Integrali dipendenti da un parametro e derivazione sotto il segno di integrale.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Integrali dipendenti da un parametro e derivazione sotto il segno di integrale."

Transcript

1 1 Integrli dipendenti d un prmetro e derivzione sotto il segno di integrle. Considerimo l funzione f(x, t) : A [, b] R definit nel rettngolo A [, b], essendo A un sottoinsieme perto di R e [, b] un intervllo chiuso e itto. Fissto x A, se l funzione f(x, ) : [, b] R dell sol vribile t fosse integrbile secondo Riemnn in [, b], llor vrebbe senso il seguente integrle: f(x, t) dt e quindi, l vrire di x in A, risulterebbe definit l seguente funzione: F (x) f(x, t) dt : A R. Noi, nel corso di quest trttzione, supporremo che l funzione f(x, t) si continu (nel complesso delle due vribili) in A [, b]. Quest è un ipotesi forte che semplificherà lqunto le dimostrzioni, m si può richiedere qulcos meno ll funzione f(x, t) e continuno vlere i risultti che tr poco otterremo. Siccome uno degli scopi è trovre un formul che ci permett di clcolre l derivt dell funzione F (x), risult essenzile vedere sotto qule condizione l funzione F (x) risult lmeno continu. Pertnto comincimo con un lemm che ci permetterà di sserire che l funzione F (x) è continu in A, sotto l sol ipotesi di continuità dell f(x, t). Lemm.1 Si f(x, t) : A [, b] R continu in A [, b], llor l funzione: è continu in A. Dimostrzione. F (x) Si x A. Provimo che: f(x, t) dt : A R F (x) F (x ), x x ossi, grzie d un noto teorem di nlisi 1 ) provimo che, per ogni successione {x n } A, si h: Notimo che provre l tesi, equivle provre: n F (x n) F (x ). n F (x n) F (x ) n f(x n, t) dt f(x, t) dt. Un ttimo di riflessione per dire che l tesi ltro non è che un pssggio l ite sotto il segno di integrle per l successione di funzioni φ n (t) f(x n, t) : [, b] R. Sppimo che ciò è grntito se l successione di funzioni φ n (t) è convergente uniformemente verso φ(t) f(x, t). Scopo del proseguo dell dimostrzione è, pertnto, provre questo ftto, ossi provre che: per ogni ε > esiste ν ν(ε) N tle che: ϕ n (t) ϕ(t) f(x n, t) f(x, t) < ε per ogni t [, b] (1) 1 Fissimo, d rbitrio, ε >. Teorem.1 Si f(x) : X R. Condizione necessri e sufficiente ffinché f(x) si continu in x X è che per ogni successione {x n} X convergente verso x, l successione numeric {f(x n)} converge verso f(x ). Dimostrzione. Provre!!!

2 2 Dl ftto che A è un perto di R, esiste un intorno (chiuso) di x tutto contenuto in A, cioé esiste σ > tle che: [x σ, x + σ] A. Si {x n } un successione di elementi di A convergente verso x. Senz perdit di generlità, possimo supporre che tle successione si contenut in questo intorno di x, cioé x n [x σ, x + σ], per ogni n N (osserv che eventulmente solo un numero finito di termini dell successione strebbero fuori d [x σ, x + σ], proprio per l convergenz dell stess verso x ). Considerimo il seguente rettngolo di R 2 : [x σ, x + σ] [, b] A [, b] Tle insieme è ovvimente un insieme chiuso e itto di R 2. Considerimo l restrizione dell funzione f(x, t) : R. Ess, essendo un funzione continu definit su un insieme chiuso e itto, grzie l teorem di Cntor, è uniformemente continu in, e quindi in corrispondenz l fissto ε >, esiste δ δ(ε) > ( e si può scegliere pure δ < σ), tle che : f(x, t ) f(x, t ) < ε se (x, t ), (x, t ), d R 2((x, t ), (x, t )) (x x ) 2 + (t t ) 2 < δ. (2) Per l convergenz di {x n } verso x, in corrispondenz δ > (sorto dll convergenz uniforme), esiste un indice ν N tle che: x n x < δ per ogni n > ν. (3) Provimo l tesi con l indice ν d determinre ugule ν. Si n > ν, llor i punti (x n, t), (x, t) sono tli che pprtengono (fcile verific) e inoltre: d R 2((x n, t), (x, t)) (x n x ) 2 + (t t) 2 x n x < (grzie (3)) < δ per ogni t [, b], m llor, si può pplicre l (2), con (x, t ) (x n, t) e (x, t ) (x, t), ottenendo: f(x n, t) f(x, t) < ε per ogni t [, b] che è l (1); quindi vle il teorem di pssggio l ite sotto il segno di integrle e quindi l tesi. Anzicché trovre un formul per l sol derivt di F (x), cerchimo un formul per un funzione che è più generle rispetto F (x). Si f(x, t) : A [, b] R un funzione continu in A [, b] e sino x A e, z ], b[ (supporremo sempre, per fcilità, che < z < b), llor h senso considerre: Si viene così costruire un funzione di tre vribili: Vle il seguente: φ(x,, z) f(x, t) dt R f(x, t) dt : A ], b[ ], b[ R Teorem.2 Si f(x, t) : A [, b] R un funzione continu in A [, b]. Allor: i) L funzione φ(x,, z) f(x, t) dt : A ], b[ ], b[ R è continu in A ], b[ ], b[. ii) Per ogni x A esistono le derivte przili dell funzione φ(x,, z) rispetto e z e vlgono: (x,, z) f(x, ) (x,, z) f(x, z) per ogni x A e per ogni, z ], b[ z iii) Se per ogni (x, t) A ], b[, esiste f (x, t) ed è continu in A ], b[, llor vle l seguente formul di derivzione sotto il segno di integrle: z f (x,, z) f(x, t) dt (x, t) dt

