Δlessio abelli. Studente di Matematica Sapienza - Università di Roma. Dipartimento di Matematica Guido Castelnuovo

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Δlessio abelli. Studente di Matematica Sapienza - Università di Roma. Dipartimento di Matematica Guido Castelnuovo"

Transcript

1 Δlessio elli Studente di Mtemti Spienz - Università di Rom Diprtimento di Mtemti Guido Cstelnuovo we-site: EQUAZIONI DI II GRADO. DEFINIZIONI Si die equzione di seondo grdo nell inognit un equzione he ridott form normle è del tipo + + = 0 on il oeffiiente diverso d zero. Un equzione di seondo grdo si die: omplet qundo tutti e tre i suoi oeffiienti (,,,) sono diversi d zero; inomplet qundo lmeno uno dei oeff. e è ugule zero, in prtiolre o pur se = 0 e 0 o spuri se 0 e = 0 monomi qundo tutti e due i oeffiienti e sono uguli zero. RISOLUZIONE DI EQUAZIONI INCOMPLETE.. equzione pur + = 0 trsporto seondo memro e divido i due memri per (prinipi di equivlenz) = estrggo l rdie qudrt Si possono verifire i seguenti si:. < 0 (se e sono onordi) l equzione è impossiile. > 0 (se e sono disordi) l equzione mmette soluzioni opposte, = ± Pgin e-mil mestro87@live.it

2 Δlessio elli Studente di Mtemti Spienz - Università di Rom Diprtimento di Mtemti Guido Cstelnuovo we-site: equzione spuri + = 0 rolgo fttore omune ( + ) = 0 pplio l legge dell nnullmento del prodotto = 0 + = 0 l prim equzione mi fornise l soluzione 0 (sempre soluzione di un eq. spuri) = l seond equzione è di primo grdo e fornise l soluzione = Pertnto un equzione spuri h sempre due soluzioni distinte... equzione monomi = 0 h ome soluzione 0, = Pgin e-mil mestro87@live.it

3 Δlessio elli Studente di Mtemti Spienz - Università di Rom Diprtimento di Mtemti Guido Cstelnuovo we-site: RISOLUZIONE DI EQUAZIONI COMPLETE + + = 0 on o, o, 0 Si ppli l formul risolutiv, = ± = disriminnte Ci sono tre si. > 0 due soluzioni reli distinte. = 0 due soluzioni reli oinidenti (soluzione doppi). < 0 nessun soluzione rele. EQUAZIONI FRAZIONARIE Si risolvono ome quelle intere fendo l disussione dei denomintori 5. RELAZIONE FRA I COEFFICIENTI E LE RADICI DI UN EQ. II GRADO + = = on 0 Pgin e-mil mestro87@live.it

4 Δlessio elli Studente di Mtemti Spienz - Università di Rom Diprtimento di Mtemti Guido Cstelnuovo we-site: 6. EQUAZIONI PARAMETRICHE + m + m = 0 i suoi oeff. sono = = m = m Se ttriuimo m vlori diversi ottenimoo equzioni diverse he hnno, in generle, soluzioni diverse. Per esempio m=0, m=, m=, m=. Al vrire di m, dunque vri l equzione e, di onseguenz, vrino le soluzioni. L letter m si die 5 prmetro e l equzione si die prmetri. I generle si die prmetri un equzione ventee lmeno un oeffiiente dipendente d un o più lettere dette prmetri. Gli eserizi sulle eq. prmetrihe onsistonoo nel determinre i vlori del prmetro per i quli le soluzioni dell equz. soddisfno erte ondizioni. Pgin e-mil mestro87@live.it

5 Δlessio elli Studente di Mtemti Spienz - Università di Rom Diprtimento di Mtemti Guido Cstelnuovo we-site: 7. EQUAZIONI DI GRADO SUPERIORE AL SECONDO RICONDUCIBILI A EQ. DI I O II GRADO Il primo metodo onsiste nello somporre il dell nnullmento del prodotto polinomio he ompone l equzione in fttori e pplire l legge 7.. equzioni iqudrtihe Un equzione si die iqudrti qundo, ridott form normle, è di grdo e mn dei termini ontenenti le potenze dell inognit l grdo dispri. + + = 0 on 0 () INCOMPLETE so) Se = 0 e 0 l equzionee ssume l form + = 0 in ui si roglie dell nnullmento del prodotto ottenendo = 0 d ui l soluzione 0 e, = e poi si ppli l legge = d ui se > 0 si hnno le soluzioni, = ± Pgin 5 e-mil mestro87@live.it

6 Δlessio elli Studente di Mtemti Spienz - Università di Rom Diprtimento di Mtemti Guido Cstelnuovo we-site: so) Se = 0 e 0 l equzione ssume l form + = 0 : se > 0 si h = = ± se < 0 l equzione non h soluzioni reli so) Se = 0 e = 0 l equzionee divent = 0 he h rdii reli oinidenti,,, = 0 COMPLETE Per risolverl si oper l sostituzione = t osì l () divent t + t + = 0 () he è un eq. di seondo grdo dett equzione risolvente dell equzione iqudrti. Si verifino i seguenti tre si: ±. > 0 llor l () h due soluzioni reli e distinte t, = per ui, in se ll sostituzione opert, imo due equzioni di seondo grdo pure = t e = t se t > 0 e t > 0 imo soluzioni reli dell eq. iqudrti, = ± t e, = ± t se, d es., t > 0 e t < 0 imo soluzioni reli dell eq. iqudrti ±, = t Pgin 6 e-mil mestro87@live.it

7 Δlessio elli Studente di Mtemti Spienz - Università di Rom Diprtimento di Mtemti Guido Cstelnuovo we-site: se, d es., t = 0 se < 0 imo ome soluzioni dell eq. iqudrti o, = 0 e, = ± t se t > 0 o 0 e st se t 0, = < < t e t 0 l equzione iqudrti non mmette soluzioni. = 0 llor l () h un sol soluzione t e quindi l eq. iqudrti mmette: due soluzioni se t > 0 ioè, = ± t un soluzione se t = 0 ioè = 0 nessun soluzione se t < 0. < 0 llor l equzione risolventee non h soluzioni e quindi nemmeno l equz. iqudrti. Pgin 7 e-mil mestro87@live.it

