Grandezze scalari e vettoriali

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Grandezze scalari e vettoriali"

Transcript

1

2 Grandezze scalari e vettoriali Esempio vettore spostamento: Esistono due tipi di grandezze fisiche. a) Grandezze scalari specificate da un valore numerico (positivo negativo o nullo) e (nel caso di grandezze dimensionate) da una appropriata unita di misura Esempi: tempo, massa, temperatura, energia Queste grandezze sono normalmente indicate da un carattere tipografico normale. b) Grandezze vettoriali specificate da un valore numerico positivo (modulo) con una appropriata unita di misura, da una direzione e da un verso Esempi: spostamento, velocita, accelerazione, forza Queste grandezze sono normalmente indicate da un carattere in grassetto, o da un carattere sormontato da una freccia, o da un carattere sottolineato (notazione preferita dai matematici). Inoltre graficamente i vettori si indicano con una freccia la cui lunghezza e proporzionale al modulo del vettore. S S Se un corpo si sposta da un punto A ad un punto B distanti fra loro 1 m, per definire in modo completo tale spostamento sara necessario un vettore caratterizzato da: modulo: uguale 1 m; direzione: retta che congiunge A e B; verso : da A a B. Il simbolo di un vettore compreso fra due sbarrette verticali indica il modulo del vettore stesso. Ad Esempio S indica il modulo del vettore S Due vettori sono uguali se hanno modulo direzione e verso uguali S La sua direzione e' la linea retta nello spazio su cui giace il vettore, il suo modulo e' la lunghezza del vettore, il suo verso e' l'orientazione del vettore sulla sua retta. Modulo, direzione e verso saranno definiti di volta in volta secondo la grandezza vettoriale in esame

3 Somma fra vettori Dati due vettori A e B qualsiasi, come possiamo calcolare graficamente la loro somma R=A+B, detta anche vettore risultante? Si puo procedere in due modi: a)spostare il vettore B, mantenendolo sempre parallelo a se stesso, finche la sua coda coincida con la punta di A. Il vettore R=A+B avra la coda che coincide con la coda di A e la punta che coincide con la punta di B. b)spostare il vettore B, mantenendolo sempre parallelo a se stesso, finche la sua coda coincide con la coda di A. Disegnare il parallelogramma avente per lati i due vettori cosi ottenuti. Il vettore R=A+B e rappresentato dalla diagonale del parallelogramma ed ha la coda coincidente con quella di A e B Notiamo che il vettore R giace sul piano identificato da A e B La somma vettoriale cosi definita gode delle seguenti proprieta : a)proprieta commutativa esempio : A+B=B+A b)proprieta associativa esempio: (A+B)+C= A+(B+C)

4 Differenza fra vettori Dato un vettore A il suo vettore opposto A e definito come quel vettore avente lo stesso modulo e direzione di A ma verso opposto. In base alle regole definite precedentemente si avra A+(-A)=0 La differenza fra due vettori A e B e definita come la somma fra i vettori A e -B C=A-B=A+(-B) Prodotto fra uno scalare ed un vettore Il prodotto di un vettore A per uno scalare k da come risultato un vettore M = ka Se k>0 M ha la stessa direzione e verso di A e modulo M = k A Se k<0 M ha la stessa direzione di A, verso opposto ad A e modulo M = k A Esempio Se k=-1 si ha M=-A Cioe il vettore M ha stessa direzione e modulo di A ma verso opposto. In altre parole il vettore M e il vettore opposto di A.

5 Versori e componenti Si definiscono versori dei vettori di lunghezza unitaria (modulo=1) e privi di dimensioni (cioe senza unita di misura associata). I versori sono solitamente utilizzati per indicare una direzione ed un verso. I versori vengono a volte indicati con la stessa lettera dell eventuale vettore da cui derivano sormontata dal simbolo ^. Ad ogni vettore generico A e possibile associare il suo versore  avente modulo unitario e stessa direzione e verso di A Quindi qualsiasi vettore puo essere espresso come il prodotto del suo modulo per il suo versore. Esempio: A= A  Come sara chiaro fra poco particolare importanza hanno i versori aventi direzione e verso dei tre assi ortogonali x, y, z, di un sistema cartesiano. Tali versori sono solitamente indicati con x, y, z oppure i, j, k oppure i, j, k (carattere grassetto). Dato un generico vettore A ed asse orientato r, siano P 1 e P 2 le proiezioni ortogonali della coda e della punta di A sull asse r. A Si definisce componente scalare A r del vettore A rispetto all asse r quel numero relativo il cui valore assoluto e la lunghezza del segmento P 1 P 2 ed il cui segno e positivo o negativo secondo che il segmento orientato P 1 P 2 abbia verso uguale o opposto a quello dell asse r. A r = A cos α

6 Componenti cartesiane Dato un vettore arbitrario a ed un sistema di assi cartesiani Oxyz le componenti a x, a y, a z, del vettore a rispetto agli assi x, y, z prendono il nome di componenti cartesiane. Da quanto detto a x, a y, a z, possono essere positive negative o nulle. a Quindi detti α, β, e γ gli angoli che il vettore a forma con gli assi x, y, z, (dove 0 o α, β,γ 180 o ) avremo: a x = a cos α a y = a cos β a z = a cos γ Inoltre applicando due volte il teorema di Pitagora (vedi figura) il modulo di un vettore puo essere espresso tramite le sue componenti a = [( a x ) 2 +( a y ) 2 +( a z ) 2 ] 1/2 Da tutto quanto detto sinora segue che dato un generico vettore A esso puo sempre essere espresso tramite le sue componenti cartesiane nel seguente modo: A=a x i + a y j + a z k Ad esempio per un vettore che giace sul piano x, y avremo a z = 0 quindi: A= A x i + A y j

7 Somma fra vettori, metodo analitico Tramite l utilizzo delle componenti cartesiane possiamo sommare analiticamente due o piu vettori. Siano A e B due vettori generici espressi tramite le loro componenti cartesiane A= a x i + a y j + a z k ; B=b x i + b y j + b z k e si voglia calcolare il vettore risultante R=A+B Per la proprieta associativa le componenti di ciascun vettore possono essere raggruppate secondo la direzione. Pertanto si avra : R =(a x i + a y j + a z k +b x i + b y j + b z k)= = (a x +b x )i + (a y +b y )j + (a z + b z )k In altre parole: R x =(a x + b x ); R y = (a y + b y ); R z = (a z + b z ) Tale procedura, utilizzabile in generale per la somma di un qualsiasi numero di vettori, puo essere visualizzata semplicemente per la somma di due vettori giacenti sul piano xy.

