Lezione 19. Stabilità robusta. F. Previdi - Fondamenti di Automatica - Lez. 19 1

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Lezione 19. Stabilità robusta. F. Previdi - Fondamenti di Automatica - Lez. 19 1"

Transcript

1 Lezione 19. Stabilità robusta F. Previdi - Fondamenti di Automatica - Lez. 19 1

2 Schema 1. Stabilità & incertezza 2. Indicatori di stabilità robusta 3. Margine di guadagno 4. Margine di fase 5. Criterio di Bode 6. Sistemi a fase minima F. Previdi - Fondamenti di Automatica - Lez. 19 2

3 1. Stabilità di sistemi retroazionati incerti modello nominale modello vero w + - L(s) y w + - ~ L ( s ) y in generale L ~ ( s) L( s) stabilità robusta = garanzia di stabilità anche in presenza di incertezza F. Previdi - Fondamenti di Automatica - Lez. 19 3

4 Tipici modelli dell incertezza incertezza additiva limitata in modulo L ~ ( s) = L( s) + δl( s) δl( jω) Im Re L( jω) incertezza sul guadagno della funzione d anello ~ L ( s) = kl( s) 0 < k k F. Previdi - Fondamenti di Automatica - Lez. 19 4

5 2. Indicatori di stabilità robusta Sono parametri che misurano: l ampiezza delle perturbazioni per cui è garantita la stabilità la distanza del modello nominale dall instabilità F. Previdi - Fondamenti di Automatica - Lez. 19 5

6 Ipotesi modello nominale asintoticamente stabile in anello chiuso L(s) non ha poli con Re > 0 Im 1 Re L( jω) Per il Criterio di Nyquist asintotica stabilità N = 0 F. Previdi - Fondamenti di Automatica - Lez. 19 6

7 Un indicatore di robustezza Margine di stabilità vettoriale d distanza di Γ dal punto 1 d = min1+ L( ω jω) Im 1 d 1+ L( jω) Re L( jω) Γ F. Previdi - Fondamenti di Automatica - Lez. 19 7

8 3. Margine di guadagno 1 A x A π Im k m = 1 x A ω arg L( jω π ) = 180 Re L( jω) Sia ω π la pulsazione per cui Allora = L jω ) x A ( π Γ k 1 m = = L( jω L( j ) ) π ω π db F. Previdi - Fondamenti di Automatica - Lez. 19 8

9 Interpretazione w modello nominale + - L(s) y w + - modello vero k L(s) y k m > 1 (quindi x A <1) E asintoticamente stabile per tutti i valori di k tali che 0 < k < k m (infatti bisogna guardare i giri intorno a 1 e 1 > 1 = x ) A k k k m km è un indicatore di robustezza rispetto a incertezze sul guadagno d anello F. Previdi - Fondamenti di Automatica - Lez. 19 9

10 Esempio w + - L y (s) L ( s ) = 10 ( 1+ s) 3 Si calcoli ω π Calcolare analiticamente il margine di guadagno arg L ( jω ) = 180 π ( ω ) = 3arctg π 180 ω π = ( 60 ) 3 tg = rad/s Si valuti il margine di guadagno 3 ( 1+ 3) k 1 1+ jωπ 4 k = = = = 1 m < m L( jω ) Sistema instabile π 3 F. Previdi - Fondamenti di Automatica - Lez

11 Tracciando il diagramma di Nyquist si può avere conferma del risultato ottenuto. 8 Nyquist Diagram 6 4 Imaginary Axis Real Axis F. Previdi - Fondamenti di Automatica - Lez

12 Esempio w + - L y (s) L ( s ) = 10 ( 1+ s)( 1+ 5s)( 1+ 15s) Calcolare analiticamente il margine di guadagno arg L ( jω ) = 180 π arctg Si calcoli ω π ( ) ( ) ( ) ωπ arctg 5ωπ arctg 15ωπ = 180? Non è sempre possibile calcolare analiticamente il margine di guadagno F. Previdi - Fondamenti di Automatica - Lez

13 4. Margine di fase 1 Im Sia ω c la pulsazione per cui ω c L ( jω ) = 1 c si dice pulsazione critica ϕ m C ω c ϕ c Re L( jω) Sia ϕ = c arg L( jω ) c Γ ϕ c si dice fase critica Si definisce margine di fase ϕ = 180 m ϕ c F. Previdi - Fondamenti di Automatica - Lez

14 Interpretazione w modello nominale + - L(s) y w + - modello vero e τs L(s) y ϕ m > 0 asintoticamente stabile π ωcτ < ϕm 180 ϕm π ovvero τ < ω 180 c ϕm è un indicatore di robustezza rispetto a incertezze sul ritardo d anello F. Previdi - Fondamenti di Automatica - Lez

15 Esempio w + - L(s) y L ( s) = 10 ( 1+ s)( 1+ 2s) Calcolare analiticamente il margine di fase Si calcoli ω c L( jω c ) = jωc 1+ j2ωc = ωc 1+ 4ωc = ωc + 5ωc + 1 = 100 ω c rad/s Si valuti il margine di fase ( ω ) arctg( 2ω ) = 141. ϕ = arg L( jω ) = arctg 1 c ϕ = m c c Sistema asintoticamente stabile c F. Previdi - Fondamenti di Automatica - Lez

16 Esempio w + - L(s) y L ( s) = 10 3 ( 1+ s) ( 1+ 5s) Calcolare analiticamente il margine di fase Si calcoli ω c 10 ( ) = 1 ( ) L jω c = ωc 1+ 25ωc = 10 1 jω 1+ j5ω + c c ( 2 ) 3 ( 2 ω ω + 1) = 100? c c Non è sempre possibile calcolare analiticamente il margine di fase F. Previdi - Fondamenti di Automatica - Lez

17 Caso particolare 1 1 k m Im 1 A ω π Re ϕ m ω c C Γ L( jω) k m ϕ m >> 1 >> 0 ma il sistema è assai poco robusto F. Previdi - Fondamenti di Automatica - Lez

18 Caso particolare 2 Im k m = 1 Re L( jω) Γ arg L( jω ) < 180, ω F. Previdi - Fondamenti di Automatica - Lez

19 Caso particolare 3 Im ϕ m = 1 Γ L( jω) Re L( jω ) < 1, ω F. Previdi - Fondamenti di Automatica - Lez

20 Riassumendo 1 k m Im ϕ m 1 C A ω c ω π Re Γ margine di guadagno k = L jω ) m ( π db, arg L ( jω ) = 180 π margine di fase ϕ m = 180 arg L( jωc), ( jω ) = db L c 0 F. Previdi - Fondamenti di Automatica - Lez

