Introduzione a MATLAB

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Introduzione a MATLAB"

Transcript

1 Introduzione a MATLAB Principali comandi MATLAB utili per il corso di Controlli Automatici (01AKS e 02FSQ) Politecnico di Torino

2 Sistema in catena chiusa Il comando feedback genera il sistema LTI SYS con funzione F1 sul ramo diretto e funzione F2 sul ramo in retroazione.» SYS=feedback(F1,F2) La retroazione è negativa di default; per applicare una retroazione positiva utilizzare il seguente comando:» SYS= feedback(f1,f2,+1) 1

3 Guadagno stazionario 1 Il comando dcgain calcola il guadagno in continua g del sistema LTI SYS, definito come il guadagno della sua funzione di trasferimento per s=0.» g=dcgain(sys) Se SYS è un vettore di sistemi LTI, dcgain(sys) restituisce un vettore di guadagni:» SYS=[SYS1 SYS2]» g=dcgain(sys) 2

4 Guadagno stazionario 2 Per calcolare il guadagno stazionario K di un generico sistema di tipo n, definito come lim s s > 0 n F( s) (ove F(s) è la funzione di trasferimento del sistema) è sufficiente applicare il comando dcgain a SYS*s n. Esempio:» s=tf( s )» F=1/(s^2*(s+2)) % sistema di tipo due» K=dcgain(s^2*F) 3

5 Diagrammi di Bode 1 Il comando bode traccia i diagrammi di Bode del sistema LTI SYS. L intervallo di frequenze e il numero di punti sono scelti automaticamente:» bode(sys) Per tracciare i diagrammi di Bode del sistema SYS nell intervallo di frequenze comprese fra wmin e wmax, si utilizza il seguente comando:» bode(sys,{wmin,wmax}) 4

6 Diagrammi di Bode 2 Per tracciare i diagrammi di Bode rispetto ad un vettore W di frequenze (definito in precedenza) si utilizza il seguente comando:» bode(sys,w) Per generare il vettore utilizzare il comando logspace. E possibile tracciare sullo stesso grafico i diagrammi di Bode di più sistemi:» bode(sys1,sys2,...,w) Il vettore W di frequenze è opzionale. E possibile specificare il colore dei vari grafici:» bode(sys1,'r',sys2,'y--',sys3,'gx') 5

7 Diagrammi di Bode 3 Per ottenere modulo MAG e fase PHASE della funzione di trasferimento di un sistema LTI SYS alla frequenza W (o in un intervallo di frequenze, definito dal vettore W) si utilizza il seguente comando:» [MAG,PHASE]=bode(SYS,W); Non vengono tracciati i diagrammi. La fase è espressa in gradi. Per ottenere il modulo in db:» MAGdB=20*log10(MAG) La frequenza o il vettore di frequenze W è opzionale; se omesso, modulo e fase vengono calcolati su un intervallo di frequenze e per un numero di punti scelti automaticamente. 6

8 Diagramma di Nyquist 1 Il comando nyquist traccia il diagramma di Nyquist del sistema LTI SYS. L intervallo di frequenze e il numero di punti sono scelti automaticamente:» nyquist(sys) Per tracciare il diagramma di Nyquist del sistema SYS nell intervallo di frequenze comprese fra wmin e wmax, si utilizza il seguente comando:» nyquist(sys,{wmin,wmax}) 7

9 Diagramma di Nyquist 2 Per tracciare il diagramma di Nyquist rispetto ad un vettore W di frequenze (definito in precedenza) si utilizza il seguente comando:» nyquist(sys,w) Per generare il vettore utilizzare il comando logspace. E possibile tracciare sullo stesso grafico i diagrammi di Nyquist di più sistemi:» nyquist(sys1,sys2,...,w) Il vettore W di frequenze è opzionale. E possibile specificare il colore dei vari grafici:» nyquist(sys1,'r',sys2,'y--',sys3,'gx') 8

10 Diagramma di Nyquist 3 Per ottenere la parte reale RE e la parte immaginaria IM della funzione di trasferimento di un sistema LTI SYS di Nyquist alla frequenza W si utilizza il seguente comando:» [RE,IM]=nyquist(SYS,W); Non viene tracciato il diagramma. 9

11 Diagramma di Nichols 1 Il comando nichols traccia il diagramma di Nichols del sistema LTI SYS. L intervallo di frequenze e il numero di punti sono scelti automaticamente:» nichols(sys) Per tracciare il diagramma di Nichols del sistema SYS nell intervallo di frequenze comprese fra wmin e wmax, si utilizza il seguente comando:» nichols(sys,{wmin,wmax}) 10

12 Diagramma di Nichols 2 Per tracciare il diagramma di Nichols rispetto ad un vettore W di frequenze (definito in precedenza) si utilizza il seguente comando:» nichols(sys,w) Per generare il vettore utilizzare il comando logspace. E possibile tracciare sullo stesso grafico i diagrammi di Nichols di più sistemi:» nichols(sys1,sys2,...,w) Il vettore W di frequenze è opzionale. E possibile specificare il colore dei vari grafici:» nichols(sys1,'r',sys2,'y--',sys3,'gx') 11

13 Diagramma e carta di Nichols Per ottenere modulo MAG e fase PHASE della funzione di trasferimento di un sistema LTI SYS alla frequenza W si può utilizzare il seguente comando:» [MAG,PHASE]=nichols(SYS,W) Non viene tracciato il grafico del diagramma. Per tracciare la carta di Nichols, su cui sovrapporre il diagramma di Nichols, si utilizza il comando ngrid» ngrid» nichols(sys) Utilizzando questa sequenza di comandi, il diagramma di Nichols viene automaticamente sovrapposto alla carta di Nichols. 12