3 3 Dimostrzione. Sino x A,, z ], b[ e sino x n, n, z n tre successioni tli che x n x, n, z n z. Proveremo che φ(x n, n, z n ) φ(x,, z ). Poiché A e ], b[ sono insiemi perti, llor per qunto osservto, si può supporre che, per qulche σ >, x n ]x σ, x +σ[ e n, z n ], b[, per ogni n N. Considerimo il rettngolo [x σ, x + σ] [, b]. Poiché f(x, t) : A [, b] è continu, in prticolre srà continu nel rettngolo, che è un insieme chiuso e itto, dunque per il teorem di Weierstrss, l funzione f(x, t) mmette mssimo ssoluto in. Si M > mx f(x, t). Considerimo l quntità: n φ(x n, n, z n ) φ(x,, z ) f(x n, t) dt f(x, t) dt (utilizzndo l proprietà di dditività) n n f(x n, t) dt + f(x n, t) dt + f(x n, t) dt f(x, t) dt n z n zn f(x n, t) dt + z f(x n, t) dt + f(x n, t) f(x, t) dt (4) z M, poiché f(x n, t) < M per ogni n N (in qunto (x n, t) ), si h: n n f(x n, t) dt < M dt M n e nlogmente si prov: zn f(x n, t) dt < M z n z z pertnto, qundo fccimo tendere n, i primi due integrli dell ultimo membro dell (4) tendono zero, così come, grzie l lemm precedente, nche il terzo integrle dell (4) tende zero, per cui l i) è provt. Per ogni, z ], b[ e per ogni x A, considert l funzione di un sol vribile: ζ(z) φ(x,, z) per il teorem di Torricelli si ottiene: per cui nche l ii) è provt. f(x, t) dt e ι() φ(x,, z ) z (x,, z ) ζ (z ) f(x, z ) e f(x, t) dt (x,, z ) ι ( ) f(x, ) Si (x,, z ) A ], b[ ], b[. Occorre provre che per ogni ε > esiste δ > tle che per ogni x A con x x < δ, risult: φ(x,, z ) φ(x,, z ) f(x, t) x x < ε z f(x, t) dt, Fissimo ε >. Poiché x A e A è perto, llor esiste un intorno di x tle che [x, σ, x o + σ] A. Considerto il rettngolo [x, σ, x o + σ] [, z ], per il teorem di Cntor sull uniforme continuità, considerndo, senz perdit di generlità, < z, segue che in corrispondenz ε z >, esiste un δ > (possimo, ovvimente, supporre che δ < σ) tle che: f(x, t ) f(x, t ε ) < per ogni (x, t ), (x, t ) con d R 2((x, t ), (x, t )) < z δ (5) Provimo l tesi con δ δ. Si x [x σ, x + σ] e tle che x x < δ. Osservimo che il rpporto incrementle di phi(x,, z ) ) si scrive: φ(x,, z ) φ(x,, z ) f(x, t) dt f(x, t) dt f(x, t) f(x, t) dt (6) x x x x x x Fissto t [, b], grzie l teorem del vlore medio di Lgrnge pplicto ll funzione ϕ(x) f(x, t) : [x, x] R (per semplicità stimo supponendo che x x), si h: f(x, t) f(x, t) f(ξ, t) x x dove ξ ]x, x[ per ogni t [, b] (7)

4 4 Poiché (x ξ) 2 + (t t) 2 x ξ x x < δ, vle l (5) con (x, t ) (ξ, t) e (x, t ) (x, t), pertnto, d (6) e (7), risult: φ(x,, z ) φ(x,, z ) f(x, t) z x x f(ξ, t) f(x, t) dt < ε dt ε per ogni t [, b] z che è l tesi. Dl teorem precedente e dl teorem sull derivbilità delle funzioni composte, discende il seguente: Corollrio.1 Si f(x, t) : A [, b] R continu nel suo insieme di definizione. Supponimo che esist e si continu in A ], b[. Sino α(x), β(x) : A R derivbili in A e tli che α(x), β(x) ], b[ per ogni x A, llor l funzione: risult derivbile e si h per ogni x A: ϕ (x ) β(x) α(x ) ϕ(x) β(x) α(x) f(x, t) f(x, t) dt : A R dt + f(x, β(x )) f(x, α(x )) Gli esempi che seguirnno mostrernno che se non sono verificte tutte le ipotesi dei precedenti teoremi, può cpitre che mnchi l continuità dell F (x) oppure l derivbilità di F (x). Esempio.1 Si f(x, t) : [, 1] [, 1] R così definit: x t f(x, t) se t < x se x t 1 Proveremo che l funzione F (x) non è continu pur essendo l funzione f(x, t) continu rispetto ll vribile (di integrzione) t. f(x, t) f(x, t) x t f(x, t) x t x f(x, t) x+t f(x, t) x+t f(x, t) Grfico del dominio di f(x, t) Si x [, 1], llor l funzione dell sol vribile t: x t f(x, t) se t < x : [, 1] R se x t 1 è continu. Si t [, 1] \ {}, llor l funzione dell sol vribile x: x t f(x, t ) se < t < x : [, 1] R se x t 1

