Modelli ARMA, regressione spuria e cointegrazione Amedeo Argentiero

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Modelli ARMA, regressione spuria e cointegrazione Amedeo Argentiero"

Transcript

1 Modelli ARMA, regressione spuria e coinegrazione Amedeo Argeniero amedeo.argeniero@unipg.i

2 Definizione modello ARMA Un modello ARMA(p, q) (AuoRegressive Moving Average of order p and q) ha la seguene sruura: ϕ ϕ p + ε θε... θ dove ϕ j (j,, p) e θ k (k,, q) sono coefficieni noi e cosani e ε è un processo whie noise: E ε ( ) Cov ( ε ε ) τ σ τ τ q ε q

3 Modelli ARMA e operaore riardo Usando l operaore riardo, il modello ARMA(p, q) può essere riscrio come: P q ϕ L... ϕ L θ L... θ L ε ( ) ( ) p q o, in forma compaa: ( ) ( ) ε ϕ L θ L dove: ϕ L ϕ L... ϕ θ p ( ) L p ( L q ) θ L... θ q L sono polinomi scalari nell operaore riardo: ϕ(l) polinomio auoregressivo θ(l) polinomio a media mobile

4 Il modello ARMA: alcuni casi uili ARMA(,) o AR(): ( ϕ L) ε ARMA(,) o MA(): ( θ L) ε

5 Modelli ARMA: proprieà I modelli ARMA generano processi socasici (sequenza di variabili aleaorie) di ipo ARMA; Le proprieà di un processo ARMA sono rinvenibili nelle radici dei polinomi AR ed MA; Se θ(l) il modello ARMA si riduce ad un equazione alle differenze socasiche di ordine p: ( ) ϕ L... ϕ L P ε p

6 Modello ARMA: sazionarieà La precedene equazione è dinamicamene sabile (sazionaria) se e solo se le radici del seguene polinomio caraerisico: ϕ z... ϕ pz Se le radici sono inerne al cerchio di raggio uniario reagirà esplosivamene ad ogni shock socasico derivane dalla componene MA P sono eserne rispeo al cerchio di raggio uniario

7 Processo AR(): sazionarieà Consideriamo la sazionarieà relaivamene al processo AR(): ϕ L ε ϕ + ε ( ) L equazione caraerisica di queso processo è: con radice: z ϕ z ϕ Per parlare di sazionarieà del secondo ordine i primi due momeni del processo : E( ) and Cov(, -τ ) NON devono dipendere da

8 Processo AR(): la media Se ϕ <, la radice caraerisica del polinomio è eserna al cerchio di raggio uniario, allora: ϕ L + ϕ L + ϕ ϕ w L w +... In queso caso, il processo AR() può essere espresso come un MA( ): L Quindi: ϕ ε ε + ϕε + ϕ ε L +... E ( ) E( ε ) + ϕ E( ε ) + ϕ E( ε ) +...

9 Il modello MA( ) è molo uile per sudiare l impao di schocks socasici ε su Il processo AR(): la funzione di risposa all impulso Tale procedura si chiama funzione di risposa all impulso uniaria La funzione è cosruia assumendo che ε sia uguale al suo valore aeso () ovunque ecceo che al empo T, dove ε T

10 Il processo AR(): la funzione di risposa all impulso () Con la rappresenazione MA possiamo sapere cosa accade in +j dopo uno shock in : j T + j εt + j + ϕ εt + j + ϕε T + j ϕε T +... ϕ j

11 Il processo AR(): la funzione di risposa a impulso (3) T- T T+ T+ T+3 T+4 T+5 T+6 T+7 T+8 T+9 T+ T+ T+ ε Funzione di risposa a impulso del processo ε T- T T+ T+ T+3 T+4 T+5 T+6 T+7 T+8 T+9 T+ T+ T+

12 Il processo AR(): la funzione di risposa a impulso (4) Il ermine j della funzione di risposa a impulso è dao da: T + j ε T j ϕ Perano, la funzione di risposa a impulso uniaria indica il moliplicaore dinamico di in risposa ad uno shock socasico

13 Il processo AR(): la varianza La varianza di non dipende da : V [ ] ( ) E Cov( ) γ [( )( )] E ε + ϕε + ϕ ε +... ε + ϕε + ϕ ε +... ( 4 E ε + ϕ ε + ϕ ε +...) ( ) E E( ) σ σ + ϕ σ ϕ ( 4 + ϕ + ϕ +...) σ + ϕ 4 σ +...

14 Il processo AR(): le auocovarianze Le covarianze di con i valori riardai (le auocovarianze di ), possono essere espresse come: L ulimo ermine è nullo, poiché: E Inolre: ( ) ϕ E( ) + E( ε ) E τ τ τ ( ) [ ( )] ε E ε ε + ϕ ε + ϕ ε +... τ τ τ τ ( τ ) Cov( τ ) γ τ ( τ ) Cov(, τ+ ) γ τ E, E

15 Il processo AR(): le auocovarianze () Dalle precedeni relazioni si ha: γ ϕ τ γ τ Perano, le auocovarianze di un processo AR() seguono un equazione alle differenze del primo ordine idenica all equazione omogenea asscciaa all equazione alle differenze socasica che genera il processo; La condizione iniziale per queso processo è: γ σ ϕ

16 Il processo AR(): le auocorrelazioni Sosiuendo ricorsivamene si oiene la seguene sequenza di auocovarianze: γ τ γ ϕ τ σ ϕ ϕ Normalizzando su γ oeniamo la seguene funzione di auocorrelazione: τ ρτ ϕ τ Perano, la funzione di auocorrelazione di un AR() è idenica alla funzione di risposa a impulso

17 Il processo AR(): sazionarieà Sineizziamo i risulai oenui: Funzione risposa a impulso uniaria: auocovarianze: γ τ γ ϕ τ T + ε σ ϕ ϕ T τ j j ϕ auocorrelazioni: ϕ τ ρτ

18 Il processo AR(): sazionarieà Se ϕ < allora: gli shocks passai avranno un effeo sempre decrescene sulla realizzazione auale del processo, poiché: T + j j lim lim ϕ j ε j T le osservazioni correni e passae saranno più correlae (e dunque la realizzazione del processo sarà più sisemaica) al crescere del paramero auoregressivo: τ ρτ ϕ