14 Margine di guadagno e di fase Il comando margin traccia il diagramma di Bode del sistema LTI SYS, indicando il margine di guadagno ed il margine di fase con una linea verticale:» margin(sys) I valori dei margini di stabilità sono riportati sopra il diagramma insieme ai valori delle pulsazioni alle quali sono calcolati. I valori del margine di guadagno Gm e della relativa pulsazione Wcg a cui viene calcolato, del margine di fase PM e della relativa pulsazione Wcp possono essere salvati nelle corrispondenti variabili con il comando:» [Gm,Pm,Wcg,Wcp] = margin (SYS) 13

15 Discretizzazione Il comando c2d converte il sistema LTI a tempo continuo SYSC in un sistema a tempo discreto SYSD con tempo di campionamento TS:» SYSD=c2d(SYSC,TS,METHOD) METHOD è la stringa che indica il metodo di discretizzazione. METHOD può essere: zoh : con inserimento di un filtro di tenuta di ordine zero tustin : approssimazione bilineare prewarp : approssimazione bilineare con pre-compensazione in frequenza matched : corrispondenza zero-poli foh : con inserimento di un filtro di tenuta di ordine uno 14

Principali comandi MATLAB utili per il corso di Controlli Automatici

Principali comandi MATLAB utili per il corso di Controlli Automatici Principali comandi MATLAB utili per il corso di Controlli Automatici In questo documento sono raccolti i principali comandi Matlab utilizzati nel corso; per maggiore comodità, sono riportati facendo riferimento

Dettagli

Realizzazione digitale di controllori analogici

Realizzazione digitale di controllori analogici Realizzazione digitale di controllori analogici Digitalizzazione di un controllore analogico Sistema di controllo r(t) uscita + - desiderata e(t) segnale di errore C(s) controllore analogico u(t) ingresso

Dettagli

Confronto tra vari metodi di discretizzazione

Confronto tra vari metodi di discretizzazione Confronto tra vari metodi di discretizzazione Marco Ariola Università degli Studi di Napoli 14 novembre 2005 Marco Ariola (Univ. Napoli) Confronto metodi discretizzazione 14 novembre 2005 1 / 7 La funzione

Dettagli

13-1 SISTEMI A DATI CAMPIONATI: INTRODUZIONE. y(t) TMP. y k. Trasduttore. Schema di base di un sistema di controllo digitale

13-1 SISTEMI A DATI CAMPIONATI: INTRODUZIONE. y(t) TMP. y k. Trasduttore. Schema di base di un sistema di controllo digitale SISTEMI A DATI CAMPIONATI: INTRODUZIONE + e k u k u(t) r k C D/A P y k TMP A/D Trasduttore y(t) Schema di base di un sistema di controllo digitale A/D: convertitore analogico digitale C: controllore digitale

Dettagli

Controlli Automatici LB Esempio di regolatore

Controlli Automatici LB Esempio di regolatore Controlli Automatici LB Esempio di regolatore Matteo Sartini DEIS-Università di Bologna Tel. 051 2093872 Email: matteo.sartini@unibo.it URL: www-lar.deis.unibo.it/people/msartini/ Problema G(s) = 15000

Dettagli

MATLAB Analisi di Sistemi LTI

MATLAB Analisi di Sistemi LTI Esercitazione 1/30 MATLAB Analisi di Sistemi LTI Vincenzo LIPPIELLO PRISMA Lab Dipartimento di Informatica e Sistemistica Università di Napoli Federico II vincenzo.lippiello@unina.it www.prisma.unina.it

Dettagli

Esercizio 1. Si consideri la funzione di trasferimento. G(s) = K 1 + st

Esercizio 1. Si consideri la funzione di trasferimento. G(s) = K 1 + st Esercizio. Si consideri la funzione di trasferimento G(s) = K + st + sτ. Si dimostri che, qualunque siano i valori dei parametri reali K, T e τ, il relativo diagramma di Nyquist è una circonferenza. Si

Dettagli

FONDAMENTI DI AUTOMATICA (Ingegneria Gestionale) Prof. Matteo Corno

FONDAMENTI DI AUTOMATICA (Ingegneria Gestionale) Prof. Matteo Corno POLITECNICO DI MILANO FONDAMENTI DI AUTOMATICA (Ingegneria Gestionale) Anno Accademico 2014/15 Seconda Prova in Itinere 12/02/2015 COGNOME... NOME... MATRICOLA... FIRMA.... Verificare che il fascicolo

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stabilità dei sistemi di controllo in retroazione Risposta in frequenza Rappresentazione grafica naturale Rappresentazione grafica modificata di fdt elementari Esempio 7 Politecnico di Torino 1 Risposta

Dettagli

Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada 16 Luglio 2014

Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada 16 Luglio 2014 Politecnico di Milano Fondamenti di Automatica (CL Ing. Gestionale) a.a.2013-14 Prof. Silvia Strada 16 Luglio 2014 Nome e Cognome:........................... Matricola........................... Firma............................................................................

Dettagli

Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada Seconda prova intermedia 12 Febbraio 2015

Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada Seconda prova intermedia 12 Febbraio 2015 Politecnico di Milano Fondamenti di Automatica (CL Ing. Gestionale) a.a.2014-15 Prof. Silvia Strada Seconda prova intermedia 12 Febbraio 2015 Nome e Cognome:........................... Matricola...........................

