Macchine elettriche in corrente continua

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Macchine elettriche in corrente continua"

Transcript

1 cchine elettriche in corrente continu Generlità Può essere definit mcchin un dispositivo che convert energi d un form un ltr. Le mcchine elettriche in prticolre convertono energi elettric in energi meccnic e vicevers. In prticolre vengono definiti OTOI ELETTII le mcchine che convertono energi elettric in energi meccnic: I dispositivi che invece convertono energi meccnic in energi elettric vengono detti GENEATOI: Energi Elettric OTOI Energi eccnic A second che le mcchine elettriche bbino prti mobili o meno si h un suddivisione in: cchine elettriche rotnti cchine elettriche sttiche Energi eccnic GENEATOI Energi Elettric Delle ultime fnno prte i TASFOATOI, che hnno l funzione di modificre l mpiezz di tensione e corrente. Un ulteriore clssificzione delle mcchine elettriche si h in bse ll form dell energi elettric utilizzt: si vrnno quindi cchine in corrente continu cchine elettriche in corrente lternt Le mcchine elettriche hnno l prticolrità di essere reversibili, cioè un stess mcchin può funzionre si d motore che d genertore. I genertori in corrente continu vengono detti DINAO, quelli in corrente lternt ALTENATOI 1

2 Il otore In orrente ontinu ostituzione È un mcchin elettric rotnte in corrente continu che converte energi elettric in energi meccnic. È costituit principlmente d uno STATOE, che è l prte fiss dell mcchin e h il compito di produrre il FLUSSO AGNETIO necessrio l suo funzionmento. È relizzto in mterile ferromgnetico (ferro, ghis, cciio), ed è dotto di opportune ESPANSIONI POLAI ove viene prodotto il cmpo mgnetico. Lo sttore h l form di un cilindro cvo ed è fornito di un bsmento o di piedi che lo fissno terr. B N S ESPANSIONI POLAI Le mcchine elettriche possono possedere nche più coppie polri. cchine di piccol potenz producono il flusso mgnetico medinte mgneti permnenti posizionti in corrispondenz delle espnsioni polri. Per mcchine di potenz superiore invece il flusso mgnetico viene generto medinte un corrente di eccitzione che percorre ppositi vvolgimenti detti ppunto AOLGIENTI DI EITAZIONE, posizionti intorno lle espnsioni polri. 2

3 Il OTOE è costituito d un cilindro di mterile ferromgnetico posizionto ll interno dello sttore, ed è libero di ruotre intorno l proprio sse. Sul rotore sono llocti, in pposite cve gli vvolgimenti di rmtur, detti nche vvolgimento di indotto, i cpi dei quli, con rotore in movimento, si gener un forz elettromotrice. L prte in ri tr sttore e rotore viene definit TAFEO, in quest zon il cmpo mgnetico h l mggiore intensità. ontto sullo stesso lbero del rotore si h il OLLETTOE. Questo h lo scopo di fornire gli vvolgimenti l tensione di limentzione e fre si che l coppi genert dll corrente che il ttrvers si costnte o quntomeno unidirezionle. Il collettore è costituito d lmelle in rme, disposte formre un cilindro, in collegmento elettrico con i conduttori che costituiscono gli vvolgimenti di rmtur. Le lmelle sono isolte tr loro medinte un dielettrico, solitmente mic. Le spzzole striscino sul collettore sul collettore e lo collegno elettricmente i terminli esterni dell mcchin. Sono relizzte in mterile conduttore più tenero del collettore, solitmente grfite, in modo che col tempo sino queste d usurrsi in qunto l loro sostituzione risult più semplice ed economic che un intervento sul collettore. 3

4 Dt l presenz di prti in conttto diretto il sistem spzzole-collettore è l prte più delict dell mchin. Nell figur seguente è rppresentto lo schem completo di un mcchin in corrente continu. 4