8 Δlessio elli Studente di Mtemti Spienz - Università di Rom Diprtimento di Mtemti Guido Cstelnuovo we-site: equzioni inomie Un eq. si die inomi qundo, ridott form normle, è del tipo n + = 0 on + n N e 0 Non trttimo i si n = e n =. Negli ltri si si ottiene per n > n = Per risolvere isogn estrrre l rdie n-sim e quindi si hnno i seguenti si. n pri o se > 0 l eq. h due soluzioni opposte, = ± n o se = 0 l eq. h un soluzione = 0 o se < 0 l eq. non h soluzioni.. n dispri l eq. mmette sempre un e un sol soluzione e preismente o se > 0 o se = 0 l soluzione è = l eq. h un soluzione = 0 n o se < 0 l soluzione è = n Pgin 8 e-mil mestro87@live.it

9 Δlessio elli Studente di Mtemti Spienz - Università di Rom Diprtimento di Mtemti Guido Cstelnuovo we-site: equzioni trinomie Un equzione, ridott form normle, si die trinomi qundo è del tipo n n + + = 0 on + n N e 0 Non trttimo i si n = e n =. Negli ltri si si ottiene per n > si oper l sostituzione divent n = t (*) (equzione inomi) e osì l equzione trinomi t + t + = 0 he si him equzione risolvente Risolvendo quest ultim equzione, le soluzioni reli di ess, sostituite l posto di t nell (*), i permettono di lolre i vlori dell he soddisfno l eq. dt. Pgin 9 e-mil mestro87@live.it

10 Δlessio elli Studente di Mtemti Spienz - Università di Rom Diprtimento di Mtemti Guido Cstelnuovo we-site: equzioni reiprohe Un eq., ridott form normle, si die reipro, qundo i oeffiienti dei termini estremi e di quelli equidistnti dgli estremi sono uguli (prim speie) oppure opposti (seond speie) 5 Ad esempio: = 0 prim speie + 8 = 0 seond speie (oss.: mn il termine medio se di speie pri) Vle l seguente proprietà: se un eq. re. mmette per soluzione un numero α, ess mmette nhe il suo reiproo α Osservimo he le soluzioni di un eq. re. si presentno oppie di numeri reiproi. Inoltre se il numero delle soluzioni è dispri un di tli soluzioni deve essere un numero il ui reiproo è ugule se stesso quindii è neessrimente oppure. equzioni reiprohe di terzo grdo di prim speie = 0 osservimo suito he mmette l soluzione = Non riorrimo ll regol di Ruffini m effettuimo dei roglimenti przili ottenendo ( + ) + ( + ) = 0 Pgin 0 Riordndo he + = ( + ) ( ) + imo e-mil mestro87@live.it

11 Δlessio elli Studente di Mtemti Spienz - Università di Rom Diprtimento di Mtemti Guido Cstelnuovo we-site: ( + ) + ( + ) = 0 ( + ) [ + ( ) + ] = 0 ( + ) Or st pplire l legge dell nnullmento del prodotto. equzioni reiprohe di terzo grdo di seond speie + = 0 Senz usre l regol di Ruffini si proede nell seguente mnier ( ) + ( ) = 0 Riordndo he = ( ) ( ) + + imo ( ) ( ) ( + + ) + ( ) = 0 [ + ( + ) + ] = 0 Or st pplire l legge dell nnullmento del prodotto. Pgin e-mil mestro87@live.it

12 Δlessio elli Studente di Mtemti Spienz - Università di Rom Diprtimento di Mtemti Guido Cstelnuovo we-site: equzioni reiprohe di qurto grdo di prim speie = 0 Poihé = 0 non è soluzione possimo dividere per ottenendo = 0 + = Ponimo y = + (*) d ui y = + + e quindi + = y e pertnto ( y ) + y + = 0 y + y + = 0 he si him eq. risolvente Risolvendo quest ultim eq., le eventuli rdii reli di ess, sostituite suessivmente l posto dell y nell (*), i permettono di lolre i vlori dell he soddisfno l equzione dt. equzioni reiprohe di qurto grdo di seond speie Pgin + = 0 e-mil mestro87@live.it

13 Δlessio elli Studente di Mtemti Spienz - Università di Rom Diprtimento di Mtemti Guido Cstelnuovo we-site: ( ) + ( ) = 0 ( + )( ) + ( ) = 0 ( )( + + ) = 0 Applindo l legge dell nnullmento del prodotto si rivno le soluzioni dell eq. dt. equzioni reiprohe di quinto grdo Ogni eq. reipro di grdo dispri mmette l soluzione = se è di prim speie e l soluzione = se è di seond speie. Quindi per risolveree un eq. reipro di quinto grdo si divide il primo memro per + se di prim speie o per se di seond speie rionduendosi in entrmi i si ll risoluzione di un eq. reipro di qurto grdo di prim speie. Pgin e-mil mestro87@live.it

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita 86 Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit 0) L definizione di equzione di seondo grdo d un inognit 0) L risoluzione delle equzioni di

Dettagli

13. EQUAZIONI ALGEBRICHE

13. EQUAZIONI ALGEBRICHE G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi. EQUAZIONI ALGEBRICHE. Prinipi di equivlenz Si die identità un'uguglinz tr due espressioni ontenenti un o più

Dettagli

8 Equazioni parametriche di II grado

8 Equazioni parametriche di II grado Equzioni prmetrihe di II grdo Un equzione he oltre ll inognit (o lle inognite) ontiene ltre lettere (un o più) si die letterri o prmetri e le lettere sono himte, nhe, prmetri; si suppong he l equzione

Dettagli

2^ Lezione. Equazioni di 1. Equazioni di 2. Equazioni fattoriali. Equazioni biquadratiche. Equazioni binomie. Equazioni fratte. Allegato Esercizi.

