INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Calcolo di funzioni non lineari

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Calcolo di funzioni non lineari"

Transcript

1 INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Calcolo di funzioni non lineari Prof. Carlo Rossi DEIS - Università di Bologna Tel:

2 Calcolo di funzioni non lineari Si considerano funzioni statiche di una variabile reale y = f x Si applica anche a funzioni multivariabile, ma difficile per più di due variabili y = f ( x1,, x n ) Si applica anche al calcolo di sistemi dinamici non lineari x y ( ) ( n + 1) = f ( x( n), u( n) ) ( n) = g( x( n), u( n) )

3 Calcolo di funzioni non lineari Tre metodi base look-up table: è il più generale, non richiede l equazione della funzione; su processori senza moltiplicatore HW è in genere anche il puù veloce algoritmo iterativo: disponibile solo per alcune funzioni; può essere il più preciso, ma anche il più lento sviluppo polinomiale: solamente per funzioni sufficientemente smooth, richiede interpolazione polinomiale per funzioni disponibili solamente in forma tabellare o per funzioni complesse; può essere il più veloce su processori con moltiplicatori HW (DSP) Metodi misti combinazione polinomiale di funzioni di base tabellate

4 Look-up table Due casi: con o senza interpolazione Senza interpolazione con campioni equispaziati definizione della tabella con punti campione y = ( ) i x i indirizzamento della tabella x x = N min xmax xmin addr = base + se il passo è una potenza di due, per il calcolo di è sufficiente utilizzare i bit più significativi di x-x min se il passo non è una potenza di due, moltiplicazione per una costante può richiedere messa in scala f

5 Look-up table l errore può generalmente essere ridotto definendo valori campione ~ y + y y = i i+ i 1 i = 0,1,, N 1 2 l assunzione di punti equispaziati può essere onerosa, specialmente per curve con curvatura fortemente variabile si può suddividere il range in intervalli dove è di nuovo possibile applicare la spaziatura equidistante si può utilizzare una ricerca binaria su un vettore non equispaziato soluzioni precedenti costose e poco flessibili numero di punti cresce velocemente con la precisione richiesta si preferisce in questi casi l utilizzo dell interpolazione

6 Look-up table Look-up table con interpolazione lineare in questo caso l uscita viene calcolata come yi y y = y i i ( x xi ) xi+ 1 xi per il calcolo dell indice i valgono le considerazioni fatte per il caso senza interpolazione per una implementazione efficiente si memorizzano tre tabelle campioni di x campioni di y valori della pendenza la pendenza può violare i limiti frazionari messa in scala la richiesta di memoria per ottenere un dato errore può essere significativamente minore del caso senza interpolazione molto più flessibile

7 Look-up table Spesso si hanno più funzioni non lineari nella stessa variabile x Conviene definire lo stesso vettore di punti campione (breakpoint) di x si centralizza il calcolo dell indice e del rapporto x x i r = i xi+1 xi si calcolano separatamente per la uscita k ( y y ) y k = yk, i + r k, i+ 1 k, i Si veda le funzioni di look-up table su Matlab

8 Sviluppo in serie polinomiale Si utilizza lo sviluppo in serie di una funzione troncando ad un dato ordine y = p + p x + p x 2 n p n x Anche con matematica ideale esiste un errore associato Le espansioni in serie di potenze standard possono dare risultati pessimi espansione nell intorno di punti standard ottimizzazione dei coefficienti per minimizzazione dell errore Coefficienti fuori dal range frazionario messa in scala Attenzione agli errori introdotti dalla quantizzazione dei coefficienti e delle variabili l errore può essere più grande del previsto

9 INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Calcolo di funzioni non lineari - fine Prof. Carlo Rossi DEIS - Università di Bologna Tel:

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Processori per sistemi di controllo

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Processori per sistemi di controllo INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Processori per sistemi di controllo Prof. Carlo Rossi DEIS - Università di Bologna Tel: 051 2093020 email: crossi@deis.unibo.it Classificazione Processori

Dettagli

Derivazione numerica. Introduzione al calcolo numerico. Derivazione numerica (II) Derivazione numerica (III)

Derivazione numerica. Introduzione al calcolo numerico. Derivazione numerica (II) Derivazione numerica (III) Derivazione numerica Introduzione al calcolo numerico Il calcolo della derivata di una funzione in un punto implica un processo al limite che può solo essere approssimato da un calcolatore. Supponiamo

Dettagli

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Il teorema di Shannon

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Il teorema di Shannon INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Il teorema di Shannon Prof. Carlo Rossi DEIS - Università di Bologna Tel: 051 2093024 email: crossi@deis.unibo.it Introduzione Il teorema di Shannon, o

Dettagli

Lezione 7 Sommatori e Moltiplicatori

Lezione 7 Sommatori e Moltiplicatori Architettura degli Elaboratori e delle Reti Lezione 7 Sommatori e Moltiplicatori Proff. A. Borghese, F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi di Milano L 7 /36 Sommario

Dettagli

Modellazione di sistemi ingegneristici (parte 2 di 2)

Modellazione di sistemi ingegneristici (parte 2 di 2) Corso di Teoria dei Sistemi Modellazione di sistemi ingegneristici (parte 2 di 2) Prof. Ing. Daniele Testi DESTeC, Dipartimento di Ingegneria dell Energia, dei Sistemi, del Territorio e delle Costruzioni