5 5 è continu, mentre per t : { 1 se < x f(x, ) x : [, 1] R se x vi è un discontinuità in x. Dunque f(x, t) non è continu in (, ). Considerimo: F (x) f(x, t) dt : [, 1] R (osservimo che tle integrle h senso essendo f(x, t) un funzione continu rispetto ll vribile t). Si x [, 1] \ {} llor: mentre F (x ) f(x, t) dt 2 [ x x t 1 ] [ ] t x 1 ( f(x, t) dt 2 dt + dt 2 x x t t ) 1 t 2 F () dunque l funzione F (x) non è continu in x. f(, t) dt dt Esempio.2 Si f(x, t) : [ 1 4, 1 4 ] [, 1] R così definit: t se t < x f(x, t) t + 2 x se x t < 2 x se 2 x t 1; t < se x, f(x, t) f( x, t) se x < Mostreremo che l funzione f(x, t) è continu, mentre non è continu il segno di integrle. e che non vle l formul di derivzione sotto f(x, t) f(x, t) t + 2 x A 3 f(x, t) t + 2 x A 4 A 2 f(x, t) t A 5 A 1 f(x, t) t x A 6 f(x, t) Grfico del dominio di f(x, t) Il punto dove sembrerebbe esserci qulche problem per l continuità di f(x, t) è l origine (, ). Dividendo l insieme di definizione [ 1 4, 1 4 ] [, 1] nei sei sottoinsiemi dove vi è cmbio di legge: A 1, A 6, notimo che (, ) è di ccumulzione per ognuno dei sottoinsiemi. Provimo l continuità di f(x, t) per esempio nel sottoinsieme A 2. Risult: f(x, t) f(, ) t + 2 x se (x, t) (, )

6 6 Per ogni (x, t) ] 1 4, 1 4 [ ] 1, 1[, si h: se < t < x 1 x se x < t < 2 x se 2 x < t < 1; < t < se x, f( x, t) se x < Risult f(, t) per ogni t [, 1]. Inftti: f(x, t ) f(, t ) x x t > f(x, t ) x x t > f(x, ) f(, ) x x t f(x, t ) f(, t ) x x t < x x (poiché d un certo punto x < t2 4 ) t > x x t x x t < Si, desso x >, llor: x 2 x F (x ) f(x, t) dt dt + t dt + ( t + 2 [ t 2 x ) dt + dt x 2 ] t x [ ] t2 + t2 x x ) t x t x Ripetendo qunto sopr clcolto, si mostr che è nche per x <, si h F (x) x. Bnlmente per x si h F (), dunque F (x) x per ogni x [ 1 4, 1 4 ] e quindi F (x) 1 per ogni x ] 1 4, 1 4 [. M, poiché: f(, t) dt dt si h: 1 F () f(, t) f(, t) dt dt dunque non vle l formul di derivzione sotto il segno di integrle. Finor bbimo supposto che l intervllo [, b] fosse itto. Se considerimo un intervllo ilitto llor può ccdere che i risultti dei precedenti teoremi non vlgono più, bisogn cioé fre nuove ipotesi sull funzione f(x, t). Definizione.1 Diremo che γ(t) è sommbile in un insieme I se è integrbile in ogni insieme chiuso e itto di I e γ(t) è integrbile in senso generlizzto ( integrle improprio o di funzione generlmente continu) Vlgono i seguenti risultti: Teorem.3 Si f(x, t) : A I R (essendo I un intervllo nche ilitto) un funzione continu. Supponimo che esist un funzione sommbile in I, γ(t), tle che: f(x, t) γ(t) per ogni x A e per ogni t I llor l funzione: è continu in A. F (x) f(x, t) dt : A R I Vle l seguente formul di derivzione sotto il segno di integrle: Teorem.4 Si f(x, t) : A I R (essendo I un intervllo nche ilitto) un funzione continu. Supponimo che esist e si continu in A I. Supponimo, infine, che esist un funzione sommbile in I, γ(t), tle che: γ(t) per ogni x A e per ogni t I llor si h: F (x) f(x, t) dt dt I I

1 Integrale delle funzioni a scala

1 Integrale delle funzioni a scala INTEGRALE DELLE FUNZIONI DI UNA VARIABILE Teori di Riemnn 1 Integrle delle funzioni scl (1.1) Definizione Si dice suddivisione di un intervllo chiuso e limitto [, b] un sottoinsieme {,..., n } di [, b]

Dettagli

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non

Dettagli

Esercizi svolti Limiti. Prof. Chirizzi Marco.

Esercizi svolti Limiti. Prof. Chirizzi Marco. Cpitolo II Limiti delle funzioni di un vribile Esercizi svolti Limiti Prof. Chirizzi rco www.elettrone.ltervist.org 1) Verificre che risult: = Dobbimo provre che per ogni ε positivo, rbitrrimente piccolo,

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

Pietro Baldi Successioni e serie di funzioni. 1 Convergenza puntuale

Pietro Baldi Successioni e serie di funzioni. 1 Convergenza puntuale Pietro Bldi Successioni e serie di funzioni Testi di riferimento: W. Rudin, Principi di Anlisi Mtemtic, McGrw-Hill Libri Itli; N. Fusco, P. Mrcellini, C. Sbordone, Anlisi Mtemtic Due, Liguori Editore;

Dettagli

FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI

FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI Considerimo un funzione f : I R, dove I è un intervllo di R. Si c un punto interno I in cui f è discontinu. Diremo che c è un punto di discontinuità di prim

Dettagli

ANALISI REALE E COMPLESSA a.a. 2007-2008

ANALISI REALE E COMPLESSA a.a. 2007-2008 ANALISI REALE E COMPLESSA.. 2007-2008 1 Successioni e serie di funzioni 1.1 Introduzione In questo cpitolo studimo l convergenz di successioni del tipo n f n, dove le f n sono tutte funzioni vlori reli

