Algebra lineare con R

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Algebra lineare con R"

Transcript

1 Università di Napoli Federico II

2 Standardizzare una variabile Standardizzazione Data una variabile X distribuita secondo una media µ e una varianza σ 2 la standardizzazione permette di ottenere una variabile Z di media 0 e varianza 1. Z = X µ σ Per calcolare la media con R si usa il comando mean(nome variabile). Per calcolare la varianza con R si usa il comando var(nome variabile). N.B. per standardizzare è necessario dividere per lo scarto quadratico medio, la radice quadrata si calcola con il comando sqrt(nome variabile).

3 Esercizio 1 Standardizzazione Caricare il dataset trees; standardizzare le variabili altezza e circonferenza (Height and Girth); verificare che le variabili ottenute siano standardizzate.

4 Standardizzare una matrice Ogni variabile ha una propria media e una propria varianza. Per standardizzare una matrice bisogna: Calcolare le medie di ogni variabile; creare una matrice di medie; sottrarre le medie a dati; calcolare lo scarto quadratico medio di ogni variabile; creare una matrice con gli scari quadratici medi; dividere i dati centrati per la varianza. Esercizio 2 Standardizzare la matrice trees In R esiste un comando che standardizza la matrice: scale(nome variabile)

5 Standardizzare una matrice Ogni variabile ha una propria media e una propria varianza. Per standardizzare una matrice bisogna: Calcolare le medie di ogni variabile; creare una matrice di medie; sottrarre le medie a dati; calcolare lo scarto quadratico medio di ogni variabile; creare una matrice con gli scari quadratici medi; dividere i dati centrati per la varianza. Esercizio 2 Standardizzare la matrice trees In R esiste un comando che standardizza la matrice: scale(nome variabile)

6 Standardizzare una matrice Ogni variabile ha una propria media e una propria varianza. Per standardizzare una matrice bisogna: Calcolare le medie di ogni variabile; creare una matrice di medie; sottrarre le medie a dati; calcolare lo scarto quadratico medio di ogni variabile; creare una matrice con gli scari quadratici medi; dividere i dati centrati per la varianza. Esercizio 2 Standardizzare la matrice trees In R esiste un comando che standardizza la matrice: scale(nome variabile)

7 Matrice di varianza e covarianza La matrice di varianza e covarianza è uguale al prodotto X X x ij = y ij ȳ j. n 1 Se standardizzo Y: x ij = y ij ȳ j σ n 1 la matrice X X coincide con la matrice di correlazione Per usare l algebra matriciale su un dataset è necessario trasformarlo con il comando matrix=as.matrix(nome datase) Esercizio 3 Calcolare la matrice di varianza e covarianza e la matrice di correlazione del dataset trees

8 Matrice di varianza e covarianza La matrice di varianza e covarianza è uguale al prodotto X X x ij = y ij ȳ j. n 1 Se standardizzo Y: x ij = y ij ȳ j σ n 1 la matrice X X coincide con la matrice di correlazione Per usare l algebra matriciale su un dataset è necessario trasformarlo con il comando matrix=as.matrix(nome datase) Esercizio 3 Calcolare la matrice di varianza e covarianza e la matrice di correlazione del dataset trees

9 Matrice di varianza e covarianza La matrice di varianza e covarianza è uguale al prodotto X X x ij = y ij ȳ j. n 1 Se standardizzo Y: x ij = y ij ȳ j σ n 1 la matrice X X coincide con la matrice di correlazione Per usare l algebra matriciale su un dataset è necessario trasformarlo con il comando matrix=as.matrix(nome datase) Esercizio 3 Calcolare la matrice di varianza e covarianza e la matrice di correlazione del dataset trees

10 Matrice di varianza e covarianza La matrice di varianza e covarianza è uguale al prodotto X X x ij = y ij ȳ j. n 1 Se standardizzo Y: x ij = y ij ȳ j σ n 1 la matrice X X coincide con la matrice di correlazione Per usare l algebra matriciale su un dataset è necessario trasformarlo con il comando matrix=as.matrix(nome datase) Esercizio 3 Calcolare la matrice di varianza e covarianza e la matrice di correlazione del dataset trees

11 Definizione Data una matrice A: x è un autovettore di A e λ è un autovalore di A se: Ax = λx In R per calcolare autovalori e autovettori si usa il comando: eigen(nome matrice).

12 Esercizio 4 Standardizzazione Calcolare autovalori e autovettori della matrice V di varianza e covarianza del dataset trees. Verificare che l equazione Vx = λx è verificata. Calcolare gli autovatori della trasposta di V. Calcolare la traccia di V e verificare che sia uguale alla somma degli autovalori. Calcolare il determinante di V e verificare che sia uguale al prodotto degli autovalori.