Dettagli

Lezione 7 ALU: Moltiplicazione e divisione

Lezione 7 ALU: Moltiplicazione e divisione Architettura degli Elaboratori e delle Reti Lezione 7 ALU: Moltiplicazione e divisione F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi di Milano L 7 1/34 Sommario! Sommatori

Dettagli

Interpolazione. Lucia Gastaldi. DICATAM - Sez. di Matematica,

Interpolazione. Lucia Gastaldi. DICATAM - Sez. di Matematica, Interpolazione Lucia Gastaldi DICATAM - Sez. di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Interpolazione 2 Interpolazione polinomiale Polinomi Valutazione di un polinomio Algoritmo di Horner

Dettagli

Funzione di trasferimento

Funzione di trasferimento Funzione ditrasferimento - 1 Corso di Laurea in Ingegneria Meccanica Funzione di trasferimento DEIS-Università di Bologna Tel. 51 2932 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi Definizione

Dettagli

Simulazione. D.E.I.S. Università di Bologna DEISNet

Simulazione. D.E.I.S. Università di Bologna DEISNet Simulazione D.E.I.S. Università di Bologna DEISNet http://deisnet.deis.unibo.it/ Introduzione Per valutare le prestazioni di un sistema esistono due approcci sostanzialmente differenti Analisi si basa

Dettagli

Sistemi e Tecnologie per l'automazione LS. HW per elaborazione digitale in automazione: Microcontrollori e DSP

Sistemi e Tecnologie per l'automazione LS. HW per elaborazione digitale in automazione: Microcontrollori e DSP Laurea Specialistica in Ingegneria Informatica Laurea Specialistica in Ingegneria Elettronica e delle Telecomunicazioni Sistemi e Tecnologie per l'automazione LS HW per elaborazione digitale in automazione:

Dettagli

Introduzione. Caratteristiche generali. Sistemi e Tecnologie per l'automazione LS. HW per elaborazione digitale in automazione: Microcontrollori e DSP

Introduzione. Caratteristiche generali. Sistemi e Tecnologie per l'automazione LS. HW per elaborazione digitale in automazione: Microcontrollori e DSP Laurea Specialistica in Ingegneria Informatica Laurea Specialistica in Ingegneria Elettronica e delle Telecomunicazioni Sistemi e Tecnologie per l'automazione LS HW per elaborazione digitale in automazione:

Dettagli

Nella definizione dell asse di una strada, tradizionalmente si studia separatamente l andamento planimetrico da quello altimetrico.

Nella definizione dell asse di una strada, tradizionalmente si studia separatamente l andamento planimetrico da quello altimetrico. 5.2 ANDAMENTO PLANIMETRICO DELL ASSE 5.2.1 Criteri di composizione dell asse In genere, nelle strade a unica carreggiata si assume come asse quello della carreggiata stessa; nelle strade a due carreggiate

Dettagli

Aritmetica dei Calcolatori Elettronici

Aritmetica dei Calcolatori Elettronici Aritmetica dei Calcolatori Elettronici Prof. Orazio Mirabella L informazione Analogica Segnale analogico: variabile continua assume un numero infinito di valori entro l intervallo di variazione intervallo

Dettagli

ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino. Parte F: Conversione A/D e D/A Lezione n F - 2: Convertitori D/A

ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino. Parte F: Conversione A/D e D/A Lezione n F - 2: Convertitori D/A ELETTRONICA II Prof. Dante Del Corso - Politecnico di Torino Parte F: Conversione A/D e D/A Lezione n. 25 - F - 2: Convertitori D/A Conversione A/D La conversione da Analogico a Digitale comporta due tipi

Dettagli

Regressione Lineare e Regressione Logistica

Regressione Lineare e Regressione Logistica Regressione Lineare e Regressione Logistica Stefano Gualandi Università di Pavia, Dipartimento di Matematica email: twitter: blog: stefano.gualandi@unipv.it @famo2spaghi http://stegua.github.com 1 Introduzione

Dettagli

Rappresentazione dei numeri reali

Rappresentazione dei numeri reali Rappresentazione dei numeri reali La rappresentazione dei numeri reali in base 2 è completamente analoga a quella in base : Parte intera + parte frazionaria, separate da un punto La parte frazionaria è

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA FACOLTÀ DI INGEGNERIA. Algoritmi

UNIVERSITÀ DEGLI STUDI DI PAVIA FACOLTÀ DI INGEGNERIA. Algoritmi UNIVERSITÀ DEGLI STUDI DI PAVIA FACOLTÀ DI INGEGNERIA Algoritmi Algoritmi classici Alcuni problemi si presentano con elevata frequenza e sono stati ampiamente studiati Ricerca di un elemento in un vettore

Dettagli

Fondamenti di Informatica - 1. Prof. B.Buttarazzi A.A. 2011/2012

Fondamenti di Informatica - 1. Prof. B.Buttarazzi A.A. 2011/2012 Fondamenti di Informatica - 1 Prof. B.Buttarazzi A.A. 2011/2012 I numeri reali Sommario Conversione dei numeri reali da base 10 a base B Rappresentazione dei numeri reali Virgola fissa Virgola mobile (mantissa