Dettagli

Stabilità dei sistemi in retroazione. Diagrammi polari e teorema di Nyquist

Stabilità dei sistemi in retroazione. Diagrammi polari e teorema di Nyquist Stabilità dei sistemi in retroazione Diagrammi polari e teorema di Nyquist STABILITA DEI SISTEMI IN RETROAZIONE Vogliamo studiare la stabilità del sistema in retroazione a partire della conoscenza di L(s

Dettagli

Esercizi sul luogo delle radici

Esercizi sul luogo delle radici Esercizi sul luogo delle radici Gli esercizi che seguono faranno riferimento allo schema a blocchi riportato di seguito. r k G(s) y Esercizio. Sia data la seguente funzione di trasferimento s(s+). Verificare

Dettagli

Il criterio di Nyquist

Il criterio di Nyquist 0.0. 4.5 1 Il criterio di Nyquist IlcriteriodiNyquistconsentedistabilireseunsistema,delqualesiconosce la risposta armonica ad anello aperto, sia stabile o meno una volta chiuso in retroazione: r(t) e(t)

Dettagli

MATLAB (MATrix LABoratory) è un linguaggio di programmazione per applicazioni scientifiche (elaborazione numerica dei segnali, progetto di

MATLAB (MATrix LABoratory) è un linguaggio di programmazione per applicazioni scientifiche (elaborazione numerica dei segnali, progetto di MATLAB MATLAB (MATrix LABoratory) è un linguaggio di programmazione per applicazioni scientifiche (elaborazione numerica dei segnali, progetto di simulatori, sintesi di sistemi di controllo, ecc.) MATLAB

Dettagli

Diagrammi asintotici di Bode: esercizi. Tracciare i diagrammi asintotici di Bode della seguente funzione G(s): s 2. s(s 30)(1+ s

Diagrammi asintotici di Bode: esercizi. Tracciare i diagrammi asintotici di Bode della seguente funzione G(s): s 2. s(s 30)(1+ s .. 3.2 1 Nyquist: Diagrammi asintotici di Bode: esercizi Tracciare i diagrammi asintotici di Bode della seguente funzione G(s): 6(s2 +.8s+4) s(s 3)(1+ s 2 )2. Pendenza iniziale: -2 db/dec. Pulsazioni critiche:

Dettagli

Diagrammi polari, di Nyquist e di Nichols

Diagrammi polari, di Nyquist e di Nichols Diagrammi polari, di Nyquist e di Nichols Definizione (1/2) Il diagramma di Nichols (DdNic) di una fdt consiste nella rappresentazione grafica di G(s) s= jω = G(jω) = M( ω)e jϕ( ω), per ω (, ) sul piano

Dettagli

ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO. Schema generale di controllo in retroazione

ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO. Schema generale di controllo in retroazione ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO Schema generale di controllo in retroazione Requisiti di un sistema di controllo Stabilità in condizioni nominali Margine di guadagno e margine di fase

Dettagli

Esercizi- Risposta in frequenza

Esercizi- Risposta in frequenza esercizi 6, 1 Esercizi- Risposta in frequenza Diagrammi di Nyquist Data una funzione di trasferimento: Vogliamo ottenere la sua rappresentazione nel piano complesso al variare della frequenza. curva parametrizzata

Dettagli

Diagrammi di Nyquist o polari

Diagrammi di Nyquist o polari 0.0. 3.3 1 qualitativa Ampiezza Diagrammi di Nyquist o polari Esempio di diagramma polare senza poli nell origine: 40 20 G(s) = 100(1+ s 50 ) (1+ s 10 )2 (1+ s 20 )(1+ s 100 ) Imag 0 20 15 20 30 80 0.1

Dettagli

Controlli Automatici L-A - Esercitazione

Controlli Automatici L-A - Esercitazione Controlli Automatici L-A - Esercitazione 1. Si consideri lo schema a blocchi di figura. d(t) K d x(t) e(t) R(s) u(t) G(s) y(t) - R(s) = K τs + 1 s + 1, G(s) = K d = 2 s(s 2 + 6s + ), a) Considerando gli

Dettagli

Lezione 6 7 Febbraio. 6.1 Progettazione nel dominio della frequenza

Lezione 6 7 Febbraio. 6.1 Progettazione nel dominio della frequenza LabCont: Laboratorio di Controlli II Trim. 2007 Lezione 6 7 Febbraio Docente: Luca Schenato Stesori: Fiorio Giordano e Guiotto Roberto 6. Progettazione nel dominio della frequenza Il metodo più usato per

Dettagli

Prefazione 3. Ringraziamenti 5

Prefazione 3. Ringraziamenti 5 Indice Prefazione 3 Ringraziamenti 5 1 Introduzione all uso del software di calcolo MATLAB 7 1.1 Caratteristiche del software MATLAB 7 1.2 Nozioni di base del MATLAB 8 1.3 Assegnazione di variabili scalari

Dettagli

Esercizio riassuntivo di sintesi in frequenza

Esercizio riassuntivo di sintesi in frequenza Esercizio riassuntivo di sintesi in frequenza Sia dato il sistema di controllo a retroazione unitaria di Fig. 1 r G(s) P (s) + + d + y Figura 1: Il sistema di controllo assegnato in cui il processo ha

Dettagli

Controlli Automatici prof. M. Indri Sistemi di controllo digitali

Controlli Automatici prof. M. Indri Sistemi di controllo digitali Controlli Automatici prof. M. Indri Sistemi di controllo digitali Schema di controllo base r(t) + e(t) {e k } {u k } u(t) Campionatore (A/D) Controllore digitale Ricostruttore (D/A) Sistema (tempo cont.)

Dettagli

5. Per ω = 1/τ il diagramma reale di Bode delle ampiezze della funzione G(jω) =

5. Per ω = 1/τ il diagramma reale di Bode delle ampiezze della funzione G(jω) = Fondamenti di Controlli Automatici - A.A. 211/12 3 luglio 212 - Domande Teoriche Cognome Nome: Matricola: Corso di Laurea: Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni

Dettagli

FORMULARIO DI CONTROLLI AUTOMATICI

FORMULARIO DI CONTROLLI AUTOMATICI FORMULARIO DI CONTROLLI AUTOMATICI Sistema x (t) = A x (t) + B u (t) y (t) = C x (t) + D u (t) Funzione di trasferimento G (s) = y (s) / u (s) = C (si A) -1 B + D Sistema Serie G (s) = i G i (s) prodotto

Dettagli

Indice Prefazione Problemi e sistemi di controllo Sistemi dinamici a tempo continuo