Esercizi su Autovalori e Autovettori

Esercizi su Autovalori e Autovettori Esercizi su Autovalori e Autovettori Esercizio n.1 5 A = 5, 5 5 5 Esercizio n.6 A =, Esercizio n.2 4 2 9 A = 2 1 8, 4 2 9 Esercizio n.7 6 3 3 A = 6 3 6, 3 3 6 Esercizio n.3 A = 4 6 6 2 2, 6 6 2 Esercizio

Dettagli

Analisi statistica e matematico-finanziaria II. Alfonso Iodice D Enza Università degli studi di Cassino e del Lazio Meridionale

Analisi statistica e matematico-finanziaria II. Alfonso Iodice D Enza Università degli studi di Cassino e del Lazio Meridionale delle sui delle Analisi statistica e matematico-finanziaria II Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino e del Lazio Meridionale sulle particolari ali dei dati Outline

Dettagli

Statistica. Esercitazione 4 17 febbraio 2011 Medie condizionate. Covarianza e correlazione

Statistica. Esercitazione 4 17 febbraio 2011 Medie condizionate. Covarianza e correlazione Corso di Laurea in Scienze dell Organizzazione Facoltà di Sociologia, Università degli Studi di Milano-Bicocca a.a. 2010/2011 Statistica Esercitazione 4 17 febbraio 2011 Medie condizionate. Covarianza

Dettagli

Richiami di algebra delle matrici a valori reali

Richiami di algebra delle matrici a valori reali Richiami di algebra delle matrici a valori reali Vettore v n = v 1 v 2. v n Vettore trasposto v n = (v 1, v 2,..., v n ) v n = (v 1, v 2,..., v n ) A. Pollice - Statistica Multivariata Vettore nullo o

Dettagli

Analisi delle componenti principali

Analisi delle componenti principali Analisi delle componenti principali Serve a rappresentare un fenomeno k-dimensionale tramite un numero inferiore o uguale a k di variabili incorrelate, ottenute trasformando le variabili osservate Consiste

Dettagli

Corso di Laurea in Scienze dell Organizzazione Facoltà di Sociologia, Università degli Studi di Milano-Bicocca a.a. 2009/2010.

Corso di Laurea in Scienze dell Organizzazione Facoltà di Sociologia, Università degli Studi di Milano-Bicocca a.a. 2009/2010. Corso di Laurea in Scienze dell Organizzazione Facoltà di Sociologia, Università degli Studi di Milano-Bicocca a.a. 2009/2010 Statistica Esercitazione 4 12 maggio 2010 Dipendenza in media. Covarianza e

Dettagli

Analisi della correlazione canonica

Analisi della correlazione canonica Analisi della correlazione canonica Su un collettivo di unità statistiche si osservano due gruppi di k ed m variabili L analisi della correlazione canonica ha per obiettivo lo studio delle relazioni di

Dettagli

SCHEDA DIDATTICA N 7

SCHEDA DIDATTICA N 7 FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA CIVILE CORSO DI IDROLOGIA PROF. PASQUALE VERSACE SCHEDA DIDATTICA N 7 LA DISTRIBUZIONE NORMALE A.A. 01-13 La distribuzione NORMALE Uno dei più importanti

Dettagli

Esercitazione: La distribuzione NORMALE

Esercitazione: La distribuzione NORMALE Esercitazione: La distribuzione NORMALE Uno dei più importanti esempi di distribuzione di probabilità continua è dato dalla distribuzione Normale (curva normale o distribuzione Gaussiana); è una delle

Dettagli

Elementi di statistica per l econometria

Elementi di statistica per l econometria Indice Prefazione i 1 Teoria della probabilità 1 1.1 Definizioni di base............................. 2 1.2 Probabilità................................. 7 1.2.1 Teoria classica...........................

Dettagli

La matrice delle correlazioni è la seguente:

La matrice delle correlazioni è la seguente: Calcolo delle componenti principali tramite un esempio numerico Questo esempio numerico puó essere utile per chiarire il calcolo delle componenti principali e per introdurre il programma SPAD. IL PROBLEMA

Dettagli

Corsi di Laurea in Scienze Biologiche Prova scritta di Informatica e Statistica Generale (A). 05/07/2006

Corsi di Laurea in Scienze Biologiche Prova scritta di Informatica e Statistica Generale (A). 05/07/2006 Corsi di Laurea in Scienze Biologiche Prova scritta di Informatica e Statistica Generale (A). 0/07/006 COGNOME NOME MATRICOLA.) Sia {x, x,..., x n } IR una popolazione statistica numerica relativa ad una

Dettagli

Statistica. Alfonso Iodice D Enza

Statistica. Alfonso Iodice D Enza Statistica Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () Statistica 1 / 33 Outline 1 2 3 4 5 6 () Statistica 2 / 33 Misura del legame Nel caso di variabili quantitative

Dettagli

UNIVERSITÀ di ROMA TOR VERGATA

UNIVERSITÀ di ROMA TOR VERGATA UNIVERSITÀ di ROMA TOR VERGATA Corso di Statistica, anno 2010-11 P.Baldi Lista di esercizi 3. Corso di Laurea in Biotecnologie Esercizio 1 Una v.a. X segue una legge N(2, ). Calcolare a1) P(X 1) a2) P(2

Dettagli

Esame di Statistica (10 o 12 CFU) CLEF 11 febbraio 2016

Esame di Statistica (10 o 12 CFU) CLEF 11 febbraio 2016 Esame di Statistica 0 o CFU) CLEF febbraio 06 Esercizio Si considerino i seguenti dati, relativi a 00 clienti di una banca a cui è stato concesso un prestito, classificati per età e per esito dell operazione

