E il più grande tra tutti i numeri interi positivi che dividono i numeri dati.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "E il più grande tra tutti i numeri interi positivi che dividono i numeri dati."

Transcript

1 M.C.D. E il più grde tr tutti i ueri iteri positivi che dividoo i ueri dti. 4 = 144 = 4 M.C.D.= = 1 60 = 5 Si predoo cioè tutti i fttori coui co l espoete iore. Il M.C.D. tr due o più ooi è u ooio co coefficiete ugule l M.C.D. dei coefficieti e co prte letterle fort dl prodotto delle lettere COMUNI i ooi prese co espoete iore. 4 Tr 4, 144 c e 60 c 4 il M.C.D. è 1.c.. E il più piccolo tr tutti i ueri iteri positivi che è ultiplo di tutti i ueri dti. 4 = 144 = 4. c.. = 4 5 = = 5 Cioè si predoo i fttori prii coui e o coui co l espoete ggiore. Il.c. tr due o più ooi è u ooio co coefficiete ugule l.c.. dei coefficieti e co prte letterle fort dl prodotto delle lettere coui e o coui prese co espoete ggiore. 4 Tr 4, 144 c e 60 c 4 il.c.. è c POTENZE Si dice potez turle -esi di u uero rele positivo il prodotto di fttori tutti uguli quel uero. Proprietà: + = 5 = : = : 5 = 5 6 ( ) = ( ) 5 5 = ( ) = 10 5 = ( ) : : = 10 : = 5. 1

2 NUMERI DECIMALI Per trsforre u uero decile i frzioe si oper i questo odo: l frzioe h coe uertore il uero sez gli zeri iizili ed il deoitore h u 1 co tti zeri qute soo le cifre dopo l virgol. Per trsforre u uero periodico i frzioe si oper i questo odo : l frzioe h l uertore tutto il uero eo l tiperiodo ed l deoitore tti ove qute soo le cifre del periodo e tti zeri qute soo le cifre dell tiperiodo. Esepi: 14 0, 014 = , = , 16 = 90 MONOMI: E u qulsisi espressioe lgeric fort dl prodotto di ueri e lettere. L prte ueric è dett che coefficiete uerico, le lettere costituiscoo l prte letterle del ooio. GRADO DI UN MONOMIO E l so degli espoeti di tutte le lettere. z h grdo ++1=5. Il grdo reltivo ll letter è, quello reltivo ll z è 1. MONOMI SIMILI Soo ooi co l stess prte letterle. y è siile 4 y. SOMMA DI MONOMI L so di ooi si effettu scrivedoli uo ccto ll ltro co il proprio sego: - y 6y ho so : - y+6y. Se i ooi soo siili si soo sodo i loro coefficieti uerici. -7y+-y=5-8y.

3 MOLTIPLICAZIONE E DIVISIONE: Il prodotto di due o più ooi è u ooio che h per prte ueric il prodotto delle prti ueriche e per prte letterle tutte le lettere che figuro ei sigoli fttori, ciscu pres co l espoete pri ll so delle poteze dei sigoli fttori. y (-y) = -18 y. Il quoziete di due ooi è u ooio che h per prte ueric il quoziete delle prti ueriche e per prte letterle tutte le lettere che figuro ei sigoli fttori, ciscu pres co l espoete pri ll differez delle poteze dei sigoli fttori : 6 = = ALCUNE SCOMPOSIZIONI DI POLINOMI IN FATTORI - = ( + )( - ) - = ( - )( + + ) + = ( + )( + ) ( + ) = + + ( - ) = + - ( + ) = ( - ) = - + ( + + c) = + + c + + c + c Il polioio : ++c può essere scoposto se si riescoo trovre due ueri 1 ed tli che P( 1 )=P( )=0 ( che soo le rdici del polioio). Il polioio è così scopoiile: ++c = (- 1 )(- ). Il polioio: +s+p è scopoiile se riesco trovre due ueri che soti dio s e oltiplicti p. I tl cso l scoposizioe risult: (+ 1 )(+ ), dove 1 ed soo i due ueri trovti. ESEMPIO: - + = ( - )( - 1) iftti - = -1 -, = (-1)(-).

4 RADICALI Si chi rdicle l espressioe: = dove è il rdicdo ed l idice del rdicle. =. Voledo scrivere il rdicle sotto for espoezile Bst duque elevre il rdicdo d u idice frziorio dove l uertore copre l espoete del rdicdo e, l deoitore, l idice del rdicle. Rest iteso che vlgoo tutte le regole pri viste sulle poteze. OPERAZIONI CON I RADICALI: = = ( ) = =. TRASPORTO DENTRO E FUORI DAL SEGNO DI RADICE: = =. RAZIONALIZZAZIONE: E l isiee delle operzioi che perettoo di otteere u espressioe sez rdicli l deoitore. Per otteere ciò è sufficiete oltiplicre per u frzioe che cotiee sopr e sotto il fttore rziolizzte.(il risultto o ci perché il vlore di tle frzioe è 1). Ecco u tell co lcui fttori rziolizzti: Espressioe Fttore rziolizzte + y y y + y 4

5 TRIANGOLO DI TARTAGLIA - POTENZA DI UN BINOMIO 1 (+) (+) (+) 1 1 (+) (+) (+) 5 Questi ueri rppreseto i coefficieti, eo del sego, d ttriuire i sigoli terii del corrispodete sviluppo, fico segto. Ogi polioio sviluppto può sepre ordirsi secodo le poteze decresceti di e cresceti di. Coe coefficieti uso quelli del trigolo di Trtgli ( + ) = DIVISIONE DI DUE POLINOMI DEFINIZIONE: U polioio si dice divisiile per u ltro polioio, se esiste u terzo polioio (Quoto), che, oltiplicto per il secodo (Divisore), dà per prodotto il prio (Dividedo). A() = B() Q() Dove: A() = dividedo, B() = divisore, Q() = quoto. Se i due polioi o soo divisiili tr di loro, Q() prede il oe di Quoziete: A()=B() Q() + R() Dove R() è detto Resto. Ecco u esepio di coe procedere (E coe u coue divisioe tr ueri): ( ): ( -+): = = = = Quidi: Q() = , R() =

6 U ltr regol per dividere u polioio per u BINOMIO del tipo ( + ) è l regol di RUFFINI. Si scrivoo i coefficieti del polioio i ordie decrescete delle poteze di ettedo degli zeri qudo c u terie e si procede coe el seguete esepio: ( ): ( - ) D cui: Q() = +6+7 R() = 16. EQUAZIONI Dicesi equzioe u ugugliz tr due eri coteeti u icogit che deve essere deterit perché l ugugliz risulti ver. ESEMPIO: = 6 Dovrà essere =, iftti: = 6 U equzioe si dice equivlete d u ltr se h le stesse soluzioi (cioè gli stessi vlori dell che l redoo ver). Dicesi grdo di u equzioe l espoete ssio co cui copre l icogit. Teore fodetle dell lger: U equzioe h u uero di soluzioi ugule l suo grdo. Pricipi di equivlez delle equzioi: Sodo o sottredo d o i eri di u equzioe uo stesso uero o u stess espressioe si ottiee u equzioe equivlete quell dt. D ciò deriv che per portre u terie d u ero d u ltro, st cirlo di sego. Moltiplicdo o dividedo o i eri di u equzioe per uo stesso uero diverso d zero o per u stess espressioe che o si ull, si ottiee u equzioe equivlete ll dt. ESEMPIO: (+1)-4= +-4= +- = 4 = 4 =. 4 6