8 Prodotto scalare Esistono due modi per moltiplicare fra loro due vettori. 1)Prodotto Scalare che ha come risultato uno scalare 2)Prodotto vettoriale che ha come risultato un vettore. Dati due vettori a e b il loro prodotto scalare si indica come a b ed e cosi definito: a b = a b cos Φ Dove Φ e l angolo compreso fra i due vettori a e b. Dalla definizione di prodotto scalare capiamo che: 1)Il segno del prodotto scalare dipende unicamente dal valore dell angolo Φ 2)Il prodotto scalare e sempre nullo se Φ=90 o 3)Il prodotto scalare puo essere pensato come il prodotto del modulo di a per la componente (scalare) di b rispetto ad a, o come prodotto del modulo di b per la componente (scalare) di a rispetto b. 4) Per il prodotto scalare vale la proprieta commutativa e la proprietà distributiva rispetto alla somma. 5)Il prodotto scalare di un vettore qualsiasi per se stesso da come risultato il modulo quadro del vettore cioe : a a = a a cos 0 = a 2

9 Calcolo del prodotto scalare tramite le componenti Dato un sistema di assi cartesiani Oxyz, a cui associamo i versori i, j, k, dalla definizione di prodotto scalare segue che il prodotto scalare fra due versori sara uguale a : 1 nel caso di prodotto scalare di un versore per se stesso (i i = j j = k k = 1); 0 nel caso di prodotto scalare di un versore per uno differente (i k = i j = j k = 0); (i versori sono ortogonali) Pertanto dati due vettori espressi tramite le loro coordinate cartesiane si avra : a b = (a x i + a y j + a z k ) (b x i + b y j + b z k)= = a x b x + a y b y + a z b z Cioe il prodotto scalare fra due vettori e uguale alla somma dei prodotti delle componenti cartesiane corrispondenti. Esempio: Dati i vettori: A= 6.0 i 8.0 j e B= -4.0 i k calcolare : 1)Il vettore R=A-B; 2)I moduli di A e B 3)Il coseno dell angolo compreso fra A e B 4)Il versore di A espresso tramite le sue componenti cartesiane 1) R=(6.0-(-4.0)) i 8.0 j 6.0 k = 10 i 8.0 j 6.0 k 2) A = [ (-8.0) 2 ] 1/2 = 10; B = [(-4.0) 2 + (+6.0) 2 ] 1/2 = 7.2 3) Sappiamo che A B = A B cos Φ Ma A B = 6.0x(-4.0) + (-8.0)x0 + 0x6.0 = -24 quindi cos Φ = (A B ) /( A B ) = ) Â = A / A = 0.60 i 0.80 j

10 Prodotto vettoriale Dati due vettori a e b il loro prodotto vettoriale si indica come a x b ed e un vettore c c= a x b che ha: 1) modulo pari a c = a b sen Φ, dove Φ e l angolo piu piccolo formato dai due vettori; 2) direzione perpendicolare al piano individuato dai vettori a e b ; 3) verso che puo essere individuato ad esempio tramite la regola della mano destra. Disegnati a e b a partire dallo stesso punto di applicazione si immagini di afferrare con le dita della mano destra la perpendicolare ad a e b in modo da spingere a verso b passando attraverso l angolo piu piccolo. Il pollice indichera il verso di c. Dalla definizione di prodotto vettoriale capiamo che 1)Il prodotto vettoriale e sempre nullo se Φ=0 o o 180 o 2) Per il prodotto vettoriale non vale la proprieta commutativa infatti: a x b = -b x a 3)Il prodotto vettoriale di un vettore qualsiasi per se stesso o, in generale, di due vettori paralleli e nullo. Dato un sistema di assi cartesiani i prodotti vettoriali fra i versori degli assi sono: i x i = 0 ; j x j = 0 ; k x k = 0 i x j = - j x i = k k x i = - i x k = j j x k = - k x j = i

11 Calcolo del prodotto vettoriale tramite le componenti Dati due vettori a e b espressi tramite le loro componenti cartesiane si ha: a x b = (a x i + a y j + a z k) x (b x i + b y j + b z k) = = a x b x (ixi) + a x b y (ixj) + a x b z (ixk) + +a y b x (jxi)+a y b y (jxj) + a y b z (jxk)+ +a z b x (kxi) + a z b y (kxj)+a z b z (kxk)= tenendo presente i risultati dei prodotti vettoriali fra i versori i, j, k dopo alcuni passaggi si ha = (a y b z -a z b y )i + (a z b x -a x b z )j +(a x b y -a y b x )k Questo risultato puo essere scritto in una forma mnemonica piu conveniente sotto forma di determinante: si sviluppa secondo gli elementi della prima riga i j k a x b = a x a y a z b x b y b z Esempio : Dati i vettori: A= 6.0 i 8.0 j e B= -4.0 i k calcolare il seno dell angolo compreso usando la definizione di prodotto vettoriale. Sappiamo che A x B = A B sen Φ i j k A x B = = (-48-0)i +(-36+0)j +(0-32)k A x B = [(-48) 2 + (-36) 2 + (-32) 2 ] 1/2 = 68 sen Φ = A x B /( A B ) = 0.94

12 Alcuni quesiti di verifica: 1) Quale e la differenza fra grandezze fisiche scalari e vettoriali? 2) Da cosa e caratterizzato un vettore? 3) Il modulo di un vettore puo essere negativo? 4) Cosa e un versore? 5) Cosa si intende per componenti cartesiane di un vettore? 6) Dato un vettore espresso tramite le sue componenti cartesiane siete in grado di calcolare: il corrispondente versore, il suo modulo, gli angoli che il vettore forma con gli assi x,y,z? 7)Dati due vettori espressi tramite le loro componenti cartesiane siete in grado di calcolare: la loro somma, il loro prodotto scalare, il loro prodotto vettoriale, l angolo fra loro compreso? 8)Quale deve essere l angolo formato da due vettori affinche il loro prodotto scalare (vettoriale) sia nullo?