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni Corso di Geometria 2- BIAR, BSIR Esercizi 2: soluzioni Esercizio Calcolare il determinante della matrice 2 3 : 3 2 a) con lo sviluppo lungo la prima riga, b) con lo sviluppo lungo la terza colonna, c)

Dettagli

Statistica. Alfonso Iodice D Enza

Statistica. Alfonso Iodice D Enza Statistica Alfonso Iodice D Enza iodicede@gmail.com Università degli studi di Cassino () Statistica 1 / 24 Outline 1 2 3 4 5 () Statistica 2 / 24 Dipendenza lineare Lo studio della relazione tra caratteri

Dettagli

Statistica. Esercitazione 4 15 maggio 2012 Connessione. Medie condizionate. Covarianza e correlazione

Statistica. Esercitazione 4 15 maggio 2012 Connessione. Medie condizionate. Covarianza e correlazione Corso di Laurea in Scienze dell Organizzazione Facoltà di Sociologia, Università degli Studi di Milano-Bicocca a.a. 2011/2012 Statistica Esercitazione 4 15 maggio 2012 Connessione. Medie condizionate.

Dettagli

(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica.

(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica. 5 luglio 010 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

LAUREA SPECIALISTICA IN FARMACIA - Prova scritta di MATEMATICA - 24/01/03 ANNI PRECEDENTI. 1. (Punti 10) Si consideri la funzione

LAUREA SPECIALISTICA IN FARMACIA - Prova scritta di MATEMATICA - 24/01/03 ANNI PRECEDENTI. 1. (Punti 10) Si consideri la funzione MATEMATICA - 4//3 ANNI PRECEDENTI (Punti ) Si consideri la funzione ( ) f() = ln Si studi f, determinando in particolare dominio, limiti, intervalli di crescenza, decrescenza, concavità, convessità di

Dettagli

Statistica. Capitolo 6. Variabili Aleatorie Continue e Distribuzioni di Probabilità. Cap. 6-1

Statistica. Capitolo 6. Variabili Aleatorie Continue e Distribuzioni di Probabilità. Cap. 6-1 Statistica Capitolo 6 Variabili Aleatorie Continue e Distribuzioni di Probabilità Cap. 6-1 Obiettivi del Capitolo Dopo aver completato il capitolo, sarete in grado di: Spiegare la differenza tra una variabile

Dettagli

Statistica. Alfonso Iodice D Enza

Statistica. Alfonso Iodice D Enza Statistica Alfonso Iodice D Enza iodicede@gmail.com Università degli studi di Cassino () Statistica 1 / 41 Outline 1 2 3 4 5 () Statistica 2 / 41 Misura del legame Data una variabile doppia (X, Y ), la

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 5

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 5 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Approssimazione normale della Poisson (TLC) In un determinato tratto di strada il numero di incidenti

Dettagli

Statistical Process Control

Statistical Process Control Statistical Process Control ESERCIZI II Esercizio 1. Una ditta che produce schermi a cristalli liquidi deve tenere in controllo il numero di pixel non funzionanti. Vengono ispezionati venti schermi alla

Dettagli

ESERCIZI STATISTICA DESCRITTIVA

ESERCIZI STATISTICA DESCRITTIVA ESERCIZI STATISTICA DESCRITTIVA Frequenze assolute e relative Titolo di studio Frequenze assolute Frequenze relative Proporzioni Percentuali Senza titolo 30 0,025 2,5 Lic. elementare 509 0,424 42,4 Licenza

Dettagli

Statistica descrittiva II

Statistica descrittiva II Probabilità e Statistica Esercitazioni a.a. 009/010 C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica Statistica descrittiva II Ines Campa Probabilità e Statistica - Esercitazioni

Dettagli

Esercitazione n. 3 - Corso di STATISTICA - Università della Basilicata - a.a. 2011/12 Prof. Roberta Siciliano

Esercitazione n. 3 - Corso di STATISTICA - Università della Basilicata - a.a. 2011/12 Prof. Roberta Siciliano Esercitazione n. 3 - Corso di STATISTICA - Università della Basilicata - a.a. 2011/12 Prof. Roberta Siciliano Esercizio 1 Una moneta viene lanciata 6 volte. Calcolare a) La probabilità che escano esattamente

Dettagli

Statistica. Alfonso Iodice D Enza

Statistica. Alfonso Iodice D Enza Statistica Alfonso Iodice D Enza iodicede@unina.it Università degli studi di Cassino () Statistica 1 / 24 Outline 1 () Statistica 2 / 24 Outline 1 2 () Statistica 2 / 24 Outline 1 2 3 () Statistica 2 /

Dettagli

Analisi delle corrispondenze

Analisi delle corrispondenze Analisi delle corrispondenze Obiettivo: analisi delle relazioni tra le modalità di due (o più) caratteri qualitativi Individuazione della struttura dell associazione interna a una tabella di contingenza

