZNDO oduo 0 IN QUESTO ODULO: IL PROBLE

Dettagli

Esercitazione 7 del corso di Statistica 2

Esercitazione 7 del corso di Statistica 2 Esercitazione 7 de corso di Statistica Dott.ssa Paoa Costantini 0 Marzo 009 Esercizio a distribuzione dei pesi dei pesi pacchetti per confezionare per confezionare e caramee, in grammi, prodotti da un

Dettagli

CALCOLO AGLI S.L.U. DI CAPRIATA IN LEGNO TIPO PALLADIO (ai sensi del D.M. 14/01/2008)

CALCOLO AGLI S.L.U. DI CAPRIATA IN LEGNO TIPO PALLADIO (ai sensi del D.M. 14/01/2008) CALCOLO AGLI S.L.U. DI CAPRIATA IN LEGNO TIPO PALLADIO (ai sensi del D.M. 14/01/2008) Editare descrizione: es. Il solaio di copertura sarà portato da capriate in legno del tipo alla Palladio con estremi

Dettagli

Risoluzione di travature reticolari iperstatiche col metodo delle forze. Complemento alla lezione 43/50: Il metodo delle forze II

Risoluzione di travature reticolari iperstatiche col metodo delle forze. Complemento alla lezione 43/50: Il metodo delle forze II Risouzione di travature reticoari iperstatiche co metodo dee forze ompemento aa ezione 3/50: I metodo dee forze II sercizio. er a travatura reticoare sotto riportata, determinare gi sforzo nee aste che

Dettagli

5-6. Progetto della capriata: dimensionamento e verifica

5-6. Progetto della capriata: dimensionamento e verifica 5-6. Progetto dea capriata: dimensionamento e verifica I primo passo nea progettazione di una capriata in acciaio è i dimensionamento degi eementi. La progettazione effettuata agi stati imite utimi o ae

Dettagli

LEZIONE 12 - RESISTENZA DEI MATERIALI 1 ( acciaio per fili ortodontici, ossa, materiali per protesi)

LEZIONE 12 - RESISTENZA DEI MATERIALI 1 ( acciaio per fili ortodontici, ossa, materiali per protesi) LEZIONE 12 - ESISTENZA DEI MATEIALI 1 ( acciaio per fii ortodontici, ossa, materiai per protesi) La prova di trazione/compressione consiste ne misurare e deformazioni in un provino di materiae sottoposto

Dettagli

Richiami sull uso del metodo degli elementi finiti per il calcolo del carico critico di aste presso-inflesse

Richiami sull uso del metodo degli elementi finiti per il calcolo del carico critico di aste presso-inflesse Richiami su uso de metodo degi eementi finiti er i cacoo de carico critico di aste resso-infesse Ci oniamo a seguente domanda: Qua è errore che si commette ne considerare 1 o eementi finiti Hermitiani

Dettagli

Elementi finiti Parte I

Elementi finiti Parte I progetto didattica in rete Eementi finiti Parte I A. Gugiotta getto Poitecnico di Torino, maggio 2002 Dipartimento di Meccanica didattica in rete otto editore ELEMENTI FINITI Parte I A. GUGLIOTTA POLITECNICO

Dettagli

La nuova norma europea sui blocchi in laterizio da solaio: parte I Vincenzo Bacco

La nuova norma europea sui blocchi in laterizio da solaio: parte I Vincenzo Bacco a nuova norma europea sui bocci in aterizio da soaio: parte I Vincenzo Bacco a UNI EN 15037-3 può già essere appicata dao scorso 1 dicembre 2011 e per un intero anno avrà vaenza di norma voontaria. I produttori,

Dettagli

LIMITI E CONTINUITA. 1. Sul concetto di limite

LIMITI E CONTINUITA. 1. Sul concetto di limite LIMITI E CONTINUITA. Su concetto di imite I concetto di imite nasce da esigenza di conoscere i comportamento di una funzione agi estremi de suo insieme di definizione D. Quaora esso sia costituito da unione