19 Processo AR(): ϕ.7 IRF/Correlogramma,,8,6,4, Realizzazione 3 4 5

20 Processo AR(): ϕ.4 IRF/Correlogramma,,8,6,4, Realizzazioni 3 4 5

21 Processo AR(): ϕ -.7 IRF/Correlogramma,5,5 -, Realizzazioni 3 4 5

22 Processo AR(): ϕ IRF/Correlogramma,,8,6,4, Realizzazione 3 4 5

23 AR() process: ϕ - IRF/Correlogramma,5,5 -,5 - -, Realizzazioni

24 AR() process: ϕ. IRF/Correlogramma 3,5 3,5,5, Realizzazioni 3 4 5

25 AR() process: ϕ -. IRF/Correlogramma Realizzazioni

26 Processo AR(): sazionarieà Se ϕ, l andameno di mosra un rend (oppure oscillazioni esplosive): in al caso il processo si dice I(), inegrao del primo ordine; In ali casi il processo non può essere considerao sazionario; Poiché solo i processi sazionari hanno media e varianza cosani e auocovarianze non dipendeni da, se si applicassero ad un processo non sazionario le procedure compuazionali del caso sazionario si perverrebbe a risulai privi di senso; Ad esempio, la varianza di un processo AR() esplosiva sarebbe negaiva (che ovviamene non ha senso): τ τ σ ϕ γ τ γ ϕ < per ϕ > ϕ

27 Regressione spuria La regressione spuria si realizza ogniqualvola vengono reredie o più variabili I(), ovvero che posseggono un rend socasico; Se la variabile dipendene e i regressori hanno un rend socasico, la bonà delle sime porebbe risulare buona (ale di Suden e elevai R ), anche se le variabili non sono in alcun modo legae ra loro!; Il significao economico e saisico di quesi coefficieni è nullo, poiché la regressione è spuria

28 Regressioni spurie e regressioni senza senso Come possiamo classificare le regressioni? Variabili I(): non spurie Prive di significao Variabili I(): spurie Corrispondeni ad un vero modello economico soosane

29 Come individuare il vero modello? Una prima risposa al quesio: poiché i risulai di una regressione spuria dipendono dalla presenza di un rend nelle variabili, la rimozione dello sesso araverso l operaore differenza prima (filro) dovrebbe meere a nudo il vero modello Tuavia si perde informazione.

30 Come individuare il vero modello? () Procediamo alla sima di due modelli spuri (uno falso e uno vero): Modello falso: c + β ln + ln β u Modello vero: ln c ϑ + ϑ ln pil + u

31 Il confrono fra il modello vero e quello falso ln c.4+.8ln ( 8.) (.6) R. DW.8 ln c.6+.95ln (.5) (.) pil R.748 DW.59

32 Modello vero e falso a confronro Prima di differenziare i modelli, essi avevano due R aggiusai pari a circa.98; La sima in differenze prime riesce ad idenificare il modello falso (un R negaivo non ha chiaramene senso!), menre l alro modello ha un R posiivo e pari a.7

33 Come individuare il vero modello? Analisi di coinegrazione Esise un secondo e più formale meodo per idenificare il vero modello: l analisi di coinegrazione; Consideriamo due processi per le serie e x: ( ) ( ) ( ) ( ) + ε + ε x x ( ) ( ) ( ) ( ) + ε + ε β x x x dove: σ σ ε ε ; ~ nid () ()

34 Regressione spuria: modello vero e falso Sia (i), x (i) (i, ) sono I() Nella prima specificazione, poiché () e x () sono generai da un processo Random Walk Nella seconda specificazione, poiché x () è generao da un random walk, e () è una combinazione lineare di x () più un Whie Noise sazionario ε

35 Regressione spuria: modello vero e falso () Dunque, le regressioni: ( ) ( ) ( ) α + α x + u e: ( ) ( ) ( ) β + β x + u sono enrambe spurie.

36 Regressione spuria: modello vero e falso (3) Tuavia, nella prima specificazione () e x () non sono legae, poiché: ( ) ε j, j x ( ) ε j, j ε e ε sono muuamene incorrelai Al conrario, nella seconda specificazione () and x () sono legae grazie alla prima equazione

37 Regressione spuria: modello vero e falso (4) Quindi, menre la regressione spuria ( ) ( ) ( ) α + α x + u non ha alle spalle alcuna relazione economica sensaa, la regressione spuria: ( ) ( ) ( ) β + β x + u riflee la vera relazione economica soosane: ( ) ( ) βx + ε

38 Regressione spuria: modello vero e falso (5) Inolre, nella regressione spuria ( ) ( ) ( ) α + α x + u la variabile dipendene ed esplicaiva sono due RW indipendeni ( ) ε j, j i residui u () sono non sazionari, essendo la somma di due rend socasici indipendeni x ( ) ε j, j

39 Regressione spuria: modello vero e falso (6) Al conrario, la regressione spuria ( ) ( ) ( ) β + β x + riflee la vera relazione ( ) ( ) β x + ε u dove ε è un WN sazionario. Dunque i residui u () saranno sazionari

40 Coinegrazione Ecco come cosruire un es per discriminare un modello vero da uno falso ; Consideriamo due variabili I(), x Se esise un coefficiene π ale che: πx z ~ I ( ) allora, x si dicono coinegrae.

41 Coinegrazione () Nella prima specificazione, ale coefficiene π non esise, poiché ogni combinazione lineare di rend socasici è non sazionaria; Nella seconda specificazione, invece, π β e z ε, un disurbo sazionario; Dunque due variabili inegrae sono coinegrae quando esise un relazione economica vera che genera co-movimeno ra le due variabili nel lungo periodo

42 Coinegrazione ed ECM Il eorema di Granger asserisce che se e x sono enrambe I() e coinegrae, esse ammeono la seguene specificazione ECM: dove: β + β x γz + ε z βx

43 L inerpreazione dell ECM Nella rappresenazione ECM, β (il coefficiene nell equazione saica) è il moliplicaore di lungo periodo, β il moliplicaore d impao, γ un coefficiene di feedback; Se l equazione saica: βx + z può essere inerpreaa come una relazione d equilibrio, allora z può essere viso come errore di equilibrio

44 L inerpreazione dell ECM () Il coefficiene di feedback γ: < βx β + β x γz γz βx fa crescere più velocemene al empo quando - è al di soo del suo eorico valore di equilibrio βx - : > + ε z <

45 L inerpreazione dell ECM (3) Nella rappresenazione ECM: β + β x γz + ε le variabili sono ue I() (sazionarie): e x sono prime differenze di un processo I() e z è I() per la definizione di coinegrazione: πx z ~ I ( )

46 Come esare la coinegrazione Preliminarmene si verifica se le variabili sono I() usando il es ADF; Se le variabili sono I(), si sima la seguene relazione: βx + e se ne esa la sazionarieà dei residui mediane il es ADF con I valori criici di Engle and Yoo z Se i residui sono sazionari, le variabili sono coinegrae

47 Grazie per la vosra aenzione

Modelli stocastici per la volatilità

Modelli stocastici per la volatilità Modelli socasici per la volailià Dai modelli di volailià a media mobile ai modelli GARCH I modelli di volailià con medie mobili assumono ce i rendimeni siano i.i.d. la volailià è cosane nel empo: forniscono