Dettagli

Statistica Descrittiva Soluzioni 6. Indici di variabilità, asimmetria e curtosi

Statistica Descrittiva Soluzioni 6. Indici di variabilità, asimmetria e curtosi ISTITUZIONI DI STATISTICA A A 2007/2008 Marco Minozzo e Annamaria Guolo Laurea in Economia del Commercio Internazionale Laurea in Economia e Amministrazione delle Imprese Università degli Studi di Verona

Dettagli

DISTRIBUZIONI DI CAMPIONAMENTO

DISTRIBUZIONI DI CAMPIONAMENTO DISTRIBUZIONI DI CAMPIONAMENTO 12 DISTRIBUZIONE DI CAMPIONAMENTO DELLA MEDIA Situazione reale Della popolazione di tutti i laureati in odontoiatria negli ultimi 10 anni, in tutte le Università d Italia,

Dettagli

Introduzione al rischio, rendimento e costo opportunità del capitale

Introduzione al rischio, rendimento e costo opportunità del capitale Introduzione al rischio, rendimento e costo opportunità del capitale Nozione di Costo Opportunità del Capitale Il rendimento che i finanziatori otterrebbero impiegando i propri fondi in attività alternative,

Dettagli

REGISTRO DELLE LEZIONI

REGISTRO DELLE LEZIONI UNIVERSITA DEGLI STUDI DI GENOVA FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI REGISTRO DELLE LEZIONI del Corso UFFICIALE di GEOMETRIA B tenute dal prof. Domenico AREZZO nell anno accademico 2006/2007

Dettagli

Algebra Lineare Autovalori

Algebra Lineare Autovalori Algebra Lineare Autovalori Stefano Berrone Sandra Pieraccini Dipartimento di Matematica Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy e-mail: sberrone@calvino.polito.it sandra.pieraccini@polito.it

Dettagli

Appendice A. Richiami di algebra lineare. A.1 Matrici

Appendice A. Richiami di algebra lineare. A.1 Matrici Richiami di algebra lineare A Matrici Una matrice è un insieme di numeri reali ordinati per righe e per colonne Le matrici vengono generalmente indicate con le lettere maiuscole Ciascun elemento della

Dettagli

Esercizi su distribuzioni doppie, dipendenza, correlazione e regressione (Statistica I, IV Canale)

Esercizi su distribuzioni doppie, dipendenza, correlazione e regressione (Statistica I, IV Canale) Esercizi su distribuzioni doppie, dipendenza, correlazione e regressione (Statistica I, IV Canale) Esercizio 1: Un indagine su 10.000 famiglie ha dato luogo, fra le altre, alle osservazioni riportate nella

Dettagli

Statistica a.a Autovalutazione 1

Statistica a.a Autovalutazione 1 Statistica a.a. 016-17 Autovalutazione 1 CORSO: Diritto per le Imprese e le Istituzioni ATTENZIONE: alle domande aperte è stato dato un possibile esempio di risposta, altre parole possono essere usate

Dettagli

Esercitazione ENS su processi casuali (13 e 14 Maggio 2008)

Esercitazione ENS su processi casuali (13 e 14 Maggio 2008) Esercitazione ES su processi casuali ( e 4 Maggio 2008) D. Donno Esercizio : Calcolo di autovalori e autovettori Si consideri un processo x n somma di un segnale e un disturbo: x n = Ae π 2 n + w n, n

Dettagli

(5 sin x + 4 cos x)dx [9]

(5 sin x + 4 cos x)dx [9] FACOLTÀ DI SCIENZE MM. FF. NN. CORSO DI LAUREA IN SCIENZE NATURALI II Modulo di Matematica con elementi di statistica. Esercitazioni A.A. 009.00. Tutor: Mauro Soro, p.soro@tin.it Integrali definiti Risolvere

Dettagli

Analisi delle corrispondenze

Analisi delle corrispondenze Capitolo 11 Analisi delle corrispondenze L obiettivo dell analisi delle corrispondenze, i cui primi sviluppi risalgono alla metà degli anni 60 in Francia ad opera di JP Benzécri e la sua equipe, è quello

Dettagli

Prof. Anna Paola Ercolani (Università di Roma) Lez Indicatori di dispersione

Prof. Anna Paola Ercolani (Università di Roma) Lez Indicatori di dispersione Consentono di descrivere la variabilità all interno della distribuzione di requenza tramite un unico valore che ne sintetizza le caratteristiche CAMPO DI VARIAZIONE DIFFERENZA INTERQUARTILE SCOSTAMENTO

Dettagli

0.1. MATRICI SIMILI 1

0.1. MATRICI SIMILI 1 0.1. MATRICI SIMILI 1 0.1 Matrici simili Definizione 0.1.1. Due matrici A, B di ordine n si dicono simili se esiste una matrice invertibile P con la proprietà che P 1 AP = B. Con questa terminologia dunque

Dettagli

Statistica di base per l analisi socio-economica

Statistica di base per l analisi socio-economica Laurea Magistrale in Management e comunicazione d impresa Statistica di base per l analisi socio-economica Giovanni Di Bartolomeo gdibartolomeo@unite.it Definizioni di base Una popolazione è l insieme