Grandezze scalari e vettoriali

Grandezze scalari e vettoriali Grandezze scalari e vettoriali 01 - Grandezze scalari e grandezze vettoriali. Le grandezze fisiche, gli oggetti di cui si occupa la fisica, sono grandezze misurabili. Altri enti che non sono misurabili

Dettagli

Lezione del 28-11-2006. Teoria dei vettori ordinari

Lezione del 28-11-2006. Teoria dei vettori ordinari Lezione del 8--006 Teoria dei vettori ordinari. Esercizio Sia B = {i, j, k} una base ortonormale fissata. ) Determinare le coordinate dei vettori v V 3 complanari a v =,, 0) e v =, 0, ), aventi lunghezza

Dettagli

Geometria analitica di base (prima parte)

Geometria analitica di base (prima parte) SAPERE Al termine di questo capitolo, avrai appreso: come fissare un sistema di riferimento cartesiano ortogonale il significato di equazione di una retta il significato di coefficiente angolare di una

Dettagli

VETTORI E SCALARI DEFINIZIONI. Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura.

VETTORI E SCALARI DEFINIZIONI. Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura. VETTORI E SCALARI DEFINIZIONI Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura. Un vettore è invece una grandezza caratterizzata da 3 entità:

Dettagli

GEOMETRIA DELLE MASSE

GEOMETRIA DELLE MASSE 1 DISPENSA N 2 GEOMETRIA DELLE MASSE Si prende in considerazione un sistema piano, ossia giacente nel pian x-y. Un insieme di masse posizionato nel piano X-Y, rappresentato da punti individuati dalle loro

Dettagli

Energia potenziale L. P. Maggio 2007. 1. Campo di forze

Energia potenziale L. P. Maggio 2007. 1. Campo di forze Energia potenziale L. P. Maggio 2007 1. Campo di forze Consideriamo un punto materiale di massa m che si muove in una certa regione dello spazio. Si dice che esso è soggetto a un campo di forze, se ad

Dettagli

0. Piano cartesiano 1

0. Piano cartesiano 1 0. Piano cartesiano Per piano cartesiano si intende un piano dotato di due assi (che per ragioni pratiche possiamo scegliere ortogonali). Il punto in comune ai due assi è detto origine, e funziona da origine

Dettagli

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E).

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E). MATEMATICA 2001 66. Quale fra le seguenti affermazioni è sbagliata? A) Tutte le funzioni ammettono la funzione inversa B) Una funzione dispari è simmetrica rispetto all origine C) Una funzione pari è simmetrica

Dettagli

L EQUILIBRIO UNIVERSALE dalla meccanica celeste alla fisica nucleare

L EQUILIBRIO UNIVERSALE dalla meccanica celeste alla fisica nucleare L EQUILIBRIO UNIVERSALE dalla meccanica celeste alla fisica nucleare Cap.4 giroscopio, magnetismo e forza di Lorentz teoria del giroscopio Abbiamo finora preso in considerazione le condizionidi equilibrio

Dettagli

Due vettori si dicono opposti se hanno stessa direzione, stesso modulo ma direzione opposte, e si indica con.

Due vettori si dicono opposti se hanno stessa direzione, stesso modulo ma direzione opposte, e si indica con. Vettori. Il vettore è un ente geometrico rappresentato da un segmento orientato, che è caratterizzato da una direzione, da un verso e da un modulo. Il punto di partenza si chiama coda (o punto di applicazione),

Dettagli

PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15. Insegnante: Roberto Bottazzo Materia: FISICA

PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15. Insegnante: Roberto Bottazzo Materia: FISICA PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15 Materia: FISICA 1) INTRODUZIONE ALLA SCIENZA E AL METODO SCIENTIFICO La Scienza moderna. Galileo ed il metodo sperimentale. Grandezze

Dettagli

LICEO ARTISTICO BOCCIONI A.S. 2013-2014. Programma di MATEMATICA svolto nella Classe Prima L

LICEO ARTISTICO BOCCIONI A.S. 2013-2014. Programma di MATEMATICA svolto nella Classe Prima L LICEO ARTISTICO BOCCIONI A.S. 2013-2014 Programma di MATEMATICA svolto nella Classe Prima L I numeri naturali e i numeri interi Che cosa sono i numeri naturali. L insieme dei numeri naturali N. Le quattro

Dettagli

I VETTORI. 1 Somma di vettori: metodo graco. 19 dicembre 2007. ESERCIZI Risolti e Discussi

I VETTORI. 1 Somma di vettori: metodo graco. 19 dicembre 2007. ESERCIZI Risolti e Discussi I VETTORI ESERCIZI Risolti e Discussi 19 dicembre 2007 1 Somma di vettori: metodo graco 1.0.1 Si considerino due spostamenti, uno di modulo 3 m e un altro di modulo 4 m. Si mostri in che modo si possono

Dettagli

13. Campi vettoriali

13. Campi vettoriali 13. Campi vettoriali 1 Il campo di velocità di un fluido Il concetto di campo in fisica non è limitato ai fenomeni elettrici. In generale il valore di una grandezza fisica assegnato per ogni punto dello

Dettagli

I vettori. Roberto Capone. Appunti di Fisica - I vettori. Introduzione

I vettori. Roberto Capone. Appunti di Fisica - I vettori. Introduzione I vettori Introduzione Quando ci riferiamo alle grandezze fisiche ci troviamo di fronte a due grandi classi. Alcune grandezze fisiche sono completamente definite quando se ne conosce la sola misura espressa

Dettagli

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Trasformazioni Geometriche 1 Roberto Petroni, 2011 1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni

Dettagli

Trasformazioni nello spazio Grafica 3d

Trasformazioni nello spazio Grafica 3d Trasformazioni nello spazio Grafica 3d Giancarlo RINALDO rinaldo@dipmat.unime.it Dipartimento di Matematica Università di Messina Trasformazioni nello spaziografica 3d p. 1 Introduzione In questa lezione

Dettagli

1 Definizione: lunghezza di una curva.

1 Definizione: lunghezza di una curva. Abstract Qui viene affrontato lo studio delle curve nel piano e nello spazio, con particolare interesse verso due invarianti: la curvatura e la torsione Il primo ci dice quanto la curva si allontana dall

Dettagli

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo Momento di una forza Nella figura 1 è illustrato come forze uguali e contrarie possono non produrre equilibrio, bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo esteso.