Dettagli

Note sull implementazione in virgola fissa di filtri numerici

Note sull implementazione in virgola fissa di filtri numerici Note sull implementazione in virgola fissa di filtri numerici 4 settembre 2006 1 Introduction Nonostante al giorno d oggi i processori con aritmetica in virgola mobili siano molto comuni, esistono contesti

Dettagli

La rappresentazione dei dati

La rappresentazione dei dati La rappresentazione dei dati Base binaria E la base minima che include cifre diverse si devono conoscere le tabelline dello 0 dell 1 in elettronica si realizzano bene dispositivi bistabili There are only

Dettagli

LEZIONE ICO

LEZIONE ICO LEZIONE ICO 9-10-2009 Argomento. Rassegna dei metodi numerici utilizzabili per la soluzione di problemi di ottimizzazione statica. Metodi del gradiente e di Newton e loro derivati. Metodi di penalita e

Dettagli

Istogramma dei livelli di grigio

Istogramma dei livelli di grigio Capitolo 4 - Operatori Puntuali 1 Istogramma dei livelli di grigio L istogramma dei livelli di grigio di un immagine è una funzione che associa a ciascun livello il numero di pixel dell immagine aventi

Dettagli

2. Costruire un M function file di Matlab che calcola il valore del

2. Costruire un M function file di Matlab che calcola il valore del Esercizi. 1. Costruire un M function file di Matlab che calcola il valore del polinomio di Chebyshev di grado n in un vettore di punti, usando la formula di ricorrenza a tre termini. Costruire il grafico

Dettagli

Elaborazione aut. dei dati

Elaborazione aut. dei dati Programma Elaborazione aut. dei dati Sistema interattivo MATLAB Risoluzione di sistemi lineari e di equazioni non lineari Interpolazione e smoothing di dati Opzioni finanziarie Approssimazione di integrali

Dettagli

INTRODUZIONE A MATLAB

INTRODUZIONE A MATLAB INTRODUZIONE A MATLAB M.R. Russo Università degli Studi di Padova Dipartimento di Matematica Pura ed Applicata A.A. 2008/2009 INDICE Sistemi lineari Casi particolari Eliminazione di Gauss Fattorizzazione

Dettagli

Spettri e banda passante

Spettri e banda passante Banda passante - Corso di Laurea in Ingegneria Meccanica Controlli Automatici L Spettri e banda passante DEIS-Università di Bologna Tel. 5 2932 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi

Dettagli

Azionamenti Elettrici Parte 1 Generazione del moto mediante motori elettrici

Azionamenti Elettrici Parte 1 Generazione del moto mediante motori elettrici Azionamenti Elettrici Parte Generazione del moto mediante motori elettrici Prof. Alberto Tonielli DEIS - Università di Bologna Tel. 05-6443024 E-mail mail: atonielli@deis deis.unibo.itit Collocazione del

Dettagli

Ingegneria dell Informazione D SISTEMI DI ELABORAZIONE DIGITALE DEI SEGNALI. D3- Filtro a media mobile, Filtro FIR:

Ingegneria dell Informazione D SISTEMI DI ELABORAZIONE DIGITALE DEI SEGNALI. D3- Filtro a media mobile, Filtro FIR: Ingegneria dell Informazione Modulo SISTEMI ELETTONICI D SISTEMI DI ELABOAZIONE DIGITALE DEI SEGNALI D3- Filtro a media mobile, Filtro FI:» Definizione della struttura di un filtro a media mobile.» Definizione

Dettagli

Economia, Corso di Laurea Magistrale in Ing. Elettrotecnica, A.A Prof. R. Sestini SCHEMA DELLE LEZIONI DELLA QUINTA E SESTA SETTIMANA

Economia, Corso di Laurea Magistrale in Ing. Elettrotecnica, A.A Prof. R. Sestini SCHEMA DELLE LEZIONI DELLA QUINTA E SESTA SETTIMANA Economia, Corso di Laurea Magistrale in Ing. Elettrotecnica, A.A. 2013-2014. Prof. R. Sestini SCHEMA DELLE LEZIONI DELLA QUINTA E SESTA SETTIMANA In sintesi, una tecnologia costituisce un insieme di piani

Dettagli

Programmazione Matematica: VI Estensioni dell algoritmo del Simplesso

Programmazione Matematica: VI Estensioni dell algoritmo del Simplesso Programmazione Matematica: VI Estensioni dell algoritmo del Simplesso Daniele Vigo D.E.I.S. Università di Bologna dvigo@deis.unibo.it rev. 1.0 Aprile 2004 Algoritmo del Simplesso L algoritmo del Simplesso

Dettagli

Rappresentazione di numeri interi

Rappresentazione di numeri interi Corso di Calcolatori Elettronici I Esercizi Rappresentazione di numeri interi ing. Alessandro Cilardo Corso di Laurea in Ingegneria Biomedica Interi senza segno Qual è l intervallo di rappresentazione

Dettagli

Algoritmi generali per PLI

Algoritmi generali per PLI Programmazione Lineare Intera: II Algoritmo Cutting Planes Daniele Vigo D.E.I.S. Università di Bologna dvigo@deis.unibo.it rev.. ottobre Algoritmi generali per PLI Metodi esatti tradizionali (anni 6 oggi):