7 Se si h che fre co equzioi frziorie (cioè se copre l l deoitore), si procede fcedo il iio coue deoitore e scrtdo gli evetuli vlori delle che lo ullo. (Iftti è ipossiile dividere u uero per zero!). ESEMPIO: = (10 1) ( 1) 1 = 7( 1) 1 Posso eliire il deoitore oltiplicdo destr e siistr per ( -1). Devo però scrtre le soluzioi che lo ullereero: ( -1)=(-1)(+1) quidi : 1, 1 Procedio co il clcolo: = = -7+1 = -6 = -6/ = -. U equzioe si dice ipossiile se o h soluzioi, cioè se si preset ell for 0 = co, uero o ullo. U equzioe si dice ideterit se h ifiite soluzioi, cioè se si preset ell for 0 =0. EQUAZIONI PURE: EQUAZIONI DI SECONDO GRADO Soo del tipo: +=0. Si risolvoo i questo odo: = -/ = ± Si ho quidi due rdice uguli ed opposte se / è positivo, se è egtivo l equzioe è ipossiile. EQUAZIONI SPURIE: Soo del tipo: +=0. Si risolvoo rccogliedo l ed usdo l legge dell ulleto del prodotto: se il prodotto di due o più fttori è ullo, uo dei due fttori deve essere ullo. = 0 Risolvo: ( + )=0 + = 0 / = -/ 7

8 EQUAZIONI COMPLETE: Soo del tipo: ++c=0. Per risolverl si us l forul: ± = 4c Il DISCRIMINANTE dell equzioe è Se: >0 ho due rdici reli e distite. =0 ho due soluzioi reli e coicideti, <0 o ho soluzioi reli. = 4c. EQUAZIONI DI GRADO SUPERIORE AL SECONDO EQUAZIONI BINOMIE: Soo del tipo: +=0 co itero positivo, e diversi d zero. Si risolvoo scopoedo il ioio e poi pplicdo l legge di ulleto del prodotto. ESEMPIO: =0 (4 +1)(4-1)=0 (4 +1)(-1)(+1)=0 D cui: (4 +1)=0 = ± 1 1 = ± i 4 (l equzioe o h soluzioi ell isiee dei ueri reli), (-1)=0 1 =, (+1)=0 1 =. Oppure = = se è dispri = = ± se è pri e > 0 l equzioe è ipossiile, cioè o h soluzioe ell isiee dei ueri reli, se è pri e < 0 8

9 EQUAZIONI BIQUADRATICHE: Soo del tipo: 4 + +c=0. Per risolverl st porre: y =. Si ottiee così u equzioe di secodo grdo i y le cui soluzioi soo y 1 e y. Risolvedo le equzioi = y1 e = y si ottegoo le soluzioi dell equzioe di prtez. EQUAZIONI IRRAZIONALI: Soo equzioi elle quli l icogit copre sotto il sego di rdice. Tli rdici dovro essere eliite per esepio elevdo o i eri dell equzioe ll stess potez. TEOREMA: Elevdo ll stess potez o i eri di u equzioe lgeric, si ottiee u uov equzioe che può NON essere equivlete quell dt. Per tle otivo le soluzioi così otteute dovro essere verificte, sostituedo i vlori trovti ell equzioe di prtez. ESEMPIO: = + 4 = 1 Elevo etri i eri l cuo: + 4 = = 0 Applicdo l forul per le equzioi di secodo grdo ottego: 1 = -1 = /. Sostituedo tli vlori l posto di ell equzioe di prtez trovo che etre soo verificte. ALTRI CASI: Se l equzioe cotiee solo due rdicli, coviee isolrli uo d u ero ed uo ll ltro, elevdo poi etri i eri d u espoete pri ll.c. degli idici delle rdici. Se l equzioe cotiee più di due rdicli srà ecessrio elevre i eri llo stesso espoete più volte, secod dei csi. SISTEMI DI EQUAZIONI Cosiderio u equzioe co più di u icogit, per esepio:-y=6. E ovvio che esiste più di u coppi di vlori (,y) che l soddisfo. I geere ci soo INFINITE soluzioi. Se or itroducio u ltr equzioe elle icogite ed y, esiste u sol coppi (,y) di vlori che soddisfo etre le equzioi. Quidi u siste ci d i vlori di ed y che soddisfo coteporeete etre le equzioi. 9

10 U siste ridotto for orle si preset i quest for: + = c 1+ 1= c1 Risolverlo sigific trovre l coppi (,y) che rede vere etre le equzioi. METODI DI RISOLUZIONE: SOSTITUZIONE: Se risolvo u equzioe di u dto siste i, per esepio, e se sostituisco il vlore trovto ell secod, ottego u siste equivlete quello dto, co u equzioe i y. Risolvo tle equzioe e trovo y. Sostituisco il vlore di y ell pri e ricvo. = 9 + y 8y = y = 8y = y 9 + y 9 + ( ) = = = 6y = 18 y = y = 9 + y = 9 + y = 9 + y 8y = y 8y = 7 = 1 y = METODO DI CONFRONTO: Cosiste el ricvre d etre le equzioi l stess icogit. Si eguglio poi le due espressioi trovte e si trov il vlore dell icogit rist. Tle vlore si sostituisce i u delle precedeti equzioi trovte e si ricv il vlore dell ltr icogit. METODO DI RIDUZIONE (o SOTTRAZIONE e ADDIZIONE): PRINCIPIO DI RIDUZIONE: Se d u delle equzioi di u siste, si sostituisce l equzioe otteut ddiziodo (o sottredo) ero ero le equzioi del siste dto, si ottiee u siste equivlete l prio. Ovviete, dto che si h che fre co equzioi, posso che oltiplicre o dividere u stess equzioe, ero ero, per lo stesso vlore purché diverso d zero. Per risolvere il siste si può quidi oltiplicre per u coefficiete opportuo e poi sore o sottrrre le equzioi, ffiché scopi u icogit, potedo così ricvre il vlore dell ltr. Al solito, si sostituisce questo vlore i u delle precedeti ricvdo l ltr icogit. 10

I numeri naturali. Cosa sono i numeri naturali? Quali sono le caratteristiche di N? Le operazioni in N. addizione = 15. moltiplicazione 3 7 = 21