Dettagli

Carichi critici aste compresse

Carichi critici aste compresse Carichi critici aste compresse I carico critico Eueriao si scrive come P E Dove è a ughezza ibera di ifessioe χ χ α Coefficiete adimesioae che rifette ifueza dei vicoi α è a più piccoa radice de equazioe

Dettagli

La statistica descrittiva

La statistica descrittiva MATEMATICAperTUTTI Dee seguenti indagine statistiche individua a popoazione, i carattere oggetto di studio e e possibii modaità di tae carattere. 1 ESERCIZIO SVOLTO Indagine: utiizzo de tempo ibero da

Dettagli

Meccanica dei Manipolatori. Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo

Meccanica dei Manipolatori. Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo Meccanica dei Manipoatori Corso di Robotica Prof. Davide Brugai Università degi Studi di Bergamo Definizione di robot industriae Un robot industriae è un manipoatore mutifunzionae riprogrammabie, comandato

Dettagli

Comportamento Meccanico dei Materiali. Calcolo delle caratteristiche di sollecitazione. Calcolo delle caratteristiche di sollecitazione.

Comportamento Meccanico dei Materiali. Calcolo delle caratteristiche di sollecitazione. Calcolo delle caratteristiche di sollecitazione. . Principio di de Saint Venant Nee precedenti schede abbiamo visto come si ottengono e componenti de tensore dee tensioni per un soido di de Saint Venant. Moto spesso i soidi che devono essere cacoati

Dettagli

Il Principio dei Lavori Virtuali e le sue applicazioni

Il Principio dei Lavori Virtuali e le sue applicazioni I T O L O 12 I rincipio dei Lavori Virtuai e e sue appicazioni di Giuiano ugusti e aoo Maria Mariano I rincipio dei Lavori Virtuai appassiona da moti secoi gi studiosi di Meccanica. Le figure sopra riportate

Dettagli

Esercizio 19 - tema di meccanica applicata e macchine a fluido- 2001

Esercizio 19 - tema di meccanica applicata e macchine a fluido- 2001 Esercizi 19 - tema di meccanica appicata e macchine a fuid- 001 Si fa iptesi che durante un adeguat perid di prva di un autvettura, vengan segnaate rtture de fust dee biee veci in prssimità de piede. Dp

Dettagli

Il metodo delle linee di rottura

Il metodo delle linee di rottura Corso di Progetto di Strutture POTENZA, a.a. 01 013 I metodo dee inee di rottura Dott. Marco VONA Scuoa di Ingegneria, Università di Basiicata marco.vona@unibas.it htt://www.unibas.it/utenti/vona/ Se consideriamo

Dettagli

Dimensionamento delle Linee

Dimensionamento delle Linee Metodo dea Caduta di Tensione Unitaria Diensionaento dee Linee È i etodo più sepice. Con questa procedura, è possibie sepificare i cacoi de diensionaento, utiizzando un Apposita Tabea che Fornisce, per

Dettagli

Interazione tra forze verticali e longitudinali: effetti anti 5.5 aggiornato 19-11-2013

Interazione tra forze verticali e longitudinali: effetti anti 5.5 aggiornato 19-11-2013 Interazione tra forze verticai e ongitudinai: effetti anti 5.5 aggiornato 19-11-2013 Ne piano frontae si studia interazione tra forze verticai Fz e forze aterai Fy sviuppate a iveo de impronta a terra.

Dettagli

Alcune strutture, seppur adeguatamente dimensionate dal punto di vista della resistenza, raggiungono il cedimento per fenomeni di instabilità.