Dettagli

Liceo Scientifico Statale. Leonardo da Vinci. Fisica. Programma svolto durante l anno scolastico 2012/13 CLASSE I B. DOCENTE Elda Chirico

Liceo Scientifico Statale. Leonardo da Vinci. Fisica. Programma svolto durante l anno scolastico 2012/13 CLASSE I B. DOCENTE Elda Chirico Liceo Scientifico Statale Leonardo da Vinci Fisica Programma svolto durante l anno scolastico 2012/13 CLASSE I B DOCENTE Elda Chirico Le Grandezze. Introduzione alla fisica. Metodo sperimentale. Grandezze

Dettagli

Analisi Matematica di circuiti elettrici

Analisi Matematica di circuiti elettrici Analisi Matematica di circuiti elettrici Eserciziario A cura del Prof. Marco Chirizzi 2011/2012 Cap.5 Numeri complessi 5.1 Definizione di numero complesso Si definisce numero complesso un numero scritto

Dettagli

Grandezze scalari e vettoriali

Grandezze scalari e vettoriali VETTORI Grandezze scalari e vettoriali Tra le grandezze misurabili alcune sono completamente definite da un numero e da un unità di misura, altre invece sono completamente definite solo quando, oltre ad

Dettagli

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. Prerequisiti I radicali Risoluzione di sistemi di equazioni di primo e secondo grado. Classificazione e dominio delle funzioni algebriche Obiettivi minimi Saper

Dettagli

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω GIROSCOPIO Scopo dell esperienza: Verificare la relazione: ω p = bmg/iω dove ω p è la velocità angolare di precessione, ω è la velocità angolare di rotazione, I il momento principale d inerzia assiale,

Dettagli

Sistemi di forze: calcolo grafico

Sistemi di forze: calcolo grafico UNTÀ D3 Sistemi di forze: calcolo grafico TEOA Uso del CAD nei procedimenti grafici 2 appresentazione grafica dei vettori 3 Poligono delle forze 4 Poligono delle successive risultanti 5 Poligono funicolare

Dettagli

AL. Algebra vettoriale e matriciale

AL. Algebra vettoriale e matriciale PPENDICI L. lgebra vettoriale e matriciale Vettori Somma di vettori: struttura di gruppo Come abbiamo richiamato nell introduzione vi sono delle grandezze fisiche caratterizzabili come vettori, cioè tali

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi, y sistemi dimetrici: unità di misura diverse sui due assi (spesso

Dettagli

MOMENTI DI INERZIA. m i. i=1

MOMENTI DI INERZIA. m i. i=1 MOMENTI DI INEZIA Massa Ad ogni punto materiale si associa uno scalare positivo m che rappresenta la quantità di materia di cui è costituito il punto. m, la massa, è costante nel tempo. Dato un sistema

Dettagli

TAVOLE E FORMULARI DI MATEMATICA PER LE SCUOLE MEDIE E SUPERIORI DI OGNI ORDINE E GRADO

TAVOLE E FORMULARI DI MATEMATICA PER LE SCUOLE MEDIE E SUPERIORI DI OGNI ORDINE E GRADO TAVOLE E FORMULARI DI MATEMATICA PER LE SCUOLE MEDIE E SUPERIORI DI OGNI ORDINE E GRADO Carlo Sintini www.matematicamente.it INDICE TAVOLE NUMERICHE Potenze e radici quadre e cube dei numeri fino a 200

Dettagli

a) Parallela a y = x + 2 b) Perpendicolare a y = x +2. Soluzioni

a) Parallela a y = x + 2 b) Perpendicolare a y = x +2. Soluzioni Svolgimento Esercizi Esercizi: 1) Una particella arriva nel punto (-2,2) dopo che le sue coordinate hanno subito gli incrementi x=-5, y=1. Da dove è partita? 2) Disegnare il grafico di C = 5/9 (F -32)

Dettagli

4. Proiezioni del piano e dello spazio

4. Proiezioni del piano e dello spazio 4. Proiezioni del piano e dello spazio La visualizzazione di oggetti tridimensionali richiede di ottenere una vista piana dell'oggetto. Questo avviene mediante una sequenza di operazioni. Innanzitutto,

Dettagli

CdL Professioni Sanitarie A.A. 2012/2013. Unità 3 (4 ore)

CdL Professioni Sanitarie A.A. 2012/2013. Unità 3 (4 ore) L. Zampieri Fisica per CdL Professioni Sanitarie A.A. 12/13 CdL Professioni Sanitarie A.A. 2012/2013 Statica del Corpo Rigido Momento di una forza Unità 3 (4 ore) Condizione di equilibrio statico: leve

Dettagli

Esempi di funzione. Scheda Tre

Esempi di funzione. Scheda Tre Scheda Tre Funzioni Consideriamo una legge f che associa ad un elemento di un insieme X al più un elemento di un insieme Y; diciamo che f è una funzione, X è l insieme di partenza e X l insieme di arrivo.