Indice Prefazione Problemi e sistemi di controllo Sistemi dinamici a tempo continuo Indice Prefazione XI 1 Problemi e sistemi di controllo 1 1.1 Introduzione 1 1.2 Problemi di controllo 2 1.2.1 Definizioni ed elementi costitutivi 2 1.2.2 Alcuni esempi 3 1.3 Sistemi di controllo 4 1.3.1

Dettagli

ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO. Schema generale di controllo in retroazione. Margine di guadagno e margine di fase

ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO. Schema generale di controllo in retroazione. Margine di guadagno e margine di fase ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO Schema generale di controllo in retroazione Requisiti di un sistema di controllo Stabilità in condizioni nominali Margine di guadagno e margine di fase

Dettagli

Regolazione e Controllo dei Sistemi Meccanici

Regolazione e Controllo dei Sistemi Meccanici Regolazione e Controllo dei Sistemi Meccanici 3--24 Numero di matricola =ρ =ɛ =β Si consideri il razzo vettore riportato in fig.. Figure : Vettore ARIANE-V. La dinamica planare semplificata e linearizzata

Dettagli

Controlli Automatici 2 22/06/05 Compito a

Controlli Automatici 2 22/06/05 Compito a Controlli Automatici 2 22/6/5 Compito a a) Si consideri il diagramma di Bode (modulo e fase) di G(s) in figura 1. Si 5 Bode Diagram 5 15 45 9 135 18 3 2 1 1 2 3 Frequency (rad/sec) Figure 1: Diagrammi

Dettagli

Presentazione e obiettivi del corso

Presentazione e obiettivi del corso Presentazione e obiettivi del corso Il corso si propone di fornire una trattazione generale del problema del controllo, comprendente Strumenti e nozioni per l analisi, la simulazione e lo studio della

Dettagli

Tracciamento dei Diagrammi di Nyquist

Tracciamento dei Diagrammi di Nyquist Fondamenti di Automatica Tracciamento dei Diagrammi di Nyquist L. Lanari Dipartimento di Ingegneria Informatica Automatica e Gestionale Antonio Ruberti Università di Roma La Sapienza Ultima modifica November

Dettagli

STABILITÀ DEI SISTEMI Metodo di Bode e Nyquist

STABILITÀ DEI SISTEMI Metodo di Bode e Nyquist I.T.I. Modesto PANETTI B A R I Via Re David, 186-70125 BARI 080-542.54.12 - Fax 080-542.64.32 Internet http://www.itispanetti.it email : BATF05000C@istruzione.it INTRODUZIONE STABILITÀ DEI SISTEMI Metodo

Dettagli

Fondamenti di Controlli Automatici

Fondamenti di Controlli Automatici Cognome: Nome: N. Matr.: Fondamenti di Controlli Automatici Ingegneria Meccanica Compito del 11 settembre 215 - Quiz Per ciascuno dei seguenti quesiti, segnare con una crocetta le risposte che si ritengono

Dettagli

Brevi appunti di Fondamenti di Automatica 1. prof. Stefano Panzieri Dipartimento di Informatica e Automazione Universitï 1 degli Studi ROMA TRE

Brevi appunti di Fondamenti di Automatica 1. prof. Stefano Panzieri Dipartimento di Informatica e Automazione Universitï 1 degli Studi ROMA TRE Brevi appunti di Fondamenti di Automatica 1 prof. Dipartimento di Informatica e Automazione Universitï 1 degli Studi ROMA TRE 2 ROMA TRE UNIVERSITÀ DEGLI STUDI 4 marzo 215 1 Rev..2 INDICE Indice 1 Esercizi

Dettagli

Compito di Fondamenti di Automatica - 13 luglio 2006 Versione A Esercizio 1A. Dato lo schema seguente (operazionali ideali)

Compito di Fondamenti di Automatica - 13 luglio 2006 Versione A Esercizio 1A. Dato lo schema seguente (operazionali ideali) Compito di Fondamenti di Automatica - 1 luglio 2006 Versione A Esercizio 1A. Dato lo schema seguente (operazionali ideali) C v in 2 vout é richiesto di calcolare la funzione di trasferimento G(s) tra v

Dettagli

M045 - ESAME DI STATO DI ISTITUTO PROFESSIONALE

M045 - ESAME DI STATO DI ISTITUTO PROFESSIONALE M045 - ESAME DI STATO DI ISTITUTO PROFESSIONALE CORSO DI ORDINAMENTO Indirizzo: TECNICO DELLE INDUSTRIE ELETTRICHE Tema di: SISTEMI AUTOMAZIONE E ORGANIZZAZIONE DELLA PRODUZIONE Sessione d esame: 2013

Dettagli

Esercizio 1. (s 1) (s 0.5)(s 1) G(s) 28. p1 = -0.5 (sx) p2 = -1 (sx) Tipo: g=0. G(0) = 56 = 20log10(56) ~ 35 db

Esercizio 1. (s 1) (s 0.5)(s 1) G(s) 28. p1 = -0.5 (sx) p2 = -1 (sx) Tipo: g=0. G(0) = 56 = 20log10(56) ~ 35 db Esercizio 1 2 G(s) 28 (s 1) (s.5)(s 1) Poli: p1 = -.5 p2 = -1 zeri: z1 = 1 (dx) Tipo: g= Guadagno: G() = 56 = 2log1(56) ~ 35 db Bode del Modulo 3 Scala 4 6 5 4 3 Magnitude (db) 2 1-1 -2 1.1.2.3 1 1 Piazzamento

Dettagli

Capitolo. Stabilità dei sistemi di controllo. 8.1 Generalità. 8.2 Criterio generale di stabilità. 8.3 Esercizi - Criterio generale di stabilità

Capitolo. Stabilità dei sistemi di controllo. 8.1 Generalità. 8.2 Criterio generale di stabilità. 8.3 Esercizi - Criterio generale di stabilità Capitolo 7 Stabilità dei sistemi di controllo 8.1 Generalità 8. Criterio generale di stabilità 8.3 Esercizi - Criterio generale di stabilità 8.4 Criterio di stabilità di Nyquist 8.5 Esercizi - Criterio