Alcune strutture, seppur adeguatamente dimensionate dal punto di vista della resistenza, raggiungono il cedimento per fenomeni di instabilità. lcune strutture, seppur adeguatamente dimensionate dal punto di vista della resistenza, raggiungono il cedimento per fenomeni di instabilità. osservazione diretta mostra che il comportamento delle travi

Dettagli

Inflessione nelle travi

Inflessione nelle travi Ifessioe ee travi Caso dea trave icastrata ad u estremità Data a trave a mesoa AB di ughezza, sottoposta a azioe de carico cocetrato F appicato a estremo ibero B, questa risuta soecitata, i ogi sezioe,

Dettagli

Università degli Studi di Roma La Sapienza Facoltà di Ingegneria Corso di Laurea in Ingegneria Aerospaziale

Università degli Studi di Roma La Sapienza Facoltà di Ingegneria Corso di Laurea in Ingegneria Aerospaziale Università degi Studi di Roma La Saienza Facotà di Ingegneria Corso di Laurea in Ingegneria erosaziae Insegnamento di Scienza dee Costruzioni Comito scritto de 27 gennaio 2001 (4 ore) 1. Meccanica dea

Dettagli

( ) ( ) ESEMPI. lim. Attribuendo ad x dei valori minori di x 0 (ad es. 0,999,...,0,5) si nota che la

( ) ( ) ESEMPI. lim. Attribuendo ad x dei valori minori di x 0 (ad es. 0,999,...,0,5) si nota che la . Limiti di una funzione LIMITI DI UNA FUNZIONE Per ottenere un informazione competa su di una funzione occorrerebbe cacoare tutti i vaori dea funzione per ogni vaore di, ma ciò è impossibie perché tai

Dettagli

modulo B2 Il cemento armato: metodo agli stati limite

modulo B2 Il cemento armato: metodo agli stati limite modulo Il cemento armato: metodo agli stati limite ESERCIZIO SVOLTO Unità 4 La flessionomposta La flessionomposta: sforzo normale e flessione retta Costruire la frontiera del dominio di resistenza della

Dettagli

Verifiche di deformabilità e di stabilità degli elementi inflessi

Verifiche di deformabilità e di stabilità degli elementi inflessi modulo D L acciaio Unità Il metodo alle tensioni ammissibili 1 Verifiche di deformabilità e di stabilità degli elementi inflessi Verifica nei confronti dello svergolamento (instabilità laterale) Esaminiamo

Dettagli

modulo D L acciaio Le coperture Calcolo della capriata

modulo D L acciaio Le coperture Calcolo della capriata 1 ESERCIZIO SVOLTO Le coperture Calcolare una delle capriate in acciaio S35 relative alla copertura del capannone industriale considerato nell Esercizio svolto 6 del Volume 4 (Modulo D, Unità 4) con la

Dettagli

STRUTTURE MISTE ACCIAIO-CLS Lezione 3

STRUTTURE MISTE ACCIAIO-CLS Lezione 3 Corso di Complementi di Tecnica delle Costruzioni A/A 008- STRUTTURE ISTE ACCIAIO-CLS Lezione L (LATERALE) Definizione del problema L instabilità F-T delle travi semplicemente appoggiate Il problema in

Dettagli

ESERCIZIO 1 (Punti 9)

ESERCIZIO 1 (Punti 9) UNIVERSITA DI PISA - ANNO ACCADEMICO 007-8 CORSO DI LAUREA IN ING. ELETTRICA (N.O.) CORSO DI MECCANICA E TECNICA DELLE COSTRUZIONI MECCANICHE VERIFICA INTERMEDIA DEL 15-06-009 ESERCIZIO 1 (Punti 9) Data

Dettagli

LE NOVITA DELLE NORME TECNICHE PER L ACCIAIO

LE NOVITA DELLE NORME TECNICHE PER L ACCIAIO LE NOVITA DELLE NORME TECNICHE PER L ACCIAIO C. Urbano pag. 1 di 33 NORME TECNICHE PER LE COSTRUZIONI - 2008 CIRCOLARE ESPLICATIVA - 2009 APPENDICI NAZIONALI AGLI EUROCODICI -??? C. Urbano pag. 2 di 33

Dettagli

Corso di Progetto di Strutture. POTENZA, a.a Pareti in c.a.