Dettagli

1 Integrali generalizzati su intervalli illimitati

1 Integrali generalizzati su intervalli illimitati Lezioni per il corso di Anlisi 2, AA 07-08. Dott.ss Sndr Lucente Argomento: Integrli generlizzti 1 1 Integrli generlizzti su intervlli ilitti Definizione 1.1. Si f : [,[ R un funzione continu. Se esiste

Dettagli

Serie di Potenze. Introduciamo il concetto di convergenza puntuale ed uniforme per successioni. { 0 se 1 < x < 1

Serie di Potenze. Introduciamo il concetto di convergenza puntuale ed uniforme per successioni. { 0 se 1 < x < 1 Serie di Potenze Introducimo il concetto di convergenz puntule ed uniforme per successioni di funzioni. Definizione 1 Si I un intervllo di R. Si dt l vrire di n N l funzione f n : I R. Dicimo che l successione

Dettagli

7. Derivate Definizione 1

7. Derivate Definizione 1 7. Derivte Il concetto di derivt è importntissimo e molto nturle. Per vere un esempio concreto, penste l moto di un mcchin: se f(t) è l funzione che esprime qunt strd vete percorso fino d un certo istnte

Dettagli

Il lemma di ricoprimento di Vitali

Il lemma di ricoprimento di Vitali Il lemm di ricoprimento di Vitli Si I = {I} un fmigli di intervlli ciusi contenuti in R. Diremo ce l fmigli I ricopre l insieme E nel senso di Vitli (oppure ce I è un ricoprimento di Vitli di E) se per

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

Successioni di Funzioni e Serie di Potenze

Successioni di Funzioni e Serie di Potenze Successioni di Funzioni e Serie di Potenze 1 Successioni di Funzioni e Serie di Potenze 1 Successioni di Funzioni Nel corso di nlisi di bse si sono studite le successioni numeriche. Qui considerimo un

Dettagli

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi:

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: ppunti di nlisi mtemtic: Integrle efinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle efinito lcolo delle ree di fig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

" Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6

 Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6 CAPITOLO 6 Clcolo integrle 6. Integrle indefinito L nozione fondmentle del clcolo integrle è quell di funzione primitiv di un funzione f (). Tle nozione è in qulche modo speculre ll nozione di funzione

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

1 Integrali doppi di funzioni a scala su rettangoli

1 Integrali doppi di funzioni a scala su rettangoli INEGRALI DOPPI L prim motivzione per lo studio degli integrli di funzioni di due vribili è il lolo di volumi, in nlogi on l pplizione degli integrli di funzioni di un vribile l lolo di ree. L proedur di

Dettagli

INTEGRALI IMPROPRI. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Integrali impropri cap10.pdf 1

INTEGRALI IMPROPRI. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Integrali impropri cap10.pdf 1 INTEGRALI IMPROPRI c Pol Gervsio - Anlisi Mtemtic - A.A. 6/7 Integrli impropri cp.pdf Abbimo visto che l integrle di Riemnn è definito per funzioni limitte e su intervlli limitti. Si or I R un intervllo

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata Cpitolo 5 Integrli 5.1 Integrli di funzioni grdint Un concetto molto semplice m di fondmentle importnz per l trttzione dell integrle di Riemnn è quello di divisione di un intervllo [, b]. In sostnz si

Dettagli

DISPENSE DI ANALISI MATEMATICA. Indice

DISPENSE DI ANALISI MATEMATICA. Indice DISPENSE DI ANALISI MATEMATICA ANNAMARIA MONTANARI Indice. Integrle di Riemnn.. Proprietà elementri dell integrle di Riemnn 5.2. Teorem fondmentle del clcolo integrle. Primitive 6.3. Integrle generlizzto

Dettagli

1 Il problema del calcolo dell area di una regione piana limitata

1 Il problema del calcolo dell area di una regione piana limitata Anlisi Mtemtic 2 1 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 1 INTEGRALI DI FUNZIONI DI UNA VARIABILE REALE 1 Il problem del clcolo dell re di un regione pin limitt Se si consider un

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

Anno 5. Applicazione del calcolo degli integrali definiti

Anno 5. Applicazione del calcolo degli integrali definiti Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei

Dettagli

Campi. Una funzione F di n variabili reali e a valori in R n è detta campo di vettori. Nel seguito considereremo F : A R n con A aperto di R n.

Campi. Una funzione F di n variabili reali e a valori in R n è detta campo di vettori. Nel seguito considereremo F : A R n con A aperto di R n. Cmpi Ultimo ggiornmento: 18 febbrio 217 Un funzione F di n vribili reli e vlori in R n è dett cmpo di vettori. Nel seguito considereremo F : A R n con A perto di R n. 1. Integrli curvilinei di second specie

Dettagli

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A.

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A. 88 Roberto Turso - Anlisi 2 Osservimo che per trovre le costnti A e B possimo nche rgionre così: se moltiplichimo l equzione + ( + 2)( + 3) = A + 2 + B + 3 per + 2, dopo ver semplificto, ottenimo + + 3

Dettagli

Integrazione numerica. I(f) := Non sempre si riesce a trovare la forma esplicita della primitiva.