I numeri naturali. Cosa sono i numeri naturali? Quali sono le caratteristiche di N? Le operazioni in N. addizione = 15. moltiplicazione 3 7 = 21 I ueri turli Cos soo i ueri turli? I ueri turli soo i ueri 0 1 4 5 6 7 8 9 10 11 1 L isiee dei ueri turli si idic co N. N { 0, 1,,, 4, 5, 6, 7, 8, 9, 10, 11, 1,..} Quli soo le crtteristiche di N? L isiee

Dettagli

INDICE. Scaricabile su: Algebra e Equazioni TEORIA

INDICE. Scaricabile su:  Algebra e Equazioni TEORIA P r o f. Gu i d of r c h i i Atepri Atepri Atepri www. l e z i o i. j i d o. c o Scricile su: http://lezioi.jido.co/ Alger e Equzioi TEORIA INDICE Nozioi geerli, isiei, uioe ed itersezioe, ueri reli Mooi

Dettagli

PRECORSO DI MATEMATICA III Lezione RADICALI E. Modica LE RADICI

PRECORSO DI MATEMATICA III Lezione RADICALI E. Modica  LE RADICI PRECORSO DI MATEMATICA III Lezioe RADICALI E. Modic tetic@blogscuol.it www.tetic.blogscuol.it LE RADICI Abbio visto che l isiee dei ueri reli è costituito d tutti e soli i ueri che possoo essere rppresetti

Dettagli

Sdl ELEMENTI DI BASE: Potenze. Radicali. Logaritmi

Sdl ELEMENTI DI BASE: Potenze. Radicali. Logaritmi ELEMENTI DI BASE: Poteze Rdicli Logritmi POTENZE L potez co bse ed espoete, o potez - esim di, si idic co ed è il prodotto di fttori tutti uguli d. =... ( volte) 0 = 1 PROPRIETÀ DELLE POTENZE m = +m :

Dettagli

CALCOLO DI LIMITI PER LE FUNZIONI CONTINUE. Saper calcolare semplici limiti, in particolare delle funzioni razionali intere e fratte.

CALCOLO DI LIMITI PER LE FUNZIONI CONTINUE. Saper calcolare semplici limiti, in particolare delle funzioni razionali intere e fratte. CALCOLO DI LIMITI PER LE FUNZIONI CONTINUE OBIETTIVI MINIMI: Sper idividure le fuzioi cotiue Sper pplicre i teorei sui iti Sper idividure le fore ideterite Sper clcolre seplici iti, i prticolre delle fuzioi

Dettagli

Appunti sui RADICALI

Appunti sui RADICALI Imprimo d operre co i rdicli Apputi sui RADICALI sego di rdice, idice di rdice, rdicdo, espoete del rdicdo: cquisteri fmilirità co queste prole: simbolo di rdice, idice di rdice, rdicdo, espoete del rdicdo.

Dettagli

RADICALI Classe II a.s. 2010/2011 Prof.ssa Rita Schettino

RADICALI Classe II a.s. 2010/2011 Prof.ssa Rita Schettino RADICALI Clsse II.s. 00/0 Prof.ss Rit Schettio RADICALI Aritetici I R Algerici I R prof.ss R. Schettio N. B. R idic l isiee dei ueri reli o egtivi, ossi positivi o ulli. RADICALI ARITMETICI DEFINIZIONE

Dettagli

Δlessio abelli. Studente di Matematica Sapienza - Università di Roma. Dipartimento di Matematica Guido Castelnuovo

Δlessio abelli. Studente di Matematica Sapienza - Università di Roma. Dipartimento di Matematica Guido Castelnuovo Δlessio elli Studete di Mtemtic Spiez - Uiversità di Rom Diprtimeto di Mtemtic Guido Csteluovo we-site: www.selli87.ltervist.org APPUNTI SUI RADICALI DEFINIZIONE DI RADICALE INDICE PARI : Si chim rdice

Dettagli

N 02 B I concetti fondamentali dell aritmetica

N 02 B I concetti fondamentali dell aritmetica Uità Didttic N 0 I cocetti fodmetli dell ritmetic U.D. N 0 B I cocetti fodmetli dell ritmetic 0) Il cocetto di potez 0) Proprietà delle poteze 0) L ozioe di rdice ritmetic 0) Multipli e divisori di u umero

Dettagli

PROGETTO SIRIO PRECORSO di MATEMATICA Teoria

PROGETTO SIRIO PRECORSO di MATEMATICA Teoria Vi Aldo Mo ro, 1097-300 15 Chioggi (VE) t el. 0414 965 81 1 - fx 0 414 96 54 3 - ww w. itisri ghi.com POTENZA i N... DIVISIBILITÀ e NUMERI PRIMI...3 MASSIMO COMUN DIVISORE e MINIMO COMUNE MULTIPLO...3

Dettagli

Algebra» Appunti» Logaritmi

Algebra» Appunti» Logaritmi MATEMATICA & FISICA E DINTORNI Psqule Spiezi Algebr» Apputi» Logriti TEOREMA Sio e b ueri reli co R + {} e b R +. Esiste, ed è uico, u uero k R: k b Il uero k è detto rito di b i bse e viee idicto co l

Dettagli

Unità Didattica N 12. I logaritmi e le equazioni esponenziali

Unità Didattica N 12. I logaritmi e le equazioni esponenziali Uità Didttic N I riti e le equzioi espoezili Uità Didttic N I riti e le equzioi espoezili ) Potez co espoete itero di u uero rele. ) Potez co espoete rziole. ) Potez co espoete rele di u uero rele positivo.

Dettagli

OPERAZIONI CON LE FRAZIONI ALGEBRICHE

OPERAZIONI CON LE FRAZIONI ALGEBRICHE OPERAZIONI CON LE FRAZIONI ALGEBRICHE A] SEMPLIFICAZIONE DI UNA FRAZIONE ALGEBRICA Sempliicre u rzioe lgeric sigiic dividere umertore e deomitore per uo stesso ttore diverso d zero. Procedur per sempliicre

Dettagli

Matematica e-learning - Corso Zero di Matematica. I Radicali. Prof. Erasmo Modica A.A. 2009/2010

Matematica e-learning - Corso Zero di Matematica. I Radicali. Prof. Erasmo Modica A.A. 2009/2010 Mtemtic e-lerig - Corso Zero di Mtemtic I Rdicli Prof. Ersmo Modic ersmo@glois.it A.A. 2009/200 I umeri turli 2 Le rdici Abbimo visto che l isieme dei umeri reli è costituito d tutti e soli i umeri che

Dettagli

RADICALI RADICALI INDICE

RADICALI RADICALI INDICE RADICALI INDICE Rdici qudrte P. Rdici cubiche P. Rdici -esime P. Codizioi di esistez P. Proprietà ivritiv e semplificzioe delle rdici P. Poteze d espoete rziole P. 7 Moltipliczioe e divisioe di rdici P.