Corso di Progetto di Strutture. POTENZA, a.a Pareti in c.a. Corso di Progetto di Strutture POTENZA, a.a. 2012 2013 Pareti in c.a. Dott. Marco VONA Scuola di Ingegneria, Università di Basilicata marco.vona@unibas.it http://www.unibas.it/utenti/vona/ PARETI La parete

Dettagli

Convegno Nazionale XIV ADM XXXIII AIAS Innovazione nella Progettazione Industriale Bari, 31 Agosto - 2 Settembre 2004

Convegno Nazionale XIV ADM XXXIII AIAS Innovazione nella Progettazione Industriale Bari, 31 Agosto - 2 Settembre 2004 Convegno Nazionae XIV DM XXXIII IS Innovazione nea Progettazione Industriae ari, 3 gosto - Settembre 4 PPLICZIONE DEL METODO CINEMTICO PER L STIM DELL EFFETTO DELLE TOLLERNZE SUGLI ERRORI DI POSIZIONE

Dettagli

La scala logaritmica

La scala logaritmica La scaa ogaritmica Obiettivi utiizzare coordinate ogaritmiche e semiogaritmiche 1. COORDINATE LOGARITMICHE Se un numero k eá maggiore di 10, i suo ogaritmo in base 10 eá moto piuá piccoo de numero stesso:

Dettagli

DETERMINAZIONE DELLE REAZIONI VINCOLARI E DIAGRAMMI DELLE CARATTERISTICHE DELLA SOLLECITAZIONE

DETERMINAZIONE DELLE REAZIONI VINCOLARI E DIAGRAMMI DELLE CARATTERISTICHE DELLA SOLLECITAZIONE DETERMINAZIONE DEE REAZIONI VINCOARI E DIAGRAMMI DEE CARATTERISTICHE DEA SOECITAZIONE ESERCIZIO DATI: = cm F = 8 kn p = kn/m E A G A ) ANAISI CINEMATICA E STATICA DE SISTEMA Il sistema è piano e costituito

Dettagli

Tesina UNIVERSITÀ DEGLI STUDI G. D ANNUNZIO DI CHIETI-PESCARA FACOLTÀ DI ARCHITETTURA F 1. π/4

Tesina UNIVERSITÀ DEGLI STUDI G. D ANNUNZIO DI CHIETI-PESCARA FACOLTÀ DI ARCHITETTURA F 1. π/4 UNIVERSITÀ DEGLI STUDI G. D ANNUNZIO DI CHIETI-ESCARA FACOLTÀ DI ARCHITETTURA CORSO DI LAUREA SECIALISTICA, CORSI DI LAUREA TRIENNALI SCIENZA DELLE COSTRUZIONI E TEORIA DELLE STRUTTURE (Canali B,C) a.a.

Dettagli

Nicola De Rosa, Liceo scientifico sperimentale sessione straordinaria 2012, matematicamente.it

Nicola De Rosa, Liceo scientifico sperimentale sessione straordinaria 2012, matematicamente.it Nicoa De Rosa Liceo scientiico sperimentae sessione straordinaria matematicamente.it PROBLEMA La sezione trasversae di un canae di imgazione ha a orma di un trapezio isoscee con a base maggiore in ato.

Dettagli

Nomenclatura e forme degli archi

Nomenclatura e forme degli archi Università degi Studi di Messina Facotà di Ingegneria A.A. 006/007 Statica e Sismica dee Costruzioni Murarie Docente: Ing. Aessandro Pameri Lezione n. 5: L Arco Funicoare Nomencatura e forme degi archi

Dettagli

Definizione Statico-Cinematica dei vincoli interni

Definizione Statico-Cinematica dei vincoli interni Definizione Statico-Cinematica dei vincoi interni Esempi deo schema strutturae di una struttura in cemento armato e di due strutture in acciaio in cui sono presenti dei vincoi interni cerniera. Vincoo

Dettagli

CORSO DI TECNICA DELLE COSTRUZIONI ESERCITAZIONE n 5 del 4/12/2015 PARTE 1: CALCOLO DELLE SOLLECITAZIONI SULLA TRAVE RETICOLARE