21 Valutazione dai diagrammi di Bode db gradi modulo fase ϕ m ω c ω π k m 0 db 180 margine di guadagno ω π 5 rad/s k m 30 db = ω c ϕ m = margine di fase rad/s F. Previdi - Fondamenti di Automatica - Lez

22 Esempio w + - L y (s) L ( s ) = 10 ( 1+ s)( 1+ 5s)( 1+ 15s) Usando i diagrammi di Bode, valutare approssimativamente il margine di guadagno del sistema retroazionato. F. Previdi - Fondamenti di Automatica - Lez

23 Magnitude (db) Bode Diagram ω π rad/s k m System: L Frequency (rad/sec): db Magnitude (db): Phase (deg) Frequency (rad/sec) System: L Frequency (rad/sec): Phase (deg): -180 F. Previdi - Fondamenti di Automatica - Lez

24 Tracciando il diagramma di Nyquist si può avere conferma del risultato ottenuto. Imaginary Axis System: L Real: Imag: 1.23e-005 Frequency (Hz): Nyquist Diagram ω π k m Hz 0.54 rad/s Real Axis F. Previdi - Fondamenti di Automatica - Lez

25 Ripetere il calcolo usando i diagrammi di Bode asintotici. 50 Diagramma di Bode - Modulo 0 db pulsazione Diagramma di Bode - Fase gradi pulsazione? E difficile ricavare il valore di ω π dal diagramma asintotico F. Previdi - Fondamenti di Automatica - Lez

26 Esempio w + - L y (s) L ( s ) = 10 ( 1+ s)( 1+ 5s)( 1+ 15s) Usando i diagrammi di Bode, valutare approssimativamente il margine di fase del sistema retroazionato. F. Previdi - Fondamenti di Automatica - Lez

27 Magnitude (db) Bode Diagram System: L Frequency (rad/sec): Magnitude (db): -7.94e-005 ω c ϕ 25 m rad/s Phase (deg) System: L Frequency (rad/sec): Phase (deg): Frequency (rad/sec) F. Previdi - Fondamenti di Automatica - Lez

28 Ripetere il calcolo usando i diagrammi di Bode asintotici. Diagramma di Bode - Modulo 0.35rad/s 50 0 ω c db -50 gradi pulsazione Diagramma di Bode - Fase pulsazione? E però possibile calcolare analiticamente la fase critica φ c ϕ = arctg ω arctg 5ω arctg 15ω = c = arctg ϕ ( c ) ( c ) ( c ) ( 0.35) arctg( 1.75) arctg( 5.25) = = F. Previdi - Fondamenti di Automatica - Lez m

29 5. Criterio di Bode Condizioni di applicabilità w + - L(s) y P = 0 il diagramma di Bode del modulo associato a L(s) attraversa una sola volta l asse a 0 db ϕ m µ margine di fase guadagno d anello asintotica stabilità µ > 0 ϕ m > 0 F. Previdi - Fondamenti di Automatica - Lez

30 Dimostrazione nelle ipotesi fatte µ > 0 ϕ m > 0 N = 0 = P asintotica stabilità F. Previdi - Fondamenti di Automatica - Lez

31 Perché µ > 0? Im Per escludere casi di questo tipo µ < 0 Γ 1 Re ϕ m > 0 C F. Previdi - Fondamenti di Automatica - Lez

32 6. Criterio di Bode (approssimato) per sistemi a fase minima L(s) a fase minima poli e zeri hanno Re 0 il guadagno µ è positivo la condizione µ > 0 è soddisfatta i diagrammi asintotici di Bode di modulo e fase hanno forti legami (dove il modulo ha pendenza k la fase vale circa k 90 ) F. Previdi - Fondamenti di Automatica - Lez

33 0 db L( jω) 1 ω c se l attraversamento dell asse a 0 db avviene con pendenza 1 ω (e se il tratto con tale pendenza è sufficientemente lungo) arg L( jω) 0 ϕ c 90 ω ϕ c ϕ m F. Previdi - Fondamenti di Automatica - Lez

34 Esempio w + - y L (s) L( s) = 10 ( 1+ 5s)( 1+ s)( s) Giudicare la stabilità mediante il criterio di Bode (se applicabile). P = 0 il diagramma di Bode del modulo associato a L(s) attraversa una sola volta l asse a 0 db Il criterio di Bode è applicabile. F. Previdi - Fondamenti di Automatica - Lez

35 20 ω c 0-20 db rad/s F. Previdi - Fondamenti di Automatica - Lez

36 Dal grafico ω C 1.4 rad/s ( 5ωC ) atan( ωc ) atan( 0. ωc ) = ( 5 1.4) atan( 1.4) atan( ) = ( 7) atan( 1.4) atan( 0. ) = ϕc = atan 2 = atan 4 = atan 28 = = 152 ϕ = = 28 m asintotica stabilità µ =10 > 0 = 28 > 0 ϕ m Valori esatti : ω C =1.2 rad/s ϕ = m F. Previdi - Fondamenti di Automatica - Lez

Lezione 15. Stabilità di sistemi retroazionati. F. Previdi - Automatica - Lez. 15 1

Lezione 15. Stabilità di sistemi retroazionati. F. Previdi - Automatica - Lez. 15 1 ezione 15. Stabilità di sistemi retroazionati F. Previdi Automatia ez. 15 1 Shema 1. Stabilità di sistemi retroazionati 2. Stabilità & inertezza 3. Margine di guadagno 4. Margine di fase 5. Criterio di

Dettagli

Soluzione degli esercizi del Capitolo 9

Soluzione degli esercizi del Capitolo 9 Soluzione degli esercizi del Capitolo 9 Soluzione dell Esercizio 9.1 Il diagramma polare associato alla funzione L(s) = µ/s, µ > comprende l intero semiasse reale negativo. È quindi immediato concludere

Dettagli

Controlli Automatici 2 22/06/05 Compito a

Controlli Automatici 2 22/06/05 Compito a Controlli Automatici 2 22/6/5 Compito a a) Si consideri il diagramma di Bode (modulo e fase) di G(s) in figura 1. Si 5 Bode Diagram 5 15 45 9 135 18 3 2 1 1 2 3 Frequency (rad/sec) Figure 1: Diagrammi