Dettagli

Ingegneria e Tecnologie dei Sistemi di Controllo. Unità di Elaborazione: MicroControllori e DSP

Ingegneria e Tecnologie dei Sistemi di Controllo. Unità di Elaborazione: MicroControllori e DSP Ingegneria e Tecnologie dei Sistemi di Controllo Unità di Elaborazione: MicroControllori e DSP Ing. Andrea Tilli DEIS Alma Mater Studiorum Università di Bologna E-Mail: atilli@deis.unibo.it Revisionato:

Dettagli

Le immagini digitali

Le immagini digitali Le immagini digitali immagini raster immagini vettoriali Immagini raster Dette pittoriche o pixel oriented dividono l immagine in una griglia uniforme. Ciascuna cella della griglia ha uguale dimensione.

Dettagli

Statistica multivariata Donata Rodi 17/10/2016

Statistica multivariata Donata Rodi 17/10/2016 Statistica multivariata Donata Rodi 17/10/2016 Quale analisi? Variabile Dipendente Categoriale Continua Variabile Indipendente Categoriale Chi Quadro ANOVA Continua Regressione Logistica Regressione Lineare

Dettagli

Algoritmi, Strutture Dati e Programmi. UD 1.d: Dati e Tipi di Dato

Algoritmi, Strutture Dati e Programmi. UD 1.d: Dati e Tipi di Dato Algoritmi, Strutture Dati e Programmi : Dati e Tipi di Dato Prof. Alberto Postiglione AA 2007-2008 Università degli Studi di Salerno Dati: Variabili e Costanti Un algoritmo (e il programma che ne è rappresentazione)

Dettagli

Esercitazione di laboratorio per il corso di SISTEMI DI TELECOMUNICAZIONI 1 Ritardo Frazionario

Esercitazione di laboratorio per il corso di SISTEMI DI TELECOMUNICAZIONI 1 Ritardo Frazionario Esercitazione di laboratorio per il corso di SISTEMI DI TELECOMUNICAZIONI Ritardo Frazionario 8 marzo 2009 Indice Scopo dell esercitazione A La struttura di Farrow B Norme per la consegna dell esercitazione

Dettagli

Corso di laurea in Informatica Calcolo Numerico Prof.ssa L. D Amore 12 Dicembre 2008 Esercizi di riepilogo tipo prova d esame

Corso di laurea in Informatica Calcolo Numerico Prof.ssa L. D Amore 12 Dicembre 2008 Esercizi di riepilogo tipo prova d esame 1 Cognome: Nome: Matricola: Corso di laurea in Informatica Calcolo Numerico Prof.ssa L. D Amore 12 Dicembre 2008 Esercizi di riepilogo tipo prova d esame 1. Si consideri il sistema aritmetico f. p. a precisione

Dettagli

Operazioni sulle immagini digitali

Operazioni sulle immagini digitali Operazioni sulle immagini digitali Categorie di operatori L istogramma dei livelli di grigio Trasformazioni puntuali Equalizzazione Operazioni su immagini digitali I tipi di operazioni che si possono realizzare

Dettagli

Raccolta degli esercizi svolti in aula

Raccolta degli esercizi svolti in aula Raccolta degli esercizi svolti in aula ed esercizi proposti Alfredo Paolillo apaolillo@unisa.it Versione del: 18 marzo 2011 1 3 marzo 2010: Struttura Sequence e Sub-VI La struttura Sequence permette di

Dettagli

Matematica generale con il calcolatore

Matematica generale con il calcolatore Matematica generale con il calcolatore M. Impedovo Matematica generale con il calcolatore MICHELE IMPEDOVO Istituto Metodi Quantitativi Università Bocconi - Milano In copertina: definizione con Mathcad

Dettagli

Modello dinamico dei robot: approccio di Newton-Eulero

Modello dinamico dei robot: approccio di Newton-Eulero Corso di Robotica 2 Modello dinamico dei robot: approccio di Newton-Eulero Prof. Alessandro De Luca A. De Luca Approcci alla modellistica dinamica (reprise) approccio energetico (eq. di Eulero-Lagrange)

Dettagli

a n i=0 F = a a n 2

a n i=0 F = a a n 2 PROVA PRATICA di CALCOLO NUMERICO per Matematica Applicata e Informatica Multimediale Prof. Stefano De Marchi Verona, 22 giugno 2007 Il candidato dovrà scrivere su ogni foglio il cognome, nome, numero

Dettagli

04 - Numeri Complessi

04 - Numeri Complessi Università degli Studi di Palermo Scuola Politecnica Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2015/2016 M. Tumminello,

Dettagli

1) Codici ciclici. 2) Esempi di codici ciclici. 3) Algoritmi di codifica e decodifica. 4) Circuiti di codifica

1) Codici ciclici. 2) Esempi di codici ciclici. 3) Algoritmi di codifica e decodifica. 4) Circuiti di codifica Argomenti della Lezione ) Codici ciclici 2) Esempi di codici ciclici 3) Algoritmi di codifica e decodifica 4) Circuiti di codifica Codici ciclici Un codice lineare a blocchi (n,k) è ciclico se e solo se

Dettagli

CORSO DI FONDAMENTI DI INFORMATICA

CORSO DI FONDAMENTI DI INFORMATICA Università degli Studi di Bologna Facoltà di Ingegneria CORSO DI FONDAMENTI DI INFORMATICA Ing. Civile/Edile Anno Accademico 1999/2000 http://www-lia.deis.unibo.it/courses/fondcived Prof. Paola Mello Tel.