Dettagli

Modelli stocastici per i rendimenti finanziari

Modelli stocastici per i rendimenti finanziari Modelli socasici er i rendimeni finanziari Alcuni rocessi socasici lineari Y Processo MA() μ con ε ~ WN(0, σ ε ) = + ε + θε. Esemio di generazione di un MA() e sima con R Caraerisiche di un rocesso MA()

Dettagli

La procedura Box-Jenkins

La procedura Box-Jenkins La procedura Box-Jenkins La selezione del modello - Procedura di Box e Jenkins (976): procedura per cosruire, a parire dall osservazione dei dai, un modello ARMA ao ad approssimare il processo generaore

Dettagli

Equazioni Differenziali (5)

Equazioni Differenziali (5) Equazioni Differenziali (5) Daa un equazione differenziale lineare omogenea y n + a n 1 ()y n 1 + a 0 ()y = 0, (1) se i coefficieni a i non dipendono da, abbiamo viso che le soluzioni si possono deerminare

Dettagli

1 Catene di Markov a stati continui

1 Catene di Markov a stati continui Caene di Markov a sai coninui In queso caso abbiamo ancora una successione di variabili casuali X 0, X, X,... ma lo spazio degli sai è un insieme più che numerabile. Nel seguio supporremo che lo spazio

Dettagli

Analisi delle serie storiche parte IV Metodi di regressione

Analisi delle serie storiche parte IV Metodi di regressione Analisi delle serie soriche pare IV Meodi di regressione a.a. 16/17 Saisica Economica -Laurea in Relazioni Economiche Inernazionali 1 Meodo della regressione La componene di fondo, Trend o Ciclo-Trend,

Dettagli

Soluzione degli esercizi del Capitolo 3

Soluzione degli esercizi del Capitolo 3 Soluzione degli esercizi del Capiolo Soluzione dell Esercizio. Ricordando dal Paragrafo A.6 dell Appendice A che è facile oenere ẋ () d d ( (e A e A x + Ae (e A A x + ( A e A( ) x + Ax () + Bu () d ( e

Dettagli

1. Si consideri il seguente modello di regressione per serie storiche trimestrali riferite all area Euro:

1. Si consideri il seguente modello di regressione per serie storiche trimestrali riferite all area Euro: 1. Si consideri il seguene modello di regressione per serie soriche rimesrali riferie all area Euro: π β + β π + β π + β π + β y + δ D + δ D + D + u = 0 1 1 2 2 3 3 4 1 1 2 2 δ3 3 in cui π è il asso di

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte prima

Teoria dei Segnali. La Convoluzione (esercizi) parte prima Teoria dei Segnali La Convoluzione (esercizi) pare prima 1 Si ricorda che la convoluzione ra due segnali x() e y(), reali o complessi, indicaa simbolicamene come: C xy () = x() * y() è daa indifferenemene

Dettagli

10 ESERCITAZIONE. Esercizi svolti: Capitolo 15 Curva di Phillips Esercizio 2. Capitolo 16 Disinflazione, disoccupazione e crescita Esercizio 3

10 ESERCITAZIONE. Esercizi svolti: Capitolo 15 Curva di Phillips Esercizio 2. Capitolo 16 Disinflazione, disoccupazione e crescita Esercizio 3 10 SRCITAZION sercizi svoli: Capiolo 15 Curva di Phillips sercizio 2 Capiolo 16 Disinflazione, disoccupazione e crescia sercizio 3 1 CAPITOLO 15 CURVA DI PHILLIPS Curva di Phillips Relazione che lega inflazione

Dettagli

Approccio Classico: Metodi di Scomposizione

Approccio Classico: Metodi di Scomposizione Approccio Classico: Meodi di Scomposizione Il Modello di Scomposizione Il modello maemaico ipoizzao nel meodo classico di scomposizione è: y =f(s, T, E ) dove y è il dao riferio al periodo S è la componene

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondameni di segnali Fondameni e rasmissione TLC Inroduzione Se il segnale d ingresso di un sisema Lineare Tempo-Invariane LTI e un esponenziale

Dettagli

Soluzione degli esercizi del Capitolo 1

Soluzione degli esercizi del Capitolo 1 Soluzione degli esercizi del Capiolo Soluzione dell Esercizio. Il valore più opporuno ū di u è quello per cui, in condizioni nominali, la variabile conrollaa assume il valore desiderao; perciò si rova

Dettagli

X 3 = tasso di intervento della Banca centrale Europea (ex tasso ufficiale di sconto)

X 3 = tasso di intervento della Banca centrale Europea (ex tasso ufficiale di sconto) ECONOMETRIA Esempi di ESERCIZI per la PROVA SCRITTA 1) Quali sviluppi della meodologia saisica hanno favorio la nascia dell economeria (fondazione dell Economeric Sociey, 1930). Quali conribui meodologici

Dettagli

Circuiti dinamici. Circuiti del primo ordine. (versione del ) Circuiti del primo ordine

Circuiti dinamici. Circuiti del primo ordine.  (versione del ) Circuiti del primo ordine ircuii dinamici ircuii del primo ordine www.die.ing.unibo.i/pers/masri/didaica.hm (versione del 4-5- ircuii del primo ordine ircuii del primo ordine: circuii il cui sao è definio da una sola variabile

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI. Fondamenti Segnali e Trasmissione

SISTEMI LINEARI TEMPO INVARIANTI. Fondamenti Segnali e Trasmissione SISTEMI LINEARI TEMPO INVARIANTI Fondameni Segnali e Trasmissione Definizione di sisema Sisema: Da un puno di visa fisico e un disposiivo ce modifica un segnale (), deo ingresso, generando il segnale y(),

Dettagli

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio.

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio. . Cono e cilindro.. Definiione. Diremo superficie il luogo geomerico dei puni dello spaio le cui coordinae soddisfano un equaione del ipo F che viene dea equaione caresiana della superficie. Se F è un

Dettagli

g Y g M p g Y g g + g M p dove p è il tasso di crescita dei prezzi, ovvero il tasso di inflazione. Poiché g è costante, g

g Y g M p g Y g g + g M p dove p è il tasso di crescita dei prezzi, ovvero il tasso di inflazione. Poiché g è costante, g APPENDICI 465 g Y g g + g M p dove p è il asso di crescia dei prezzi, ovvero il asso di inflazione. Poiché g è cosane, g g è uguale a zero. Quindi: g Y g M p Il asso di crescia della produzione è approssimaivamene

Dettagli

Capitolo XXI. disavanzo. Elevato debito pubblico 20/05/ Il vincolo di bilancio del governo. Il disavanzo di bilancio nell anno t è:

Capitolo XXI. disavanzo. Elevato debito pubblico 20/05/ Il vincolo di bilancio del governo. Il disavanzo di bilancio nell anno t è: Capiolo XXI. Elevao debio pubblico 1. Il vincolo di bilancio del governo Il disavanzo di bilancio nell anno è: disavanzo = r 1 + G T -1 = debio pubblico alla fine dell anno -1 r = asso di ineresse reale