CORSO DI TECNICA DELLE COSTRUZIONI ESERCITAZIONE n 5 del 4/12/2015 PARTE 1: CALCOLO DELLE SOLLECITAZIONI SULLA TRAVE RETICOLARE CORSO DI TECICA DELLE COSTRUZIOI ESERCITAZIOE n 5 del 4//05 PARTE : CALCOLO DELLE SOLLECITAZIOI SULLA TRAVE RETICOLARE.) TRAVI RETICOLARI Il generico carico concentrato P è ottenuto moltiplicando il carico

Dettagli

DIDATTICA DI DISEGNO E PROGETTAZIONE DELLE COSTRUZIONI PROF. CARMELO MAJORANA ING. LAURA SGARBOSSA MODULO UNO

DIDATTICA DI DISEGNO E PROGETTAZIONE DELLE COSTRUZIONI PROF. CARMELO MAJORANA ING. LAURA SGARBOSSA MODULO UNO ATTCA SEGNO E PROGETTAZONE ELLE COSTRUZON PROF. CARELO AJORANA NG. LAURA SGARBOSSA OULO UNO L PROBLEA ELLA TRAVE E SANT VENANT (PARTE A OULO PER LO SPECALZZANO oduo N QUESTO OULO: L PROBLEA ELLA TRAVE

Dettagli

1.0 I SISTEMI IPERSTATICI

1.0 I SISTEMI IPERSTATICI F. Cucco Lezioni di Scienza dee costruzioni. I SISTEMI IPERSTTICI E stato più vote ripetuto che o scopo precipuo dea Scienza dee Costruzioni è queo di poter stabiire se un manufatto, da noi progettato

Dettagli

Le acque sotterranee. Tipi di acque nei terreni

Le acque sotterranee. Tipi di acque nei terreni Tipi di acque nei terreni L contenuta in un terreno può essere cassificata in modo diverso a seconda de egame esistente con i granui di terreno. Acqua di ritenuta E che aderisce ai grani di terreno, non

Dettagli

Calcolo dei calastrelli e delle diagonali

Calcolo dei calastrelli e delle diagonali 1 Calcolo dei calastrelli e delle diagonali La funzione dei calastrelli e delle diagonali è quella di conferire un elevata rigidità all asta composta, con una notevole limitazione della sua inflessione

Dettagli

a A 5 F sen 2 a k 3 e z5 dz 5 2 Fa sen a cos a

a A 5 F sen 2 a k 3 e z5 dz 5 2 Fa sen a cos a 3txtI_NUNZINTE_21 3/6/11 17:6 Pagina 161 3.2 j La trave infessa j 161 N 3 52F sen a N 4 5 N 5 52F cos a a B 5 F cos 2 a a 5 F sen 2 a È immediato rievare da equiibrio in direione verticae dee aioni su

Dettagli

LE POTENZE DEI NUMERI

LE POTENZE DEI NUMERI ARITMETICA LE POTENZE DEI NUMERI PREREQUISITI conoscere e proprietaá dee quattro operazioni svogere cacoi a mente ed in coonna con e quattro operazioni risovere espressioni con e quattro operazioni distinguere

Dettagli

E data la sezione inflessa di c.a. di dimensioni B=30 cm, H=60 cm, con semplice armatura (As=25 cm 2 ).

E data la sezione inflessa di c.a. di dimensioni B=30 cm, H=60 cm, con semplice armatura (As=25 cm 2 ). PROVA SCRITTA DI TECNICA DELLE COSTRUZIONI DEL 9/0/007 Esercizio n 1 Sia data una colonna di acciaio HEA 40 alla quale è collegata, con un vincolo a cerniera, una trave IPE 400. Il collegamento bullonato

Dettagli

Lezioni di Scienza delle Costruzioni (Ing_Ed_Arch) Diagrammi delle sollecitazioni. Lezione. Diagrammi delle sollecitazioni

Lezioni di Scienza delle Costruzioni (Ing_Ed_Arch) Diagrammi delle sollecitazioni. Lezione. Diagrammi delle sollecitazioni ezioni di Scienza dee ostruzioni (Ing_d_rch) iagrammi dee soecitazioni semio Ricerca graica reazioni iagramma momento iagramma tagio IR2S4 1 ezioni di Scienza dee ostruzioni ezione iagrammi dee soecitazioni

Dettagli

Prova scritta di Tecnica delle Costruzioni, Prof. Fausto Mistretta 27/01/2011 ore 15:00 aula alfa.