Dettagli

FUNZIONI ESPONENZIALI

FUNZIONI ESPONENZIALI CONCETTI INTRODUTTIVI FUNZIONI ESPONENZIALI POTENZE AD ESPONENTE RAZIONALE L teori delle poteze può essere estes che lle poteze che ho per espoete u NUMERO RAZIONALE INSIEME Q. Ho seso solo le poteze che

Dettagli

Correzione Compito di matematica - Classe 1 SIRIO. I Quadrimestre a.s. 2006/07 Docente: Roberta Virili

Correzione Compito di matematica - Classe 1 SIRIO. I Quadrimestre a.s. 2006/07 Docente: Roberta Virili Apputi di tetic SIRIO Soluzioe Copito i clsse Correzioe Copito di tetic - Clsse SIRIO I Qudriestre.s. 00/07 Docete Robert Virili. Copletre le uguglize pplicdo le proprietà delle poteze. b. 9 0 9 0 d. (

Dettagli

GLI INSIEMI NUMERICI

GLI INSIEMI NUMERICI GLI INSIEMI NUMERICI R π, _ -,8,89 Q Z N - 8-8 -8 _,,66 - e, - -,6 _ -,6 6 R Numeri Reli Q Numeri Rzioli Z Numeri Iteri Reltivi N Numeri Nturli Dl digrmm di Eulero-Ve ovvio è che : N è u sottoisieme rorio

Dettagli

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it)

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it) I rdicli Cludio CANCELLI (www.cludioccelli.it) Ed..0 www.cludioccelli.it Dec. 0 I rdicli INDICE DEI CONTENUTI. I RADICALI... INDICE DI RADICE PARI...4 INDICE DI RADICE DISPARI...5 RADICALI SIMILI...6 PROPRIETA

Dettagli

Soluzione di sistemi lineari. Esistenza delle soluzioni. Quante soluzioni? 1 se singolare 0 o infinite se non singolare

Soluzione di sistemi lineari. Esistenza delle soluzioni. Quante soluzioni? 1 se singolare 0 o infinite se non singolare L (sistei) L (sistei) Soluzioe di sistei lieri Esistez delle soluzioi etodi per l soluzioe di sistei di equzioi lieri: Eliizioe di vriili etodo di Crer trice ivers Tipi di sistei: Sistei deteriti Sistei

Dettagli

3. Calcolo letterale

3. Calcolo letterale Parte Prima. Algera 1) Moomi Espressioe algerica letterale 42 Isieme di umeri relativi, talui rappresetati da lettere, legati fra loro da segi di operazioi. Moomio Espressioe algerica che o cotiee le operazioi

Dettagli

NUMERI NATURALI E INTERI

NUMERI NATURALI E INTERI NUMERI NATURALI E INTERI.L isiee dei ueri turli. Le operzioi fr ueri turli: ddizioe e oltipliczioe.2 L ordieto.3 Sottrzioe e divisioe.4 Divisibilità ell isiee dei turli.5 L eleveto potez.6 Rppresetzioe

Dettagli

RELAZIONE FRA LA STABILITA DEL SISTEMA E LA FUNZIONE DI TRASFERIMENTO

RELAZIONE FRA LA STABILITA DEL SISTEMA E LA FUNZIONE DI TRASFERIMENTO RELAZIONE FRA LA STABILITA DEL SISTEMA E LA FUNZIONE DI TRASFERIMENTO L stbilità di u sistem liere, ivrite ed prmetri cocetrti può vlutrsi co due criteri diversi che fo rispettivmete riferimeto ll rispost

Dettagli

Nel gergo delle disequazioni vi sono dei simboli che devono essere conosciuti leggendoli da sinistra a destra:

Nel gergo delle disequazioni vi sono dei simboli che devono essere conosciuti leggendoli da sinistra a destra: Disequzioi Mrio Sdri DISEQUAZIONI Defiizioi U disequzioe è u disegugliz tr due espressioi che cotegoo icogite. Risolvere u disequzioe sigific trovre quell'isieme di vlori che, ttriuiti lle icogite, l redoo

Dettagli

Le operazioni fondamentali in N Basic Arithmetic Operations in N

Le operazioni fondamentali in N Basic Arithmetic Operations in N Operzioi fodetli i - 1 Le operzioi fodetli i Bsic Arithetic Opertios i I geerle u operzioe è u procedieto che due o più ueri, dti i u certo ordie e detti terii dell'operzioe, e ssoci u ltro, detto risultto

Dettagli

NECESSITÀ DEI LOGARITMI

NECESSITÀ DEI LOGARITMI NECESSITÀ DEI LOGARITMI Nelle equzioi espoezili he imo risolto sior er sempre possiile ridursi equzioi i ui si vev l stess se, l equzioe divetv lgeri sempliemete uguglido gli espoeti. M o tutte le equzioi

Dettagli

2 Sistemi di equazioni lineari.

2 Sistemi di equazioni lineari. Sistemi di equzioi lieri. efiizioe. Si dice equzioe liere elle icogite equzioe dell form () + +...+ = o che (') i= i i = ove,,..., R si chimo coefficieti e R termie oto.,,..., ogi efiizioe. Si dice soluzioe

Dettagli

Un numero relativo è, quindi, l associazione di un valore assoluto e di un segno e le due parti sono inscindibili tra loro.

Un numero relativo è, quindi, l associazione di un valore assoluto e di un segno e le due parti sono inscindibili tra loro. Nueri reltivi e operzioi - 1 Nueri reltivi I ueri preceduti d u sego si dicoo ueri reltivi. +9 e -5 soo ueri reltivi Il odulo o vlore ssoluto di u uero reltivo è il uero stesso sez il sego. Per idicre

Dettagli

FATTI NUMERICI & PROPRIETÀ della SCUOLA SECONDARIA DI I GRADO CHE DOVRAI RICORDARE per SOPRAVVIVERE alle SUPERIORI

FATTI NUMERICI & PROPRIETÀ della SCUOLA SECONDARIA DI I GRADO CHE DOVRAI RICORDARE per SOPRAVVIVERE alle SUPERIORI FATTI NUMERICI & PROPRIETÀ dell SCUOLA SECONDARIA DI I GRADO CHE DOVRAI RICORDARE per SOPRAVVIVERE lle SUPERIORI QUADRATI & RADICI NOTEVOLI ² = = ² = 4 4 = ² = 9 9 = 4² = 6 6 = 4 5² = 5 5 = 5 6² = 6 6

Dettagli

Polinomi, disuguaglianze e induzione.

Polinomi, disuguaglianze e induzione. Allemeti Disid Mtemtic Geio 03 Poliomi, disuguglize e iduzioe. Qul è l mssim re di u rettgolo vete perimetro ugule 576? [Suggerimeto: utilizzre le medie e le loro disuguglize.] Svolgimeto. Predimo i cosiderzioe

Dettagli

LA PROPAGAZIONE DEGLI ERRORI:

LA PROPAGAZIONE DEGLI ERRORI: LA PROPAGAZIOE DEGLI ERRORI: Fio d or io visto coe deterire l errore di u grdezz isurt direttete. Spesso però cpit ce il vlore dell grdezz ce si vuole deterire o è isurile, deve essere ricvto prtire d

Dettagli

A=B se e solo se 1) m=p 2) n=q 3) a i,j =b i,j K per ogni i=1,,m e j=1,,n. Studiamo ora alcune delle proprietà che regolano queste operazioni.