5 ircuito mgnetico di sttore Il numero di coppie polri viene definito con l letter p. Quindi un mcchin con un coppi polre vrà due poli, con due coppie polri quttro poli ecc. L sse neutro individu il pino che tgli longitudinlmente l mcchin e in cui si h induzione mgnetic null. iene dett psso polre τ l distnz ngolre tr i poli dell mcchin τ = p L ndmento dell induzione l trferro per le due mcchine è rppresentto nelle figure seguenti, dove si ssume di percorrerlo in senso orrio prtire dl punto O. Si consider positiv l induzione entrnte nel rotore, negtiv quell uscente. Si può osservre come, in corrispondenz delle espnsioni polri, l induzione mgnetic B si poss considerre costnte 5

6 Sistem spzzole collettore Per comprendere il funzionmento del motore è bene prtire dll forz di Lorentz. Un conduttore immerso in un cmpo mgnetico B, e percorso d un corrente I é sottoposto d un forz F = B l I dove B è l induzione mgnetic l è l lunghezz del conduttore I è l corrente Il verso dell forz di determin ttrverso l regol dell mno sinistr. se l posto del conduttore rettilineo si consider un spir, sui suoi lti opposti girnno due forze uguli ed opposte che drnno luogo d un coppi. 6

7 POBLEA Supponendo l corrente entrnte dl lto destro dell spir, e quindi uscente dl quello sinistro, sull spir in esempio girà un coppi di forze tle d frl ruotre in senso orrio. qundo l spir si trov 90, lle due forze F non corrisponde più lcun coppi in qunto giscono sull stess rett ( non c'è brccio). Al mssimo l spir continu ruotre per inerzi Se l spir super i 90 ddirittur si h un coppi che tende frl ruotre in direzione oppost. ( l forz gente sul singolo conduttore (F) è stt scompost in due direzioni: un tende "diltre" l spir (Fd) e l'ltr frl ruotre (Fr) 7

8 Soluzione: Anello di Pcinotti Anziché limentre le l spir in mnier sttic, cioè con l corrente che entr sempre con lo stesso verso su un lto dell spir. Pcinotti elbor un limentzione medinte un nello diviso in due metà, i cpi delle quli rriv l tensione di limentzione, e dei conttti striscinti collegti ll spir. i colori blu e rosso rppresentno uno stesso lto dell spir Anello onttto Striscinte ome si può notre nell spir disegnt destr dopo mezzo giro, sui suoi lti giscono forze tli d mntenere costnte l direzione di rotzione. In sintesi si può notre come dopo un rotzione di 180 l coppi gente sull spir si concorde con quell inizile quest bse si h l evoluzione del motore in corrente continu: Anziché un spir si usno degli vvolgimenti per ottenere coppie più elevte Gli vvolgimenti sono solidli con il rotore Si usno diversi vvolgimenti in modo d ottenere su ciscuno l coppi mssim e ottenere un coppi pressochè costnte sul rotore L limentzione viene fornit i conttti striscinti e non i seminelli Gli nelli vengono suddivisi in tnti settori (collettore) ognuno dei quli collegto d un cpo di un vvolgimento ollettore 8

9 oppi nel motore in Le due forze nel disegno precedente dnno luogo un coppi = F 2 r = B l I 2 r dove r è il rggio del rotore In definitiv si rriv ll espressione = Φ I dove : è un costnte che dipende di prmetri costruttivi dell mcchin (lunghezz, dimetro, numero di poli, tipo di vvolgimenti ed ltri) Φ è il flusso di eccitzione (costnte nei motori mgneti permnenti) I è l corrente di rmtur, ossi quell che percorre gli vvolgimenti di rotore Forz Elettromotrice indott Qundo il rotore è in movimento in conduttori sono sottoposti d un flusso mgnetico che vri nel tempo. In bse ll legge di Frdy-Neumnn-Lenz si gener i loro cpi un forz elettromotrice. on un serie di pssggi si può giungere ll seguente espressione che permette di determinre l tensione i cpi degli vvolgimenti di rotore : E = e Φ ω dove: e è nlog qunto detto precedentemente per, hnno ddirittur lo stesso vlore se si trscurno le perdite nel ferro Φ è il flusso di eccitzione (costnte nei motori mgneti permnenti) ω è l velocità ngolre del rotore 9