Prova scritta di Tecnica delle Costruzioni, Prof. Fausto Mistretta 27/01/2011 ore 15:00 aula alfa. Cognome e Nome: Matricola: Quesito 1 (14 punti) Università degli Studi di Cagliari Prova scritta di Tecnica delle Costruzioni, Prof. Fausto Mistretta 27/01/2011 ore 15:00 aula alfa. Data la struttura in

Dettagli

Fondamenti di Meccanica Teorica e Applicata I prova in itinere 24 aprile 2002

Fondamenti di Meccanica Teorica e Applicata I prova in itinere 24 aprile 2002 sercizio 1 ondaenti di Meccanica Teorica e ppicata I prova in itinere 24 aprie 2002 p 2 acoare e reazioni vincoari in, ed ne teaio rappresentato in figura, sapendo che =====2 e che p=100 g/. eterinare

Dettagli

W S. appunti di. ad uso degli studenti dei corsi di laurea triennale in Architettura. con esercizi svolti. Paolo Angelozzi

W S. appunti di. ad uso degli studenti dei corsi di laurea triennale in Architettura. con esercizi svolti. Paolo Angelozzi aoo ngeozzi appunti di W S ad uso degi studenti dei corsi di aurea triennae in rchitettura con esercizi svoti prefazione di ntonea ecchi Edizioni ecnoogos opright 2008 ecnoogos Editore La riproduzione,

Dettagli

il progettista industriale

il progettista industriale i progettista industriae MRZO 017 QUDERNI DI PROGEZIONE Franco Conci ssi ed aberi SSI ED LBERI SONO COMPONENI MECCNICI I L COLLEGMENO DI ORGNI RONI R LORO E, RVERSO I SUPPORI, L ELIO. SI PRL DI SSI (RONI

Dettagli

FUNZIONE DI TRASFERIMENTO ASSOCIATA A UN CODICE CONVOLUZIONALE

FUNZIONE DI TRASFERIMENTO ASSOCIATA A UN CODICE CONVOLUZIONALE FUNZIONE DI TRASFERIMENTO ASSOCIATA A UN CODICE CONVOLUZIONALE La funzione di trasferimento de codice convouzionae fornisce tutte e informazioni riguardo i pesi dei cammini che si dipartono da S 0 e riconfuiscono

Dettagli

1 Progettare e verificare la trave di colmo con sezione presunta di mm2, che viene appoggiata sui pilastri prolungati

1 Progettare e verificare la trave di colmo con sezione presunta di mm2, che viene appoggiata sui pilastri prolungati 4 Il legno 4. Elementi strutturali e strutture in legno ESERCIZI SVOLTI 4.. Coperture Progettare e verificare la trave i colmo con sezione presunta i 0 0 mm, che viene appoggiata sui pilastri prolungati

Dettagli

x -x-2 =3 x 2 x-2 lim

x -x-2 =3 x 2 x-2 lim G Limiti G Introduzione Si è visto, cacoando i dominio dee funzioni, che per certi vaori dea non è possibie cacoare i vaore dea Cò che ci si propone in questo capitoo è capire come si comporta a assegnando

Dettagli

VII ESERCITAZIONE - 29 Novembre 2013

VII ESERCITAZIONE - 29 Novembre 2013 VII ESERCITAZIONE - 9 Novembre 013 I. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria.