Integrazione numerica. I(f) := Non sempre si riesce a trovare la forma esplicita della primitiva. Approssimzione numeric di: Motivzioni. Integrzione numeric I(f) = f(x)dx. Non sempre si riesce trovre l form esplicit dell primitiv. Vlutzione costos dell primitiv. L funzione d integrre può essere dt

Dettagli

1 Definizione di integrale di Riemann 1. 2 Condizioni di esistenza dell integrale di Riemann 3. 3 Proprietà dell integrale di Riemann 4

1 Definizione di integrale di Riemann 1. 2 Condizioni di esistenza dell integrale di Riemann 3. 3 Proprietà dell integrale di Riemann 4 DEFINIZIONE DI INTEGRALE DI RIEMANN Integrle di Riemnn Indice Definizione di integrle di Riemnn Condizioni di esistenz dell integrle di Riemnn 3 3 Proprietà dell integrle di Riemnn 4 4 Clcolo dell integrle

Dettagli

Integrale Definito. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: Integrale Definito

Integrale Definito. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: Integrale Definito Appunti di nlisi mtemtic: Integrle Deinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle Deinito Clcolo delle ree di ig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

Integrale Definito. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: Integrale Definito

Integrale Definito. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: Integrale Definito Appunti di nlisi mtemtic: Integrle Deinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle Deinito Clcolo delle ree di ig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

Calcolo integrale per funzioni di una variabile

Calcolo integrale per funzioni di una variabile Cpitolo 10 Clcolo integrle per funzioni di un vribile 10.1 Funzioni primitive Abbimo studito il problem di dedurre d un dt funzione l su derivt. Voglimo or occuprci del problem inverso: dt un funzione

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

TEST DI MATEMATICA. Funzioni in una, Funzioni in due variabili Integrali Equazioni differenziali. 1) Il valore del limite seguente. e e. e 1.

TEST DI MATEMATICA. Funzioni in una, Funzioni in due variabili Integrali Equazioni differenziali. 1) Il valore del limite seguente. e e. e 1. TEST DI MATEMATICA Funzioni in un, Funzioni in due vriili Integrli Equzioni differenzili ) Il vlore del limite seguente e e e lim è ) Il vlore del limite seguente 5 lim 5 è : ) L derivt prim dell funzione

Dettagli

Corso di Analisi Matematica. Calcolo integrale

Corso di Analisi Matematica. Calcolo integrale .. 2011/12 Lure triennle in Informtic Corso di Anlisi Mtemtic Clcolo integrle Avvertenz Questi sono ppunti informli delle lezioni, che vengono resi disponibili per comodità degli studenti. Prte del mterile

Dettagli

Sessione Suppletiv PNI 006 Sessione Suppletiv PNI 006 Sessione Suppletiv PNI 006 PROBLEMA ) L prbol di equzione V ' (0,0). y h sse di simmetri prllelo ll sse delle ordinte e vertice in L prbol di equzione

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

PNI SESSIONE SUPPLETIVA QUESITO 1

PNI SESSIONE SUPPLETIVA QUESITO 1 www.mtefili.it PNI 2005 - SESSIONE SUPPLETIVA QUESITO È dto un trpezio rettngolo, in cui le bisettrici degli ngoli dicenti l lto obliquo si intersecno in un punto del lto perpendicolre lle bsi. Dimostrre

Dettagli

Erasmo Modica. : K K K

Erasmo Modica.  : K K K L insieme dei numeri reli L INSIEME DEI NUMERI REALI Ersmo Modic helthinsurnce@tin.it www.glois.it Per introdurre l insieme dei numeri reli si hnno disposizione diversi modi. Generlmente l iennio si preferisce

Dettagli

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo Lure triennle in Scienze dell Ntur.. 2009/200 Regole di Clcolo In queste note esminimo lcune conseguenze degli ssiomi reltivi lle operzioni e ll ordinmento nell insieme R dei numeri reli. L obiettivo principle

Dettagli

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento Questionrio Risolvi quttro degli otto quesiti: L Città dello sport è un struttur sportiv progettt dll rchitetto Sntigo Cltrv e mi complett, situt sud di Rom Rispetto l sistem di riferimento indicto in

Dettagli

In questo capitolo svilupperemo la teoria dell integrazione secondo Riemann per funzioni di una variabile reale.

In questo capitolo svilupperemo la teoria dell integrazione secondo Riemann per funzioni di una variabile reale. Cpitolo 1 Integrle di Riemnn In questo cpitolo svilupperemo l teori dell integrzione secondo Riemnn per funzioni di un vribile rele. 1.1 Motivzioni Considerimo i seguenti problemi. 1. Clcolo di un re.

Dettagli

Area del Trapezoide. f(x) A f(a) f(b) f(x)

Area del Trapezoide. f(x) A f(a) f(b) f(x) Are del Trpezoide y o A f() trpezoide h B f() f() L're del trpezoide S puo' essere pprossimt dll're del trpezio AB. Per vere un migliore pprossimzione possimo suddividere il trpezio in trpezi piu' piccoli.

Dettagli

INTEGRAZIONE NUMERICA

INTEGRAZIONE NUMERICA INTEGRAZIONE NUMERICA Frncesc Pelosi Diprtimento di Mtemtic, Università di Rom Tor Vergt CALCOLO NUMERICO.. 008 009 http://www.mt.unirom.it/ pelosi/ INTEGRAZIONE NUMERICA p.1/0 INTEGRAZIONE NUMERICA Dt

Dettagli

Funzioni a variazione limitata

Funzioni a variazione limitata Cpitolo 1 Funzioni vrizione limitt 1.1 Il problem delle primitive di funzioni L 1 Il problem dell ricerc delle primitive di un ssegnt funzione f : I R con I = [, b] intervllo limitto, cioè le soluzioni

Dettagli

II-8 Integrale di Riemann

II-8 Integrale di Riemann II-8 INTEGRALE DI RIEMANN DEFINIZIONE DI INTEGRALE DI RIEMANN II-8 Integrle di Riemnn Indice Definizione di integrle di Riemnn Condizioni di esistenz dell integrle di Riemnn 3 3 Proprietà dell integrle

Dettagli

Successioni di funzioni

Successioni di funzioni Successioni di funzioni 3.1 Introduzione Considerimo l successione (x n ) n0,icuiterminisono 1, x,x 2,x 3,..., x n,... Si trtt dell progressione geometric di termine inizile 1 e rgione x, che bbimo già