Dettagli

- LAVORO - - ENERGIA MECCANICA - - POTENZA -

- LAVORO - - ENERGIA MECCANICA - - POTENZA - Danilo Saccoccioni - LAVORO - - ENERGIA MECCANICA - - POTENZA - Indice Lavoro compiuto da una forza relativo ad uno spostamento pag. 1 Lavoro ed energia cinetica 3 Energia potenziale 4 Teorema di conservazione

Dettagli

Le trasformazioni geometriche

Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni affini del piano o affinità Le similitudini Le isometrie Le traslazioni Le rotazioni Le simmetrie assiale e centrale Le omotetie

Dettagli

Nome..Cognome.. Classe 4G 4 dicembre 2008. VERIFICA DI FISICA: lavoro ed energia

Nome..Cognome.. Classe 4G 4 dicembre 2008. VERIFICA DI FISICA: lavoro ed energia Nome..Cognome.. Classe 4G 4 dicembre 8 VERIFIC DI FISIC: lavoro ed energia Domande ) Energia cinetica: (punti:.5) a) fornisci la definizione più generale possibile di energia cinetica, specificando l equazione

Dettagli

Andrea Pagano, Laura Tedeschini Lalli

Andrea Pagano, Laura Tedeschini Lalli 3.5 Il toro 3.5.1 Modelli di toro Modelli di carta Esempio 3.5.1 Toro 1 Il modello di toro finito che ciascuno può costruire è ottenuto incollando a due a due i lati opposti di un foglio rettangolare.

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 00 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PROBLEMA Se il polinomio

Dettagli

FISICA (modulo 1) PROVA SCRITTA 10/02/2014

FISICA (modulo 1) PROVA SCRITTA 10/02/2014 FISICA (modulo 1) PROVA SCRITTA 10/02/2014 ESERCIZI E1. Un proiettile del peso di m = 10 g viene sparato orizzontalmente con velocità v i contro un blocco di legno di massa M = 0.5 Kg, fermo su una superficie

Dettagli

CdS in Ingegneria Energetica, Università di Bologna Programma dettagliato del corso di Fisica Generale T-A prof. S. Pellegrini

CdS in Ingegneria Energetica, Università di Bologna Programma dettagliato del corso di Fisica Generale T-A prof. S. Pellegrini CdS in Ingegneria Energetica, Università di Bologna Programma dettagliato del corso di Fisica Generale T-A prof. S. Pellegrini Introduzione. Il metodo scientifico. Principi e leggi della Fisica. I modelli

Dettagli

Coordinate 3D. Coordinate cartesiane. Coordinate 3D. Coordinate cartesiane. Coordinate cartesiane. Sinistrorsa. Destrorsa

Coordinate 3D. Coordinate cartesiane. Coordinate 3D. Coordinate cartesiane. Coordinate cartesiane. Sinistrorsa. Destrorsa 200 Coordinate D Anche nella grafica D gli oggetti da visualiare vengono codificati a partire da primitive che collegano punti. I punti appartengono ad uno spaio tridimensionale. Vengono memoriati utiliando

Dettagli

Cap 3.1- Prima legge della DINAMICA o di Newton

Cap 3.1- Prima legge della DINAMICA o di Newton Parte I Cap 3.1- Prima legge della DINAMICA o di Newton Cap 3.1- Prima legge della DINAMICA o di Newton 3.1-3.2-3.3 forze e principio d inerzia Abbiamo finora studiato come un corpo cambia traiettoria

Dettagli

LA RETTA. b) se l equazione si presente y=mx+q (dove q è un qualsiasi numero reale) si ha una retta generica del piano.

LA RETTA. b) se l equazione si presente y=mx+q (dove q è un qualsiasi numero reale) si ha una retta generica del piano. LA RETTA DESCRIZIONE GENERALE Nella GEOMETRIA ANALITICA si fa sempre un riferimento rispetto al piano cartesiano Oxy; questa riguarda lo studio della retta, delle trasformazioni lineari piane e delle coniche.

Dettagli

Funzioni. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Funzioni. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Funzioni Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

APPUNTI DI MATEMATICA GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1)

APPUNTI DI MATEMATICA GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1) GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1) Un ente (geometrico) è un oggetto studiato dalla geometria. Per descrivere gli enti vengono utilizzate delle definizioni. Una definizione è una

Dettagli

DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2.

DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2. FUNZIONI DI DUE VARIABILI 1 DOMINIO E LIMITI Domini e disequazioni in due variabili. Insiemi di livello. Elementi di topologia (insiemi aperti, chiusi, limitati, convessi, connessi per archi; punti di

Dettagli

Vettori Teoria ed Esercizi

Vettori Teoria ed Esercizi Vettori Teoria ed Esercizi Edizioni H ALPHA Lorenzo Roi c Edizioni H ALPHA Marzo 1999 (formato PDF) La figura di facciata costituisce un particolare dell insieme di Mandelbrot ingrandito 44 10 8 volte

Dettagli

Forze, leggi della dinamica, diagramma del. 28 febbraio 2009 (PIACENTINO - PREITE) Fisica per Scienze Motorie

Forze, leggi della dinamica, diagramma del. 28 febbraio 2009 (PIACENTINO - PREITE) Fisica per Scienze Motorie Forze, leggi della dinamica, diagramma del corpo libero 1 FORZE Grandezza fisica definibile come l' agente in grado di modificare lo stato di quiete o di moto di un corpo. Ci troviamo di fronte ad una

Dettagli

Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva 2011, matematicamente.it

Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva 2011, matematicamente.it Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva, matematicamente.it PROBLEMA Data una semicirconferenza di diametro AB =, si prenda su di essa un punto P e sia M la proiezione di P

Dettagli

I.I.S. MARGHERITA DI SAVOIA NAPOLI ANNO SCOLASTICO 2014/2015. CLASSE III SEZ. Ae INDIRIZZO LICEO ECONOMICO PROGRAMMA DI FISICA

I.I.S. MARGHERITA DI SAVOIA NAPOLI ANNO SCOLASTICO 2014/2015. CLASSE III SEZ. Ae INDIRIZZO LICEO ECONOMICO PROGRAMMA DI FISICA I.I.S. MARGHERITA DI SAVOIA NAPOLI ANNO SCOLASTICO 2014/2015 CLASSE III SEZ. Ae INDIRIZZO LICEO ECONOMICO PROGRAMMA DI FISICA PROFESSORESSA: REGALBUTO PAOLA LE GRANDEZZE: LE GRANDEZZE FONDAMENTALI E DERIVATE,