Dettagli

Lezione 8. Stabilità dei sistemi di controllo

Lezione 8. Stabilità dei sistemi di controllo Lezione 8 Stabilità dei sistemi di controllo Poli di un sistema di controllo Riprendiamo lo schema a blocchi di un sistema di controllo in retroazione: d y + + + y L(s) + + n Fig. 1 : Sistema di controllo

Dettagli

Stabilità dei sistemi in retroazione. Diagrammi polari e teorema di Nyquist

Stabilità dei sistemi in retroazione. Diagrammi polari e teorema di Nyquist Stabilità dei sistemi in retroazione Diagrammi polari e teorema di Nyquist STABILITA DEI SISTEMI IN RETROAZIONE Vogliamo studiare la stabilità del sistema in retroazione a partire della conoscenza di L(s

Dettagli

Analisi dei sistemi retroazionati

Analisi dei sistemi retroazionati Parte 9, 1 Sistemi di controllo -Anello aperto Parte 9, 2 Analisi dei sistemi retroazionati controllore attuatore processo Ipotesi: sistemi dinamici lineari Sistemi di controllo Parte 9, 3 Prestazioni

Dettagli

Capitolo. Stabilità dei sistemi di controllo. 8.1 Generalità. 8.2 Criterio generale di stabilità. 8.3 Esercizi - Criterio generale di stabilità

Capitolo. Stabilità dei sistemi di controllo. 8.1 Generalità. 8.2 Criterio generale di stabilità. 8.3 Esercizi - Criterio generale di stabilità Capitolo 7 Stabilità dei sistemi di controllo 8.1 Generalità 8. Criterio generale di stabilità 8.3 Esercizi - Criterio generale di stabilità 8.4 Criterio di stabilità di Nyquist 8.5 Esercizi - Criterio

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stabilità dei sistemi di controllo in retroazione Margini di stabilità Indicatori di robustezza della stabilità Margine di guadagno Margine di fase Stabilità regolare e marginale ed estensioni delle definizioni

Dettagli

Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada Seconda prova intermedia 12 Febbraio 2015

Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada Seconda prova intermedia 12 Febbraio 2015 Politecnico di Milano Fondamenti di Automatica (CL Ing. Gestionale) a.a.2014-15 Prof. Silvia Strada Seconda prova intermedia 12 Febbraio 2015 Nome e Cognome:........................... Matricola...........................

Dettagli

ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO. Schema generale di controllo in retroazione

ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO. Schema generale di controllo in retroazione ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO Schema generale di controllo in retroazione Requisiti di un sistema di controllo Stabilità in condizioni nominali Margine di guadagno e margine di fase

Dettagli

Controlli Automatici Compito del - Esercizi

Controlli Automatici Compito del - Esercizi Compito del - Esercizi. Data la funzione di trasferimento G(s) = s (s +),sicalcoli a) La risposta impulsiva g(t); b) L equazione differenziale associata al sistema G(s); c) Si commenti la stabilità del

Dettagli

Margini di stabilità. Corso di Laurea in Ingegneria Meccanica Controlli Automatici L

Margini di stabilità. Corso di Laurea in Ingegneria Meccanica Controlli Automatici L Margini distabilità - 1 Corso di Laurea in Ingegneria Meccanica Margini di stabilità DEIS-Università di Bologna Tel. 51 2932 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi Schema a blocchi

Dettagli

Esercizio 1. Si consideri la funzione di trasferimento. G(s) = K 1 + st

Esercizio 1. Si consideri la funzione di trasferimento. G(s) = K 1 + st Esercizio. Si consideri la funzione di trasferimento G(s) = K + st + sτ. Si dimostri che, qualunque siano i valori dei parametri reali K, T e τ, il relativo diagramma di Nyquist è una circonferenza. Si

Dettagli

Controlli Automatici L-A - Esercitazione

Controlli Automatici L-A - Esercitazione Controlli Automatici L-A - Esercitazione 1. Si consideri lo schema a blocchi di figura. d(t) K d x(t) e(t) R(s) u(t) G(s) y(t) - R(s) = K τs + 1 s + 1, G(s) = K d = 2 s(s 2 + 6s + ), a) Considerando gli

Dettagli

Esercizio 1. (s 1) (s 0.5)(s 1) G(s) 28. p1 = -0.5 (sx) p2 = -1 (sx) Tipo: g=0. G(0) = 56 = 20log10(56) ~ 35 db

Esercizio 1. (s 1) (s 0.5)(s 1) G(s) 28. p1 = -0.5 (sx) p2 = -1 (sx) Tipo: g=0. G(0) = 56 = 20log10(56) ~ 35 db Esercizio 1 2 G(s) 28 (s 1) (s.5)(s 1) Poli: p1 = -.5 p2 = -1 zeri: z1 = 1 (dx) Tipo: g= Guadagno: G() = 56 = 2log1(56) ~ 35 db Bode del Modulo 3 Scala 4 6 5 4 3 Magnitude (db) 2 1-1 -2 1.1.2.3 1 1 Piazzamento

Dettagli

CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo. DIAGRAMMI DI BODE

CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo.  DIAGRAMMI DI BODE CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/controlliautomatici.html DIAGRAMMI DI BODE Ing. e-mail: luigi.biagiotti@unimore.it http://www.dii.unimore.it/~lbiagiotti

Dettagli

La stabilità di un sistema non dipende dal segnale d ingresso, ma dipende solo dalla f.d.t. del sistema. Stabilità BIBO (Bound Input Bounded Output)

La stabilità di un sistema non dipende dal segnale d ingresso, ma dipende solo dalla f.d.t. del sistema. Stabilità BIBO (Bound Input Bounded Output) 8.1 GENERALITÀ La stabilità di un sistema non dipende dal segnale d ingresso, ma dipende solo dalla f.d.t. del sistema f.d.t. = U(s) E(s) Stabilità BIBO (Bound Input Bounded Output) Un sistema lineare

Dettagli

Diagrammi Di Bode. Prof. Laura Giarré https://giarre.wordpress.com/ca/

Diagrammi Di Bode. Prof. Laura Giarré https://giarre.wordpress.com/ca/ Diagrammi Di Bode Prof. Laura Giarré Laura.Giarre@UNIMORE.IT https://giarre.wordpress.com/ca/ Diagrammi di Bode e polari Problema della rappresentazione grafica di funzioni complesse di variabile reale