2^ Lezione. Equazioni di 1. Equazioni di 2. Equazioni fattoriali. Equazioni biquadratiche. Equazioni binomie. Equazioni fratte. Allegato Esercizi. Corso di Anli Alger di Bse ^ Lezione Equzioni di. Equzioni di. Equzioni fttorili. Equzioni iqudrtihe. Equzioni inomie. Equzioni frtte. Allegto Eserizi. EQUAZIONI ALGEBRICHE EQUAZIONI DI GRADO Con il termine

Dettagli

EQUAZIONI DI SECONDO GRADO

EQUAZIONI DI SECONDO GRADO Autore: Enrio Mnfui - 30/04/0 EQUAZIONI DI SECONDO GRADO Le equzioni di seondo grdo in un inognit sono uguglinze di due polinomi di ui lmeno uno è di seondo grdo e l ltro è di grdo minore o ugule due.

Dettagli

Le equazioni di secondo grado. Appunti delle lezioni di Armando Pisani A.S Liceo Classico Dante Alighieri (GO)

Le equazioni di secondo grado. Appunti delle lezioni di Armando Pisani A.S Liceo Classico Dante Alighieri (GO) Le equzioni di seondo grdo Appunti delle lezioni di Armndo Pisni A.S. 3- Lieo Clssio Dnte Alighieri (GO) Not Questi ppunti sono d intendere ome guid llo studio e ome rissunto di qunto illustrto durnte

Dettagli

Le equazioni di grado superiore al secondo

Le equazioni di grado superiore al secondo Le equzioni di grdo superiore l secondo ITIS Feltrinelli nno scolstico 007-008 R. Folgieri 007-008 1 Teorem fondmentle dell lger Ogni equzione lgeric di grdo n h sempre n soluzioni, che possono essere

Dettagli

1) Si ha quindi Un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto.

1) Si ha quindi Un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto. Trigonometri prte esy mtemti Elin pgin TRIANGOLO RETTANGOLO Considerimo i tringoli rettngoli OPQ e OP ' Q A γ C Essi sono simili per ui Q P : QP OP : OP Essendo Q ' P ' QP sin OP OP ottenimo : sen : e

Dettagli

a è detta PARTE LETTERALE

a è detta PARTE LETTERALE I MONOMI Si die MONOMIO un espressione letterle in ui le unihe operzioni presenti sino il prodotto e l divisione. Esempio è detto COEFFICIENTE del monomio e è dett PARTE LETTERALE Un monomio si die ridotto

Dettagli

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0 Equzioni letterli di II grdo Un equzione letterle di II grdo è un equzione che contiene, oltre l letter che rppresent l incognit dell equzione, ltre lettere, dette prmetri, che rppresentno numeri ben determinti,

Dettagli

Equazioni di secondo grado Capitolo

Equazioni di secondo grado Capitolo Equzioni i seono gro Cpitolo Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO ALGEBRA

Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO ALGEBRA Liceo Scientifico G. Slvemini Corso di preprzione per l gr provincile delle OLIMPIADI DELLA MATEMATICA INTRO ALGEBRA PROPRIETA DELLE POTENZE PRODOTTI NOTEVOLI QUESITO SUGGERIMENTO y è un espressione non

Dettagli

b a ax b 0 Equazione lineare B) Equazioni di 2 grado incomplete: ax 2 0 Equazione monomia x 2 0

b a ax b 0 Equazione lineare B) Equazioni di 2 grado incomplete: ax 2 0 Equazione monomia x 2 0 www.esmths.ltervist.org EQUZIONI DI GRDO SUPERIORE L SECONDO PREMESS Finor simo cpci di risolvere solo equzioni di primo e di secondo grdo. imo imprto che isogn prim condurle form cnonic e poi procede

Dettagli

I PRODOTTI NOTEVOLI. Nel calcolo letterale capita spesso di incontrare moltiplicazioni tra particolari polinomi.

I PRODOTTI NOTEVOLI. Nel calcolo letterale capita spesso di incontrare moltiplicazioni tra particolari polinomi. I PRODOTTI NOTEVOLI Nel lolo letterle pit spesso di inontrre moltiplizioni tr prtiolri polinomi. I reltivi sviluppi si ottengono pplindo le regole fin qui viste, m i risultti, opportunmente semplifiti,

Dettagli

Scomposizione di polinomi 1

Scomposizione di polinomi 1 Somposizione i un polinomio Cpitolo Somposizione i polinomi 1 erifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Anno 2. Triangoli rettangoli e teorema delle corde

Anno 2. Triangoli rettangoli e teorema delle corde Anno Tringoli rettngoli e teorem delle orde 1 Introduzione In quest lezione impreri d pplire i teoremi di Eulide e di Pitgor e sopriri quli prtiolrità nsondono i tringoli rettngoli on ngoli prtiolri. Infine,

Dettagli

L IPERBOLE. L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi.

L IPERBOLE. L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi. prof.ss Cterin Vespi 1 Appunti di geometri nliti L IPERBOLE L iperole è il luogo geometrio dei punti del pino per i quli è ostnte l differenz delle distnze d due punti fissi detti fuohi. Sino F1 e F i

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

CAPITOLO 16 LE EQUAZIONI DI SECONDO GRADO. caffè. succo di frutta. arancia. cappuccino. cornetto. R il numero da determinare in ciascuna proposizione.

CAPITOLO 16 LE EQUAZIONI DI SECONDO GRADO. caffè. succo di frutta. arancia. cappuccino. cornetto. R il numero da determinare in ciascuna proposizione. CAPITOLO 6 LE EQUAZIONI DI SECONDO GRADO 6. Equzioni di secondo grdo e loro clssificzione Luc e Mrt sono l r dell città di Mttown per l solit colzione. Osservndo il listino prezzi, si ccorgono che i prezzi

Dettagli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli Ellisse ed iperole Ellisse Definizione: si definise ellisse il luogo geometrio dei punti del pino per i quli è ostnte l somm delle distnze d due punti fissi F e F detti fuohi. L equzione noni dell ellisse