Dettagli

Il comportamento di un amplificatore ideale, ad esempio di tensione, è descritto dalla relazione lineare V out = A V in (3.1)

Il comportamento di un amplificatore ideale, ad esempio di tensione, è descritto dalla relazione lineare V out = A V in (3.1) Capitolo 3 Amplificazione 3.1 Circuiti attivi Gli elementi circuitali considerati sino ad ora, sia lineari (resistenze, capacità, induttanze e generatori indipendenti), sia non lineari (diodi), sono detti

Dettagli

Cristian Secchi Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Cristian Secchi Tel. 0522 522235 e-mail: secchi.cristian@unimore.it Controlli Digitali Laurea Magistrale in Ingegneria Meccatronica CASO DI STUDIO: CONTROLLO DELLA TESTINA DI LETTURA/SCRITTURA DI UN HARD DISK Tel. 05 535 e-mail: secchi.cristian@unimore.it Il sistema La

Dettagli

Margini di stabilità. Corso di Laurea in Ingegneria Meccanica. Controlli AutomaticiL. Schema a blocchi di un sistema di controllo

Margini di stabilità. Corso di Laurea in Ingegneria Meccanica. Controlli AutomaticiL. Schema a blocchi di un sistema di controllo Margini distabilità - 1 Corso di Laurea in Ingegneria Meccanica Controlli Automatici L Margini di stabilità DEIS-Università di Bologna Tel. 51 2932 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi

Dettagli

Problemi di base di Elaborazione Numerica dei Segnali

Problemi di base di Elaborazione Numerica dei Segnali Universita' di Roma TRE Corso di laurea in Ingegneria Elettronica Corso di laurea in Ingegneria Informatica Universita' di Roma "La Sapienza" Corso di laurea in Ingegneria delle Telecomunicazioni Problemi

Dettagli

Firmware Division. Prof. Alberto Borghese Dipartimento di Informatica Università degli Studi di Milano

Firmware Division. Prof. Alberto Borghese Dipartimento di Informatica Università degli Studi di Milano Firmware Division Prof. Alberto Borghese Dipartimento di Informatica borghese@di.unimi.it Università degli Studi di Milano Riferimenti sul Patterson 5a ed.: 3.4, 3.5 1/36 Sommario Divisione intera Circuiti

Dettagli

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Filtri analogici. Filtri analogici

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Filtri analogici. Filtri analogici IGEGERIA E TECOLOGIE DEI SISTEMI DI COTROLLO Prof. Carlo Rossi DEIS - Università di Bologna Tel: 05 09300 email: crossi@deis.unibo.it Il filtro passa basso ideale Si vuole ricostruire un segnale utile

Dettagli

Margini di stabilità. Corso di Laurea in Ingegneria Meccanica Controlli Automatici L

Margini di stabilità. Corso di Laurea in Ingegneria Meccanica Controlli Automatici L Margini distabilità - 1 Corso di Laurea in Ingegneria Meccanica Margini di stabilità DEIS-Università di Bologna Tel. 51 2932 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi Schema a blocchi

Dettagli

Reti Neurali in Generale

Reti Neurali in Generale istemi di Elaborazione dell Informazione 76 Reti Neurali in Generale Le Reti Neurali Artificiali sono studiate sotto molti punti di vista. In particolare, contributi alla ricerca in questo campo provengono

Dettagli

Intervallo di fiducia del coefficiente angolare e dell intercetta L intervallo di fiducia del coefficiente angolare (b 1 ) è dato da:

Intervallo di fiducia del coefficiente angolare e dell intercetta L intervallo di fiducia del coefficiente angolare (b 1 ) è dato da: Analisi chimica strumentale Intervallo di fiducia del coefficiente angolare e dell intercetta L intervallo di fiducia del coefficiente angolare (b 1 ) è dato da: (31.4) dove s y è la varianza dei valori

Dettagli

Introduzione a Simulink

Introduzione a Simulink Ing. Roberto Naldi DEIS-Università di Bologna Tel. 051 2093876 (CASY) Email: roberto.naldi@unibo.it URL: www-lar.deis.unibo.it/~rnaldi 1 Cosa è Simulink Simulink: un ambiente grafico per la simulazione

Dettagli

Massimo Benerecetti Tabelle Hash

Massimo Benerecetti Tabelle Hash Massimo Benerecetti Tabelle Hash # Lezione n. Parole chiave: Corso di Laurea: Informatica Insegnamento: Algoritmi e Strutture Dati I Email Docente: bene@na.infn.it A.A. 2009-2010 Rappresentazione di insiemi

Dettagli

Tempo e spazio di calcolo (continua)

Tempo e spazio di calcolo (continua) Tempo e spazio di calcolo (continua) I numeri di Fibonacci come case study (applichiamo ad un esempio completo le tecniche illustrate nei lucidi precedenti) Abbiamo introdotto tecniche per la correttezza