Dettagli

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y Differenzile Considerimo l vrizione finit, dell vriile indipendente cui corrisponde un vrizione finit dell funzione f, f y Δf 1 Δ 2 L vrizione dell vriile dipendente puo' essere molto piccol, infinitesim

Dettagli

Matematica I, Funzione integrale

Matematica I, Funzione integrale Mtemtic I, 24.0.2. Funzione integrle Definizione Sino f : A R, funzione continu su A intervllo, e c in A. L funzione che ssoci d ogni in A l integrle di f sull intervllo [c, ], viene dett funzione integrle

Dettagli

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali SPAZI VETTORIALI 1. Spzi e sottospzi vettorili Definizione: Dto un insieme V non vuoto e un corpo K di sostegno si dice che V è un K-spzio vettorile o uno spzio vettorile su K se sono definite un operzione

Dettagli

8. Prodotto scalare, Spazi Euclidei.

8. Prodotto scalare, Spazi Euclidei. 8. Prodotto sclre, Spzi Euclidei. Ricordimo l definizione di prodotto sclre di due vettori del pino VO 2 (vle in modo del tutto nlogo nche in VO 3 ). Definizione: Sino v, w VO 2 e si θ l ngolo convesso

Dettagli

Moto in due dimensioni

Moto in due dimensioni INGEGNERIA GESTIONALE corso di Fisic Generle Prof. E. Puddu LEZIONE DEL 24 SETTEMBRE 2008 Moto in due dimensioni Spostmento e velocità Posizione e spostmento L posizione di un punto mterile nel pino è

Dettagli

Minimi quadrati e problemi di distanza minima

Minimi quadrati e problemi di distanza minima Minimi qudrti e problemi di distnz minim Considerimo un mtrice rettngolre B, con elementi b ij, i 1,..., n, j 1,..., m, con m < n (quindi, più righe che colonne. Voglimo risolvere il sistem linere (1 Bx

Dettagli

POTENZA CON ESPONENTE REALE

POTENZA CON ESPONENTE REALE PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic mtemtic@blogscuol.it www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,

Dettagli

1 Equazioni e disequazioni di secondo grado

1 Equazioni e disequazioni di secondo grado UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Fcoltà di Frmci e Medicin - Corso di Lure in CTF 1 Equzioni e disequzioni di secondo grdo Sino 0, b e c tre numeri reli noti, risolvere un equzione di secondo

Dettagli

Integrali curvilinei (integrali di densità) Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Integrali curvilinei (integrali di densità) Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 Politecnico di Milno orso di Anlisi e Geometri 1 Federico Lstri federico.lstri@polimi.it Integrli curvilinei di prim specie (integrli di densità) 15 Dicembre 215 Indice 1 Integrli di line di prim specie

Dettagli

1 Integrali impropri di funzioni continue

1 Integrali impropri di funzioni continue ntegrli impropri di funzioni continue. ntegrli impropri su intervlli semiperti Definizione Dt un funzione continu f : [, b) R, con b +, si dice che f è integrbile se esiste finito il t b f(x) dx ed in

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA ESPONENZIALI E LOGARITMI Dr. Ersmo Modic ersmo@glois.it www.glois.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero

Dettagli

FUNZIONI IPERBOLICHE

FUNZIONI IPERBOLICHE FUNZIONI IPERBOLICHE Umberto Mrconi Diprtimento di Mtemtic Pur e Applict Pdov Premess Si [, [, fissto. Voglimo cpire cos signific: w dw perché l funzione integrnd è illimitt. Se considerimo, per b [, [,

Dettagli

CAPITOLO 13 INTEGRAZIONE SECONDO RIEMANN PER FUNZIONI REALI (COMPLESSE) DI UNA VARIABILE REALE. 1.L integrale di Riemann.

CAPITOLO 13 INTEGRAZIONE SECONDO RIEMANN PER FUNZIONI REALI (COMPLESSE) DI UNA VARIABILE REALE. 1.L integrale di Riemann. Integrle di Riemnn CAPITOLO 13 INTEGRAZIONE SECONDO RIEMANN PER FUNZIONI REALI (COMPLESSE) DI UNA VARIABILE REALE 1.L integrle di Riemnn. In questo cpitolo ci occuperemo dell teori dell integrzione secondo

Dettagli

1 Espressioni polinomiali

1 Espressioni polinomiali 1 Espressioni polinomili Un monomio è un espressione letterle in un vribile x che contiene un potenz inter (non negtiv, cioè mggiori o uguli zero) di x moltiplict per un numero rele: x n AD ESEMPIO: sono

Dettagli

ANALISI VETTORIALE. Giovanni Maria Troianiello. 31 ottobre 2010. 1 Approfondimenti sull integrale di Riemann 3. 2 Integrali impropri e serie 5

ANALISI VETTORIALE. Giovanni Maria Troianiello. 31 ottobre 2010. 1 Approfondimenti sull integrale di Riemann 3. 2 Integrali impropri e serie 5 ANALISI VETTORIALE Giovnni Mri Troiniello 31 ottobre 2010 Indice 1 Approfondimenti sull integrle di Riemnn 3 2 Integrli impropri e serie 5 3 Criterio del confronto, convergenz ssolut, convergenz condiziont

Dettagli

Integrale definito. Introduzione: il problema delle aree

Integrale definito. Introduzione: il problema delle aree Integrle definito Introduzione: il prolem delle ree Il prolem delle ree è uno dei tre grndi prolemi che ci sono stti trmndti dgli ntichi, che lo definivno come il prolem dell qudrtur del cerchio: trovre,