Dettagli

MODELLO DI REGRESSIONE LINEARE. le ipotesi del modello di regressione classico, stima con i metodi dei minimi quadrati e di massima verosimiglianza,

MODELLO DI REGRESSIONE LINEARE. le ipotesi del modello di regressione classico, stima con i metodi dei minimi quadrati e di massima verosimiglianza, MODELLO DI REGRESSIONE LINEARE le ipotesi del modello di regressione classico, stima con i metodi dei minimi quadrati e di massima verosimiglianza, teorema di Gauss-Markov, verifica di ipotesi e test di

Dettagli

Confronto tra più di due campioni

Confronto tra più di due campioni Confronto tra più di due campioni La matrice dei dati Quando si esaminano più di due popolazioni, le informazioni sono u- sualmente organizzate sotto forma di matrice.,,, n ( ω ω ω ) 1 2 Pino, Maria,,Giacomo

Dettagli

UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA

UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - 9.Statistica - CTF Matematica - Seconda Parte Codice Compito: - Numero d Ordine D. 1 Un veicolo marcia per 50 km alla velocita v, e per altri 50 km alla velocita

Dettagli

ANOVA: ANALISI DELLA VARIANZA Prof. Antonio Lanzotti

ANOVA: ANALISI DELLA VARIANZA Prof. Antonio Lanzotti UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II DIPARTIMENTO DI INGEGNERIA AEROSPAZIALE D.I.A.S. STATISTICA PER L INNOVAZIONE a.a. 007/008 ANOVA: ANALISI DELLA VARIANZA Prof. Antonio Lanzotti A cura di: Ing.

Dettagli

Statistica. Alfonso Iodice D Enza

Statistica. Alfonso Iodice D Enza Statistica Alfonso Iodice D Enza iodicede@unina.it Università degli studi di Cassino () Statistica 1 / 27 Outline 1 () Statistica 2 / 27 Outline 1 2 () Statistica 2 / 27 Outline 1 2 3 () Statistica 2 /

Dettagli

Polinomio di Taylor del secondo ordine per funzioni di due variabili

Polinomio di Taylor del secondo ordine per funzioni di due variabili Esercitazioni del 15 aprile 2013 Polinomio di Taylor del secondo ordine per funzioni di due variabili Sia f : A R 2 R una funzione di classe C 2. Fissato un p unto (x 0, y 0 A consideriamo il seguente

Dettagli

LE DISTRIBUZIONI CAMPIONARIE

LE DISTRIBUZIONI CAMPIONARIE LE DISTRIBUZIONI CAMPIONARIE Argomenti Principi e metodi dell inferenza statistica Metodi di campionamento Campioni casuali Le distribuzioni campionarie notevoli: La distribuzione della media campionaria

Dettagli

Introduzione al software R

Introduzione al software R Introduzione al software R 1 1 Università di Napoli Federico II cristina.tortora@unina.it il software R Si tratta di un software molto flessibile che permette di compiere praticamente qualsiasi tipo di

Dettagli

Esercizi Svolti. 2. Costruire la distribuzione delle frequenze cumulate del tempo di attesa

Esercizi Svolti. 2. Costruire la distribuzione delle frequenze cumulate del tempo di attesa Esercizi Svolti Esercizio 1 Per una certa linea urbana di autobus sono state effettuate una serie di rilevazioni sui tempi di attesa ad una determinata fermata; la corrispondente distribuzione di frequenza

Dettagli

Politecnico di Torino Facoltà di Architettura. Raccolta di esercizi proposti nelle prove scritte

Politecnico di Torino Facoltà di Architettura. Raccolta di esercizi proposti nelle prove scritte Politecnico di Torino Facoltà di Architettura Raccolta di esercizi proposti nelle prove scritte relativi a: algebra lineare, vettori e geometria analitica Esercizio. Determinare, al variare del parametro

Dettagli

STATISTICA esercizi svolti su: INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE

STATISTICA esercizi svolti su: INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE STATISTICA esercizi svolti su: INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE 1 1 INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE 2 1 INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE 1.1

Dettagli

X ~ N (20, 16) Soluzione

X ~ N (20, 16) Soluzione ESERCIZIO 3.1 Il tempo di reazione ad un esperimento psicologico effettuato su un gruppo di individui si distribuisce normalmente con media µ = 20 secondi e scarto quadratico medio σ = 4 secondi: X ~ N

Dettagli

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi)

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi) Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006 Matematica 2 (Analisi) Nome:................................. N. matr.:.................................

Dettagli

REGRESSIONE E CORRELAZIONE

REGRESSIONE E CORRELAZIONE REGRESSIONE E CORRELAZIONE Nella Statistica, per studio della connessione si intende la ricerca di eventuali relazioni, di dipendenza ed interdipendenza, intercorrenti tra due variabili statistiche 1.