Dettagli

61 LE EQUAZIONI DI 2 GRADO - SECONDA PARTE. a) RELAZIONI FRA SOLUZIONI E COEFFICIENTI IN UN EQUAZIONE DI 2 GRADO

61 LE EQUAZIONI DI 2 GRADO - SECONDA PARTE. a) RELAZIONI FRA SOLUZIONI E COEFFICIENTI IN UN EQUAZIONE DI 2 GRADO 6 LE EQUAZIONI DI GRADO - SECONDA PARTE NOTA - Preliminre questi rgomenti, è l onosenz dei numeri omplessi (pitolo preedente) ) RELAZIONI FRA SOLUZIONI E COEFFICIENTI IN UN EQUAZIONE DI GRADO In ogni equzione

Dettagli

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE Soluzioni di quesiti e prolemi trtti dl Corso Bse Blu di Mtemti volume 5 [] (Es. n. 8 pg. 9 V) Dell prol f ( ) si hnno le seguenti informzioni, tutte

Dettagli

B8. Equazioni di secondo grado

B8. Equazioni di secondo grado B8. Equzioni di secondo grdo B8.1 Legge di nnullmento del prodotto Spendo che b0 si può dedurre che 0 oppure b0. Quest è l legge di nnullmento del prodotto. Pertnto spendo che (-1) (+)0 llor dovrà vlere

Dettagli

L IPERBOLE. x si sviluppano i prodotti notevoli; 25 y 8 si porta un radicale al 2 membro; 25 y si elevano i due membri al quadrato;

L IPERBOLE. x si sviluppano i prodotti notevoli; 25 y 8 si porta un radicale al 2 membro; 25 y si elevano i due membri al quadrato; L IPERBOLE L'IPERBOLE COME LUOGO GEOMETRICO L iperole è il luogo geometrio dei punti P del pino rtesino per i quli è ostnte l differenz delle distnze d due punti fissi, F ed F, detti fuohi. Il punto medio

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ ELEMENTI DI CALCOLO ALGEBRICO Test di utovlutzione 0 0 0 0 0 0 60 0 80 90 00 n Il mio punteggio, in entesimi, è n Rispondi ogni quesito segnndo un sol delle lterntive. n Confront le tue risposte

Dettagli

La risoluzione di una disequazione di secondo grado

La risoluzione di una disequazione di secondo grado L risoluzione di un disequzione di seondo grdo Quest nno le disequzioni srnno importntissime. Non si prlerà però proprimente di disequzioni m di studire il segno di un funzione. In effetti un numero può

Dettagli

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi Equzioni di grdo Definizioni Equzioni incomplete Equzione complet Relzioni tr i coefficienti dell equzione e le sue soluzioni Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Un equzione è: Un uguglinz

Dettagli

Esercitazione di Matematica sulle equazioni di secondo grado (o ad esse riconducibili) nel campo reale

Esercitazione di Matematica sulle equazioni di secondo grado (o ad esse riconducibili) nel campo reale Esercitzione di Mtemtic sulle equzioni di secondo grdo (o d esse riconducibili) nel cmpo rele 1. Risolvere, nel cmpo rele, le seguenti equzioni di secondo grdo: () 81x 0; (b) (x 1) 7x ; (c) 7x x 0; (d)

Dettagli

1 Equazioni e disequazioni di secondo grado

1 Equazioni e disequazioni di secondo grado UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Fcoltà di Frmci e Medicin - Corso di Lure in CTF 1 Equzioni e disequzioni di secondo grdo Sino 0, b e c tre numeri reli noti, risolvere un equzione di secondo

Dettagli

8. Calcolo integrale.

8. Calcolo integrale. Politenio di Milno - Foltà di Arhitettur Corso di Lure in Edilizi Istituzioni di Mtemtihe - Appunti per le lezioni - Anno Ademio 200/20 26 8 Clolo integrle 8 Signifito geometrio dell integrle definito

Dettagli

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi Equzioni grdo Definizioni Clssificzione Risoluzione Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Prendimo in esme le due espressioni numeriche 8 entrmbe sono uguli 7, e l scrittur si chim uguglinz

Dettagli

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometri Anliti Domnde, Risposte & Eserizi L ellisse. Dre l definizione di ellisse ome luogo di punti. L ellisse è un luogo di punti, è ioè un insieme di punti del pino le ui distnze d due punti fissi

Dettagli

Parabola Materia: Matematica Autore: Mario De Leo

Parabola Materia: Matematica Autore: Mario De Leo Prol Definizioni Prol on sse prllelo ll sse Prol on sse prllelo ll sse Prole prtiolri Rppresentzione grfi Esepi di eserizi Rett tngente d un prol Eserizi Mteri: Mteti Autore: Mrio De Leo Definizioni Luogo

Dettagli

RADICALI. Q (insieme dei razionali relativi) = numeri che possono essere messi sotto forma di frazioni es: 0,+3;

RADICALI. Q (insieme dei razionali relativi) = numeri che possono essere messi sotto forma di frazioni es: 0,+3; RADICALI In quest sched ti vengono riproposti lcuni concetti ed esercizi che ti dovreero essere fmiliri e che sono indispensili per ffrontre con successo gli studi futuri. INSIEMI NUMERICI Ripsso insiemi

Dettagli

1 Espressioni polinomiali

1 Espressioni polinomiali 1 Espressioni polinomili Un monomio è un espressione letterle in un vribile x che contiene un potenz inter (non negtiv, cioè mggiori o uguli zero) di x moltiplict per un numero rele: x n AD ESEMPIO: sono

Dettagli

È bene attribuire lo stesso verso (orario o antiorario) a tutte le correnti fittizie. E 1 = 6V ; E 4 = 4V ; I o = 2mA. R 1 = R 5 = 2kΩ ; R 4 = 1kΩ

È bene attribuire lo stesso verso (orario o antiorario) a tutte le correnti fittizie. E 1 = 6V ; E 4 = 4V ; I o = 2mA. R 1 = R 5 = 2kΩ ; R 4 = 1kΩ MTODO DLL CONT CCLCH O D MAXWLL TNSON TA DU PUNT D UNA T. LGG D OHM GNALZZATA MTODO DL POTNZAL A NOD TASFOMAZON STLLA-TANGOLO TANGOLO-STLLA prinipi di Kirhhoff onsentono di risolvere un qulunque rete linere,