Dettagli

La scomposizione in fattori dei polinomi

La scomposizione in fattori dei polinomi Progetto Mtemtic in Rete L scomposizione in fttori dei polinomi Scomporre in fttori un polinomio signific scriverlo come prodotto di polinomi di grdo inferiore. Esempio: ( )( ) Osservimo che l uguglinz,

Dettagli

Formulario di Analisi Matematica 1

Formulario di Analisi Matematica 1 Formulrio di Anlisi Mtemtic Indice degli rgomenti Punti interni, isolti, di ccumulzione e di frontier Alcune costnti Proprietà delle potenze Proprietà degli esponenzili Proprietà dei logritmi Proprietà

Dettagli

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi SUGLI INSIEMI 1.Insiemi e operzioni su di essi Il concetto di insieme è primitivo ed è sinonimo di clsse, totlità. Si A un insieme di elementi qulunque. Per indicre che è un elemento di A scriveremo A.

Dettagli

1. Elementi di analisi funzionale Esercizi

1. Elementi di analisi funzionale Esercizi . Elementi di nlisi funzionle Esercizi http://www.cirm.unibo.it/~brozzi/mi/pdf/mi-cp.-ese.pdf.. Spzi vettorili.. Spzi vettorili normti.-. Dimostrre l diseguglinz tringolre in C n reltivmente ll norm (

Dettagli

Lezione 16 Derivate ed Integrali

Lezione 16 Derivate ed Integrali Lezione 16 Derivte ed Integrli Frnk Sullivn 1 Dicembre 11 1 Prim Or Compiti di letture ed esercizi per 3 Dicembre Durnte l lezione di oggi pplicheremo le regole per differenzire funzioni l clcolo di integrli.

Dettagli

Appunti di Analisi Matematica 1

Appunti di Analisi Matematica 1 Appunti di Anlisi Mtemtic 1 MASTER IN ECONOMIA DIGITALE & e-business Centro per lo studio dei sistemi complessi Università di Sien Mrzo 2005 Prof. Polo Nistri Un funzione (o ppliczione) tr due insiemi

Dettagli

Scheda Sei ESPONENZIALI E LOGARITMI. 0,+. Inoltre valgono le

Scheda Sei ESPONENZIALI E LOGARITMI. 0,+. Inoltre valgono le Sched Sei ESPONENZIALI E LOGARITMI L funzione esponenzile Assegnto un numero rele >0, si dice funzione esponenzile in bse l funzione Grfici dell funzione esponenzile Se = l funzione esponenzile è costnte:

Dettagli

INTERVALLI NELL INSIEME R

INTERVALLI NELL INSIEME R INTEVALLI NELL INSIEME Lo studio dell topologi (1) (dl greco "nlysis situs" ossi "studio del luogo") dell'insieme è di fondmentle importnz per gli rgomenti e i prolemi di nlisi infinitesimle. Il "luogo"

Dettagli

Curve e forme differenziali

Curve e forme differenziali Curve e forme differenzili Bricentro di un curv Si dt un curv :,b] R 3 di clsse C 1 trtti, con (t) = ( 1 (t), 2 (t), 3 (t)). Assumimo che si ssegnt un funzione continu e positiv µ : (,b]) R, che chimimo

Dettagli

Il calcolo integrale

Il calcolo integrale CAPITOLO 4 Il clcolo integrle Il problem che ffrontimo in questo cpitolo è il clcolo di ree di lcune regioni del pino. Inizimo il cpitolo spiegndo quli regioni pine simo interessti. Questi rgomenti sono

Dettagli

Esercizio 1. Dimostrare che se (X, d) è uno spazio metrico anche (X, d ) lo è, dove d =

Esercizio 1. Dimostrare che se (X, d) è uno spazio metrico anche (X, d ) lo è, dove d = I seguenti esercizi sono stti proposti, e qusi tutti risolti, ttrverso l miling list del corso di Geometri IV durnte l nno ccdemico 2004/2005. Esercizio 1. Dimostrre che se (X, d) è uno spzio metrico nche

Dettagli

La funzione (generalizzata) delta di Dirac

La funzione (generalizzata) delta di Dirac L funzione (generlizzt) delt di Dirc Corso di Fisic Mtemtic 2,.. 2013-2014 Diprtimento di Mtemtic, Università di Milno 25/11/2013 1 L funzione delt di Dirc Nel seguito srà utile disporre di uno strumento

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

Prima parte (Argomenti di Analisi Matematica 1)

Prima parte (Argomenti di Analisi Matematica 1) Registro delle lezioni del corso di Anlisi Mtemtic 2 Università di Firenze - Fcoltà di Ingegneri Corso di Lure in Ingegneri Meccnic M Z.. 20/202 - Prof. M.Ptrizi Per Prim prte (Argomenti di Anlisi Mtemtic

Dettagli

Analisi matematica. Materiale didattico

Analisi matematica. Materiale didattico Anlisi mtemtic. Mterile didttico Lure triennle F.A.I. Rimini 7 ottobre 23 Indice Linguggio, funzioni elementri 2. Il linguggio degli insiemi.................................... 2.2 Numeri reli, vlore ssoluto,

Dettagli

Integrali. all integrale definito all integrale indefinito. Integrali: riepilogo

Integrali. all integrale definito all integrale indefinito. Integrali: riepilogo Integrli ll integrle deinito ll integrle indeinito Indice dell lezione Integrle Deinito Rettngoloide Integrle deinito come re del rettngoloide Esempi e propriet Primitiv Teorem ondmentle del clcolo integrle

Dettagli

Integrale di Riemann su R n

Integrale di Riemann su R n CAPITOLO 5 Integrle di iemnn su n 1. Funzioni integrbili secondo iemnn In questo cpitolo dremo l definizione di funzione integrbile secondo iemnn su n. Come già ftto nel cso delle funzioni integrbili su,