Dettagli

Corso di Statistica: ESERCITAZIONI

Corso di Statistica: ESERCITAZIONI Corso di Statistica: ESERCITAZIONI Nicole Triunfo a.a: 2013/2014 Università degli Studi di Napoli Federico II Esercitazioni di STATISTICA Gli indici di posizione Gli indici di posizione Gli indici di posizione,

Dettagli

MATRICI E VETTORI APPROFONDIMENTO PER IL CORSO DI LABORATORIO DI INFORMATICA SARA POLTRONIERI

MATRICI E VETTORI APPROFONDIMENTO PER IL CORSO DI LABORATORIO DI INFORMATICA SARA POLTRONIERI MATRICI E VETTORI APPROFONDIMENTO PER IL CORSO DI LABORATORIO DI INFORMATICA SARA POLTRONIERI LE MATRICI DEFINIZIONE: Una matrice è un insieme di numeri disposti su righe e colonne. 1 3 7 M = 2 5 1 M è

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 3 FEBBRAIO 6 Si risolvano cortesemente i seguenti problemi. PRIMO PROBLEMA (PUNTEGGIO: 6/3) Si calcoli l integrale SOLUZIONE DEL PRIMO PROBLEMA M=. (+ x

Dettagli

Autovalori e Autovettori

Autovalori e Autovettori Autovalori e Autovettori Un Esempio di Economia Industriale Università Mediterranea di Reggio Calabria Decisions Lab Il Modello - Un bene prodotto con due differenti qualità; - due imprese: leader (L)

Dettagli

STATISTICA (2) ESERCITAZIONE 2. Dott.ssa Antonella Costanzo

STATISTICA (2) ESERCITAZIONE 2. Dott.ssa Antonella Costanzo STATISTICA (2) ESERCITAZIONE 2 5.02.2014 Dott.ssa Antonella Costanzo Esercizio 1. La v.c. Normale: uso delle tavole E noto che un certo tipo di dati si distribuiscono secondo una gaussiana di media 10

Dettagli

Analisi delle Componenti Principali con R

Analisi delle Componenti Principali con R Università di Bologna - Facoltà di Scienze Statistiche Laurea Triennale in Statistica e Ricerca Sociale Corso di Analisi di Serie Storiche e Multidimensionali Prof.ssa Marilena Pillati Analisi delle Componenti

Dettagli

Nel modello di regressione Multivariata abbiamo più variabili risposta (tipicamente poche), in particolare avremo:

Nel modello di regressione Multivariata abbiamo più variabili risposta (tipicamente poche), in particolare avremo: Lezione 15 (a cura di Giovanni Mariani) Regressione Multivariata Consideriamo yiyr, con r = numero variabili risposta xixk, con k = numero varibili esplicative Nel modello di regressione Multivariata abbiamo

Dettagli

Scanned by CamScanner

Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Università di Cassino Corso di Statistica Esercitazione

Dettagli

ESAME. 9 Gennaio 2017 COMPITO B

ESAME. 9 Gennaio 2017 COMPITO B ESAME 9 Gennaio 2017 COMPITO B Cognome Nome Numero di matricola 1) Approssimare tutti i calcoli alla quarta cifra decimale. 2) Ai fini della valutazione si terrà conto solo ed esclusivamente di quanto

Dettagli

ANALISI MULTIDIMENSIONALE DEI DATI (AMD)

ANALISI MULTIDIMENSIONALE DEI DATI (AMD) ANALISI MULTIDIMENSIONALE DEI DATI (AMD) L Analisi Multidimensionale dei Dati (AMD) è una famiglia di tecniche il cui obiettivo principale è la visualizzazione, la classificazione e l interpretazione della

Dettagli

Raccolta di esercizi di Calcolo Numerico Prof. Michela Redivo Zaglia

Raccolta di esercizi di Calcolo Numerico Prof. Michela Redivo Zaglia Raccolta di esercizi di Calcolo Numerico Prof. Michela Redivo Zaglia Nota Bene: Gli esercizi di questa raccolta sono solo degli esempi. Non sono stati svolti né verificati e servono unicamente da spunto

Dettagli

Autovalori ed autovettori di una matrice

Autovalori ed autovettori di una matrice Autovalori ed autovettori di una matrice Lucia Gastaldi DICATAM http://www.ing.unibs.it/gastaldi/ Indice 1 Definizioni di autovalori ed autovettori Autovalori ed autovettori 2 Metodo delle potenze 3 Calcolo

Dettagli

Esercitazione 4 del corso di Statistica (parte 2)

Esercitazione 4 del corso di Statistica (parte 2) Esercitazione 4 del corso di Statistica (parte ) Dott.ssa Paola Costantini Febbraio Esercizio n. Il tempo di percorrenza del treno che collega la stazione di Roma Termini con l aeroporto di Fiumicino è

Dettagli

Capitolo 6. La distribuzione normale

Capitolo 6. La distribuzione normale Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 6 La distribuzione normale Insegnamento: Statistica Corso di Laurea Triennale in Ingegneria Gestionale Facoltà di Ingegneria, Università

Dettagli

Istruzioni per l analisi in componenti principali con R

Istruzioni per l analisi in componenti principali con R Istruzioni per l analisi in componenti principali con R Vi ricordo che in nero sono state inserite le note e in rosso le istruzioni da digitare sulla console di R Importare il dataset gelati