Dettagli

APPUNTI DI GEOMETRIA ANALITICA

APPUNTI DI GEOMETRIA ANALITICA Prof. Luigi Ci 1 nno solstio 13-14 PPUNTI DI GEOMETRI NLITIC Rett orientt Un rett r si die orientt qundo: 1. È fissto un punto di riferimento, detto origine;. Dei due possiili versi in ui un punto si può

Dettagli

+ numeri reali Numeri decimali e periodici Estrazione di radice

+ numeri reali Numeri decimali e periodici Estrazione di radice numeri reli Numeri deimli e periodii Estrzione di rdie Numeri deimli e periodii SEZ. G Clol il vlore delle seguenti espressioni. 0 (, ), Trsformimo i numeri deimli nell orrispondente frzione genertrie

Dettagli

Le frazioni algebriche

Le frazioni algebriche Progetto Mtemtic in Rete - Frzioni lgeriche - Le frzioni lgeriche Definizione se A e B sono due polinomi e B è diverso dl polinomio nullo, B A viene dett frzione lgeric. Esempio sono esempi di frzioni

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

Monomi e polinomi. Verifica per la classe prima COGNOME... NOME... Classe... Data...

Monomi e polinomi. Verifica per la classe prima COGNOME... NOME... Classe... Data... Cpitolo Monomi e polinomi Monomi Verifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Lezione 7: Rette e piani nello spazio

Lezione 7: Rette e piani nello spazio Lezione 7: Rette e pini nello spzio In quest lezione i metteremo in un riferimento rtesino ortonormle dello spzio. I primi oggetti geometrii he individuimo sono le rette e i pini. Per qunto rigurd le rette

Dettagli

Definizione. Si chiama similitudine una corrispondenza biunivoca dal piano in sé tale che,

Definizione. Si chiama similitudine una corrispondenza biunivoca dal piano in sé tale che, CAPITOLO 6 LE SIMILITUDINI 6 Rihimi i teori Definizione Si him similituine un orrisponenz iunivo l pino in sé tle he presi ue punti qulunque A B el pino e etti A B i loro orrisponenti si h he esiste un

Dettagli

E U Q A U Z A I Z O I N O I N DI SE S C E O C N O DO

E U Q A U Z A I Z O I N O I N DI SE S C E O C N O DO EQUAZIONI DI ECONDO GRADO Riepilogo delle soluzioni in bse l segno di < φ : b > : b b Prof I voi, EQUAZIONI DI ECONDO GRADO EQUAZIONI PURE DI ECONDO GRADO : EEMPI ) ) ) 7 7 ) > φ (impossibile) ) impossibil

Dettagli

Equazioni di primo grado

Equazioni di primo grado Cpitolo Equzioni i primo gro Equzioni i primo gro erifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Appunti di Matematica Computazionale Lezione 1. Equazioni non lineari. Consideriamo il problema della determinazione delle radici dell equazione

Appunti di Matematica Computazionale Lezione 1. Equazioni non lineari. Consideriamo il problema della determinazione delle radici dell equazione Appunti di Mtemti Computzionle Lezione Equzioni non lineri Considerimo il prolem dell determinzione delle rdii dell equzione dove è un funzione definit in [,]. Teorem: Zeri di unzioni Continue Si un funzione

Dettagli

Sistemi a Radiofrequenza II. Guide Monomodali

Sistemi a Radiofrequenza II. Guide Monomodali Eserizio. Ordinre le frequenze di tglio dei modi di un guid rettngolre on b, qundo: b / < b < b / Soluzione: L ostnte riti è ugule per modi TE e TM: K Frequenz Criti: f K V f m V n f π b Tglio dei modi:

Dettagli

Relazioni e funzioni. Relazioni

Relazioni e funzioni. Relazioni Relzioni e unzioni Relzioni Deinizione: dti due insiemi A e B, si deinise un relzione R tr A e B un orrispondenz stilit d un proposizione tr un elemento A e B, in tl so si die he è in relzione on e si

Dettagli

U.D. N 15 Funzioni e loro rappresentazione grafica

U.D. N 15 Funzioni e loro rappresentazione grafica 54 Unità Didttic N 5 Funzioni e loro rppresentzione grfic U.D. N 5 Funzioni e loro rppresentzione grfic ) Le coordinte crtesine ) L distnz tr due punti 3) Coordinte del punto medio di un segmento 4) Le

Dettagli

POTENZA 2 5 =2*2*2*2*2 PROPRIETA PRODOTTO DI POTENZE DI UGUALE BASE 3 2 *3 7 =3 2+7 =3 9 ANGOLO ANGOLI CLASSIFICAZIONI. 2 è la BASE 5 è l ESPONENTE

POTENZA 2 5 =2*2*2*2*2 PROPRIETA PRODOTTO DI POTENZE DI UGUALE BASE 3 2 *3 7 =3 2+7 =3 9 ANGOLO ANGOLI CLASSIFICAZIONI. 2 è la BASE 5 è l ESPONENTE POTENZ 2 5 =2*2*2*2*2 2 è la SE 5 è l ESPONENTE PROPRIET PRODOTTO DI POTENZE DI UGULE SE 3 2 *3 7 =3 2+7 =3 9 QUOZIENTE DI POTENZE DI UGULE SE 3 12 :3 7 =3 12-7 =3 5 POTENZ DI POTENZ (3 2 ) 7 =3 2*7 =3

Dettagli

SCOMPOSIZIONE IN FATTORI

SCOMPOSIZIONE IN FATTORI Sintesi di Mtemtic cur di Griell Grzino SCOMPOSIZIONE IN FATTORI ) Rccoglimento fttore comune ( Applicile d un polinomio di un numero qulunque di termini purchè i termini presentino lmeno un letter o un

Dettagli

Lezione 14. Risoluzione delle equazioni algebriche.