Dettagli

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento Geomeria analiica del piano pag 7 Adolfo Scimone Ree in posizioni paricolari rispeo al sisema di riferimeno L'equazione affine di una rea a + + c = 0 può assumere forme paricolari in relazione alla posizione

Dettagli

Laboratorio di Fisica I: laurea in Ottica e Optometria

Laboratorio di Fisica I: laurea in Ottica e Optometria Laboraorio di Fisica I: laurea in Oica e Opomeria Misura del empo caraerisico di carica e scarica di un condensaore araverso una resisenza Descrizione Si vuole cosruire un circuio in serie collegando generaore

Dettagli

L'importanza delle restrizioni econometriche nell'utilizzo dei modelli GARCH per la valutazione del rischio di prodotti finanziari

L'importanza delle restrizioni econometriche nell'utilizzo dei modelli GARCH per la valutazione del rischio di prodotti finanziari L'imporanza delle resrizioni economeriche nell'uilizzo dei modelli GARCH per la valuazione del rischio di prodoi finanziari Giusj Carmen Sanangelo (MeodiaLab) Robero Reno (Universià di Siena e MeodiaLab)

Dettagli

TRASFORMATE DI LAPLACE

TRASFORMATE DI LAPLACE CONTROLLI AUTOMATICI Ingegneria della Gesione Indusriale e della Inegrazione di Impresa hp://www.auomazione.ingre.unimore.i/pages/corsi/conrolliauomaicigesionale.hm Trasformae di Laplace Gli esempi visi

Dettagli

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi periodici. Prof. Adolfo Santini - Dinamica delle Strutture 1

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi periodici. Prof. Adolfo Santini - Dinamica delle Strutture 1 La risposa di un sisema lineare viscoso a un grado di liberà solleciao da carichi periodici Prof. Adolfo Sanini - Dinamica delle Sruure 1 Inroduzione 1/ Un carico p() si dice periodico quando assume indefiniamene

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondameni di segnali Fondameni e rasmissione TLC Definizione di sisema Sisema: Da un puno di visa fisico e un disposiivo ce modifica un segnale x(, deo ingresso, generando

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI Fondameni di Segnali e Trasmissione Sisema: Definizione di Sisema Da un puno di visa fisico e un disposiivo ce modifica un segnale, deo ingresso, generando il segnale,

Dettagli

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo.

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo. 1. Serie di Fourier I problemi al bordo associai ad equazioni differenziali si sanno risolvere con il meodo di separazione delle variabili solano se il dao iniziale si rappresena nella forma fx = a cosx

Dettagli

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1- soluzioni - Leggi finanziarie, rendite ed ammortamenti

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1- soluzioni - Leggi finanziarie, rendite ed ammortamenti Esercizi di Maemaica Finanziaria - Corso Par Time scheda - soluzioni - Leggi finanziarie, rendie ed ammorameni. Le soluzioni sono: (a) M 3 = 00 ( + 3) = 5, M 8 = 5 ( + 5) = 43.75. (b) Va risola l equazione

Dettagli

Soluzioni di reti elettriche lineari PAS Introduzione

Soluzioni di reti elettriche lineari PAS Introduzione Soluzioni di rei eleriche lineari PAS Inroduzione Domanda: Cosa sono le rei eleriche lineari in regime Periodico Alernao Sinusoidali PAS? Risposa: Sono rei lineari in cui i generaori hanno dipendenza dal

Dettagli

SESSIONE SUPPLETIVA PROBLEMA 2

SESSIONE SUPPLETIVA PROBLEMA 2 www.maefilia.i SESSIONE SUPPLETIVA - 26 PROBLEMA 2 Fissao k R, la funzione g k :R R è così definia: g k = e kx2. Si indica con Γ k il suo grafico, in un riferimeno caresiano Oxy. ) Descrivi, a seconda

Dettagli

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1 Volume FISICA Elemeni di eoria ed applicazioni Fisica ELEMENTI DI TEORIA ED APPLICAZIONI Fisica CUES Cooperaiva Universiaria Edirice Salerniana Via Pone Don Melillo Universià di Salerno Fisciano (SA)

Dettagli

Il Debito Pubblico. In questa lezione: Studiamo il vincolo di bilancio del governo.

Il Debito Pubblico. In questa lezione: Studiamo il vincolo di bilancio del governo. Il Debio Pubblico In quesa lezione: Sudiamo il vincolo di bilancio del governo. Esaminiamo i faori che influenzano il debio pubblico nel lungo periodo. Sudiamo la sabilià del debio pubblico. 327 Il disavanzo

Dettagli

PIL NOMINALE, PIL REALE E DEFLATORE

PIL NOMINALE, PIL REALE E DEFLATORE PIL NOMINALE, PIL REALE E DEFLATORE Il PIL nominale (o a prezzi correni) Come sappiamo il PIL è il valore di ui i beni e servizi finali prodoi in un cero periodo all inerno del paese. Se per calcolare

Dettagli

SOLUZIONE ESERCIZI: CONCORRENZA PERFETTA E OLIGOPOLIO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia

SOLUZIONE ESERCIZI: CONCORRENZA PERFETTA E OLIGOPOLIO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia SOLUZIONE ESERCIZI: CONCORRENZA PERFETTA E OLIGOPOLIO ECONOMIA INDUSTRIALE Universià degli Sudi di Milano-Bicocca Chrisian Garavaglia Soluzione 4 a) Indicando con θˆ la sima di θ, il profio aeso dell impresa

Dettagli

Il modello di crescita deriva dalla logica del tasso di interesse semplice

Il modello di crescita deriva dalla logica del tasso di interesse semplice Eserciazione 7: Approfondimeni sui modelli di crescia. Crescia arimeica, geomerica, esponenziale. Calcolo del asso di crescia e del empo di raddoppio. Viviana Amai 03/06/2009 Modelli di crescia Nella prima

Dettagli

Economia Politica H-Z Lezione 9

Economia Politica H-Z Lezione 9 Blanchard, Macroeconomia, Il Mulino 2009 Economia Poliica H-Z Lezione 9 Sergio Vergalli vergalli@eco.unibs.i Sergio Vergalli - Lezione 4 1 Blanchard, Macroeconomia, Il Mulino 2009 Capiolo XIII. Le aspeaive:

Dettagli

Proprietà razionali per il prezzo

Proprietà razionali per il prezzo Proprieà razionali per il prezzo delle opzioni call 8/09/0 Corso di Finanza quaniaiva L aricolo di Rober Meronpubblicao nel 973, heoryofraionalopionpricing idenifica una serie di proprieà che devono valere

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI Sisema: Definizione di Sisema Da un puno di visa fisico e un disposiivo ce modifica un segnale x(), deo ingresso, generando il segnale

Dettagli

FINANCIAL ECONOMETRICS AND EMPIRICAL FINANCE - MODULO 2

FINANCIAL ECONOMETRICS AND EMPIRICAL FINANCE - MODULO 2 MSc. Finance/CLEFIN Anno Accademico 05/06 FINANCIAL ECONOMETRICS AND EMPIRICAL FINANCE - MODULO Esame Generale - Oobre 06 Tempo a disposizione: 00 minui Cognome Nome Maricola Rispondee a ue le domande

Dettagli

La dipendenza temporale dei rendimenti

La dipendenza temporale dei rendimenti La dipendenza emporale dei rendimeni Il conceo di volailiy clusering Nella serie dei rendimeni si alernano gruppi di rendimeni elevai e gruppi di rendimeni bassi. Conceo sreamene legao alla lepocurosi.