A=B se e solo se 1) m=p 2) n=q 3) a i,j =b i,j K per ogni i=1,,m e j=1,,n. Studiamo ora alcune delle proprietà che regolano queste operazioni. Osservzioe: due trii soo idetihe se e solo se ho lo stesso uero di righe lo stesso uero di oloe e ho le stesse etrte i K: dte A i j i B i j i p j...... j...... q AB se e solo se p q ij ij K per ogi i e

Dettagli

MATEMATICA Classe Prima

MATEMATICA Classe Prima Liceo Scietifico di Treiscce Esercizi per le vcze estive 0 MATEMATICA Clsse Prim Cpitolo Numeri turli Primi ogi pgi del cpitolo Cpitolo Numeri turli Primi ogi pgi del cpitolo Per gli llievi promossi co

Dettagli

FORMULARIO ALGEBRA E ASSI CARTESIANI (RETTA) n m n m. a a a. n m n m. a a a. a b a b. a a a b. a n =

FORMULARIO ALGEBRA E ASSI CARTESIANI (RETTA) n m n m. a a a. n m n m. a a a. a b a b. a a a b. a n = Poteze volte FORMULARIO ALGEBRA E ASSI CARTESIANI (RETTA) proprietà: ) 2) 3) 4) 5) m m m m m m b 0 per qulsisi Numeri iteri: umero co sego e vlore Somm lgebric: Segi cocordi + +b - - b ddizioe Prodotto

Dettagli

ma non sono uguali fra loro

ma non sono uguali fra loro Defiizioe U fuzioe f defiit i D (doiio) si dice cotiu i u puto c D se esiste i tle puto (è cioè possiile clcolre f (c)); se esiste, fiito, il ite dell fuzioe per che tede c e se il vlore del ite coicide

Dettagli

I numeri reali come sezione nel campo dei numeri razionali

I numeri reali come sezione nel campo dei numeri razionali I umeri reli come sezioe el cmpo dei umeri rzioli Come sppimo, el cmpo dei umeri rzioli, le quttro operzioi fodmetli soo sempre possibili, el seso che, effettudo sopr u quluque isieme fiito u sequel fiit

Dettagli

Misurare una grandezza fisica significa stabilire quante unità di misura sono contenute nella grandezza stessa.

Misurare una grandezza fisica significa stabilire quante unità di misura sono contenute nella grandezza stessa. L misur: Misurre u grdezz fisic sigific stilire qute uità di misur soo coteute ell grdezz stess. L misur di u grdezz si dice dirett qudo si effettu per cofroto co u grdezz d ess omogee scelt come cmpioe

Dettagli

EQUAZIONI ESPONENZIALI -- LOGARITMI

EQUAZIONI ESPONENZIALI -- LOGARITMI Equzioi espoezili e riti pg 1 Adolfo Sioe 1998 EQUAZIONI ESPONENZIALI -- LOGARITMI Fuzioe Espoezile Dto u uero rele positivo osiderio l fuzioe f : R R he d ogi eleeto R f orrispodere l'eleeto y =. Se =

Dettagli

Le equazioni di grado superiore al secondo

Le equazioni di grado superiore al secondo Le equzioni di grdo superiore l secondo ITIS Feltrinelli nno scolstico 007-008 R. Folgieri 007-008 1 Teorem fondmentle dell lger Ogni equzione lgeric di grdo n h sempre n soluzioni, che possono essere

Dettagli

RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI

RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI PROPRIETÀ DEI NUMERI INTERI, SCOMPOSIZIONI, ECC.. Se A è ugule e B è ugule, qunto vlgono m.c.m. ed M.C.D. dei numeri A e B? 0 e. Se si moltiplicno due numeri

Dettagli

B8. Equazioni di secondo grado

B8. Equazioni di secondo grado B8. Equzioni di secondo grdo B8.1 Legge di nnullmento del prodotto Spendo che b0 si può dedurre che 0 oppure b0. Quest è l legge di nnullmento del prodotto. Pertnto spendo che (-1) (+)0 llor dovrà vlere

Dettagli

ANALISI MATEMATICA STUDIO DI FUNZIONI

ANALISI MATEMATICA STUDIO DI FUNZIONI ANALISI MATEMATICA STUDIO DI FUNZIONI. RELAZIONI Le fuzioi soo prticolri relzioi; le relzioi (birie) soo sottoisiemi del prodotto crtesio tr due isiemi. L trttzioe prte quidi dl cocetto di prodotto crtesio.

Dettagli

Il calcolo letterale

Il calcolo letterale Progetto Mtemtic in Rete Il clcolo letterle Finor imo studito gli insiemi numerici (espressioni numeriche). Ν, Ζ, Q, R ed operto con numeri In mtemtic però è molto importnte sper operre con le lettere

Dettagli

Prof. Roberto Milizia, presso Liceo Scientifico E. Ferdinando Mesagne (BR) 1

Prof. Roberto Milizia, presso Liceo Scientifico E. Ferdinando Mesagne (BR) 1 Prof. Roberto Milizi presso Liceo cietifico E. Ferio Mesge BR UNITA. PROGREIONI ARITMETICHE E GEOMETRICHE.. Le successioi ueriche.. Le progressioi ritetiche.. Il terie geerico e l rgioe i u progressioe

Dettagli

Liceo Scientifico di Trebisacce Classe Seconda - MATEMATICA. a ab. Prof. Mimmo Corrado. Scomposizioni. Frazioni algebriche

Liceo Scientifico di Trebisacce Classe Seconda - MATEMATICA. a ab. Prof. Mimmo Corrado. Scomposizioni. Frazioni algebriche Liceo Scietifico di Treiscce Clsse Secod - MATEMATICA Esercizi per le vcze estive Prof. Mimmo Corrdo. Esegui le segueti scomposizioi i fttori Scomposizioi z z m m m c m m m m. Clcol M.C.D. e m.c.m. dei

Dettagli

GLI INSIEMI NUMERICI

GLI INSIEMI NUMERICI GLI INSIEMI NUMERICI R 2 π 2, _ -,8 2,89 Q Z N -2 2 28-87 -87 _, 7,76267 7 - e 2,7-7 -,6 _ -,627 7 6 R Numeri Reali Q Numeri Razioali Z Numeri Iteri Relativi N Numeri Naturali Dal diagramma di Eulero-Ve

Dettagli

1. L'INSIEME DEI NUMERI REALI

1. L'INSIEME DEI NUMERI REALI . L'INSIEME DEI NUMERI REALI. I pricipli isiemi di umeri Ripredimo i pricipli isiemi umerici N, l'isieme dei umeri turli 0; ; ; ; ;... L'ide ituitiv di umero turle è ssocit l prolem di cotre e ordire gli