Lezione 14. Risoluzione delle equazioni algebriche. Lezione Prerequisiti: Lezioni 8,. Risoluzione delle equzioni lgebriche. Si F un cmpo, e si K un chiusur lgebric di F. Si f ( ) F[ ] non costnte. Studimo i metodi di risoluzione per l equzione f ( ) = 0,

Dettagli

Es1 Es2 Es3 Es4 Es5 tot

Es1 Es2 Es3 Es4 Es5 tot Ottore lsse E Verifi sommtiv Cognome Nome rgomenti: onihe, funzione esponenzile e grfii derivti Tempo disposizione: ore Voto Es Es Es Es Es tot.... Considert l ellisse vente ome sse fole l sse, eentriità

Dettagli

POTENZA CON ESPONENTE REALE

POTENZA CON ESPONENTE REALE PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic mtemtic@blogscuol.it www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,

Dettagli

4 ; messo in forma = 2. 4 Le tangenti saranno: = x + 8. La circonferenza (Paolo Urbani prima stesura settembre 2002 aggiornamento novembre 2013)

4 ; messo in forma = 2. 4 Le tangenti saranno: = x + 8. La circonferenza (Paolo Urbani prima stesura settembre 2002 aggiornamento novembre 2013) Fsio iproprio di rette prllele r: ipliit risult q r si h: q ; esso in for. onsiderndo he ( ;) q ( q) q e 8 q q q q 6q 6 q ± 6 q 8; q Le tngenti srnno: 8, ; L ironferenz (Polo Urni pri stesur settere ggiornento

Dettagli

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale:

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale: IL CALCOLO LETTERALE: I MONOMI Conoscenze. Complet.. Un espressione letterle è un scrittur in cui compiono operzioni tr numeri rppresentti, tutti o in prte, d lettere. Per clcolre il vlore numerico di

Dettagli

Geometria analitica +l piano cartesiano Le funzioni retta, parabola, iperbole Le trasformazioni sul piano cartesiano

Geometria analitica +l piano cartesiano Le funzioni retta, parabola, iperbole Le trasformazioni sul piano cartesiano Geometri nliti +l pino rtesino Le funzioni rett, prol, iperole Le trsformzioni sul pino rtesino SEZ. P +l pino rtesino Osserv le oorinte ei seguenti punti: (, 0), (, ), C(, +), D + +, E(+, 9)., Che os

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA ESPONENZIALI E LOGARITMI Dr. Ersmo Modic ersmo@glois.it www.glois.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero

Dettagli

1 Integrali doppi di funzioni a scala su rettangoli

1 Integrali doppi di funzioni a scala su rettangoli INEGRALI DOPPI L prim motivzione per lo studio degli integrli di funzioni di due vribili è il lolo di volumi, in nlogi on l pplizione degli integrli di funzioni di un vribile l lolo di ree. L proedur di

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del quinto appello, 3 luglio 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del quinto appello, 3 luglio 2017 Testi 1 nlisi Mtemti I per Ingegneri Gestionle,.. 6-7 Sritto el quinto ppello, 3 luglio 7 Testi Prim prte, gruppo.. Dire per quli R l funzione f() := sin( 3 ) + 3 è resente su tutto R.. Disporre le seguenti funzioni

Dettagli

LO STUDIO DELLA GEOMETRIA ANALITICA

LO STUDIO DELLA GEOMETRIA ANALITICA LO STUDIO DELLA GEOMETRIA ANALITICA A ur di Vlter Gentile E-Notes pulit dll Biliote Centrle di Ingegneri Sien, settemre 006 Lo studio dell geometri nliti A ur di Gentile Vlter Ed..006 Indie INDICE COORDINATE

Dettagli

Grafici elementari 1 - geometria analitica

Grafici elementari 1 - geometria analitica Grfii elementri - geometri nliti Un equzione rppresent un funzione se è possiile metterl in form espliit (rivre l y) ottenendo un sol espressione. Un urv rppresent un funzione se, preso un qulsisi punto

Dettagli

Anno 2. Potenze di un radicale e razionalizzazione

Anno 2. Potenze di un radicale e razionalizzazione Anno Potenze di un rdicle e rzionlizzzione Introduzione In quest lezione impreri utilizzre le ultime due tipologie di operzioni sui rdicli, cioè l potenz di un rdicle e l rdice di un rdicle. Successivmente

Dettagli

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale:

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale: IL CALCOLO LETTERALE: I MONOMI Conoscenze. Complet.. Un espressione letterle è.... Per clcolre il vlore numerico di un espressione letterle isogn...... c. Non si possono ssegnre lle lettere che compiono

Dettagli

Due equazioni si dicono equivalenti quando hanno lo stesso insieme soluzione.

Due equazioni si dicono equivalenti quando hanno lo stesso insieme soluzione. EQU EQUAZIONI Le equzioni costituiscono uno dei contenuti fondmentli dell mtemtic Il concetto di equzione è stto d noi introdotto nel prgrfo dell'ud «Le ppliczioni» Successivmente ci simo occupti delle

Dettagli

Il calcolo letterale

Il calcolo letterale Progetto Mtemtic in Rete Il clcolo letterle Finor imo studito gli insiemi numerici (espressioni numeriche). Ν, Ζ, Q, R ed operto con numeri In mtemtic però è molto importnte sper operre con le lettere

Dettagli

RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI

RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI PROPRIETÀ DEI NUMERI INTERI, SCOMPOSIZIONI, ECC.. Se A è ugule e B è ugule, qunto vlgono m.c.m. ed M.C.D. dei numeri A e B? 0 e. Se si moltiplicno due numeri

Dettagli

Le equazioni di primo grado

Le equazioni di primo grado Cpitolo Eserizi Le equzioni di primo grdo Teori p. Dl prolem ll equzione Determin l equzione on ui puoi risolvere i prolemi dihirndo, inoltre, qul è l inognit, quli sono i dti noti e qul è il dominio del

Dettagli

fattibile con le tecniche elementari che imparerai in seguito. Ad esempio il polinomio

fattibile con le tecniche elementari che imparerai in seguito. Ad esempio il polinomio Scomposizione di un polinomio in fttori Scomporre in fttori primi un polinomio signific esprimerlo come il prodotto di due più polinomi non più scomponibili Ad esempio 9 = ( 3) fttore 1 ( + 3) fttore +

Dettagli

Disequazioni di secondo grado

Disequazioni di secondo grado Disequzioni i seono gro Cpitolo Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Esercizi svolti Limiti. Prof. Chirizzi Marco.