Dettagli

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0 Gradiene e piano angene Definizione 1 Sia f : A R 2 R, f derivabile in (x 0, y 0 ) A). Definiamo il veore gradiene di f in (x 0, y 0 ): f(x 0, y 0 ) = (f x (x 0, y 0 ), f y (x 0, y 0 )). Definiamo il piano

Dettagli

ESEMPI DI ESERCIZI SU IRPEF ED IRES

ESEMPI DI ESERCIZI SU IRPEF ED IRES ESEMPI DI ESERCIZI SU IRPEF ED IRES 1. Irpef 1) Dopo avere definio il conceo di progressivià delle impose, si indichino le modalià per la realizzazione di un sisema di impose progressivo. ) Il signor A,

Dettagli

UNITA 3. LE EQUAZIONI GONIOMETRICHE.

UNITA 3. LE EQUAZIONI GONIOMETRICHE. UNITA. LE EQUAZIONI GONIOMETRICHE.. Generalià sulle equazioni goniomeriche.. Equazioni goniomeriche elemenari con seno, coseno, angene e coangene.. Alri ipi di equazioni goniomeriche elemenari.. Le funzioni

Dettagli

Tratto dal Corso di Telecomunicazioni Vol. I Ettore Panella Giuseppe Spalierno Edizioni Cupido. lim. 1 t 1 T

Tratto dal Corso di Telecomunicazioni Vol. I Ettore Panella Giuseppe Spalierno Edizioni Cupido. lim. 1 t 1 T rao dal Corso di elecomunicazioni Vol. I ore Panella Giuseppe Spalierno dizioni Cupido 4. nergia e Poenza Dao un segnale di ampiezza s() si definisce energia oale il valore del seguene inegrale: + / /

Dettagli

Filtri. RIASSUNTO: Sviluppo in serie di Fourier Esempi:

Filtri. RIASSUNTO: Sviluppo in serie di Fourier Esempi: Filri RIASSUNTO: Sviluppo in serie di Fourier Esempi: Onda quadra Onda riangolare Segnali non peridiodici Trasformaa di Fourier Filri lineari sazionari: funzione di rasferimeno T() Definizione: il decibel

Dettagli

Interruttore ideale. + v(t) i(t) t = t 0. i(t) = 0 v(t) = 0. i(t) v(t) v(t) = 0 i(t) = 0. Per t > t 0. interruttore di chiusura

Interruttore ideale. + v(t) i(t) t = t 0. i(t) = 0 v(t) = 0. i(t) v(t) v(t) = 0 i(t) = 0. Per t > t 0. interruttore di chiusura Inerruore ideale inerruore di chiusura { i() = 0 v() = 0 inerruore di aperura { v() = 0 i() = 0 per < 0 per > 0 per < 0 per > 0 v() i() = 0 v() i() = 0 Esempio: inerruore ideale di aperura Per < 0, i()

Dettagli

ESERCITAZIONE 3 Analisi Classica - Reprise

ESERCITAZIONE 3 Analisi Classica - Reprise STATISTICA ECONOMICA ED ANALISI DI MERCATO Previsioni Economiche ed Analisi di Serie Soriche A.A. 2003 / 04 ESERCITAZIONE 3 Analisi Classica - Reprise di Daniele Toninelli D ORA IN POI LAVORARE SUI PRIMI

Dettagli

LA TEORIA DEL CICLO ECONOMICO REALE (RBC: Real Business Cycle) Però offre una diversa spiegazione delle fluttuazioni economiche:

LA TEORIA DEL CICLO ECONOMICO REALE (RBC: Real Business Cycle) Però offre una diversa spiegazione delle fluttuazioni economiche: LA TEORIA DEL CICLO ECONOMICO REALE (RBC: Real Business Cycle) Edward Presco, Finn Kydland, Rober King, ecc. Si inserisce nel filone della NMC: - Equilibrio generale walrasiano; - incerezza e dinamica:

Dettagli

Esercizio 1 [punti 4] Si tracci il grafico dei segnali a. x 1 (t) = x( t + 2), t R, b. x 2 (t) = x( t 1), t R, sapendo che x(t) =

Esercizio 1 [punti 4] Si tracci il grafico dei segnali a. x 1 (t) = x( t + 2), t R, b. x 2 (t) = x( t 1), t R, sapendo che x(t) = Esercizio [puni 4] Prova scria di SEGNALI E SISTEMI 5 seembre 2003 Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a. 2002-2003) Teso e Soluzione (redaa da L. Finesso) Si racci il grafico dei segnali a. x

Dettagli

ESERCIZI di TEORIA dei SEGNALI. La Correlazione

ESERCIZI di TEORIA dei SEGNALI. La Correlazione ESERCIZI di TEORI dei SEGNLI La Correlazione Correlazione Si definisce correlazione (o correlazione incrociaa o cross-correlazione) ra i due segnali di energia, in generale complessi, x() e y() la quanià:

Dettagli

Elettronica delle Telecomunicazioni Esercizi cap. 3: Anelli ad aggancio di fase

Elettronica delle Telecomunicazioni Esercizi cap. 3: Anelli ad aggancio di fase 3. Effeo della variazioni di parameri del PLL - A Un PLL uilizza come demodulaore di fase un moliplicaore analogico, e il livello dei segnali sinusoidale di ingresso (Vi) e locale (Vo) è ale da manenere

Dettagli

Dato T = numero di osservazioni disponibili nel campione di dati, è possibile calcolare per la generica variabile x: Var. Corr =

Dato T = numero di osservazioni disponibili nel campione di dati, è possibile calcolare per la generica variabile x: Var. Corr = . MISURE STATISTICHE DI SINTESI Dao T = numero di osservazioni disponibili nel campione di dai, è possibile calcolare per la generica variabile : T Media (campionaria); µ = i T i= T 2 Varianza (campionaria);