Dettagli

CONCETTO DI STABILITÀ NEI SISTEMI DI CONTROLLO. Sistema in condizioni di equilibrio a t = 0. d(t) = 0. u(t) = 0. y(t) = 0. Sistema

CONCETTO DI STABILITÀ NEI SISTEMI DI CONTROLLO. Sistema in condizioni di equilibrio a t = 0. d(t) = 0. u(t) = 0. y(t) = 0. Sistema CONCETTO DI STABILITÀ NEI SISTEMI DI CONTROLLO Sistema in condizioni di equilibrio a t = 0. d(t) = 0 u(t) = 0 Sistema y(t) = 0 Tipi di perturbazione. Perturbazione di durata limitata: u(t) = 0, t > T u

Dettagli

Diagrammi asintotici di Bode: esercizi. Tracciare i diagrammi asintotici di Bode della seguente funzione G(s): s 2. s(s 30)(1+ s

Diagrammi asintotici di Bode: esercizi. Tracciare i diagrammi asintotici di Bode della seguente funzione G(s): s 2. s(s 30)(1+ s .. 3.2 1 Nyquist: Diagrammi asintotici di Bode: esercizi Tracciare i diagrammi asintotici di Bode della seguente funzione G(s): 6(s2 +.8s+4) s(s 3)(1+ s 2 )2. Pendenza iniziale: -2 db/dec. Pulsazioni critiche:

Dettagli

Diagrammi di Nyquist. Diagramma di Nyquist (o polare): curva nel piano complesso parametrizzata in ω : ImG(jω) in funzione di ReG(jω))

Diagrammi di Nyquist. Diagramma di Nyquist (o polare): curva nel piano complesso parametrizzata in ω : ImG(jω) in funzione di ReG(jω)) Diagrammi di Nyquist Diagramma di Nyquist (o polare): curva nel piano complesso parametrizzata in ω : ImG(jω) in funzione di ReG(jω)) Imaginary Axis.1.8.6.4.2 -.2 -.4 -.6 -.8 TextEnd G(jω 4 ) G(jω 1 )

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondamenti di Controlli Automatici - A.A. 212/13 9 novembre 212 - Domande Teoriche Nome: Nr. Mat. Firma: Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni che si

Dettagli

5. Per ω = 1/τ il diagramma reale di Bode delle ampiezze della funzione G(jω) =

5. Per ω = 1/τ il diagramma reale di Bode delle ampiezze della funzione G(jω) = Fondamenti di Controlli Automatici - A.A. 211/12 3 luglio 212 - Domande Teoriche Cognome Nome: Matricola: Corso di Laurea: Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni

Dettagli

ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO. Schema generale di controllo in retroazione. Margine di guadagno e margine di fase

ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO. Schema generale di controllo in retroazione. Margine di guadagno e margine di fase ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO Schema generale di controllo in retroazione Requisiti di un sistema di controllo Stabilità in condizioni nominali Margine di guadagno e margine di fase

Dettagli

SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo. RETI CORRETTRICI

SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo.  RETI CORRETTRICI SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html RETI CORRETTRICI Ing. Luigi Biagiotti e-mail: luigi.biagiotti@unimore.it http://www.dii.unimore.it/~lbiagiotti

Dettagli

RETI CORRETTRICI. Regolatori standard Alcune strutture standard di regolatori reti correttrici anticipo o ritardo 1 polo ed uno zero reali

RETI CORRETTRICI. Regolatori standard Alcune strutture standard di regolatori reti correttrici anticipo o ritardo 1 polo ed uno zero reali CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm RETI CORRETTRICI Ing. Luigi

Dettagli

2a(L) Sia dato un processo P(s) descrivibile mediante la funzione di trasferimento:

2a(L) Sia dato un processo P(s) descrivibile mediante la funzione di trasferimento: Esame di Fondamenti di Automatica Corsi di Laurea in Elettronica, Meccanica, Diploma di Elettronica giugno (L+D) Il sistema in figura è composto da un motore in c.c. controllato in corrente (inerzia Jm

Dettagli

Diagrammi di Nyquist o polari

Diagrammi di Nyquist o polari 0.0. 3.3 1 qualitativa Ampiezza Diagrammi di Nyquist o polari Esempio di diagramma polare senza poli nell origine: 40 20 G(s) = 100(1+ s 50 ) (1+ s 10 )2 (1+ s 20 )(1+ s 100 ) Imag 0 20 15 20 30 80 0.1

Dettagli

Regolazione e Controllo dei Sistemi Meccanici

Regolazione e Controllo dei Sistemi Meccanici Regolazione e Controllo dei Sistemi Meccanici 3--24 Numero di matricola =ρ =ɛ =β Si consideri il razzo vettore riportato in fig.. Figure : Vettore ARIANE-V. La dinamica planare semplificata e linearizzata

Dettagli

Tracciamento dei Diagrammi di Nyquist

Tracciamento dei Diagrammi di Nyquist Fondamenti di Automatica Tracciamento dei Diagrammi di Nyquist L. Lanari Dipartimento di Ingegneria Informatica Automatica e Gestionale Antonio Ruberti Università di Roma La Sapienza Ultima modifica November

Dettagli

Il criterio di Nyquist

Il criterio di Nyquist 0.0. 4.5 1 Il criterio di Nyquist IlcriteriodiNyquistconsentedistabilireseunsistema,delqualesiconosce la risposta armonica ad anello aperto, sia stabile o meno una volta chiuso in retroazione: r(t) e(t)

Dettagli

Margini di stabilità. Corso di Laurea in Ingegneria Meccanica. Controlli AutomaticiL. Schema a blocchi di un sistema di controllo

Margini di stabilità. Corso di Laurea in Ingegneria Meccanica. Controlli AutomaticiL. Schema a blocchi di un sistema di controllo Margini distabilità - 1 Corso di Laurea in Ingegneria Meccanica Controlli Automatici L Margini di stabilità DEIS-Università di Bologna Tel. 51 2932 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi

Dettagli

Tecniche di progetto di controllori

Tecniche di progetto di controllori Tecniche di progetto di controllori (ver..2) In questo capitolo sarà descritta una tecnica di progetto classica di controllori denominata sintesi per tentativi. Abbiamo visto precedentemente come calcolare

Dettagli

Esercizi di Controlli Automatici

Esercizi di Controlli Automatici Esercizi di Controlli Automatici L. Magni Esercizio Si studi la stabilità dei seguenti sistemi retroazionati negativamente con guadagno d anello L(s) al variare di > utilizzando il luogo delle radici e

Dettagli

Bode Diagram. 1.2 Determinare il valore del guadagno del sistema. Disegnare gli zeri ed i poli nel piano complesso.