Esercizi svolti Limiti. Prof. Chirizzi Marco. Cpitolo II Limiti delle funzioni di un vribile Esercizi svolti Limiti Prof. Chirizzi rco www.elettrone.ltervist.org 1) Verificre che risult: = Dobbimo provre che per ogni ε positivo, rbitrrimente piccolo,

Dettagli

Scheda Sei ESPONENZIALI E LOGARITMI. 0,+. Inoltre valgono le

Scheda Sei ESPONENZIALI E LOGARITMI. 0,+. Inoltre valgono le Sched Sei ESPONENZIALI E LOGARITMI L funzione esponenzile Assegnto un numero rele >0, si dice funzione esponenzile in bse l funzione Grfici dell funzione esponenzile Se = l funzione esponenzile è costnte:

Dettagli

CAPITOLO VI CENNI DI GEOMETRIA, CURVE NEL PIANO

CAPITOLO VI CENNI DI GEOMETRIA, CURVE NEL PIANO TE_geo -fb- 5//7 5//7 VI - CAPITL VI CENNI DI GEMETRIA CURVE NEL PIAN. - Funzioni rzionli. Le funzioni rzionli o meglio le funzioni rzionli intere sono quelle he si ottengono on le sole operzioni di somm

Dettagli

Corso di Analisi: Algebra di Base. 4^ Lezione. Radicali. Proprietà dei radicali. Equazioni irrazionali. Disequazioni irrazionali. Allegato Esercizi.

Corso di Analisi: Algebra di Base. 4^ Lezione. Radicali. Proprietà dei radicali. Equazioni irrazionali. Disequazioni irrazionali. Allegato Esercizi. Corso di Anlisi: Algebr di Bse ^ Lezione Rdicli. Proprietà dei rdicli. Equzioni irrzionli. Disequzioni irrzionli. Allegto Esercizi. RADICALI : Considerto un numero rele ed un numero intero positivo n,

Dettagli

Disequazioni di primo grado

Disequazioni di primo grado Cpitolo Disequzioni i primo gro Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo Lure triennle in Scienze dell Ntur.. 2009/200 Regole di Clcolo In queste note esminimo lcune conseguenze degli ssiomi reltivi lle operzioni e ll ordinmento nell insieme R dei numeri reli. L obiettivo principle

Dettagli

c β Figura F2.1 Angoli e lati in un triangolo rettangolo.

c β Figura F2.1 Angoli e lati in un triangolo rettangolo. F. Trigonometri F. Risoluzione dei tringoli rettngoli Risolvere un tringolo rettngolo signifi trovre tutti i suoi lti e tutti i suoi ngoli. Un ngolo lo si onose già ed è l ngolo retto. Le inognite sono

Dettagli

MATEMATICA Classe Prima

MATEMATICA Classe Prima Liceo Clssico di Treiscce Esercizi per le vcnze estive 0 MATEMATICA Clsse Prim Cpitolo Numeri nturli Primi ogni pgin del cpitolo Cpitolo Numeri nturli Primi ogni pgin del cpitolo Per gli llievi promossi

Dettagli

igeometria Salvatore Di Lucia 8 Luglio 2011

igeometria Salvatore Di Lucia 8 Luglio 2011 igeometri Slvtore Di Lui 8 Luglio INDICE COORDINATE CARTESIANE NEL PIANO... 6 CARATTERIZZAZIONE DEL PIANO CARTESIANO... 7 PUNTI SIMMETRICI... 7 DISTANZA TRA DUE PUNTI... 8 COORDINATE DEL PUNTO MEDIO DI

Dettagli

X X Y 2 1 0,5 0,25 Y 0,25 1 2,25 4. Disegna i grafici delle rette rappresentate dalle seguenti equazioni

X X Y 2 1 0,5 0,25 Y 0,25 1 2,25 4. Disegna i grafici delle rette rappresentate dalle seguenti equazioni Funzioni Consider le seguenti telle e stilisci se e sono direttmente proporzionli, inversmente proporzionli o se vi è un proporzionlità qudrtic. Scrivi l espressione nlitic delle funzioni e rppresentle

Dettagli

Sezione Esercizi ; ; ; 1 4. f ) 13 + g ) , 100, 125; f ) 216; 8 27 ; ; e ) g ) 0; h )

Sezione Esercizi ; ; ; 1 4. f ) 13 + g ) , 100, 125; f ) 216; 8 27 ; ; e ) g ) 0; h ) Sezione Esercizi Esercizi Esercizi dei singoli prgrfi - Rdici Determin le seguenti rdici qudrte rzionli (qundo è possiile clcolrle) 00 l ) m ) n ) o ) 0,0 0,0 0,000 0, Determin le seguenti rdici qudrte

Dettagli

PARABOLA. La parabola è il luogo dei punti del piano, e solo essi, equidistanti da un punto F detto fuoco e da una retta detta direttrice.

PARABOLA. La parabola è il luogo dei punti del piano, e solo essi, equidistanti da un punto F detto fuoco e da una retta detta direttrice. Prof I Svoi CME LUG GEMETRIC L prol è il luogo dei punti del pino, e solo essi, equidistnti d un punto F detto fuoo e d un rett dett direttrie Per omodità di rppresentzione seglimo l'origine equidistnte

Dettagli

NECESSITÀ DEI LOGARITMI

NECESSITÀ DEI LOGARITMI NECESSITÀ DEI LOGARITMI Nelle equzioi espoezili he imo risolto sior er sempre possiile ridursi equzioi i ui si vev l stess se, l equzioe divetv lgeri sempliemete uguglido gli espoeti. M o tutte le equzioi

Dettagli

{ } 3 [ ] [ ] [ ] [ ] Esercizi per il precorso ( )( ) Prof. Margherita Fochi. 1.- Esercizi sui polinomi. + x. x R. ( )( ) + R. ( )( )( ) a.