Dettagli

Capitolo XXI. Elevato debito pubblico

Capitolo XXI. Elevato debito pubblico Blanchard Amighini Giavazzi, Macroeconomia Una prospeiva europea, Il Mulino 2011 Capiolo XXI. Elevao debio pubblico Capiolo XXI. Elevao debio pubblico Blanchard Amighini Giavazzi, Macroeconomia Una prospeiva

Dettagli

Minimi Quadrati Ricorsivi

Minimi Quadrati Ricorsivi Minimi Quadrai Ricorsivi Minimi Quadrai Ricorsivi Fino ad ora abbiamo sudiao due diversi meodi per l idenificazione dei modelli: - Minimi quadrai, uilizzao per l idenificazione dei modelli ARX, in cui

Dettagli

intervalli di tempo. Esempio di sistema oscillante: Fig. 1 Massa m che può traslare in una sola direzione x, legata ad una molla di rigidezza k.

intervalli di tempo. Esempio di sistema oscillante: Fig. 1 Massa m che può traslare in una sola direzione x, legata ad una molla di rigidezza k. Sudio delle vibrazioni raa ogni oscillazione di una grandezza inorno ad una posizione di equilibrio. La forma piu semplice di oscillazione e il moo armonico che puo i essere descrio da un veore roane Ae

Dettagli

CAMPO ROTANTE DI GALILEO FERRARIS.doc pag. 1 di 5

CAMPO ROTANTE DI GALILEO FERRARIS.doc pag. 1 di 5 CAPO ROANE DI GALILEO FERRARIS. È noo che un solenoide percorso da correne elerica dà origine nel suo inerno a un campo magneico che ha come direzione quella del suo asse come mosrao in fig.. Se esso e

Dettagli

L analisi delle serie storiche

L analisi delle serie storiche L analisi delle serie soriche Per serie sorica si inende un insieme di dai ordinai secondo un crierio cronologico. Ogni dao è associao ad un paricolare isane o inervallo di empo. Se a ciascun isane o inervallo

Dettagli

STATISTICA ECONOMICA ED ANALISI DI MERCATO Previsioni Economiche ed Analisi di Serie Storiche A.A / 04 ESERCITAZIONE 4. Exponential Smoothing

STATISTICA ECONOMICA ED ANALISI DI MERCATO Previsioni Economiche ed Analisi di Serie Storiche A.A / 04 ESERCITAZIONE 4. Exponential Smoothing TATTCA ECONOMCA ED ANAL D MERCATO Previsioni Economiche ed Analisi di erie oriche A.A. 2003 / 04 EERCTAZONE 4 Exponenial moohing di Daniele Toninelli Noa: LAVORARE U PRM 0 ANN D DAT E ARE EVENTUAL PREVON

Dettagli

Blanchard, Macroeconomia, Il Mulino 2009 Capitolo XXII. Elevato debito pubblico. Capitolo XXII. Elevato debito pubblico

Blanchard, Macroeconomia, Il Mulino 2009 Capitolo XXII. Elevato debito pubblico. Capitolo XXII. Elevato debito pubblico Capiolo XXII. Elevao debio pubblico 1. Il vincolo di bilancio del governo Il disavanzo di bilancio nell anno è: disavanzo = rb 1 + G T B -1 = debio pubblico alla fine dell anno -1 r = asso di ineresse

Dettagli

Corso di Misure Geodeiche Esercizio posizionameno relaivo Versione:. Jun. 00 Creao da Marco Scurai. remessa. La presene eserciazione risolve in modo compleo e deagliao un problema di sima della posizione

Dettagli

Soluzione degli esercizi del Capitolo 10

Soluzione degli esercizi del Capitolo 10 Soluzione degli esercizi del Capiolo Soluzione dell Esercizio. La funzione d anello è L(s) = R(s)G(s) = ( + s) 2 il cui diagramma del modulo è mosrao nella Figura S.. Da ale grafico si deduce che risula

Dettagli

ELEVATO DEBITO PUBBLICO

ELEVATO DEBITO PUBBLICO 1 ELEVATO DEBITO PUBBLICO IL VINCOLO DI BILANCIO DEL GOVERNO Il disavanzo di bilancio nell anno è la variazione del debio reale in quel deerminao periodo: disavanzo = rb 1 + G T Esso include - Componene

Dettagli

Perturbazioni Dipendenti dal tempo

Perturbazioni Dipendenti dal tempo Perurbazioni dipendeni dal empo in Meccanica Quanisica, Perurbazioni Periodiche, Transizioni di Dipolo Elerico, Dipolo Magneico, Quadripolo Elerico e relaive Regole di Selezione Di Giorgio Busoni Perurbazioni

Dettagli

PROBLEMA 1. Soluzione. ε = = =

PROBLEMA 1. Soluzione. ε = = = MOULO PROBLEMA 1 Una barra d acciaio di lunghezza l = m e sezione rasversale di area A = 50, è sooposa a una solleciazione di razione F = 900 da. Sapendo che l allungameno assoluo della barra è l = 1,5,

Dettagli

ELEVATO DEBITO PUBBLICO

ELEVATO DEBITO PUBBLICO 1 ELEVATO DEBITO PUBBLICO IL VINCOLO DI BILANCIO DEL GOVERNO Il disavanzo di bilancio nell anno è la variazione del debio reale in quel deerminao periodo: disavanzo rb 1 G T Esso include - Componene primaria

Dettagli

9.4.4 Filtro adattato 9.4. FILTRAGGIO DI SEGNALI E PROCESSI 235

9.4.4 Filtro adattato 9.4. FILTRAGGIO DI SEGNALI E PROCESSI 235 9.4. FILRAGGIO DI SEGNALI E PROCESSI 35 Rispose ) Calcoliamo la media emporale: P x = ; / / x () d = /4 /4 () d = 4 = ) Sappiamo che P y = Py (f) df, in cui Py (f) = Y (f), ed a sua vola Y (f) = X (f)

Dettagli

I COMOVIMENTI DI LUNGO PERIODO TRA ALCUNI INDICI AZIONARI

I COMOVIMENTI DI LUNGO PERIODO TRA ALCUNI INDICI AZIONARI Relazione conclusiva del progeo di ricerca: I COMOVIMENTI DI LUNGO PERIODO TRA ALCUNI INDICI AZIONARI di Loriano Mancini BSI SA LUGANO Diparimeno IP&A INTRODUZIONE SISTEMA COINTEGRATO 4. DEFINIZIONE DI

Dettagli

Regime di capitalizzazione: una famiglia di funzioni fattore di montante che dipende da uno o più parametri.