Dettagli

Corso di Calcolatori Elettronici I

Corso di Calcolatori Elettronici I Corso di Calcolatori Elettronici I Rappresentazione dei numeri naturali Roberto Canonico Università degli Studi di Napoli Federico II A.A. 2016-2017 Roberto Canonico Corso di Calcolatori Elettronici I

Dettagli

MESSA IN SCALA DI ALGORITMI DIGITALI

MESSA IN SCALA DI ALGORITMI DIGITALI Ingegneria e Tecnologie dei Sistemi di Controllo Laurea Specialistica in Ingegneria Meccatronica MESSA IN SCALA DI ALGORITMI DIGITALI Cristian Secchi Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

5. ANALISI DI SENSIBILITÀ

5. ANALISI DI SENSIBILITÀ 5. ANALISI DI SENSIBILITÀ R. Tadei 1 Una piccola introduzione R. Tadei 2 ANALISI DI SENSIBILITÀ Nei precedenti capitoli abbiamo visto come, partendo da un problema reale, si possa giungere alla costruzione

Dettagli

Istituto d Istruzione Superiore A. Tilgher Ercolano (Na)

Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) Premessa Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire solamente i concetti fondamentali

Dettagli

T10 CONVERTITORI A/D E D/A

T10 CONVERTITORI A/D E D/A T10 CONVERTITORI A/D E D/A T10.1 Esplicitare i seguenti acronimi riguardanti i convertitori A/D e D/A: ADC.. DAC.. LSB.. SAR... S&H.. T10.2 Quanto vale l intervallo di quantizzazione in un ADC a 8 bit

Dettagli

Tempo e spazio di calcolo (continua)

Tempo e spazio di calcolo (continua) Tempo e spazio di calcolo (continua) I numeri di Fibonacci come case study (applichiamo ad un esempio completo le tecniche illustrate nei lucidi precedenti) Abbiamo introdotto tecniche per la correttezza

Dettagli

Pianificazione di reti IP Subnetting e CIDR

Pianificazione di reti IP Subnetting e CIDR Pianificazione di reti IP Subnetting e CIDR A.A. 2005/2006 Walter Cerroni Pianificazione di reti IP L enorme successo di Internet ha reso gli indirizzi IP una risorsa preziosa (quindi costosa) In attesa

Dettagli

Pianificazione di reti IP Subnetting e CIDR

Pianificazione di reti IP Subnetting e CIDR Pianificazione di reti IP Subnetting e CIDR A.A. 2005/2006 Walter Cerroni Pianificazione di reti IP L enorme successo di Internet ha reso gli indirizzi IP una risorsa preziosa (quindi costosa) In attesa

Dettagli

I diagrammi di Bode. Corso di Laurea in Ingegneria Meccanica Controlli Automatici L

I diagrammi di Bode. Corso di Laurea in Ingegneria Meccanica Controlli Automatici L Diagrammi di Bode - 1 Corso di Laurea in Ingegneria Meccanica I diagrammi di Bode DEIS-Università di Bologna Tel. 51 2932 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi Diagrammi di Bode

Dettagli

SCHEDA DIDATTICA N 7

SCHEDA DIDATTICA N 7 FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA CIVILE CORSO DI IDROLOGIA PROF. PASQUALE VERSACE SCHEDA DIDATTICA N 7 LA DISTRIBUZIONE NORMALE A.A. 01-13 La distribuzione NORMALE Uno dei più importanti

Dettagli

Calcolo Numerico Informatica Manolo Venturin A.A. 2010 2011 Guida all esame

Calcolo Numerico Informatica Manolo Venturin A.A. 2010 2011 Guida all esame Calcolo Numerico Informatica Manolo Venturin A.A. 2010 2011 Guida all esame Testo aggiornato al 23 maggio 2011. L esame consiste in una prova scritta della durata di 2 ore. Tale prova è composta da tre/-

Dettagli

Sistemi digitali. Sistema digitale

Sistemi digitali. Sistema digitale Sistemi digitali 2/ 7 Sistema digitale In un sistema digitale le informazioni vengono rappresentate, elaborate e trasmesse mediante grandezze fisiche (segnali) che si considerano assumere solo valori discreti

Dettagli

Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 20 giugno 2011

Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 20 giugno 2011 Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 20 giugno 2011 L esame consiste di 4 domande aperte e 10 esercizi a risposta multipla. Per gli esercizi ci sono

Dettagli

Sistemi Elementari. Prof. Laura Giarré https://giarre.wordpress.com/ca/

Sistemi Elementari. Prof. Laura Giarré https://giarre.wordpress.com/ca/ Sistemi Elementari Prof. Laura Giarré Laura.Giarre@UNIMORE.IT https://giarre.wordpress.com/ca/ Rappresentazioni di una funzione di trasferimento Una funzione di trasferimento espressa in forma polinomiale

Dettagli

Heap scenario. Ho un insieme dinamico di oggetti, ciascuno identificato con una priorità. (la priorità è semplicemente un numero);

Heap scenario. Ho un insieme dinamico di oggetti, ciascuno identificato con una priorità. (la priorità è semplicemente un numero); Heap Heap scenario Ho un insieme dinamico di oggetti, ciascuno identificato con una priorità. (la priorità è semplicemente un numero); Voglio poter: inserire: nuovi elementi, ciascuno con una data priorità