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale a) L Intervallo di Confidenza b) La distribuzione t di Student c) La differenza delle medie d) L intervallo di confidenza della differenza Prof Paolo Chiodini Dalla Popolazione

Dettagli

Statistica4-29/09/2015

Statistica4-29/09/2015 Statistica4-29/09/2015 Raccogliere i dati con il maggior numero di cifre significative ed arrotondare eventualmente solo al momento dei calcoli (min. 3); nella grande maggioranza delle ricerche biologiche

Dettagli

Lezione n. 1 (a cura di Irene Tibidò)

Lezione n. 1 (a cura di Irene Tibidò) Lezione n. 1 (a cura di Irene Tibidò) Richiami di statistica Variabile aleatoria (casuale) Dato uno spazio campionario Ω che contiene tutti i possibili esiti di un esperimento casuale, la variabile aleatoria

Dettagli

2 2 2 A = Il Det(A) = 2 quindi la conica è non degenere, di rango 3.

2 2 2 A = Il Det(A) = 2 quindi la conica è non degenere, di rango 3. Studio delle coniche Ellisse Studiare la conica di equazione 2x 2 + 4xy + y 2 4x 2y + 2 = 0. Per prima cosa dobbiamo classificarla. La matrice associata alla conica è: 2 2 2 A = 2 2 2 Il DetA = 2 quindi

Dettagli

X = x + 1. X = x + 1

X = x + 1. X = x + 1 CONICHE. Esercizi Esercizio. Classificare, ridurre a forma canonica (completando i quadrati), e disegnare le seguenti coniche: γ : x y + x = 0; γ : x + 4x y + = 0; γ 3 : x + y + y + 0 = 0; γ 4 : x + y

Dettagli

Capitolo 6 La distribuzione normale

Capitolo 6 La distribuzione normale Levine, Krehbiel, Berenson Statistica Casa editrice: Pearson Capitolo 6 La distribuzione normale Insegnamento: Statistica Corso di Laurea Triennale in Economia Dipartimento di Economia e Management, Università

Dettagli

STATISTICA DESCRITTIVA. Elementi di statistica medica GLI INDICI INDICI DI DISPERSIONE STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA. Elementi di statistica medica GLI INDICI INDICI DI DISPERSIONE STATISTICA DESCRITTIVA STATISTICA DESCRITTIVA Elementi di statistica medica STATISTICA DESCRITTIVA È quella branca della statistica che ha il fine di descrivere un fenomeno. Deve quindi sintetizzare tramite pochi valori(indici

Dettagli

Metodi di analisi statistica multivariata

Metodi di analisi statistica multivariata Metodi di analisi statistica multivariata lzo V

Dettagli

La dipendenza. Antonello Maruotti

La dipendenza. Antonello Maruotti La dipendenza Antonello Maruotti Outline 1 Distribuzioni doppie 2 Medie e varianze condizionate 3 Indici di associazione Distribuzione doppia Definizione Una distribuzione doppia si ha quando su di uno

Dettagli

Modelli Multilineari e Misure di adeguatezza del modello

Modelli Multilineari e Misure di adeguatezza del modello Metodi di Analisi dei Dati Sperimentali AA /2010 Pier Luca Maffettone Modelli Multilineari e Misure di adeguatezza del modello Sommario Regressione multilineare Coefficiente di determinazione (modelli

Dettagli

TEMPUS PECUNIA EST COLLANA DI MATEMATICA PER LE SCIENZE ECONOMICHE FINANZIARIE E AZIENDALI

TEMPUS PECUNIA EST COLLANA DI MATEMATICA PER LE SCIENZE ECONOMICHE FINANZIARIE E AZIENDALI TEMPUS PECUNIA EST COLLANA DI MATEMATICA PER LE SCIENZE ECONOMICHE FINANZIARIE E AZIENDALI 2 Direttore Beatrice VENTURI Università degli Studi di Cagliari Comitato scientifico Umberto NERI University of

Dettagli

distribuzione normale

distribuzione normale distribuzione normale Si tratta della più importante distribuzione di variabili continue, in quanto: 1. si può assumere come comportamento di molti fenomeni casuali, tra cui gli errori accidentali; 2.

Dettagli

Università degli studi della Tuscia. Principi di Statistica dr. Luca Secondi A.A. 2014/2015. Esercitazione di riepilogo Variabili casuali

Università degli studi della Tuscia. Principi di Statistica dr. Luca Secondi A.A. 2014/2015. Esercitazione di riepilogo Variabili casuali Università degli studi della Tuscia Principi di Statistica dr. Luca Secondi A.A. 014/015 Esercitazione di riepilogo Variabili casuali ESERCIZIO 1 Il peso delle compresse di un determinato medicinale si

Dettagli

Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti)

Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti) Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti) April 14, 2011 (alcune note non complete sugli argomenti trattati: eventuali completamenti saranno aggiunti)

Dettagli

STATISTICA SERALE (NOF) Appello del 12/07/12 Effettuare i calcoli arrotondando alla seconda cifra decimale A PARTE PRIMA