Dettagli

CONCETTO DI STABILITÀ NEI SISTEMI DI CONTROLLO. Sistema in condizioni di equilibrio a t = 0. d(t) = 0. u(t) = 0. y(t) = 0. Sistema

CONCETTO DI STABILITÀ NEI SISTEMI DI CONTROLLO. Sistema in condizioni di equilibrio a t = 0. d(t) = 0. u(t) = 0. y(t) = 0. Sistema CONCETTO DI STABILITÀ NEI SISTEMI DI CONTROLLO Sistema in condizioni di equilibrio a t = 0. d(t) = 0 u(t) = 0 Sistema y(t) = 0 Tipi di perturbazione. Perturbazione di durata limitata: u(t) = 0, t > T u

Dettagli

Analisi Frequenziale. Esempi

Analisi Frequenziale. Esempi Phi AR Analisi Frequenziale Comandi Matlab: logspace, bode, nyquist, subplot, loglog, semilogx, margin Sintassi comandi più usati bode(g), nyquist(g) diagrammi di Bode e Nyquist (default) w=logspace(w,wf,np)

Dettagli

CONTROLLI AUTOMATICI Ingegneria Gestionale ANALISI ARMONICA

CONTROLLI AUTOMATICI Ingegneria Gestionale  ANALISI ARMONICA CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI ARMONICA Ing. Federica Grossi Tel. 059 2056333 e-mail: federica.grossi@unimore.it

Dettagli

CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo. DIAGRAMMI DI BODE

CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo.  DIAGRAMMI DI BODE CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/controlliautomatici.html DIAGRAMMI DI BODE Ing. e-mail: luigi.biagiotti@unimore.it http://www.dii.unimore.it/~lbiagiotti

Dettagli

La stabilità di un sistema non dipende dal segnale d ingresso, ma dipende solo dalla f.d.t. del sistema. Stabilità BIBO (Bound Input Bounded Output)

La stabilità di un sistema non dipende dal segnale d ingresso, ma dipende solo dalla f.d.t. del sistema. Stabilità BIBO (Bound Input Bounded Output) 8.1 GENERALITÀ La stabilità di un sistema non dipende dal segnale d ingresso, ma dipende solo dalla f.d.t. del sistema f.d.t. = U(s) E(s) Stabilità BIBO (Bound Input Bounded Output) Un sistema lineare

Dettagli

REGOLATORI PID. Modello dei regolatori PID. Metodi di taratura automatica

REGOLATORI PID. Modello dei regolatori PID. Metodi di taratura automatica REGOLATORI PID Modello dei regolatori PID Metodi di taratura automatica Illustrazioni dal Testo di Riferimento per gentile concessione degli Autori 1 MODELLO DEI REGOLATORI PID Larga diffusione in ambito

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 2009-2010 p. 1/27 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma1.it Lucidi tratti dal libro C. Bonivento,

Dettagli

Soluzione degli esercizi del Capitolo 9

Soluzione degli esercizi del Capitolo 9 Soluzione degli esercizi del Capitolo 9 Soluzione dell Esercizio 9.1 Il diagramma polare associato alla funzione L(s) = µ/s, µ > comprende l intero semiasse reale negativo. È quindi immediato concludere

Dettagli

Diagrammi polari, di Nyquist e di Nichols

Diagrammi polari, di Nyquist e di Nichols Diagrammi polari, di Nyquist e di Nichols Diagramma polare La risposta in frequenza si analizza tramite G(s) s jω G(jω) M( ω) e G(jω) jϕ( ω) e ω < Un altra rappresentazione grafica di G(jω) si ottiene

Dettagli

2a(L) Sia dato un processo P(s) descrivibile mediante la funzione di trasferimento:

2a(L) Sia dato un processo P(s) descrivibile mediante la funzione di trasferimento: Esame di Fondamenti di Automatica Corsi di Laurea in Elettronica, Meccanica, Diploma di Elettronica giugno (L+D) Il sistema in figura è composto da un motore in c.c. controllato in corrente (inerzia Jm

Dettagli

Utilizzo di Matlab per l analisi di sistemi dinamici lineari

Utilizzo di Matlab per l analisi di sistemi dinamici lineari Intro a Matlab per sistemi LTI, 1 Utilizzo di Matlab per l analisi di sistemi dinamici lineari Sistemi dinamici lineari a tempo continuo ed a tempo discreto Indice del materiale Intro a Matlab per sistemi

Dettagli

Esercizio di progetto del controllore nel discreto con discretizzazione del sistema 4 Dicembre 2013

Esercizio di progetto del controllore nel discreto con discretizzazione del sistema 4 Dicembre 2013 Esercizio di progetto del controllore nel discreto con discretizzazione del sistema...1 Specifiche...1 Discretizzazione del sistema...1 Calcolo del luogo delle radici...3 Identificazione della regione

Dettagli

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE Ing. Federica

Dettagli

Diagrammi Di Bode. Prof. Laura Giarré https://giarre.wordpress.com/ca/

Diagrammi Di Bode. Prof. Laura Giarré https://giarre.wordpress.com/ca/ Diagrammi Di Bode Prof. Laura Giarré Laura.Giarre@UNIMORE.IT https://giarre.wordpress.com/ca/ Diagrammi di Bode e polari Problema della rappresentazione grafica di funzioni complesse di variabile reale

Dettagli

Analisi in frequenza e di stabilità con MATLAB

Analisi in frequenza e di stabilità con MATLAB Laboratorio di Fondamenti di Automatica Quarta esercitazione Analisi in frequenza e di stabilità con MATLAB 2005 Alberto Leva, Marco Lovera, Maria Prandini Premessa Scopo di quest'esercitazione di laboratorio:

Dettagli

RETI CORRETTRICI. Regolatori standard Alcune strutture standard di regolatori reti correttrici anticipo o ritardo 1 polo ed uno zero reali

RETI CORRETTRICI. Regolatori standard Alcune strutture standard di regolatori reti correttrici anticipo o ritardo 1 polo ed uno zero reali CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm RETI CORRETTRICI Ing. Luigi

Dettagli

Per un corretto funzionamento dei sistema si progetta un controllo a retroazione secondo lo schema di figura.