Dettagli

Unità Didattica N 35 I sistemi lineari

Unità Didattica N 35 I sistemi lineari Uità Didttic N 5 Uità Didttic N 5 ) Sistem liere di equioi i icogite: teorem di Crmer ) Sistem liere di m equioi i icogite ) Teorem di ouchè-cpelli 4) Sistem di m equioi lieri omogeee i icogite 5) isoluioe

Dettagli

{ 3 x y=4. { x=2. Sistemi di equazioni

{ 3 x y=4. { x=2. Sistemi di equazioni Sistemi di equzioni Definizione Un sistem è un insieme di equzioni che devono essere verificte contempornemente, cioè devono vere contempornemente le stesse soluzioni. Definimo grdo di un sistem il prodotto

Dettagli

SERIE NUMERICHE esercizi. R. Argiolas

SERIE NUMERICHE esercizi. R. Argiolas esercizi R. Argiols L? Quest piccol rccolt di esercizi sulle serie umeriche è rivolt gli studeti del corso di lisi mtemtic I. E bee precisre fi d or che possedere e svolgere gli esercizi di quest dispes

Dettagli

Appunti di Matematica per le Scienze Sociali

Appunti di Matematica per le Scienze Sociali 2014 Apputi di Mtemtic per le Scieze Socili Quello che vete imprto scuol (o lmeo u prte) m che o vi ricordte. [Digitre qui il suto del documeto. Di orm è u breve sitesi del coteuto del documeto. [Digitre

Dettagli

I radicali. Cos è un radicale? ESERCIZIO 2.1. Determina le C.E. dei seguenti radicali e delle seguenti espressioni contenenti radicali.

I radicali. Cos è un radicale? ESERCIZIO 2.1. Determina le C.E. dei seguenti radicali e delle seguenti espressioni contenenti radicali. I rdicli Cos è un rdicle? Il simbolo si chim rdicle e si legge rdice ennesim di. - n si chim indice dell rdice e deve essere un numero nturle mggiore di zero. Qundo l indice si sottintende e il rdicle

Dettagli

ESERCIZI SULLA MECCANICA DEI SOLIDI

ESERCIZI SULLA MECCANICA DEI SOLIDI ESERZ SULLA MEANA DE SOLD ESERZO Assegto el puto P di u corpo cotiuo il seguete tesore dell tesioe, si determii il vettore dell tesioe sull gicitur vete per ormle ; i j k 6 6 6 4 i, j, k versori degli

Dettagli

Corso di Analisi: Algebra di Base. 4^ Lezione. Radicali. Proprietà dei radicali. Equazioni irrazionali. Disequazioni irrazionali. Allegato Esercizi.

Corso di Analisi: Algebra di Base. 4^ Lezione. Radicali. Proprietà dei radicali. Equazioni irrazionali. Disequazioni irrazionali. Allegato Esercizi. Corso di Anlisi: Algebr di Bse ^ Lezione Rdicli. Proprietà dei rdicli. Equzioni irrzionli. Disequzioni irrzionli. Allegto Esercizi. RADICALI : Considerto un numero rele ed un numero intero positivo n,

Dettagli

1^ Lezione. Matrici e determinanti. Operazioni tra matrici. Proprietà delle matrici. Determinante. Proprietà dei determinanti.

1^ Lezione. Matrici e determinanti. Operazioni tra matrici. Proprietà delle matrici. Determinante. Proprietà dei determinanti. Corso di Geometri e lger Liere: Mtrici e Determiti ^ Lezioe Mtrici e determiti. Operzioi tr mtrici. Proprietà delle mtrici. Determite. Proprietà dei determiti. - llegto Esercizi MTRICI E DETERMINNTI Si

Dettagli

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale:

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale: IL CALCOLO LETTERALE: I MONOMI Conoscenze. Complet.. Un espressione letterle è.... Per clcolre il vlore numerico di un espressione letterle isogn...... c. Non si possono ssegnre lle lettere che compiono

Dettagli

Introduzione al calcolo letterale: Monomi e polinomi

Introduzione al calcolo letterale: Monomi e polinomi http://www.tuttoportle.it/ A SCUOLA DÌ MATEMATICA Lezioi di mtemtic cur dì Eugeio Amitro Argometo. Itroduzioe l clcolo letterle: Moomi e poliomi U pgi del liro Al-Kitā l-mukhtṣr fī hīsā l-ğr w l-muqāl

Dettagli

ELEMENTI DI CALCOLO COMBINATORIO. Disposizioni

ELEMENTI DI CALCOLO COMBINATORIO. Disposizioni ELEMENTI DI CALCOLO COMBINATORIO Il clcolo comitorio h come oggetto il clcolo del umero dei modi co i quli possoo essere ssociti, secodo regole stilite, gli elemeti di due o più isiemi o di uo stesso isieme.

Dettagli

VINCENZO AIETA Matrici,determinanti, sistemi lineari

VINCENZO AIETA Matrici,determinanti, sistemi lineari VINCENZO AIETA Mtrici,determiti, sistemi lieri 1 Mtrici 1.1 Defiizioe di cmpo. Dto u isieme A, dotto di due operzioi itere (, ), A Φ, si dice che l struttur lgebric A(, ), di sostego A, è u cmpo se: (1)

Dettagli

Claudio Estatico

Claudio Estatico Cludio Esttico (esttico@dim.uige.it) Sistemi lieri: Algoritmo di Guss (Elimizioe Gussi) Lezioe bst su pputi del prof. Mrco Gvio Elimizioe Gussi ) Sistemi lieri. ) Mtrice ivers. Sistemi lieri ) Sistemi

Dettagli

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33)

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33) Defiizioe di umero reale come allieameto decimale co sego. Numeri reali positivi. Numeri razioali: defiizioe e proprietà di desità Numeri reali Defiizioe: U umero reale è u allieameto decimale co sego,

Dettagli

Scuola delle Biotecnologie - ISTITUZIONI DI MATEMATICHE - a. a. 2006/2007 Prof. Margherita Fochi. Appunti precorso. k k

Scuola delle Biotecnologie - ISTITUZIONI DI MATEMATICHE - a. a. 2006/2007 Prof. Margherita Fochi. Appunti precorso. k k Scuol delle Biotecologie - ISTITUZIONI DI MATEMATICHE -.. 006/007 Prof. Mrgherit Fochi Apputi precorso.- Poliomi.. - Geerlità Def..- Moomio ell vribile di grdo k è l espressioe : Def..- Poliomio ell vribile

Dettagli

Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO ALGEBRA

Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO ALGEBRA Liceo Scientifico G. Slvemini Corso di preprzione per l gr provincile delle OLIMPIADI DELLA MATEMATICA INTRO ALGEBRA PROPRIETA DELLE POTENZE PRODOTTI NOTEVOLI QUESITO SUGGERIMENTO y è un espressione non