Dettagli

RICHIAMI MATEMATICI. x( t)

RICHIAMI MATEMATICI. x( t) 0.0. 0.1 1 RICHIAMI MATEMATICI Funzioni reali del tempo: (t) : t (t) (t) ( t) Funzioni reali dell ingresso: y() t t y( ) y() : y() Numeri complessi. Un numero complesso è una coppia ordinata di numeri

Dettagli

Operazioni sulle immagini digitali

Operazioni sulle immagini digitali Operazioni sulle immagini digitali Categorie di operatori L istogramma dei livelli di grigio Trasformazioni puntuali Equalizzazione Operazioni su immagini digitali I tipi di operazioni che si possono realizzare

Dettagli

convertitore D/A convertitore A/D

convertitore D/A convertitore A/D n bit linee digitali N =2 n livelli range o dinamica tensione analogica d'ingresso IN IN convertitore D/A convertitore A/D OUT 1 filo linea analogica la tensione v out è quantizzata OUT n bit o N livelli

Dettagli

Università della Calabria

Università della Calabria Università della Calabria FACOLTA DI INGEGNERIA Corso di Laurea in Ingegneria Civile CORSO DI IDROLOGIA N.O. Prof. Pasquale Versace SCHEDA DIDATTICA N 3 CURVE DI PROBABILITÀ PLUVIOMETRICA A.A. 00- CURVE

Dettagli

Calcolo Numerico (A.A. 2014-2015) Lab n. 12 Approssimazione 17-12-2014

Calcolo Numerico (A.A. 2014-2015) Lab n. 12 Approssimazione 17-12-2014 Calcolo Numerico (A.A. 2014-2015) Lab n. 12 Approssimazione 17-12-2014 1 Approssimazione di dati e funzioni Problema Data la tabella {x i, y i }, i = 0,..., n, si vuole trovare una funzione analitica ϕ

Dettagli

Primi esercizi sulla ricerca di punti di estremo assoluto

Primi esercizi sulla ricerca di punti di estremo assoluto Primi esercizi sulla ricerca di punti di estremo assoluto Riccarda Rossi Università di Brescia Analisi II Riccarda Rossi (Università di Brescia) Esercizi su estremi assoluti (I) Analisi II 1 / 42 Richiami

Dettagli

RISOLUZIONE DI SISTEMI LINEARI

RISOLUZIONE DI SISTEMI LINEARI RISOLUZIONE DI SISTEMI LINEARI Algebra lineare numerica 1 La risoluzione di un sistema lineare è il nucleo principale del processo di risoluzione di circa il 70% di tutti i problemi reali Per la risoluzione

Dettagli

Aritmetica dei calcolatori. La rappresentazione dei numeri

Aritmetica dei calcolatori. La rappresentazione dei numeri Aritmetica dei calcolatori Rappresentazione dei numeri naturali e relativi Addizione a propagazione di riporto Addizione veloce Addizione con segno Moltiplicazione con segno e algoritmo di Booth Rappresentazione

Dettagli

Corso di Laurea in Ingegneria Informatica Analisi Numerica

Corso di Laurea in Ingegneria Informatica Analisi Numerica Corso di Laurea in Ingegneria Informatica Lucio Demeio Dipartimento di Scienze Matematiche 1 2 Analisi degli errori Informazioni generali Libro di testo: J. D. Faires, R. Burden, Numerical Analysis, Brooks/Cole,

Dettagli

MICROECONOMIA MATEMATICA

MICROECONOMIA MATEMATICA A13 363 Gianluca Dari MICROECONOMIA MATEMATICA TRECENTO ESERCIZI SVOLTI Copyright MMX ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133/A B 00173 Roma (06)

Dettagli

Generazione di Numeri Casuali- Parte 2

Generazione di Numeri Casuali- Parte 2 Esercitazione con generatori di numeri casuali Seconda parte Sommario Trasformazioni di Variabili Aleatorie Trasformazione non lineare: numeri casuali di tipo Lognormale Trasformazioni affini Numeri casuali

Dettagli

D SISTEMI DI ELABORAZIONE DIGITALE DEI SEGNALI

D SISTEMI DI ELABORAZIONE DIGITALE DEI SEGNALI Ingegneria dell Informazione Modulo SISTEMI ELETTRONICI D SISTEMI DI ELABORAZIONE DIGITALE DEI SEGNALI 10-Jan-02-1 1 Obiettivi del gruppo di lezioni D Analisi Sistemistica di soluzioni analogiche/digitali»

Dettagli

PROGRAMMA DEL DÌ AUTOMATICI

PROGRAMMA DEL DÌ AUTOMATICI MINISTERO DELL ISTRUZIONE DELL UNIVERSITA E DELLA RICERCA UFFICIO SCOLASTICO REGIONALE DEL LAZIO I.I.S.S. VIA SILVESTRI,301 Distretto 24 Municipio XVI - Cod. Mec. RMIS10800g Cod. Fisc. 97804460588 Email:

Dettagli

Rappresentazione dei numeri reali in un calcolatore

Rappresentazione dei numeri reali in un calcolatore Corso di Calcolatori Elettronici I A.A. 2010-2011 Rappresentazione dei numeri reali in un calcolatore Lezione 3 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Rappresentazione di numeri