Bode Diagram. 1.2 Determinare il valore del guadagno del sistema. Disegnare gli zeri ed i poli nel piano complesso. 5 Luglio 3 econda prova Sia dato un itema dinamico con funzione di traferimento G(), i cui diagrammi di Bode, del modulo e della fae, ono di eguito rappreentati: 6 Bode Diagram Phae (deg) Magnitude (db)

Dettagli

Corso di Laurea in Ingegneria Meccatronica RETI CORRETTRICI

Corso di Laurea in Ingegneria Meccatronica RETI CORRETTRICI Automation Robotics and System CONTROL Corso di Laurea in Ingegneria Meccatronica RETI CORRETTRICI CA 1 - RetiCorrettrici Università degli Studi di Modena e Reggio Emilia Cesare Fantuzzi (cesare.fantuzzi@unimore.it)

Dettagli

Sintesi per tentativi nel dominio della frequenza

Sintesi per tentativi nel dominio della frequenza Sintesi per tentativi nel dominio della frequenza Viene utilizzata per sistemi a fase minima affinchè sia valido il criterio di Bode e le relazioni approssimate tra le specifiche siano sufficientemente

Dettagli

Esercizio riassuntivo di sintesi in frequenza

Esercizio riassuntivo di sintesi in frequenza Esercizio riassuntivo di sintesi in frequenza Sia dato il sistema di controllo a retroazione unitaria di Fig. 1 r G(s) P (s) + + d + y Figura 1: Il sistema di controllo assegnato in cui il processo ha

Dettagli

Fondamenti di Controlli Automatici

Fondamenti di Controlli Automatici Cognome: Nome: N. Matr.: Fondamenti di Controlli Automatici Ingegneria Meccanica Compito del 11 settembre 215 - Quiz Per ciascuno dei seguenti quesiti, segnare con una crocetta le risposte che si ritengono

Dettagli

Controlli Automatici LA Analisi di sistemi di controllo Funzioni di sensitività Stabilità e Prestazioni Errori a regime e tipo di sistema

Controlli Automatici LA Analisi di sistemi di controllo Funzioni di sensitività Stabilità e Prestazioni Errori a regime e tipo di sistema Controlli Automatici LA Analisi di sistemi di controllo Funzioni di sensitività Stabilità e Prestazioni Errori a regime e tipo di sistema Prof. Carlo Rossi DEIS-Università di Bologna Tel. 51 2932 Email:

Dettagli

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale RETI CORRETTRICI

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale RETI CORRETTRICI CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale RETI CORRETTRICI Ing. Luigi Biagiotti Tel. 51 29334 / 51 29368 e-mail: lbiagiotti@deis.unibo.it http://www-lar.deis.unibo.it/~lbiagiotti Regolatori

Dettagli

Requisiti di un sistema di controllo

Requisiti di un sistema di controllo Requisiti di un sistema di controllo Componenti di uno schema di controllo Esaurita la trattazione dei sistemi dinamici, si torna ora al problema di controllo, che aveva dato origine a tale studio. In

Dettagli

Esercizi sul luogo delle radici

Esercizi sul luogo delle radici Esercizi sul luogo delle radici Gli esercizi che seguono faranno riferimento allo schema a blocchi riportato di seguito. r k G(s) y Esercizio. Sia data la seguente funzione di trasferimento s(s+). Verificare

Dettagli

Brevi appunti di Fondamenti di Automatica 1. prof. Stefano Panzieri Dipartimento di Informatica e Automazione Universitï 1 degli Studi ROMA TRE

Brevi appunti di Fondamenti di Automatica 1. prof. Stefano Panzieri Dipartimento di Informatica e Automazione Universitï 1 degli Studi ROMA TRE Brevi appunti di Fondamenti di Automatica 1 prof. Dipartimento di Informatica e Automazione Universitï 1 degli Studi ROMA TRE 2 ROMA TRE UNIVERSITÀ DEGLI STUDI 4 marzo 215 1 Rev..2 INDICE Indice 1 Esercizi

Dettagli

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE Ing. Federica

Dettagli

# EFFETTO DEL GUADAGNO A CICLO APERTO SULLA STABILITA #

# EFFETTO DEL GUADAGNO A CICLO APERTO SULLA STABILITA # # EETTO DEL GUADAGNO A CICLO APERTO SULLA STABILITA # Consideriamo il sistema di controllo a controreazione con la seguente. di T. a ciclo aperto: 5 ( = (1 + (1 + (1 ; Il diagramma di Nyquist della (jω)

Dettagli

Sistemi di Controllo Esempio di domande teoriche a risposta multipla. Esempio di problemi e quesiti a risposta aperta

Sistemi di Controllo Esempio di domande teoriche a risposta multipla. Esempio di problemi e quesiti a risposta aperta Sistemi di Controllo Esempio di domande teoriche a risposta multipla Per ciascuno dei seguenti quesiti, segnare con una crocetta le risposte che si ritengono corrette. Alcuni quesiti hanno più risposte

Dettagli

Soluzione degli esercizi del Capitolo 13

Soluzione degli esercizi del Capitolo 13 Soluzione degli esercizi del Capitolo 3 Soluzione dell Esercizio 3. Il polinomio caratteristico desiderato è ϕ (s) = (s + 4) (s + ) = s 2 + 4s + 4 Uguagliando i coefficienti quelli del polinomio caratteristico

Dettagli

ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica

ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI ARMONICA Analisi

Dettagli

un sistema è stabile se, in conseguenza di una sollecitazione esterna limitata, la sua risposta (variazione dell uscita) è limitata (Bounded Input

un sistema è stabile se, in conseguenza di una sollecitazione esterna limitata, la sua risposta (variazione dell uscita) è limitata (Bounded Input un sistema è stabile se, in conseguenza di una sollecitazione esterna limitata, la sua risposta (variazione dell uscita) è limitata (Bounded Input Bounded Output) Un sistema si dice asintoticamente stabile

Dettagli

Soluzione degli esercizi del Capitolo 13

Soluzione degli esercizi del Capitolo 13 Soluzione degli esercizi del Capitolo 3 Soluzione dell Esercizio 3. Il luogo diretto è costituito da due rami posizionati sull asse reale. Uno di essi si sposta dal polo in a e l altro percorre il segmento