Dettagli

Radicali. Definizioni Variazioni di radicali Operazioni Razionalizzazione Radicali doppi Potenze con esponente razionale Esercizi

Radicali. Definizioni Variazioni di radicali Operazioni Razionalizzazione Radicali doppi Potenze con esponente razionale Esercizi Rdicli Definizioni Vrizioni di rdicli Operzioni Rzionlizzzione Rdicli doppi Potenze con esponente rzionle Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni n L espressione è comunemente dett rdice

Dettagli

{ 1, 2,3, 4,5,6,7,8,9,10,11,12, }

{ 1, 2,3, 4,5,6,7,8,9,10,11,12, } Lezione 01 Aritmetic Pgin 1 di 1 I numeri nturli I numeri nturli sono: 0,1,,,4,5,6,7,8,,10,11,1, L insieme dei numeri nturli viene indicto col simbolo. } { 0,1,,, 4,5,6,7,8,,10,11,1, } L insieme dei numeri

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

Radicali. Esistenza delle radici n-esime: Se n è pari: ogni numero reale non negativo (cioè positivo o nullo) ha esattamente una radice n-esima in R.

Radicali. Esistenza delle radici n-esime: Se n è pari: ogni numero reale non negativo (cioè positivo o nullo) ha esattamente una radice n-esima in R. Radicali Radici quadrate Si dice radice quadrata di u umero reale a, e si idica co a, il umero reale positivo o ullo (se esiste) che, elevato al quadrato, dà come risultato a. Esisteza delle radici quadrate:

Dettagli

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale:

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale: IL CALCOLO LETTERALE: I MONOMI Conoscenze. Complet.. Un espressione letterle è un scrittur in cui compiono operzioni tr numeri rppresentti, tutti o in prte, d lettere. Per clcolre il vlore numerico di

Dettagli

IL PROBLEMA DEL CERCHIO DI GAUSS

IL PROBLEMA DEL CERCHIO DI GAUSS I.S.I.S.S. MARCO CASAGRANDE ANNA BARISAN V B LICEO SCIENTIFICO TESINA DI MATURITA' IL PROBLEMA DEL CERCHIO DI GAUSS ANNO SCOLASTICO 2014-2015 PIEVE DI SOLIGO GIUGNO 2015 L tetic è l regi delle scieze,

Dettagli

a è detta PARTE LETTERALE

a è detta PARTE LETTERALE I MONOMI Si die MONOMIO un espressione letterle in ui le unihe operzioni presenti sino il prodotto e l divisione. Esempio è detto COEFFICIENTE del monomio e è dett PARTE LETTERALE Un monomio si die ridotto

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO a.s. 2002/2003 CORSO SPERIMENTALE PNI e Progetto Brocca SESSIONE SUPPLETIVA

ESAME DI STATO DI LICEO SCIENTIFICO a.s. 2002/2003 CORSO SPERIMENTALE PNI e Progetto Brocca SESSIONE SUPPLETIVA ESAME DI STATO DI LICEO SCIENTIFICO.s. / CORSO SPERIMENTALE PNI e Progetto Brocc SESSIONE SUPPLETIVA Il cdidto risolv uo dei due problemi e 5 dei quesiti i cui si rticol il questiorio. PROBLEMA. I u pio,

Dettagli

Progressioni aritmetiche e geometriche

Progressioni aritmetiche e geometriche Progressioi ritmetiche e geometriche 7. Progressioi ritmetiche. Defiizioe. Si dt l successioe umeric:,, 3,, 5,...,,.... Ess rppreset u progressioe ritmetic se l differez fr qulsisi termie dell successioe

Dettagli

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi Equzioni grdo Definizioni Clssificzione Risoluzione Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Prendimo in esme le due espressioni numeriche 8 entrmbe sono uguli 7, e l scrittur si chim uguglinz

Dettagli

DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE)

DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE) DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE) Mggi C. & Bccesci P. Soluzioe problem V Puto 1: T Clcolre l soluzioe stziori dell (1) euivle d imporre l

Dettagli

X X Y 2 1 0,5 0,25 Y 0,25 1 2,25 4. Disegna i grafici delle rette rappresentate dalle seguenti equazioni

X X Y 2 1 0,5 0,25 Y 0,25 1 2,25 4. Disegna i grafici delle rette rappresentate dalle seguenti equazioni Funzioni Consider le seguenti telle e stilisci se e sono direttmente proporzionli, inversmente proporzionli o se vi è un proporzionlità qudrtic. Scrivi l espressione nlitic delle funzioni e rppresentle

Dettagli

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4 Quarto Compito di Aalisi Matematica Corso di laurea i Iformatica, corso B 5 Luglio 016 Soluzioi Esercizio 1 Determiare tutti i umeri complessi z tali che z = 3 4 i. Soluzioe. Scrivedo z = a + bi, si ottiee

Dettagli

Progetto Matematica in Rete - Numeri naturali - I numeri naturali

Progetto Matematica in Rete - Numeri naturali - I numeri naturali I umeri aturali Quali soo i umeri aturali? I umeri aturali soo : 0,1,,3,4,5,6,7,8,9,,11 I umeri aturali hao u ordie cioè dati due umeri aturali distiti a e b si può sempre stabilire qual è il loro ordie

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Fcoltà di Igegeri - Lure Triele i Igegeri Meccic Corso di Clcolo Numerico Dott.ss M.C. De Bois Uiversità degli Studi dell Bsilict, Potez Fcoltà di Igegeri Corso di Lure i Igegeri Meccic Ao Accdemico 004/05

Dettagli

Sezione Esercizi ; ; ; 1 4. f ) 13 + g ) , 100, 125; f ) 216; 8 27 ; ; e ) g ) 0; h )

Sezione Esercizi ; ; ; 1 4. f ) 13 + g ) , 100, 125; f ) 216; 8 27 ; ; e ) g ) 0; h ) Sezione Esercizi Esercizi Esercizi dei singoli prgrfi - Rdici Determin le seguenti rdici qudrte rzionli (qundo è possiile clcolrle) 00 l ) m ) n ) o ) 0,0 0,0 0,000 0, Determin le seguenti rdici qudrte

Dettagli

{ } 3 [ ] [ ] [ ] [ ] Esercizi per il precorso ( )( ) Prof. Margherita Fochi. 1.- Esercizi sui polinomi. + x. x R. ( )( ) + R. ( )( )( ) a.

{ } 3 [ ] [ ] [ ] [ ] Esercizi per il precorso ( )( ) Prof. Margherita Fochi. 1.- Esercizi sui polinomi. + x. x R. ( )( ) + R. ( )( )( ) a. Prof. Mrgherit Fochi Esercizi per il precorso.- Esercizi sui polinomi Semplificre le seguenti espressioni utilizzndo i prodotti notevoli:. ) ) ) ) ) 8 [ ] 8. ) ) ) ) ] [. ) ) ) [ ] { } y y y y y [ ] 8

Dettagli

GLI SCANDALOSI NUMERI IRRAZIONALI

GLI SCANDALOSI NUMERI IRRAZIONALI GLI SCANDALOSI NUMERI IRRAZIONALI Prticolre dell'ffresco di Rffello "L Scuol di Atee", che rffigur Pitgor L scuol pitgoric, fodt d Pitgor Crotoe itoro l 530.C., fu fodmetle per lo sviluppo dell mtemtic.