Dettagli

Esercizi sulle serie di Fourier

Esercizi sulle serie di Fourier Esercizi sulle serie di Fourier Corso di Fisic Mtemtic,.. 3- Diprtimento di Mtemtic, Università di Milno Novembre 3 Sviluppo in serie di Fourier (esponenzile) In questi esercizi, si richiede di sviluppre

Dettagli

Calcolo integrale. Capitolo Primitive ed integrale inde nito

Calcolo integrale. Capitolo Primitive ed integrale inde nito Cpitolo 9 Clcolo integrle 9.1 Primitive ed integrle inde nito De nizione 9.1 Assegnt un funzione f : A! R, si de nisce primitiv di f un qulunque funzione F : A! R derivbile, tle che F 0 (x) = f(x), per

Dettagli

Lezione 1 Insiemi e numeri

Lezione 1 Insiemi e numeri Lezione Insiemi e numeri. Nozione di insieme, sottoinsieme, pprtenenz Con l prol insieme intendimo un collezione di oggetti detti suoi elementi. Ogni insieme è denotto con lettere miuscole e i suoi elementi

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 00 Sessione strordinri Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PRBLEMA Con riferimento un sistem monometrico

Dettagli

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile Corso di Anlisi Mtemtic Clcolo integrle per funzioni di un vribile Lure in Informtic e Comuniczione Digitle A.A. 2013/2014 Università di Bri ICD (Bri) Anlisi Mtemtic 1 / 40 1 L integrle come limite di

Dettagli

Note di Derivate ed Integrali

Note di Derivate ed Integrali 1 Note di Derivte ed Integrli Versione 1.0 Lmberto Lmberti & Corrdo Msci prte II Integrle, derivte, teoremi sulle derivte, nlisi locle, nlisi globle 16 Ottobre 2002 2 Indice 1 L integrle 5 1.1 Aree ed

Dettagli

ESERCIZI SUGLI INTEGRALI IMPROPRI

ESERCIZI SUGLI INTEGRALI IMPROPRI ESERCIZI SUGLI INTEGRALI IMPROPRI cur di Michele Scgli RICHIAMI TEORICI INTEGRALI IMPROPRI NOTEVOLI L integrle CONVERGE dx, < DIVERGE per

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

Analisi Matematica: Calcolo Integrale. Francesco Russo

Analisi Matematica: Calcolo Integrale. Francesco Russo Anlisi Mtemtic: Clcolo Integrle Frncesco Russo 2 settembre 200 2 Indice Integrli indefiniti 5. Primitive ed integrli indefiniti................. 5.2 Formule di integrzione..................... 6 2 Integrle

Dettagli

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1 APITOLO 3 LE SIMMETRIE 3. Richimi di teori Definizione. Si dto un punto del pino; si chim simmetri centrle di centro (che si indic con il simbolo s ) l corrispondenz dl pino in sé che d ogni punto P del

Dettagli

1 Funzioni continue: definizioni e prime proprietà. 2 Continuità delle funzioni elementari 2

1 Funzioni continue: definizioni e prime proprietà. 2 Continuità delle funzioni elementari 2 FUNZIONI CONTINUE FUNZIONI CONTINUE: DEFINIZIONI E PRIME PROPRIETÀ Funzioni continue Indice Funzioni continue: definizioni e prime proprietà 2 Continuità delle funzioni elementri 2 3 Funzioni continue

Dettagli

Ellisse riferita al centro degli assi

Ellisse riferita al centro degli assi Appunti delle lezioni tenute in clsse: ellisse e iperole Ellisse riferit l centro degli ssi Dti due punti F ed F detti fuochi, l ellisse è il luogo geometrico dei punti P del pino per cui è costnte l somm

Dettagli

Seconda prova maturita 2016 soluzione secondo problema di matematica scientifico

Seconda prova maturita 2016 soluzione secondo problema di matematica scientifico Second prov mturit 06 soluzione secondo problem di mtemtic scientifico Skuol.net June, 06 Primo Problem Le tre funzioni proposte sono f () ( ) k f () 6 + 9k + f () cos( π k ). Punto Affinche l funzione

Dettagli

dr Valerio Curcio Le affinità omologiche Le affinità omologiche

dr Valerio Curcio Le affinità omologiche Le affinità omologiche 1 Le ffinità omologiche 2 Tringoli omologici: Due tringoli si dicono omologici se le rette congiungenti i punti omologhi dei due tringoli si incontrno in un medesimo punto. Principio dei tringoli omologici

Dettagli

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes I Teoremi di Green, dell divergenz o di Guss e di Stokes In R Si un sottoinsieme limitto di R semplice rispetto d entrmbi gli ssi crtesini con costituit dll unione di un numero finito di sostegni di curve

Dettagli

II-5 Funzioni continue

II-5 Funzioni continue II-5 FUNZIONI CONTINUE FUNZIONI CONTINUE: DEFINIZIONI E PRIME PROPRIETÀ II-5 Funzioni continue Indice Funzioni continue: definizioni e prime proprietà 2 Continuità delle funzioni elementri 3 3 Funzioni

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione ordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione ordinaria ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO Sessione ordinri Il cndidto risolv uno dei due problemi e 5 dei quesiti in cui si rticol il questionrio. PROBLEMA In un pino, riferito d un sistem

Dettagli

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in Cpitolo 5 Le omotetie 5. Richimi di teori Definizione Sino fissti un punto C del pino ed un numero rele. Si chim omoteti di centro C e rpporto ( che si indic con il simolo O, ) l corrispondenz dl pino

Dettagli