Per un corretto funzionamento dei sistema si progetta un controllo a retroazione secondo lo schema di figura. Tema di: SISTEMI ELETTRONICI AUTOMATICI Testo valevole per i corsi di ordinamento e per i corsi di progetto "SIRIO" - Indirizzo Elettronica e Telecomunicazioni 2001 Il candidato scelga e sviluppi una tra

Dettagli

Introduzione a MATLAB

Introduzione a MATLAB Introduzione a MATLAB Principali comandi MATLAB utili per il corso di Fondamenti di Automatica 01AYS Politecnico di Torino Sistemi dinamici LTI 1. Simulazione a tempo continuo Definizione del sistema Per

Dettagli

Esercitazione di Controlli Automatici 1 n 2

Esercitazione di Controlli Automatici 1 n 2 7 marzo 013 Esercitazione di Controlli Automatici 1 n a.a. 01/013 Riferendosi al sistema di controllo della temperatura in un locale di piccole dimensioni discusso nella esercitazione precedente, e di

Dettagli

Control System Toolbox

Control System Toolbox Control System Toolbox E` un insieme di funzioni per l analisi di sistemi dinamici (tipicamente lineari tempo invarianti o LTI) e per la sintesi di controllori (in particolare a retroazione). All'interno

Dettagli

Automatica I (Laboratorio)

Automatica I (Laboratorio) Lezione TFI - Automatica I (Laboratorio) - Pag. 1 Automatica I (Laboratorio) Dipartimento di Ingegneria Università di Ferrara Tel. 0532 97 4844 Fax. 0532 97 4870 E-mail: ssimani@ing.unife.it URL: http://www.ing.unife.it/

Dettagli

Nyquist Diagrams Real Axis

Nyquist Diagrams Real Axis Nome e Cognome: Anno di frequenza: Esame di Regolazione e Controllo dei Sistemi Meccanici { 7{{ Numero di matricola { { =, =, =, =, A (pt. 3) Tracciare i diagrammi di Bode, Nyquist e Nichols relativi al

Dettagli

Controllo CONNESSIONI DI SISTEMI DINAMICI. CONNESSIONE IN SERIE (o in cascata) y 1 =u 2 G 2 (s)

Controllo CONNESSIONI DI SISTEMI DINAMICI. CONNESSIONE IN SERIE (o in cascata) y 1 =u 2 G 2 (s) 5 Capitolo Controllo CONNESSIONI DI SISTEMI DINAMICI CONNESSIONE IN SERIE (o in cascata) G(s) u=u 1 G 1 (s) y 1 =u 2 G 2 (s) y 2 =y La funzione di trasferimento del sistema complessivo è: G(s)=G 1 (s)g

Dettagli

Tracciamento diagrammi di Nyquist

Tracciamento diagrammi di Nyquist Appunti Tracciamento Nyquist Ing. E.arone www.gprix.it Tracciamento diagrammi di Nyquist Prerequisiti Due Amenità sui numeri complessi Formula di Eulero: Appunti Tracciamento Nyquist Ing. E.arone www.gprix.it

Dettagli

Controlli Automatici Compito del - Esercizi

Controlli Automatici Compito del - Esercizi Compito del - Esercizi. Data la funzione di trasferimento G(s) = s (s +),sicalcoli a) La risposta impulsiva g(t); b) L equazione differenziale associata al sistema G(s); c) Si commenti la stabilità del

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (9 crediti) SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (9 crediti) SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (9 crediti) Prova scritta 16 luglio 2014 SOLUZIONE ESERCIZIO 1. Dato il sistema con: si determinino gli autovalori della forma minima. Per determinare la forma minima

Dettagli

Sistemi di Controllo Esempio di domande teoriche a risposta multipla. Esempio di problemi e quesiti a risposta aperta

Sistemi di Controllo Esempio di domande teoriche a risposta multipla. Esempio di problemi e quesiti a risposta aperta Sistemi di Controllo Esempio di domande teoriche a risposta multipla Per ciascuno dei seguenti quesiti, segnare con una crocetta le risposte che si ritengono corrette. Alcuni quesiti hanno più risposte

Dettagli

Controlli automatici e controllo dei processi Docente: Davide M. Raimondo Prova scritta: 01/03/2013 Durata: 3h. Cognome Nome Matricola

Controlli automatici e controllo dei processi Docente: Davide M. Raimondo Prova scritta: 01/03/2013 Durata: 3h. Cognome Nome Matricola Controlli automatici e controllo dei processi Docente: Davide M. Raimondo Prova scritta: 01/03/2013 Durata: 3h Cognome Nome Matricola Esercizio 3: Si determini, motivando brevemente, la corrispondenza

Dettagli

SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo. RETI CORRETTRICI

SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo.  RETI CORRETTRICI SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html RETI CORRETTRICI Ing. Luigi Biagiotti e-mail: luigi.biagiotti@unimore.it http://www.dii.unimore.it/~lbiagiotti

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stabilità dei sistemi di controllo in retroazione Margini di stabilità Indicatori di robustezza della stabilità Margine di guadagno Margine di fase Stabilità regolare e marginale ed estensioni delle definizioni

Dettagli

SISTEMI AUTOMATICI ED ORGANIZZAZIONE DELLA PRODUZIONE STABILITA DEI SISTEMI CRITERIO DI BODE. ESERCIZI SUL CRITERIO DI BODE Completamente svolti

SISTEMI AUTOMATICI ED ORGANIZZAZIONE DELLA PRODUZIONE STABILITA DEI SISTEMI CRITERIO DI BODE. ESERCIZI SUL CRITERIO DI BODE Completamente svolti SISTEMI AUTOMATICI ED ORGANIZZAZIONE DELLA PRODUZIONE STABILITA DEI SISTEMI CRITERIO DI BODE ESERCIZI SUL CRITERIO DI BODE Completamente svolti A cura del prof. Michele ZIMOTTI 1 Esercizi sulla stabilità

Dettagli

rapporto tra ingresso e uscita all equilibrio.

rapporto tra ingresso e uscita all equilibrio. Sistemi Dinamici: Induttore: Condensatore: Massa: Oscillatore meccanico: Pendolo: Serbatoio cilindrico: Serbatoio cilindrico con valvola d efflusso: Funzione di Trasferimento: Stabilità del sistema: (N.B.