Dettagli

a1 + a2 + a an

a1 + a2 + a an I SIMBOLI DI SOMMATORIA E DI PRODUTTORIA Date più quatità o eleeti di u isiee (ad esepio ueri reali) dipedeti da u idice: a, a, a 3,..., a la loro soa: a + a + a 3,... + a si idica, i fora copatta, col

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

1 Equazioni e disequazioni di secondo grado

1 Equazioni e disequazioni di secondo grado UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Fcoltà di Frmci e Medicin - Corso di Lure in CTF 1 Equzioni e disequzioni di secondo grdo Sino 0, b e c tre numeri reli noti, risolvere un equzione di secondo

Dettagli

Libero Verardi, Appunti per Algebra Elementare d.p.d.v.s., A.A. 2009-10 Numeri razionali

Libero Verardi, Appunti per Algebra Elementare d.p.d.v.s., A.A. 2009-10 Numeri razionali Libero Verrdi, Apputi per Algebr Eleetre d.p.d.v.s., A.A. 2009-10 Nueri rzioli I NUMERI RAZIONALI PREREQUISITI. Per l copresioe del testo soo richieste lcue ozioi eleetri su isiei, relzioi d'equivlez e

Dettagli

SCOMPOSIZIONE IN FATTORI

SCOMPOSIZIONE IN FATTORI Sintesi di Mtemtic cur di Griell Grzino SCOMPOSIZIONE IN FATTORI ) Rccoglimento fttore comune ( Applicile d un polinomio di un numero qulunque di termini purchè i termini presentino lmeno un letter o un

Dettagli

Le successioni: intro

Le successioni: intro Le successioi: itro Si cosideri la seguete sequeza di umeri:,, 2, 3, 5, 8, 3, 2, 34, 55, 89, 44, 233, detti di Fiboacci. Essa rappreseta il umero di coppie di coigli preseti ei primi 2 mesi i u allevameto!

Dettagli

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0 Equzioni letterli di II grdo Un equzione letterle di II grdo è un equzione che contiene, oltre l letter che rppresent l incognit dell equzione, ltre lettere, dette prmetri, che rppresentno numeri ben determinti,

Dettagli

Successioni e serie. Ermanno Travaglino

Successioni e serie. Ermanno Travaglino Successioi e serie Ermo Trvglio U successioe è u sequez ordit di umeri o di ltre grdezze, e u serie è l somm dei termii di tle sequez. U successioe si rppreset co l'espressioe,,,, ell qule è u itero positivo,

Dettagli

POTENZA CON ESPONENTE REALE

POTENZA CON ESPONENTE REALE PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic mtemtic@blogscuol.it www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,

Dettagli

CLASSE 1 SEZIONE A PROGRAMMA DI MATEMATICA DOCENTE ENRICO PILI

CLASSE 1 SEZIONE A PROGRAMMA DI MATEMATICA DOCENTE ENRICO PILI ISTITUTO D ISTRUZIONE SECONDARIA SUPERIORE I.T.C.G. L. EINAUDI LICEO SCIENTIFICO G. BRUNO CLASSE 1 SEZIONE A PROGRAMMA DI MATEMATICA DOCENTE ENRICO PILI ANNO SCOLASTICO 2016/2017 RICHIAMI DI ARITMETICA

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA ESPONENZIALI E LOGARITMI Dr. Ersmo Modic ersmo@glois.it www.glois.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero

Dettagli

NUMERI IRRAZIONALI E FUNZIONI TRASCENDENTI

NUMERI IRRAZIONALI E FUNZIONI TRASCENDENTI NUMERI IRRAZIONALI E FUNZIONI TRASCENDENTI I olti testi si fa riferieto ai ueri irrazioali liitadosi a spiegare la atura e acceado alla coplessità delle operazioi di calcolo quado di essi si ategoo elevate

Dettagli

Parabola Materia: Matematica Autore: Mario De Leo

Parabola Materia: Matematica Autore: Mario De Leo Prol Definizioni Prol on sse prllelo ll sse Prol on sse prllelo ll sse Prole prtiolri Rppresentzione grfi Esepi di eserizi Rett tngente d un prol Eserizi Mteri: Mteti Autore: Mrio De Leo Definizioni Luogo

Dettagli

Analisi numerica. Richiami di teoria Zeri di una funzione, soluzione approssimata di un equazione. Teorema di esistenza degli zeri

Analisi numerica. Richiami di teoria Zeri di una funzione, soluzione approssimata di un equazione. Teorema di esistenza degli zeri 6 - Alisi umeric 6 Alisi umeric. Richimi di teori Zeri di u fuzioe, soluzioe pprossimt di u equzioe Se o è possibile determire lgebricmete gli zeri dell fuzioe f(), rdici dell equzioe f() =, si possoo

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO 0. Itroduzioe Oggetto del calcolo combiatorio è quello di determiare il umero dei modi mediate i quali possoo essere associati, secodo prefissate regole, gli elemeti di uo stesso

Dettagli

DAI RAZIONALI AI REALI

DAI RAZIONALI AI REALI DAI RAZIONALI AI REALI. L isieme dei umeri rzioli. Le operzioi fr umeri rzioli: ddizioe, moltipliczioe, sottrzioe e divisioe.. L elevmeto potez. L ordimeto.. Proprietà delle disuguglize (?disuguglize e

Dettagli

Potenze reali ad esponente reale

Potenze reali ad esponente reale Poteze reli d esoete rele Leged: N è l'isieme dei umeri turli (0, 1, 2, 3,...) N 0 è l'isieme dei umeri turli d esclusioe dello zero (1, 2, 3,...) Z è l'isieme dei umeri iteri (..., 3, 2, 1, 0, 1, 2, 3,...)

Dettagli

Integrazione numerica.

Integrazione numerica. Itegrzioe umeric Autore: prof. RUGGIERO Domeico Itegrzioe umeric. Qui di seguito ci occupimo di metodi umerici volti l clcolo pprossimto di u itegrle defiito perveedo formule ce costituiscoo degli lgoritmi,

Dettagli

fattibile con le tecniche elementari che imparerai in seguito. Ad esempio il polinomio

fattibile con le tecniche elementari che imparerai in seguito. Ad esempio il polinomio Scomposizione di un polinomio in fttori Scomporre in fttori primi un polinomio signific esprimerlo come il prodotto di due più polinomi non più scomponibili Ad esempio 9 = ( 3) fttore 1 ( + 3) fttore +

Dettagli