Dettagli

SEGNALE ANALOGICO. Un segnale analogico ha un ampiezza che varia in maniera continua nel tempo

SEGNALE ANALOGICO. Un segnale analogico ha un ampiezza che varia in maniera continua nel tempo ACQUISIZIONE SEGNALE ANALOGICO 6 5 4 3 2 t Un segnale analogico ha un ampiezza che varia in maniera continua nel tempo CONVERTITORE A/D Dispositivo che realizza la conversione tra i valori analogici del

Dettagli

Prestazione e equalizzatori frazionari

Prestazione e equalizzatori frazionari Prestazione e equalizzatori frazionari libro Prestazioni degli equalizzatori ZF Supponendo la situazione ideale (infiniti pesi, step-size piccolo, fase di tracking, decisioni corrette), rimarrebbe solo

Dettagli

Lab. 2 - Excel. Prof. De Michele e Farina

Lab. 2 - Excel. Prof. De Michele e Farina Lab. 2 - Excel Prof. De Michele e Farina 1 Utilizzo avanzato di un foglio elettronico: - Utilizzo di funzioni Regressioni lineari Istogrammi 2 La funzione somma restituisce la somma dei valori dei propri

Dettagli

Università del Salento Facoltà di Ingegneria Costruzione di Macchine

Università del Salento Facoltà di Ingegneria Costruzione di Macchine Università del Salento Facoltà di Ingegneria Costruzione di Macchine Lezione 3 Prova di trazione a cura del prof. ing. Vito Dattoma e dell ing. Riccardo Nobile 1 Prove di caratterizzazione meccanica Prova

Dettagli

Teoria dei Segnali Quantizzazione dei segnali; trasformata zeta

Teoria dei Segnali Quantizzazione dei segnali; trasformata zeta Teoria dei Segnali Quantizzazione dei segnali; trasformata zeta Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Teoria dei Segnali Quantizzazione;

Dettagli

Slides estratte dalla tesi: EMT: UNA LIBRERIA MATLAB PER METODI DI ESTRAPOLAZIONE ED APPLICAZIONI

Slides estratte dalla tesi: EMT: UNA LIBRERIA MATLAB PER METODI DI ESTRAPOLAZIONE ED APPLICAZIONI Slides estratte dalla tesi: EMT: UNA LIBRERIA MATLAB PER METODI DI ESTRAPOLAZIONE ED APPLICAZIONI Corso di Laurea in Matematica Laureanda: Elena De Cia Relatore: Prof. Michela Redivo Zaglia Università

Dettagli

Algoritmi Genetici. Alessandro Bollini

Algoritmi Genetici. Alessandro Bollini Alessandro Bollini bollini@vision.unipv.it Dipartimento di Informatica e Sistemistica Università di Pavia Via Ferrata, 1 27100 Pavia Algoritmi Genetici Algoritmo genetico Algoritmo evolutivo. Modello evolutivo

Dettagli

Una Libreria di Algebra Lineare per il Calcolo Scientifico

Una Libreria di Algebra Lineare per il Calcolo Scientifico Una Libreria di Algebra Lineare per il Calcolo Scientifico Introduzione Il Lavoro di Tesi Introduzione al Metodo Ridurre l Occupazione di Memoria Metodo di Memorizzazione degli Elementi Risultati Attesi

Dettagli

Precorso di Matematica

Precorso di Matematica Precorso di Matematica Lezione 4 Andrea Susa PROPRIETÀ GENERALI DISEQUAZIONI 1 Proprietà disuguaglianze Siano,,, allora valgono le seguenti proprietà se

Dettagli

Firmware Division & Floating pointer adder

Firmware Division & Floating pointer adder Firmware Division & Floating pointer adder Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@di.unimi.it Università degli Studi di Milano Riferimenti sul Patterson: 3.4, 3.5 1/47

Dettagli

Risoluzione di sistemi lineari sparsi e di grandi dimensioni

Risoluzione di sistemi lineari sparsi e di grandi dimensioni Risoluzione di sistemi lineari sparsi e di grandi dimensioni Un sistema lineare Ax = b con A R n n, b R n, è sparso quando il numero di elementi della matrice A diversi da zero è αn, con n α. Una caratteristica

Dettagli

Un quadro della situazione. Lezione 6 Aritmetica in virgola mobile (2) e Codifica dei caratteri. Dove siamo nel corso. Organizzazione della lezione

Un quadro della situazione. Lezione 6 Aritmetica in virgola mobile (2) e Codifica dei caratteri. Dove siamo nel corso. Organizzazione della lezione Un quadro della situazione Lezione 6 Aritmetica in virgola mobile (2) e Codifica dei caratteri Vittorio Scarano Architettura Corso di Laurea in Informatica Università degli Studi di Salerno Input/Output

Dettagli

Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale Lezione 14 Minimizzazione dei costi

Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale Lezione 14 Minimizzazione dei costi UNIVERSITÀ DEGLI STUDI DI BERGAMO Laurea Triennale in Ingegneria Gestionale Lezione 4 Minimizzazione dei costi Prof. Gianmaria Martini Minimizzazione dei costi Un impresa minimizza i costi se produce ciascun

Dettagli