Dettagli

Esercizi- Risposta in frequenza

Esercizi- Risposta in frequenza esercizi 6, 1 Esercizi- Risposta in frequenza Diagrammi di Nyquist Data una funzione di trasferimento: Vogliamo ottenere la sua rappresentazione nel piano complesso al variare della frequenza. curva parametrizzata

Dettagli

08. Analisi armonica. Controlli Automatici

08. Analisi armonica. Controlli Automatici 8. Analisi armonica Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Alessio Levratti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it http://www.arscontrol.org/teaching

Dettagli

Diagrammi di Bode e polari

Diagrammi di Bode e polari Marzo - Giugno Automation Robotics and System CONTROL Corso di laurea in Ingegneria Meccatronica DIAGRAMMI DI BODE Cesare Fantuzzi (cesare.fantuzzi@unimore.it) Cristian Secchi (cristian.secchi@unimore.it)

Dettagli

SISTEMI AUTOMATICI ED ORGANIZZAZIONE DELLA PRODUZIONE STABILITA DEI SISTEMI CRITERIO DI BODE. ESERCIZI SUL CRITERIO DI BODE Completamente svolti

SISTEMI AUTOMATICI ED ORGANIZZAZIONE DELLA PRODUZIONE STABILITA DEI SISTEMI CRITERIO DI BODE. ESERCIZI SUL CRITERIO DI BODE Completamente svolti SISTEMI AUTOMATICI ED ORGANIZZAZIONE DELLA PRODUZIONE STABILITA DEI SISTEMI CRITERIO DI BODE ESERCIZI SUL CRITERIO DI BODE Completamente svolti A cura del prof. Michele ZIMOTTI 1 Esercizi sulla stabilità

Dettagli

Diagrammi di Bode. Esempio: j. 1+ s. 1+j ω. Diagrammi di Bode: ω Diagramma dei moduli. Ampiezza [db] Diagramma delle fasi.

Diagrammi di Bode. Esempio: j. 1+ s. 1+j ω. Diagrammi di Bode: ω Diagramma dei moduli. Ampiezza [db] Diagramma delle fasi. .. 3.2 Diagrammi di Bode La funzione di risposta armonica F(ω) = G(jω) può essere rappresentata graficamente in tre modi diversi: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols. I

Dettagli

SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo

SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html it/~lbiagiotti/sistemicontrollo html ANALISI DEI SISTEMI IN RETROAZIONE E

Dettagli

MODELLO COMPLETO PER IL CONTROLLO. D r (s) U(s) Y (s) d m (t): disturbi misurabili. d r (t): disturbi non misurabili

MODELLO COMPLETO PER IL CONTROLLO. D r (s) U(s) Y (s) d m (t): disturbi misurabili. d r (t): disturbi non misurabili MODELLO COMPLETO PER IL CONTROLLO D m (s) D r (s) Y o (s) U(s) P (s) Y (s) d m (t): disturbi misurabili d r (t): disturbi non misurabili y o (t): andamento desiderato della variabile controllata u(t):

Dettagli

Analisi dei sistemi in retroazione

Analisi dei sistemi in retroazione Facoltà di Ingegneria di Reggio Emilia Corso di Controlli Automatici Corsi di laurea in Ingegneria Meccatronica ed in Ingegneria della Gestione Industriale Ing. Alessandro Macchelli e-mail: amacchelli@deis.unibo.it

Dettagli

STABILITÀ DEI SISTEMI Metodo di Bode e Nyquist

STABILITÀ DEI SISTEMI Metodo di Bode e Nyquist I.T.I. Modesto PANETTI B A R I Via Re David, 186-70125 BARI 080-542.54.12 - Fax 080-542.64.32 Internet http://www.itispanetti.it email : BATF05000C@istruzione.it INTRODUZIONE STABILITÀ DEI SISTEMI Metodo

Dettagli

INTRODUZIONE. G(s) H(s)

INTRODUZIONE. G(s) H(s) INTRODUZIONE Sia il generico sistema in retroazione in figura. È noto che la stabilità di un sistema di questo genere dipende dalla posizione nel piano di Gauss dei poli in anello chiuso della funzione

Dettagli

# MODELLI APPROSSIMATI DI SISTEMI DINAMICI

# MODELLI APPROSSIMATI DI SISTEMI DINAMICI # MODELLI APPROSSIMATI DI SISTEMI DINAMICI # Riferimento per approfondimenti: Bolzern-Scattolini-Schiavoni: Fondamenti di Controlli Automatici, McGraw-Hill, 998 Cap. 7. Il problema della determinazione

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stabilità dei sistemi di controllo in retroazione Margini di stabilità Indicatori di robustezza della stabilità Margine di guadagno Margine di fase Stabilità regolare e marginale ed estensioni delle definizioni

Dettagli

Regolazione e Controllo dei Sistemi Meccanici 21 Luglio 2003

Regolazione e Controllo dei Sistemi Meccanici 21 Luglio 2003 Regolazione e Controllo dei Sistemi Meccanici 2 Luglio 23 Numero di matricola = α = β = γ = δ Si consideri un sistema termodinamico costituito da un frigorifero posto all interno di un ambiente a temperatura

Dettagli

COMPORTAMENTO DI UN SISTEMA IN REGIME SINUSOIDALE

COMPORTAMENTO DI UN SISTEMA IN REGIME SINUSOIDALE COMPORTAMENTO DI UN SISTEMA IN REGIME SINUSOIDALE Un sistema risponde ad una sinusoide in ingresso con una sinusoide in uscita della stessa pulsazione. In generale la sinusoide d uscita ha una diversa

Dettagli

Controlli automatici e controllo dei processi Docente: Davide M. Raimondo Prova scritta: 01/03/2013 Durata: 3h. Cognome Nome Matricola

Controlli automatici e controllo dei processi Docente: Davide M. Raimondo Prova scritta: 01/03/2013 Durata: 3h. Cognome Nome Matricola Controlli automatici e controllo dei processi Docente: Davide M. Raimondo Prova scritta: 01/03/2013 Durata: 3h Cognome Nome Matricola Esercizio 3: Si determini, motivando brevemente, la corrispondenza

Dettagli

CONTROLLI AUTOMATICI Ingegneria Gestionale ANALISI ARMONICA

CONTROLLI AUTOMATICI Ingegneria Gestionale  ANALISI ARMONICA CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI ARMONICA Ing. Federica Grossi Tel. 059 2056333 e-mail: federica.grossi@unimore.it