Regime di capitalizzazione: una famiglia di funzioni fattore di montante che dipende da uno o più parametri. 5. Teoria generale Regimi finanziari Nel capiolo precedene abbiamo inrodoo alcuni parameri in grado di descrivere ualsiasi ipo di regime. Ciò ci permee di definire in generale i regimi finanziari. Regime

Dettagli

ANALISI DEI RESIDUI E RELAZIONI NON LINEARI

ANALISI DEI RESIDUI E RELAZIONI NON LINEARI Lezione del 5-- (IV canale, Do.ssa P. Vicard) ANALISI DEI RESIDUI E RELAZIONI NON LINEARI ESEMPIO: consideriamo il seguene daa se x y xy x y* e 9, 9,,,, 5, 7,,,7, 9 9,5 -,7 9,77 7,9 7,5,7 9,,,5,7,, 9,

Dettagli

La Previsione della Domanda. La previsione della domanda è un elemento chiave della gestione aziendale

La Previsione della Domanda. La previsione della domanda è un elemento chiave della gestione aziendale La Previsione della omanda La previsione della domanda è un elemeno chiave della gesione aziendale Cosi Cliene Vanaggio compeiivo esi I mod 001 1 ermiene rocesso oninuo Personalizzao Prodoo Indifferenziao

Dettagli

Medie statistiche Processi stazionari Trasformazioni di processi casuali Ergodicità di processi WSS Analisi spettrale di processi WSS

Medie statistiche Processi stazionari Trasformazioni di processi casuali Ergodicità di processi WSS Analisi spettrale di processi WSS Teoria dei segnali Unià 4 Teoria dei processi casuali a empo coninuo Teoria dei processi casuali a empo coninuo Medie saisiche Processi sazionari Trasformazioni di processi casuali Ergodicià di processi

Dettagli

Esercizi Scheda N Fisica II. Esercizi con soluzione svolta

Esercizi Scheda N Fisica II. Esercizi con soluzione svolta Poliecnico di Torino etem Esercizi Scheda N. 0 45 Fisica II Esercizi con soluzione svola Esercizio 0. Si consideri il circuio V R T R T V I V 0 Vols R 5 Ω R 0 Ω µf sapendo che per 0 T on T off 5 µs T off

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondameni di Conrolli Auomaici Prova Parziale 8 Aprile 2 - A.A. 2/ Nome: Nr. Ma. Firma: a) Deerminare la rasformaa di Laplace X i (s) dei segueni segnali emporali x i (): x () = 4 + 2 e +5 cos(3 6), x

Dettagli

UNIVERSITÀ DEGLI STUDI DI BRESCIA

UNIVERSITÀ DEGLI STUDI DI BRESCIA UNVERSTÀ DEGL STUD D BRESCA Facolà di ngegneria Diparimeno di ngegneria Civile, Archieura, Terriorio e Ambiene Corso di laurea in ngegneria Civile TES D LAUREA L NFLUENZA DEL COLORE DELLE PARET SUL COMPORTAMENTO

Dettagli

Indice generale della produzione industriale. indice grezzo corretto per i giorni lavorativi destagionalizzato. marzo 07.

Indice generale della produzione industriale. indice grezzo corretto per i giorni lavorativi destagionalizzato. marzo 07. Indice generale della produzione indusriale indice grezzo correo per i giorni lavoraivi desagionalizzao 0.0 0.0 00.0 indice 90.0 80.0 70.0 60.0 50.0 marzo 06 giugno 06 seembre 06 dicembre 06 marzo 07 giugno

Dettagli

Deficit e debito pubblico

Deficit e debito pubblico DEITO PULICO Defici e debio pubblico Se il governo di uno Sao spende più di quano incassa, si genera un defici pubblico. Viceversa, si parla di surplus. Il defici è finanziao dallo Sao ricorrendo a presii

Dettagli

Linea guida raccomandata per la valutazione della vita residua di componenti esercìti in regime di scorrimento viscoso

Linea guida raccomandata per la valutazione della vita residua di componenti esercìti in regime di scorrimento viscoso ISPESL Linea guida raccomandaa per la valuazione della via residua di componeni esercìi in regime di scorrimeno viscoso Calcolo della frazione di via consumaa per scorrimeno viscoso Sezione 2 LG v. 1 Nella

Dettagli

Trasmissione in banda base: interferenza intersimbolica

Trasmissione in banda base: interferenza intersimbolica rasmissione in banda base: inerferenza inersimbolica L inerferenza inersimbolica (ISI) Il crierio di Nyquis. Schema del sisema con ISI nulla: progeo dei filri di rasmissione e ricezione. 1 Fondameni di

Dettagli

Regime lentamente. variabile. Corso di. Teoria dei Circuiti. Corso di. Università degli Studi di Pavia. Facoltà di Ingegneria

Regime lentamente. variabile. Corso di. Teoria dei Circuiti. Corso di. Università degli Studi di Pavia. Facoltà di Ingegneria Universià degli Sudi di Pavia Facolà di Ingegneria Corso di Corso di Teoria dei Circuii Regime lenamene variabile Diparimeno di Ingegneria Elerica www.unipv.i/elecric/cad Regime lenamene variabile v(),

Dettagli

0.0.1 Esercizio Q1, tema d esame del 10 settembre 2009, prof. Dario d Amore Testo R 3

0.0.1 Esercizio Q1, tema d esame del 10 settembre 2009, prof. Dario d Amore Testo R 3 1 0.0.1 Esercizio Q1, ema d esame del 10 seembre 2009, prof. Dario d more 0.0.1.1 Teso E1 Il circuio di figura opera in regime sazionario. Sapendo che R 1 = 2 kω, = 4 kω, = 2 kω, = 2 kω E=12 V, =3 m Deerminare,

Dettagli

La crescita (2) approfondimenti. R.Capolupo appunti macro2 (grafici dal DeLong)

La crescita (2) approfondimenti. R.Capolupo appunti macro2 (grafici dal DeLong) La crescia (2) approfondimeni R.Capolupo appuni macro2 (grafici dal 1 Crescia di K/L Indicheremo con g (k ) il asso di crescia di K/L: ( K / L ) ( K + 1 + 1 g( k ) = ( K / L ) Essendo K/L un quoziene il

Dettagli

Corso di. Economia Politica

Corso di. Economia Politica Prof.ssa lanchard, Maria Laura Macroeconomia Parisi, PhD; Una parisi@eco.unibs.i; prospeiva europea, DEM Universià Il Mulino di 20 rescia Capiolo I. Un Viaggio inorno al mondo Corso di Economia Poliica

Dettagli

RISPOSTA NEL DOMINIO DEL TEMPO

RISPOSTA NEL DOMINIO DEL TEMPO RISPOSTA NEL DOMINIO DEL TEMPO Nel dominio del empo le variabili sono esaminae secondo la loro evoluzione emporale. Normalmene si esamina la risposa del sisema a un segnale di prova canonico, cioè si sollecia

Dettagli

Lezione 05 CONDENSATORE Componente che si trova nei modelli elettrici di sistemi biologici (membrane)