Dettagli

GRANDEZZE ALTERNATE SINUSOIDALI

GRANDEZZE ALTERNATE SINUSOIDALI GRANDEZZE ALTERNATE SINUSOIDALI 1 Nel campo elettrotecnico-elettronico, per indicare una qualsiasi grandezza elettrica si usa molto spesso il termine di segnale. L insieme dei valori istantanei assunti

Dettagli

METODO PER LA DESCRIZIONE DEL CAMPO MAGNETICO ROTANTE

METODO PER LA DESCRIZIONE DEL CAMPO MAGNETICO ROTANTE Ing. ENRICO BIAGI Docente di Tecnologie elettrice, Disegno, Progettazione ITIS A. Volta - Perugia ETODO PER LA DESCRIZIONE DEL CAPO AGNETICO ROTANTE Viene illustrato un metodo analitico-grafico per descrivere

Dettagli

Generalità sulle funzioni

Generalità sulle funzioni Capitolo Concetto di funzione Generalità sulle funzioni Definizione di funzione Definizione Dato un sottoinsieme non vuoto D di R, si chiama funzione reale di variabile reale, una relazione che ad ogni

Dettagli

LE FUNZIONI MATEMATICHE

LE FUNZIONI MATEMATICHE ALGEBRA LE FUNZIONI MATEMATICHE E IL PIANO CARTESIANO PREREQUISITI l l l l l conoscere il concetto di insieme conoscere il concetto di relazione disporre i dati in una tabella rappresentare i dati mediante

Dettagli

Analisi 2. Argomenti. Raffaele D. Facendola

Analisi 2. Argomenti. Raffaele D. Facendola Analisi 2 Argomenti Successioni di funzioni Definizione Convergenza puntuale Proprietà della convergenza puntuale Convergenza uniforme Continuità e limitatezza Teorema della continuità del limite Teorema

Dettagli

LICEO SCIENTIFICO STATALE AUGUSTO RIGHI BOLOGNA

LICEO SCIENTIFICO STATALE AUGUSTO RIGHI BOLOGNA MINISTERO DELLA PUBBLICA ISTRUZIONE UFFICIO SCOLASTICO REGIONALE PER L'EMILIA ROMAGNA LICEO SCIENTIFICO STATALE AUGUSTO RIGHI BOLOGNA SOSPENSIONE del giudizio anno scolastico 2012/13: INDICAZIONI LAVORO

Dettagli

Forze come grandezze vettoriali

Forze come grandezze vettoriali Forze come grandezze vettoriali L. Paolucci 23 novembre 2010 Sommario Esercizi e problemi risolti. Per la classe prima. Anno Scolastico 2010/11 Parte 1 / versione 2 Si ricordi che la risultante di due

Dettagli

ESERCIZI CINEMATICA IN UNA DIMENSIONE

ESERCIZI CINEMATICA IN UNA DIMENSIONE ESERCIZI CINEMATICA IN UNA DIMENSIONE ES. 1 - Due treni partono da due stazioni distanti 20 km dirigendosi uno verso l altro rispettivamente alla velocità costante di v! = 50,00 km/h e v 2 = 100,00 km

Dettagli

CURRICOLO MATEMATICA ABILITA COMPETENZE

CURRICOLO MATEMATICA ABILITA COMPETENZE CURRICOLO MATEMATICA 1) Operare con i numeri nel calcolo aritmetico e algebrico, scritto e mentale, anche con riferimento a contesti reali. Per riconoscere e risolvere problemi di vario genere, individuando

Dettagli

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ E DELLA RICERCA UFFICIO SCOLASTICO REGIONALE PER IL LAZIO

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ E DELLA RICERCA UFFICIO SCOLASTICO REGIONALE PER IL LAZIO MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ E DELLA RICERCA UFFICIO SCOLASTICO REGIONALE PER IL LAZIO Liceo Scientifico statale Innocenzo XII Anzio (Roma) PROGRAMMA SVOLTO (a.s. 2013/14) Classe PRIMA sez

Dettagli

Il potenziale a distanza r da una carica puntiforme è dato da V = kq/r, quindi è sufficiente calcolare V sx dovuto alla carica a sinistra:

Il potenziale a distanza r da una carica puntiforme è dato da V = kq/r, quindi è sufficiente calcolare V sx dovuto alla carica a sinistra: 1. Esercizio Calcolare il potenziale elettrico nel punto A sull asse di simmetria della distribuzione di cariche in figura. Quanto lavoro bisogna spendere per portare una carica da 2 µc dall infinito al

Dettagli

DEFINIZIONE Un vettore (libero) è un ente geometrico rappresentato da un segmento orientato caratterizzato da tre parametri:

DEFINIZIONE Un vettore (libero) è un ente geometrico rappresentato da un segmento orientato caratterizzato da tre parametri: DEFINIZIONE Un vettore (libero) è un ente geometrico rappresentato da un segmento orientato caratterizzato da tre parametri: 1. modulo: la lunghezza del segmento 2. direzione: coincidente con la direzione

Dettagli

Appunti dalla lezione di Fisica del Prof. Mussino

Appunti dalla lezione di Fisica del Prof. Mussino Appunti dalla lezione di Fisica del Prof. Mussino (Vercelli 11-11-05) Autore: M. Lanino Grandezza Fisica è qualsiasi ente in grado di descrivere la realtà tangibile e sperimentabile Esempi: La temperatura,

Dettagli

Esercizi di riepilogo Matematica II Corso di Laurea in Ottica ed Optometria

Esercizi di riepilogo Matematica II Corso di Laurea in Ottica ed Optometria Esercizi di riepilogo Matematica II Corso di Laurea in Ottica ed Optometria Esercizio 1 Testo Sia F F 1 x,y),f x,y)) ) x 1 x y + 1 x, y 1 x y + 1 y un campo vettoriale. 1. Si determini il dominio in cui

Dettagli

09 - Funzioni reali di due variabili reali

09 - Funzioni reali di due variabili reali Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 09 - Funzioni reali di due variabili reali Anno Accademico 2013/2014

Dettagli

Dinamica II Lavoro di una forza costante

Dinamica II Lavoro di una forza costante Dinamica II Lavoro di una forza costante Se il punto di applicazione di una forza subisce uno spostamento ed esiste una componente della forza che sia parallela allo spostamento, la forza compie un lavoro.