Dettagli

J yy > Jxx. l o H A R A R B

J yy > Jxx. l o H A R A R B oitecnico di Torino I cedimento di una struttura soggetta a carichi statici può avvenire in acuni casi con un meccanismo diverso da queo di superamento dei imiti di resistena de materiae. Tae meccanismo

Dettagli

UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II

UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II Facoltà di Architettura Anno accademico: 2005-2006 LABORATORIO DI TECNICA DELLE COSTRUZIONI Prof.Ing. Raffaele Landolfo PROVA INTERCORSO PROGETTO DI UNA PASSERELLA

Dettagli

Il piano cartesiano, la retta e le funzioni di proporzionalità

Il piano cartesiano, la retta e le funzioni di proporzionalità MATEMATICAperTUTTI I piano cartesiano, a retta e e funzioni di proporzionaità ESERCIZIO SVOLTO I piano cartesiano. Per fissare un sistema di riferimento ne piano si considerano due rette orientate fra

Dettagli

La progettazione dei ferri di ripresa post- installati secondo EC2/TR023. Esempio di calcolo

La progettazione dei ferri di ripresa post- installati secondo EC2/TR023. Esempio di calcolo La progettazione dei ferri di ripresa post- installati secondo EC2/TR023 Esempio di calcolo Ing. Alessandro Ferraro Field Engineer - Lazio Roma, 30 aprile 2009 1 Esempio: connessione di una soletta in

Dettagli

ESERCIZIO 2 (punti 13) La sezione di figura è

ESERCIZIO 2 (punti 13) La sezione di figura è SCIENZA DELLE COSTRUZIONI: GES L - Z 2 a PROVA 27/06/2005 Tema A : allievo ESERCIZIO 1 (punti 13) Data la struttura una volta iperstatica di figura, soggetta alla variazione termica uniforme sulla biella

Dettagli

1 Limite finito per x che tende a un valore finito.

1 Limite finito per x che tende a un valore finito. CONCTTO DI LIMIT ite inito per che tende a un vaore inito. Si consideri a seguente unzione in un intorno de punto = escuso da dominio di esistenza: 6 : R \ R Acuni vaori numerici cacoati negi intorni destro

Dettagli

MST.1.01 Sia dato il portale in figura, con il trasverso BC indeformabile ed i montanti di rigidezza EJ.

MST.1.01 Sia dato il portale in figura, con il trasverso BC indeformabile ed i montanti di rigidezza EJ. Meccanica delle strutture Componenti di spostamento Sistemi iperstatici di travi Linea elastica e metodo di Ritz. Componenti di spostamento in sistemi isostatici di travi MST.1.01 Sia dato il portale in

Dettagli

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2012/2013 Meccanica Razionale

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2012/2013 Meccanica Razionale orso di Laurea in Ingegneria Meccanica nno ccadeico 2012/2013 Meccanica azionae Noe... N. Matricoa... ncona, 11 gennaio 2013 1. Un punto P di assa si uove senza attrito su una guida verticae. Una oa di

Dettagli

Corso di Trasporti e Ambiente. ing. Antonio Comi ottobre Modelli di offerta

Corso di Trasporti e Ambiente.  ing. Antonio Comi ottobre Modelli di offerta Corso di Trasporti e Ambiente http://www.uniroma.it/didattica/ta_ ing. Antonio Comi ottobre Struttura de sistema di modei per a simuazione dei sistemi di trasporto OFFERTA DI INFRASTRUTTURE E SERVIZI DI

Dettagli

ESERCIZI SULLA DINAMICA DI CORPI RIGIDI:

ESERCIZI SULLA DINAMICA DI CORPI RIGIDI: ESERCIZI SULLA DINAMICA DI CORPI RIGIDI: risoluzione mediante le euazioni cardinali della dinamica Esercizio n.11 Siadatounpianoinclinatofisso e posto in un piano verticale. Su di esso rotola senza strisciare

Dettagli

Lezione. Tecnica delle Costruzioni

Lezione. Tecnica delle Costruzioni Lezione Tecnica delle Costruzioni 1 Flessione Comportamento ultimo M 1 r M E I M ε σ E ε M σ da E I /r M 1 r M EI 1/r 1/r Comportamento ultimo -ε -f M el M 1 el r el E I M ε ε σ E ε f M el M σ da el W

Dettagli