Lezione 05 CONDENSATORE Componente che si trova nei modelli elettrici di sistemi biologici (membrane) Lezione 5 ONDENSATORE omponene che si rova nei modelli elerici di sisemi biologici (membrane) E formao da due conduori (armaure) fra i quali è poso un isolane (dielerico). Se sulle armaure si porano cariche

Dettagli

Elettrotecnica. Regime lentamente variabile. Corso di. Teoria dei Circuiti. Università degli Studi di Pavia. Dipartimento di Ingegneria Elettrica

Elettrotecnica. Regime lentamente variabile. Corso di. Teoria dei Circuiti. Università degli Studi di Pavia. Dipartimento di Ingegneria Elettrica Universià degli Sudi di Pavia Facolà di Ingegneria Corso di Eleroecnica Teoria dei Circuii Regime lenamene variabile v(), i(), p() funzioni del empo Esempio: a() a Relazioni: non algebriche, ma inegro-differenziali

Dettagli

Circuiti Integrati : 555

Circuiti Integrati : 555 ircuii Inegrai : 555 Il circuio inegrao 555, inrodoo per la prima vola inorno il 1971, fu il primo circuio inegrao commerciale con funzione di imer. ale componene è oggi uilizzao in molissimi circuii sia

Dettagli

P suolo in P; 2. la distanza d, dall uscita dello

P suolo in P; 2. la distanza d, dall uscita dello acolà di Ingegneria Prova Generale di isica I 1.07.004 Compio A Esercizio n.1 Uno sciaore di massa m = 60 Kg pare da fermo da un alezza h = 8 m rispeo al suolo lungo uno scivolo inclinao di un angolo α

Dettagli

Sistemi Lineari e Tempo-Invarianti (SLI) Risposta impulsiva e al gradino

Sistemi Lineari e Tempo-Invarianti (SLI) Risposta impulsiva e al gradino Sisemi Lineari e Tempo-Invariani (SLI) Risposa impulsiva e al gradino by hp://www.oasiech.i Con sisema SLI si inende un sisema lineare e empo invariane, rispeo alla seguene figura: Lineare: si ha quando

Dettagli

Capitolo 5 - I sistemi lineari

Capitolo 5 - I sistemi lineari Appuni di Teoria dei segnali Capiolo 5 - I sisemi lineari Definizioni principali... Esempio: moliplicaore...3 Esempio: sommaore...3 Esempio: derivaore...4 Esempio: inegraore...5 Esempio: sommaoria discrea...6

Dettagli

POLITECNICO DI MILANO

POLITECNICO DI MILANO POLITECNICO DI MILANO CENTRO PER LO SVILUPPO DEL POLO DI CREMONA Corso di Laurea Ingegneria INFORMATICA LABORATORIO DI FONDAMENTI DI ELETTRONICA Anno --- Semesre Eserciazione n Si consideri il conaore

Dettagli

C2. Introduzione alla cinematica del moto in una dimensione

C2. Introduzione alla cinematica del moto in una dimensione C. Inroduzione alla cinemaica del moo in una dimensione Legge oraria di un puno maeriale che si muove su una rea Come già discusso, la legge oraria di un puno maeriale che si muove su una rea è la funzione

Dettagli

Elevato debito pubblico

Elevato debito pubblico Lezione 22 (AG cap. 21) Elevao debio pubblico Corso di Macroeconomia Prof. Guido Ascari, Universià di Pavia 1. Il vincolo di bilancio del governo Il disavanzo di bilancio nell anno è: disavanzo = r 1 1

Dettagli

3. Metodi di scomposizione

3. Metodi di scomposizione Cap 3 Meodi di scomposizione 31 3. Meodi di scomposizione 3.1 Inroduzione Moli meodi di previsione si basano sul fao che, se esise un paern sisemaico, queso possa essere individuao e separao da evenuali

Dettagli

Sviluppi recenti nell analisi empirica della Politica Fiscale

Sviluppi recenti nell analisi empirica della Politica Fiscale 1 Sommario Nuove esensioni dell analisi VAR... 4 1-Inroduzione... 5 2-Serie soriche e processi socasici... 6 3-I processi VAR e sazionarieà... 8 4-Sima dei VAR... 9 5-Uso dei VAR... 9 5.1 Analisi Causale...

Dettagli

TIPI DI REGOLATORI. Esistono diversi tipi di regolatori che ora analizzeremo.

TIPI DI REGOLATORI. Esistono diversi tipi di regolatori che ora analizzeremo. TIPI DI REGOLATORI Esisono diversi ipi di regolaori che ora analizzeremo 1REGOLATORI ON-OFF Abbiamo deo che i regolaori sono quei sisemi che cercano di manenere l uscia cosane On-Off sa per indicare che

Dettagli

UNITA 4. LE DISEQUAZIONI GONIOMETRICHE.

UNITA 4. LE DISEQUAZIONI GONIOMETRICHE. UNITA. LE DISEQUAZIONI GONIOMETRICHE.. Generalià sulle disequazioni goniomeriche.. Disequazioni goniomeriche elemenari con seno, coseno, angene e coangene.. Disequazioni riconducibili a disequazioni goniomeriche

Dettagli

ESERCIZI SUL CALCOLO DI LIMITI CON GLI SVILUPPI DI TAYLOR

ESERCIZI SUL CALCOLO DI LIMITI CON GLI SVILUPPI DI TAYLOR ESERCIZI SUL CALCOLO DI LIMITI CON GLI SVILUPPI DI TAYLOR a cura di Michele Scaglia SVILUPPI DI MACLAURIN DELLE PRINCIPALI FUNZIONI Ricordiamo nella abella che segue gli sviluppi di Taylor per x 0 delle

Dettagli

Processi Spazio-Temporali

Processi Spazio-Temporali Processi Spazio-Temporali Quando ineressa una modellazione congiuna sia emporale che spaziale. Si disinguono le analisi in due caegorie: quelle geosaisiche (Kyriakidis e Journel, 1999) e quelle basae su

Dettagli

Lezione 4 Material Requirement Planning

Lezione 4 Material Requirement Planning Lezione 4 Maerial Requiremen Planning Obieivo: noi gli alberi di prodoo per ciascun ipo; daa una sringa di loi di prodoi finii (fabbisogni dei clieni), ciascun loo da complearsi enro un dao inervallo (se.)

Dettagli

I DATI MACROECONOMICI INQUADRAMENTO, FORMATO, CARATTERISTICHE E PROPRIETÀ

I DATI MACROECONOMICI INQUADRAMENTO, FORMATO, CARATTERISTICHE E PROPRIETÀ I DATI MACROECONOMICI INQUADRAMENTO, FORMATO, CARATTERISTICHE E PROPRIETÀ 1. COME SONO ORGANIZZATI I DATI ECONOMICI Serie soriche (dai a sviluppo emporale) Cross secion (dai a sviluppo longiudinale) Panel

Dettagli