Dettagli

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale DIAGRAMMI DI BODE

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale DIAGRAMMI DI BODE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale DIAGRAMMI DI BODE Ing. Luigi Biagiotti Tel. 51 29334 / 51 29368 e-mail: lbiagiotti@deis.unibo.it http://www-lar.deis.unibo.it/~lbiagiotti e polari

Dettagli

ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica. CONTROLLI AUTOMATICI Ingegneria Meccatronica

ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica. CONTROLLI AUTOMATICI Ingegneria Meccatronica CONTROLLI AUTOMATICI Ingegneria Meccatronica http://www.automazione.ingre.unimore.it/pages/corsi/automazione%2industriale.htm ANALISI ARMONICA Analisi armonica di sistemi dinamici Analisi nel dominio del

Dettagli

CONTROLLI AUTOMATICI Ingegneria Meccatronica

CONTROLLI AUTOMATICI Ingegneria Meccatronica ) CONTROLLI AUTOMATICI Ingegneria Meccatronica ANALISI ARMONICA Prof. Cesare Fantuzzi Ing. Cristian Secchi e-mail: cesare.fantuzzi@unimore.it, cristian.secchi@unimore.it http://www.automazione.ingre.unimore.it

Dettagli

Diagrammi polari, di Nyquist e di Nichols

Diagrammi polari, di Nyquist e di Nichols Diagrammi polari, di Nyquist e di Nichols Definizione (1/2) Il diagramma di Nichols (DdNic) di una fdt consiste nella rappresentazione grafica di G(s) s= jω = G(jω) = M( ω)e jϕ( ω), per ω (, ) sul piano

Dettagli

Invert. a PWM. abc. Figura 1: Schema azionamento

Invert. a PWM. abc. Figura 1: Schema azionamento ESERCIZIO Si consideri il controllo di coppia di figura che fa uso di un azionamento a corrente alternata con un motore sincrono a magneti permanenti con rotore isotropo avente i seguenti dati di targa:

Dettagli

Ingegneria e Tecnologie dei Sistemi di Controllo ANALISI ARMONICA

Ingegneria e Tecnologie dei Sistemi di Controllo ANALISI ARMONICA Ingegneria e Tecnologie dei Sistemi di Controllo ANALISI ARMONICA Luigi Biagiotti DEIS-Università di Bologna Tel. 5 29334 e-mail: lbiagiotti@deis.unibo.it Analisi armonica di sistemi dinamici Analisi nel

Dettagli

Controlli Automatici: Raccolta di Prove Scritte con Soluzione. Elena Zattoni

Controlli Automatici: Raccolta di Prove Scritte con Soluzione. Elena Zattoni Controlli Automatici: Raccolta di Prove Scritte con Soluzione Elena Zattoni Premessa Questo volumetto è rivolto agli Studenti dei corsi di Controlli Automatici e raccoglie una serie di prove scritte con

Dettagli

Lezione 6 7 Febbraio. 6.1 Progettazione nel dominio della frequenza

Lezione 6 7 Febbraio. 6.1 Progettazione nel dominio della frequenza LabCont: Laboratorio di Controlli II Trim. 2007 Lezione 6 7 Febbraio Docente: Luca Schenato Stesori: Fiorio Giordano e Guiotto Roberto 6. Progettazione nel dominio della frequenza Il metodo più usato per

Dettagli

Controlli Automatici T. Analisi del sistema in retro e Funzioni di sensitività. Parte 8 Aggiornamento: Settembre Prof. L.

Controlli Automatici T. Analisi del sistema in retro e Funzioni di sensitività. Parte 8 Aggiornamento: Settembre Prof. L. Parte 8 Aggiornamento: Settembre 2010 Parte 8, 1 Analisi del sistema in retro e Funzioni di sensitività Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: lmarconi@deis.unibo.it URL:

Dettagli

Progetto del controllore

Progetto del controllore Parte 10, 1 - Problema di progetto Parte 10, 2 Progetto del controllore Il caso dei sistemi LTI a tempo continuo Determinare in modo che il sistema soddisfi alcuni requisiti - Principali requisiti e diagrammi

Dettagli

06. Analisi Armonica. Controlli Automatici. Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti

06. Analisi Armonica. Controlli Automatici. Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti Controlli Automatici 6. Analisi Armonica Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it http://www.arscontrol.org/teaching

Dettagli

Tracciamento dei Diagrammi di Bode

Tracciamento dei Diagrammi di Bode Tracciamento dei Diagrammi di Bode L. Lanari, G. Oriolo Dipartimento di Ingegneria Informatica, Automatica e Gestionale Sapienza Università di Roma October 24, 24 diagrammi di Bode rappresentazioni grafiche

Dettagli

Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada 16 Luglio 2014

Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada 16 Luglio 2014 Politecnico di Milano Fondamenti di Automatica (CL Ing. Gestionale) a.a.2013-14 Prof. Silvia Strada 16 Luglio 2014 Nome e Cognome:........................... Matricola........................... Firma............................................................................

Dettagli

ANALISI DEI SISTEMI IN RETROAZIONE E FUNZIONI DI SENSITIVITA

ANALISI DEI SISTEMI IN RETROAZIONE E FUNZIONI DI SENSITIVITA SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html ANALISI DEI SISTEMI IN RETROAZIONE E FUNZIONI DI SENSITIVITA Schema di riferimento

Dettagli

Rappresentazione grafica delle funzioni di trasferimento: diagramma di Nyquist

Rappresentazione grafica delle funzioni di trasferimento: diagramma di Nyquist Capitolo 8 Rappresentazione grafica delle funzioni di trasferimento: diagramma di Nyquist 8. Proprietà generali del diagramma di Nyquist Il diagramma di Nyquist (o polare ) della funzione W (jω) è definito

Dettagli

Sintesi di un controllore H

Sintesi di un controllore H Capitolo 3 Sintesi di un controllore H 3.1 Specifiche per un sistema multivariabile d r _ K G y n Figura 3.1: Anello di controllo con tre ingressi esogeni. Se K è il controllore e G il sistema multivariabile

Dettagli

Regolazione e Controllo dei Sistemi Meccanici a) b)

Regolazione e Controllo dei Sistemi Meccanici a) b) Regolazione e Controllo dei Sistemi Meccanici 13-1-21 Si consideri il modello dinamico di un aquilone (figura 1). a) b) Figure 1: a) Foto di una aquilone reale che vola ad alta quota. b) A sinistra rappresentazione

Dettagli

rapporto tra ingresso e uscita all equilibrio.

rapporto tra ingresso e uscita all equilibrio. Sistemi Dinamici: Induttore: Condensatore: Massa: Oscillatore meccanico: Pendolo: Serbatoio cilindrico: Serbatoio cilindrico con valvola d efflusso: Funzione di Trasferimento: Stabilità del sistema: (N.B.