STATISTICA SERALE (NOF) Appello del 12/07/12 Effettuare i calcoli arrotondando alla seconda cifra decimale A PARTE PRIMA Appello del 12/07/12 A PARTE PRIMA 1) Enunciare e dimostrare le due proprietà della media aritmetica. 2) Il prospetto che segue si riferisce ad una parte della distribuzione per età delle donne italiane

Dettagli

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni Corso di Geometria Ing. Informatica e Automatica Test : soluzioni k Esercizio Data la matrice A = k dipendente dal parametro k, si consideri il k sistema lineare omogeneo AX =, con X = x x. Determinare

Dettagli

Il processo inferenziale consente di generalizzare, con un certo grado di sicurezza, i risultati ottenuti osservando uno o più campioni

Il processo inferenziale consente di generalizzare, con un certo grado di sicurezza, i risultati ottenuti osservando uno o più campioni La statistica inferenziale Il processo inferenziale consente di generalizzare, con un certo grado di sicurezza, i risultati ottenuti osservando uno o più campioni E necessario però anche aggiungere con

Dettagli

DISTRIBUZIONE NORMALE STANDARDIZZATA ESEMPIO DI USO DELLE TAVOLE

DISTRIBUZIONE NORMALE STANDARDIZZATA ESEMPIO DI USO DELLE TAVOLE DISTRIBUZIONE NORMALE STANDARDIZZATA ESEMPIO DI USO DELLE TAVOLE Sapendo che la variabile dominanza si distribuisce normalmente con media = 32 e deviazione standard = 5, trovare, in un gruppo di 80 soggetti,

Dettagli

Teoria e tecniche dei test. Concetti di base

Teoria e tecniche dei test. Concetti di base Teoria e tecniche dei test Lezione 2 2013/14 ALCUNE NOZIONI STATITICHE DI BASE Concetti di base Campione e popolazione (1) La popolazione è l insieme di individui o oggetti che si vogliono studiare. Questi

Dettagli

Indicatori di Posizione e di Variabilità. Corso di Laurea Specialistica in SCIENZE DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE Statistica Medica

Indicatori di Posizione e di Variabilità. Corso di Laurea Specialistica in SCIENZE DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE Statistica Medica Indicatori di Posizione e di Variabilità Corso di Laurea Specialistica in SCIENZE DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE Statistica Medica Indici Sintetici Consentono il passaggio da una pluralità

Dettagli

I VETTORI GAUSSIANI E. DI NARDO

I VETTORI GAUSSIANI E. DI NARDO I VETTOI GAUSSIANI E. DI NADO. L importanza della distribuzione gaussiana I vettori di v.a. gaussiane sono senza dubbio uno degli strumenti più utili in statistica. Nell analisi multivariata, per esempio,

Dettagli

Analisi della varianza

Analisi della varianza Analisi della varianza Prof. Giuseppe Verlato Sezione di Epidemiologia e Statistica Medica, Università di Verona ANALISI DELLA VARIANZA - 1 Abbiamo k gruppi, con un numero variabile di unità statistiche.

Dettagli

ESERCIZIO 1. Vengono riportati di seguito i risultati di un analisi discriminante.

ESERCIZIO 1. Vengono riportati di seguito i risultati di un analisi discriminante. ESERCIZIO 1. Vengono riportati di seguito i risultati di un analisi discriminante. Test di uguaglianza delle medie di gruppo SELF_EFF COLL_EFF COIN_LAV IMPEGNO SODDISF CAP_IST COLLEGHI Lambda di Wilks

Dettagli

Variabili casuali multidimensionali

Variabili casuali multidimensionali Capitolo 1 Variabili casuali multidimensionali Definizione 1.1 Le variabili casuali multidimensionali sono k-ple ordinate di variabili casuali unidimensionali definite sullo stesso spazio di probabilità.

Dettagli

4. Sia Γ la conica che ha fuoco F (1, 1) e direttrice d : x y = 0, e che passa per il punto P (2, 1).

4. Sia Γ la conica che ha fuoco F (1, 1) e direttrice d : x y = 0, e che passa per il punto P (2, 1). Geometria Complementi ed esercizi sulle coniche 1 (a) Scrivere l equazione dell ellisse Γ che ha fuochi F 1 ( 1, 1), F (1, 1) e che passa per il punto P (1, 1) (b) Determinare il centro, gli assi e i vertici

Dettagli

Elementi di Psicometria

Elementi di Psicometria Elementi di Psicometria 7-Punti z e punti T vers. 1.0a (21 marzo 2011) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca 2010-2011 G. Rossi (Dip. Psicologia)

Dettagli

1 Il polinomio minimo.

1 Il polinomio minimo. Abstract Il polinomio minimo, così come il polinomio caratterisico, è un importante invariante per le matrici quadrate. La forma canonica di Jordan è un approssimazione della diagonalizzazione, e viene

Dettagli

Statistica Sociale - modulo A

Statistica Sociale - modulo A Statistica Sociale - modulo A e-mail: stella.iezzi@uniroma2.it Uno dei principali limiti della media aritmetica e che essa risente fortemente dei valori estremi della distribuzione. Cosi pu accadere che

Dettagli