Dettagli

Lezione 8. Stabilità dei sistemi di controllo

Lezione 8. Stabilità dei sistemi di controllo Lezione 8 Stabilità dei sistemi di controllo Poli di un sistema di controllo Riprendiamo lo schema a blocchi di un sistema di controllo in retroazione: d y + + + y L(s) + + n Fig. 1 : Sistema di controllo

Dettagli

Lezione 19. Stabilità robusta. F. Previdi - Fondamenti di Automatica - Lez. 19 1

Lezione 19. Stabilità robusta. F. Previdi - Fondamenti di Automatica - Lez. 19 1 Lezione 19. Stabilità robusta F. Previdi - Fondamenti di Automatica - Lez. 19 1 Schema 1. Stabilità & incertezza 2. Indicatori di stabilità robusta 3. Margine di guadagno 4. Margine di fase 5. Criterio

Dettagli

Analisi dei sistemi retroazionati

Analisi dei sistemi retroazionati Parte 9, 1 Sistemi di controllo -Anello aperto Parte 9, 2 Analisi dei sistemi retroazionati controllore attuatore processo Ipotesi: sistemi dinamici lineari Sistemi di controllo Parte 9, 3 Prestazioni

Dettagli

Soluzione del tema di: SISTEMI, AUTOMAZIONE E ORGANIZZAZIONE DELLA PRODUZIONE anno scolastico 2002 2003

Soluzione del tema di: SISTEMI, AUTOMAZIONE E ORGANIZZAZIONE DELLA PRODUZIONE anno scolastico 2002 2003 Soluzione del tema di: SISTEMI, AUTOMAZIONE E ORANIZZAZIONE DELLA PRODUZIONE anno scolastico 2002 2003 a cura di: V. Savi P. Nasuti. Tanzi Premessa Il sistema di regolazione proposto è evidentemente di

Dettagli

Margini di stabilità. Corso di Laurea in Ingegneria Meccanica Controlli Automatici L

Margini di stabilità. Corso di Laurea in Ingegneria Meccanica Controlli Automatici L Margini distabilità - 1 Corso di Laurea in Ingegneria Meccanica Margini di stabilità DEIS-Università di Bologna Tel. 51 2932 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi Schema a blocchi

Dettagli

t (sec) t (sec)

t (sec) t (sec) Nome e Cognome: Anno di frequenza: Esame di Regolazione e Controllo dei Sistemi Meccanici { {{ Numero di matricola { { =, =, =, =, A (pt. ) Per descrivere la dinamica delle sospensioni di un veicolo che

Dettagli

ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica

ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI ARMONICA Analisi

Dettagli

PIANO DI LAVORO DEI DOCENTI

PIANO DI LAVORO DEI DOCENTI Pag. 1 di 5 Docente: Materia insegnamento: SISTEMI ELETTRONICI AUTOMATICI Dipartimento: ELETTRONICA Classe Anno scolastico: 1 Livello di partenza (test di ingresso, livelli rilevati) Per il modulo di automazione

Dettagli

Gianmaria De Tommasi A.A. 2008/09

Gianmaria De Tommasi A.A. 2008/09 Controllo Gianmaria De Tommasi A.A. 2008/09 1 e discretizzazione del controllore 2 Controllore tempo-discreto e suo equivalente tempo- Nell ipotesi di segnale di errore e(t) a banda limitata, nell intervallo

Dettagli

Margini di stabilità. Corso di Laurea in Ingegneria Meccanica. Controlli AutomaticiL. Schema a blocchi di un sistema di controllo

Margini di stabilità. Corso di Laurea in Ingegneria Meccanica. Controlli AutomaticiL. Schema a blocchi di un sistema di controllo Margini distabilità - 1 Corso di Laurea in Ingegneria Meccanica Controlli Automatici L Margini di stabilità DEIS-Università di Bologna Tel. 51 2932 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi

Dettagli

Esercizi di Controlli Automatici

Esercizi di Controlli Automatici Esercizi di Controlli Automatici L. Magni Esercizio Si studi la stabilità dei seguenti sistemi retroazionati negativamente con guadagno d anello L(s) al variare di > utilizzando il luogo delle radici e

Dettagli

Manuale sintetico per l uso del Control System Toolbox di Matlab

Manuale sintetico per l uso del Control System Toolbox di Matlab Manuale sintetico per l uso del Control System Toolbox di Matlab Alessandro Melis Pierluigi Muntoni 2 Dicembre 2002 Introduzione Questo documento ha lo scopo di presentare, in una versione opportunamente

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondamenti di Controlli Automatici - A.A. 212/13 9 novembre 212 - Domande Teoriche Nome: Nr. Mat. Firma: Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni che si

Dettagli

Analisi dei sistemi in retroazione

Analisi dei sistemi in retroazione Facoltà di Ingegneria di Reggio Emilia Corso di Controlli Automatici Corsi di laurea in Ingegneria Meccatronica ed in Ingegneria della Gestione Industriale Ing. Alessandro Macchelli e-mail: amacchelli@deis.unibo.it

Dettagli

Le radici della D(s) forniscono i poli della funzione di trasferimento T(s).