Dettagli

Lezione 18. Trasmissione e carico. F. Previdi - Controlli Automatici - Lez. 18

Lezione 18. Trasmissione e carico. F. Previdi - Controlli Automatici - Lez. 18 Lezione 8. Trasmissione e carico F. Previdi - Controlli Automatici - Lez. 8 . Introduzione Tra motore e carico viene di norma inserito un riduttore per adattare le velocità di rotazione e la coppia erogata

Dettagli

Prova scritta di Controlli Automatici e sistemi elettrici lineari

Prova scritta di Controlli Automatici e sistemi elettrici lineari Prova scritta di Controlli Automatici e sistemi elettrici lineari Corso di Laurea in Ingegneria Meccatronica, AA 202 203 9 Settembre 203 Domande a Risposta Multipla Per ognuna delle seguenti domande a

Dettagli

REGOLATORI PID. Modello dei regolatori PID. Metodi di taratura automatica

REGOLATORI PID. Modello dei regolatori PID. Metodi di taratura automatica REGOLATORI PID Modello dei regolatori PID Metodi di taratura automatica Illustrazioni dal Testo di Riferimento per gentile concessione degli Autori 1 MODELLO DEI REGOLATORI PID Larga diffusione in ambito

Dettagli

Prova scritta di Controlli Automatici e sistemi elettrici lineari

Prova scritta di Controlli Automatici e sistemi elettrici lineari Prova scritta di Controlli Automatici e sistemi elettrici lineari Corso di Laurea in Ingegneria Meccatronica, AA 23 24 9 Giugno 24 NOTA BENE: In caso di punteggio inferiore od uguale a /3 nel compito scritto,

Dettagli

Università degli Studi di Parma - Facoltà di Ingegneria Appello di Controlli Digitali del 10 Luglio Parte A

Università degli Studi di Parma - Facoltà di Ingegneria Appello di Controlli Digitali del 10 Luglio Parte A Università degli Studi di Parma - Facoltà di Ingegneria Appello di Controlli Digitali del 0 Luglio 2007 - Parte A - (6 p.) - Illustra il metodo della formula di inversione per il calcolo dell antitrasformata

Dettagli

Tracciamento diagrammi di Nyquist

Tracciamento diagrammi di Nyquist Appunti Tracciamento Nyquist Ing. E.arone www.gprix.it Tracciamento diagrammi di Nyquist Prerequisiti Due Amenità sui numeri complessi Formula di Eulero: Appunti Tracciamento Nyquist Ing. E.arone www.gprix.it

Dettagli

FORMULARIO DI CONTROLLI AUTOMATICI

FORMULARIO DI CONTROLLI AUTOMATICI FORMULARIO DI CONTROLLI AUTOMATICI Sistema x (t) = A x (t) + B u (t) y (t) = C x (t) + D u (t) Funzione di trasferimento G (s) = y (s) / u (s) = C (si A) -1 B + D Sistema Serie G (s) = i G i (s) prodotto

Dettagli

Banda passante e sviluppo in serie di Fourier

Banda passante e sviluppo in serie di Fourier CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/controlliautomatici.html Banda passante e sviluppo in serie di Fourier Ing. e-mail: luigi.biagiotti@unimore.it

Dettagli

Analisi dei sistemi retroazionati

Analisi dei sistemi retroazionati Parte 9, 1 Analisi dei sistemi retroazionati Prestazioni dei sistemi di controllo Stabilità a ciclo chiuso: criterio di Nyquist, margini di guadagno e di fase, criterio di Bode Il luogo delle radici Parte

Dettagli

Analisi dei sistemi retroazionati

Analisi dei sistemi retroazionati Parte 9, 1 Parte 9, 2 Introduzione Analisi dei sistemi retroazionati Prestazioni dei sistemi di controllo Stabilità a ciclo chiuso: criterio di Nyquist, margini di guadagno e di fase, criterio di Bode

Dettagli

Soluzione degli esercizi del Capitolo 7

Soluzione degli esercizi del Capitolo 7 Soluzione degli esercizi del Capitolo 7 Soluzione dell Esercizio 7.1 La trasformata di Laplace dell uscita del sistema è da cui, per t, Y(s) = G(s)U(s) = 2 3.2 1+5ss 2 +.16 = = 64 1 5s +12.8 s+.2 s 2 +.16

Dettagli

Per un corretto funzionamento dei sistema si progetta un controllo a retroazione secondo lo schema di figura.

Per un corretto funzionamento dei sistema si progetta un controllo a retroazione secondo lo schema di figura. Tema di: SISTEMI ELETTRONICI AUTOMATICI Testo valevole per i corsi di ordinamento e per i corsi di progetto "SIRIO" - Indirizzo Elettronica e Telecomunicazioni 2001 Il candidato scelga e sviluppi una tra

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Controlli Automatici - A.A. 1/11 Ingegneria Gestionale 13 Settembre 11 - Esercizi Nome: Nr. Mat. Firma: Rispondere alle seguenti domande. a) Calcolare la trasformata di Laplace X(s) dei seguenti segnali

Dettagli

Risposta armonica Analisi nel dominio del tempo: caratterizzazione del sistema osservando la sua risposta (forzata) ad ingressi significativi

Risposta armonica Analisi nel dominio del tempo: caratterizzazione del sistema osservando la sua risposta (forzata) ad ingressi significativi Risposta armonica Analisi nel dominio del tempo: caratterizzazione del sistema osservando la sua risposta (forzata) ad ingressi significativi Ipotesi: il sistema ha f.d.t. G(s)=N(s)/D(s) e la corrispondente

Dettagli

Progetto del controllore

Progetto del controllore Progetto del controllore Principali reti di compensazione Loop shaping e sintesi per tentativi Reti anticipatrici Reti attenuatrici Reti integro-derivative Implicazioni sull attività sul comando 2 Principali

Dettagli