Dettagli

Scheda I. 3 La non possibilità di duplicare il cubo con riga e compasso.

Scheda I. 3 La non possibilità di duplicare il cubo con riga e compasso. Scheda I. La non possibilità di duplicare il cubo con riga e compasso. Dopo Menecmo, Archita, Eratostene molti altri, sfidando gli dei hanno trovato interessante dedicare il loro tempo per trovare una

Dettagli

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d.

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d. 1) Il valore di 5 10 20 è: a. 10 4 b. 10-15 c. 10 25 d. 10-4 2) Il valore del rapporto (2,8 10-4 ) / (6,4 10 2 ) è: a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori 3) La quantità

Dettagli

geometriche. Parte Sesta Trasformazioni isometriche

geometriche. Parte Sesta Trasformazioni isometriche Parte Sesta Trasformazioni isometriche In questa sezione di programma di matematica parliamo della geometria delle trasformazioni che studia le figure geometriche soggette a movimenti. Tali movimenti,

Dettagli

Maturità Scientifica PNI, sessione ordinaria 2000-2001

Maturità Scientifica PNI, sessione ordinaria 2000-2001 Matematica per la nuova maturità scientifica A. Bernardo M. Pedone Maturità Scientifica PNI, sessione ordinaria 000-00 Problema Sia AB un segmento di lunghezza a e il suo punto medio. Fissato un conveniente

Dettagli

Moto circolare uniforme

Moto circolare uniforme Moto circolare uniforme 01 - Moto circolare uniforme. Il moto di un corpo che avviene su una traiettoria circolare (una circonferenza) con velocità (in modulo, intensità) costante si dice moto circolare

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

M P = PA^V. Il risultante e denito semplicemente come la somma dei vettori di a

M P = PA^V. Il risultante e denito semplicemente come la somma dei vettori di a VETTORI APPLICATI Sistema di vettori applicati L'ente matematico costituito da un punto P e da un vettore (libero) V, si dice vettore applicato in P e si denota con (P;V). E comodo rappresentare il vettore

Dettagli

Percorso di facilitazione e semplificazione di testi italiani per studenti stranieri nella scuola secondaria al livello A2 del QCER.

Percorso di facilitazione e semplificazione di testi italiani per studenti stranieri nella scuola secondaria al livello A2 del QCER. Percorso di facilitazione e semplificazione di testi italiani per studenti stranieri nella scuola secondaria al livello A2 del QCER. dott. Giovanni Cerretti Pianificazione e realizzazione dell intervento

Dettagli

Campo elettrico per una carica puntiforme

Campo elettrico per una carica puntiforme Campo elettrico per una carica puntiforme 1 Linee di Campo elettrico A. Pastore Fisica con Elementi di Matematica (O-Z) 2 Esercizio Siano date tre cariche puntiformi positive uguali, fisse nei vertici

Dettagli

Corso di ordinamento Sessione straordinaria - a.s. 2009-2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA

Corso di ordinamento Sessione straordinaria - a.s. 2009-2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Sessione straordinaria - a.s. 9- ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Tema di: MATEMATICA a.s. 9- Svolgimento a cura di Nicola De Rosa Il candidato risolva uno

Dettagli

2. Giovedì 5/03/2015, 11 13. ore: 2(4) Spazi vettoriali euclidei. Vettori nello spazio fisico: Prodotto scalare e prodotto

2. Giovedì 5/03/2015, 11 13. ore: 2(4) Spazi vettoriali euclidei. Vettori nello spazio fisico: Prodotto scalare e prodotto Registro delle lezioni di MECCANICA 1 Corso di Laurea in Matematica 8 CFU - A.A. 2014/2015 docente: Francesco Demontis ultimo aggiornamento: 21 maggio 2015 1. Lunedì 2/03/2015, 11 13. ore: 2(2) Presentazione

Dettagli

L unità immaginaria si indica con la lettera i oppure con la lettera j

L unità immaginaria si indica con la lettera i oppure con la lettera j I s t i t u t o P r o f e s s i o n a l e d i S t a t o p e r l I n d u s t r i a e l A r t i g i a n a t o CAVOUR-MARCONI Loc. Piscille Via Assisana, 40/d-06154 PERUGIA Tel. 075/5838322 Fax 075/32371

Dettagli

Corso di orientamento e preparazione ai concorsi di ammissione ai Corsi di Laurea della Facoltà di Medicina e Chirurgia nell'aa 2012/2013.

Corso di orientamento e preparazione ai concorsi di ammissione ai Corsi di Laurea della Facoltà di Medicina e Chirurgia nell'aa 2012/2013. Corso di orientamento e preparazione ai concorsi di ammissione ai Corsi di Laurea della Facoltà di Medicina e Chirurgia nell'aa 2012/2013. FISICA NEVIO FORINI PROGRAMMA 11 LEZIONI DI 2 ORE + VERIFICA :

Dettagli

Gabriella Righetti. Lezioni di Fisica. E-Book di Fisica per il Biennio. Volume 1

Gabriella Righetti. Lezioni di Fisica. E-Book di Fisica per il Biennio. Volume 1 Gabriella Righetti Lezioni di Fisica E-Book di Fisica per il Biennio Volume 1 COPIA SAGGIO Campione gratuito fuori commercio ad esclusivo uso dei docenti Garamond 2009 Tutti i diritti riservati Via Tevere,

Dettagli

definizione e notazione (direzione,verso modulo), v V, lo spazio ( insieme)

definizione e notazione (direzione,verso modulo), v V, lo spazio ( insieme) 1 Spazi vettoriali 1.1 Richiami ai vettori freccia definizione e notazione (direzione,verso modulo), v V, lo spazio ( insieme) dei vettori esiste la operazione binaria sul sostegno V che chiameremo somma(regola

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015

ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015 ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015 A047 MATEMATICA CLASSE PRIMA PROFESSIONALE DOCENTI : CARAFFI ALESSANDRA, CORREGGI MARIA GRAZIA, FAZIO ANGELA,