{ } 3 [ ] [ ] [ ] [ ] Esercizi per il precorso ( )( ) Prof. Margherita Fochi. 1.- Esercizi sui polinomi. + x. x R. ( )( ) + R. ( )( )( ) a. Prof. Mrgherit Fochi Esercizi per il precorso.- Esercizi sui polinomi Semplificre le seguenti espressioni utilizzndo i prodotti notevoli:. ) ) ) ) ) 8 [ ] 8. ) ) ) ) ] [. ) ) ) [ ] { } y y y y y [ ] 8

Dettagli

Il dominio della funzione, cioè l'insieme dei valori che si possono attribuire a x è tutto R ;

Il dominio della funzione, cioè l'insieme dei valori che si possono attribuire a x è tutto R ; CAPITOLO ESPONENZIALI E LOGARITMI ESPONENZIALI Teori in sintesi Potenze con esponente rele L potenz è definit: se > 0, per ogni R se 0, per tutti e soli gli R se < 0, per tutti e soli gli Z. + Sono definite:

Dettagli

Soluzione. Studiamo la funzione. Dominio: la funzione è definita in tutto R; Intersezione asse ascisse: ( x)

Soluzione. Studiamo la funzione. Dominio: la funzione è definita in tutto R; Intersezione asse ascisse: ( x) Sessione ordinri LS_ORD Soluzione di De Ros Niol Soluzione Studimo l unzione Dominio: l unzione è deinit in tutto R; ; Intersezione sse sisse: Intersezioni sse delle ordinte: y ; Prità o disprità: l unzione

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Esponenzili e ritmi ESPONENZIALI Potenze con esponente rele L potenz è definit: se > 0, per ogni R se 0, per tutti e soli gli R se < 0, per tutti e soli gli Z Sono definite: ( ) ( ) ( ) 7 7 Non sono definite:

Dettagli

{ 3 x y=4. { x=2. Sistemi di equazioni

{ 3 x y=4. { x=2. Sistemi di equazioni Sistemi di equzioni Definizione Un sistem è un insieme di equzioni che devono essere verificte contempornemente, cioè devono vere contempornemente le stesse soluzioni. Definimo grdo di un sistem il prodotto

Dettagli

a b c Triangolo rettangolo In un triangolo rettangolo : un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto al cateto.

a b c Triangolo rettangolo In un triangolo rettangolo : un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto al cateto. Tringolo rettngolo In un tringolo rettngolo : un teto è ugule l prodotto dell ipotenus per il seno dell ngolo opposto l teto. = sen = sen un teto è ugule l prodotto dell ipotenus per il oseno dell ngolo

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

Prof. Roberto Milizia, presso Liceo Scientifico E. Ferdinando Mesagne (BR) 1

Prof. Roberto Milizia, presso Liceo Scientifico E. Ferdinando Mesagne (BR) 1 Prof. Roerto Milizi, presso Lieo Sientifio E. Ferdinndo Mesgne (BR) UNITA 7. ESPONENZIALI E LOGARITMI.. L potenz on esponente rele.. Le proprietà delle potenze.. Equzioni esponenzili he si rionduono ll

Dettagli

Appunti di Algebra Lineare. Mappe Lineari. 10 maggio 2013

Appunti di Algebra Lineare. Mappe Lineari. 10 maggio 2013 Appunti di Algebr Linere Mppe Lineri 0 mggio 203 Indie Ripsso di Teori 2. Cos è un mpp linere.................................. 2.2 Aluni ftti importnti................................... 3 2 Eserizi 4

Dettagli

INTEGRALE INDEFINITO. Saper calcolare l integrale indefinito di una funzione utilizzando i diversi metodi

INTEGRALE INDEFINITO. Saper calcolare l integrale indefinito di una funzione utilizzando i diversi metodi INTEGRLE INDEFINITO OIETTIVI MINIMI: Sper definire l integrle indefinito di un funzione. onoscere le proprietà dell integrle indefinito. Sper clcolre l integrle indefinito di un funzione utilizzndo i diversi

Dettagli

Con riferimento alla figura, il punto B è determinato dalla intersezione della circonferenza γ di. x + y ay = 0 ) e della retta OB (di equazione

Con riferimento alla figura, il punto B è determinato dalla intersezione della circonferenza γ di. x + y ay = 0 ) e della retta OB (di equazione Compito di Mturità PNI ur di Pietro Romno Prolem Nel pino sono dti: il erhio γ di dimetro OA, l rett t tngente γ in A, un rett r pssnte per O, il punto B, ulteriore intersezione di r on γ, il punto C di

Dettagli

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A.

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A. 88 Roberto Turso - Anlisi 2 Osservimo che per trovre le costnti A e B possimo nche rgionre così: se moltiplichimo l equzione + ( + 2)( + 3) = A + 2 + B + 3 per + 2, dopo ver semplificto, ottenimo + + 3

Dettagli

1 Integrali Doppi e Cambiamento nell Ordine di Integrazione

1 Integrali Doppi e Cambiamento nell Ordine di Integrazione 1 Integrli Doppi e Cmbimento nell Ordine di Integrzione Introduimo il onetto di Integrle Doppio in modo ssolutmente non rigoroso. Considerimo il seguente gr o y d b x Supponimo di dividere il rettngolo

Dettagli

Teoria in pillole: logaritmi

Teoria in pillole: logaritmi Teori in pillole: logritmi EQUAZIONI ESPONENZIALI Un'equzione si dice esponenzile qundo l'incognit compre soltnto nell'esponente di un o più potenze. L'equzione esponenzile più semplice (elementre) è del

Dettagli

FUNZIONI SENO & COSENO TANGENTE & COTANGENTE

FUNZIONI SENO & COSENO TANGENTE & COTANGENTE FUNZINI SEN & SEN TNGENTE & TNGENTE DEFINIZINE DI SEN E SEN onsiderndo l ngolo =, trimo un erhio di rggio qulunque R = = e on entro sul vertie dell ngolo. Le intersezioni del erhio on le semirette dell

Dettagli

Equazioni di secondo grado intere letterali

Equazioni di secondo grado intere letterali Equazioni di seondo grado intere letterali Esempio. k ) x k + )x + k + 0 a k b k + ) k + Disussione. Se k 0 k l equazione si abbassa di grado. Disutiamo il aso a 0 aso in ui l equazione diventa di primo

Dettagli