Le radici della D(s) forniscono i poli della funzione di trasferimento T(s). F I L T R I A T T I V I D E L 2 O R D I N E I filtri del 2 ordine hanno la caratteristica di avere al denominatore della funzione di trasferimento una funzione di 2 grado nella variabile s: oppure nella

Dettagli

Lab 3: Progettazione di controllori digitali per un motore elettrico (20+2 punti)

Lab 3: Progettazione di controllori digitali per un motore elettrico (20+2 punti) Lab 3: Progettazione di controllori digitali per un motore elettrico (202 punti) Luca Schenato Email: schenato@dei.unipd.it 26 Febbraio 2006 1 Scopo L obiettivo di questo laboratorio è di procedere alla

Dettagli

Corso di laurea in Informatica. Regolatori. Marta Capiluppi Dipartimento di Informatica Università di Verona

Corso di laurea in Informatica. Regolatori. Marta Capiluppi Dipartimento di Informatica Università di Verona Corso di laurea in Informatica Regolatori Marta Capiluppi marta.capiluppi@univr.it Dipartimento di Informatica Università di Verona Scelta delle specifiche 1. Picco di risonanza e massima sovraelongazione

Dettagli

CONTROLLI AUTOMATICI (01AKS, 02FSQ) ATM, INF Soluzione della tipologia di compito del 3/IX/2002

CONTROLLI AUTOMATICI (01AKS, 02FSQ) ATM, INF Soluzione della tipologia di compito del 3/IX/2002 CONTROLLI AUTOMATICI (0AKS, 0FSQ) ATM, INF Soluzione della tipologia di ompito del 3/IX/00 Eserizio Progetto di un ontrollore Sia dato il sistema di ontrollo riportato in figura on: 0.65 G p ( s) =, Tp

Dettagli

Università degli Studi di Parma - Facoltà di Ingegneria Appello di Controlli Digitali del 10 Luglio Parte A

Università degli Studi di Parma - Facoltà di Ingegneria Appello di Controlli Digitali del 10 Luglio Parte A Università degli Studi di Parma - Facoltà di Ingegneria Appello di Controlli Digitali del 0 Luglio 2007 - Parte A - (6 p.) - Illustra il metodo della formula di inversione per il calcolo dell antitrasformata

Dettagli

PROVA SCRITTA di SISTEMI ELETTRONICI AUTOMATICI Prof. Luca Salvini 5Ae Nome 26/10/2011

PROVA SCRITTA di SISTEMI ELETTRONICI AUTOMATICI Prof. Luca Salvini 5Ae Nome 26/10/2011 5Ae Nome 6/10/011 Ob1. Ob. Ob3. Ob6. Ob7. Ob8. Esercizio 1: conoscere il paradigma di un sistema di controllo ad anello chiuso saper ridurre a reazione unitaria saper classificare il tipo di sistema in

Dettagli

s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile;

s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile; 1 Esercizi svolti Esercizio 1. Con riferimento al sistema di figura, calcolare: ut) + K s s + 6 s 3 yt) a) la funzione di trasferimento a ciclo chiuso tra ut) e yt); b) i valori di K per i quali il sistema

Dettagli

Sistemi di controllo digitali. Concetti introduttivi

Sistemi di controllo digitali. Concetti introduttivi Sistemi di controllo digitali Concetti introduttivi I sistemi di controllo digitali o a tempo discreto si distinguono dai sistemi di controllo analogici o a tempo continuo in quanto caratterizzati dalla

Dettagli

Controlli e Regolazione Automatica Prova scritta del 26 maggio 2005

Controlli e Regolazione Automatica Prova scritta del 26 maggio 2005 Controlli e Regolazione Automatica Prova scritta del 26 maggio 2005 Domanda Disegnare lo schema a blocchi di un sistema di controllo in retroazione, descrivendo sinteticamente il ruolo di tutti i suoi

Dettagli

MODELLO COMPLETO PER IL CONTROLLO. D r (s) U(s) Y (s) d m (t): disturbi misurabili. d r (t): disturbi non misurabili

MODELLO COMPLETO PER IL CONTROLLO. D r (s) U(s) Y (s) d m (t): disturbi misurabili. d r (t): disturbi non misurabili MODELLO COMPLETO PER IL CONTROLLO D m (s) D r (s) Y o (s) U(s) P (s) Y (s) d m (t): disturbi misurabili d r (t): disturbi non misurabili y o (t): andamento desiderato della variabile controllata u(t):

Dettagli

un sistema è stabile se, in conseguenza di una sollecitazione esterna limitata, la sua risposta (variazione dell uscita) è limitata (Bounded Input

un sistema è stabile se, in conseguenza di una sollecitazione esterna limitata, la sua risposta (variazione dell uscita) è limitata (Bounded Input un sistema è stabile se, in conseguenza di una sollecitazione esterna limitata, la sua risposta (variazione dell uscita) è limitata (Bounded Input Bounded Output) Un sistema si dice asintoticamente stabile

Dettagli

Campi Elettromagnetici e Circuiti I Risposta in frequenza

Campi Elettromagnetici e Circuiti I Risposta in frequenza Facoltà di Ingegneria Università degli studi di Pavia Corso di aurea Triennale in Ingegneria Elettronica e Informatica Campi Elettromagnetici e Circuiti I isposta in frequenza Campi Elettromagnetici e

Dettagli

Controlli automatici

Controlli automatici Controlli automatici Luogo delle radici Prof. Paolo Rocco (paolo.rocco@polimi.it) Politecnico di Milano Dipartimento di Elettronica, Informazione e Bioingegneria Introduzione Il luogo delle radici è un

Dettagli

COMPORTAMENTO DI UN SISTEMA IN REGIME SINUSOIDALE

COMPORTAMENTO DI UN SISTEMA IN REGIME SINUSOIDALE COMPORTAMENTO DI UN SISTEMA IN REGIME SINUSOIDALE Un sistema risponde ad una sinusoide in ingresso con una sinusoide in uscita della stessa pulsazione. In generale la sinusoide d uscita ha una diversa

Dettagli