Dettagli

RELAZIONI BINARIE. Proprietà delle relazioni Data una relazione R, definita in un insieme non vuoto U, si hanno le seguenti proprietà :

RELAZIONI BINARIE. Proprietà delle relazioni Data una relazione R, definita in un insieme non vuoto U, si hanno le seguenti proprietà : RELAZIONI INARIE Dati due insiemi non vuoti, A detto dominio e detto codominio, eventualmente coincidenti, si chiama relazione binaria (o corrispondenza) di A in, e si indica con f : A, (oppure R ) una

Dettagli

ED. Equazioni cardinali della dinamica

ED. Equazioni cardinali della dinamica ED. Equazioni cardinali della dinamica Dinamica dei sistemi La dinamica dei sistemi di punti materiali si può trattare, rispetto ad un osservatore inerziale, scrivendo l equazione fondamentale della dinamica

Dettagli

CLASSE PRIMA A. I..I.S. via Silvestri,301 Plesso A.Volta Programma di Fisica e Laboratorio Programma Attività Didattiche svolte A.S.

CLASSE PRIMA A. I..I.S. via Silvestri,301 Plesso A.Volta Programma di Fisica e Laboratorio Programma Attività Didattiche svolte A.S. CLASSE PRIMA A I..I.S. via Silvestri,301 Plesso A.Volta Programma di Fisica e Laboratorio Programma Attività Didattiche svolte Materia A.S.2014/2015 FISICA e Laboratorio di Fisica Unità 2- Strumenti matematici:

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

Energia potenziale elettrica

Energia potenziale elettrica Energia potenziale elettrica Simone Alghisi Liceo Scientifico Luzzago Novembre 2013 Simone Alghisi (Liceo Scientifico Luzzago) Energia potenziale elettrica Novembre 2013 1 / 14 Ripasso Quando spingiamo

Dettagli

ELETTROMAGNETISMO CARICHE E LEGGE DI COULOMB

ELETTROMAGNETISMO CARICHE E LEGGE DI COULOMB ELETTROMAGNETISMO CARICHE E LEGGE DI COULOMB ESERCIZI SVOLTI DAL PROF. GIANLUIGI TRIVIA 1. La Legge di Coulomb Esercizio 1. Durante la scarica a terra di un fulmine scorre una corrente di.5 10 4 A per

Dettagli

I numeri complessi. Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli

I numeri complessi. Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli I numeri complessi Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli 1 Introduzione Studiare i numeri complessi può sembrare inutile ed avulso dalla realtà;

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

Scuola Primaria Conta oggetti o eventi, a voce e a mente, in senso progressivo e regressivo e per salti di due, tre ;

Scuola Primaria Conta oggetti o eventi, a voce e a mente, in senso progressivo e regressivo e per salti di due, tre ; Primo anno Secondo anno Terzo anno Primo anno MATEMATICA Scuola dell Infanzia Scuola Primaria Conta oggetti o eventi, a voce e a mente, in senso progressivo e regressivo e per salti di due, tre ; legge

Dettagli

MECC 02 SISTEMI DI MISURA

MECC 02 SISTEMI DI MISURA SISTEMI DI MISURA UN SISTEMA DI MISURA PUÒ CONSIDERARSI UN RIFERIMENTO CHE OFFRE LE INDICAZIONI NECESSARIE PER IDENTIFICARE CORRETTAMENTE ED UNIVOCAMENTE LE UNITÀ DI MISURA DA ADOTTARE PER LE VARIE GRANDEZZE

Dettagli

SCUOLA PRIMARIA Anno Scolastico 2014/2015 CURRICOLO DI MATEMATICA OBIETTIVI DI APPRENDIMENTO AL TERMINE DELLA CLASSE TERZA DELLA SCUOLA PRIMARIA

SCUOLA PRIMARIA Anno Scolastico 2014/2015 CURRICOLO DI MATEMATICA OBIETTIVI DI APPRENDIMENTO AL TERMINE DELLA CLASSE TERZA DELLA SCUOLA PRIMARIA Ministero dell Istruzione, dell Università e della Ricerca Istituto Comprensivo Statale di Calolziocorte Via F. Nullo,6 23801 CALOLZIOCORTE (LC) e.mail: lcic823002@istruzione.it - Tel: 0341/642405/630636

Dettagli

TRASFORMAZIONI GEOMETRICHE NEL PIANO. Parte 1

TRASFORMAZIONI GEOMETRICHE NEL PIANO. Parte 1 TRASFORMAZIONI GEOMETRICHE NEL PIANO Parte 1 La geometria è la scienza che studia la forma e l estensione dei corpi e le trasformazioni che questi possono subire. In generale per trasformazione geometrica

Dettagli

Energia potenziale elettrica Potenziale elettrico Superfici equipotenziali

Energia potenziale elettrica Potenziale elettrico Superfici equipotenziali Energia potenziale elettrica Potenziale elettrico Superfici euipotenziali Energia potenziale elettrica Può dimostrarsi che le forze elettriche, come uelle gravitazionali, sono conservative. In altre parole

Dettagli

Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica

Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica Nome: N.M.: 1. 1d (giorno) contiene all incirca (a) 8640 s; (b) 9 10 4 s; (c) 86 10 2 s; (d) 1.44 10 3 s; (e) nessuno di questi valori. 2. Sono

Dettagli

v = 4 m/s v m = 5,3 m/s barca

v = 4 m/s v m = 5,3 m/s barca SOLUZIONI ESERCIZI CAPITOLO 2 Esercizio n.1 v = 4 m/s Esercizio n.2 v m = 5,3 m/s = 7 minuti e 4 secondi Esercizio n.3 Usiamo la seguente costruzione grafica: fiume 1 km/h barca 7 km/h La velocità della

Dettagli

Qual è la distanza tra Roma e New York?

Qual è la distanza tra Roma e New York? Qual è la distanza tra Roma e New York? Abilità Conoscenze Nuclei coinvolti Utilizzare i vettori e il prodotto Elementi di geometria Spazio e figure scalare nello studio di problemi della sfera: del piano

Dettagli