10 ircuito Equivlente del otore Nel circuito di destr è rppresentto il circuito equivlente del rotore di un motore in corrente continu. Il simbolo con l indic ppunto un motore in corrente continu, i due rettngoli simboleggino le spzzole. ome detto in precedenz i cpi dell vvolgimento di rotore, detto nche di rmtur, si gener un f.e.m. indott proporzionle ll velocità di rotzione del rotore stesso. L rppresent l resistenz ssocit gli vvolgimenti di rmtur mentre l L è l induttnz ssocit llo stesso vvolgimento (in generle h influenz solo qundo ci sono vrizioni di corrente nel circuito, d esempio ll vvio) Il circuito di sinistr rppresent il circuito di eccitzione, cioè quello che h il compito di produrre il flusso mgnetico necessrio l funzionmento del rotore. In questo cso si consider un motore con circuito di eccitzione indipendente. e ed Le rppresentno rispettivmente l resistenz e l induttnz degli vvolgimenti di sttore. Qundo il rotore viene limentto con un tensione viene percorso d un corrente I. Applicndo il 2 principio di irchhoff si ottiene: L espressione dell coppi (già vist): 10

11 mentre l equzione di equilibrio meccnico è l seguente : Accelerzione ngolre Dlle equzioni precedenti si può ricvre un modello mtemtico del motore utile per simulrne il comportmento. Utilizzndo solo le prime tre si può invece determinre l relzione tr l coppi prodott dl motore e l su velocità di rotzione. 11

12 12 rtteristic coppi velocità Ipotizzndo di essere regime, cioè con tutte le grndezze elettriche e meccniche costnti, le derivte delle equzioni 2) e 4) sono nulle Per determinre l relzione tr coppi e velocità si sostituisce l equzione 1) nell 2) e si ottiene: 1 ) I = ω ω = I Sostituendo l espressione dell corrente di rmtur così ricvt nell 3) si ottiene: = ω ω = 2 L relzione tr oppi e elocità è l equzione di un rett (y=mx+q dove y=, x=ω, m= 2 / e q= / ) Le intersezioni con gli ssi si ottengono con ω = 0 = = 0 = ω ω

13 Il punto di funzionmento del motore dipende dll rett di crico dt dll coppi resistente r ω * ω Si può notre come le intersezioni dell crtteristic coppi-velocità dipendno entrmbe d, quindi l vrire di quest ultim l rett trsli prllelmente se stess ω Si cpisce quindi come, prità di coppi resistente, si poss fr vrire l velocità di rotzione semplicemente gendo sull tensione di rmtur. ( ome ipotizzto in precedenz il flusso di eccitzione è costnte) r ω 1 ω 2 ω 3 ω 4 ω 13

14 dti di trg Potenz nominle P n è l potenz meccnic sviluppt dl motore in condizioni nominli orrente nominle I n è l corrente ssorbit dl motore in condizioni nominli Tensione nominle n è l tensione che si deve fornire l circuito di rmtur. elocità nominle n n è l velocità di rotzione del motore in condizioni di funzionmento nominli. Può essere espress in giri l minuto (rpm in inglese) oppure come velocità ngolre in rd/sec. Tr le due sussistono le seguenti relzioni: 2π 60 ω = n n = ω 60 2π dove n indic i giri l minuto e ω l velocità ngolre. endimento nominle η n È il rendimento del motore in condizioni di funzionmento nominle. In funzione di questo è possibile clcolre l potenz elettric ssorbit nominle P n Pn = η n tipo di collegmento del circuito di eccitzione (indipendente, in serie, in derivzione) lsse di isolmento Grdo di protezione (contro l penetrzione di solidi e liquidi) Tipo di servizio 14

Problemi di collegamento delle strutture in acciaio

Problemi di collegamento delle strutture in acciaio 1 Problemi di collegmento delle strutture in cciio Unioni con bulloni soggette tglio Le unioni tglio vengono generlmente utilizzte negli elementi compressi, quli esempio le unioni colonn-colonn soggette

Dettagli

Robotica industriale. Motori a magneti permanenti. Prof. Paolo Rocco (paolo.rocco@polimi.it)

Robotica industriale. Motori a magneti permanenti. Prof. Paolo Rocco (paolo.rocco@polimi.it) Rooti industrile Motori mgneti permnenti Prof. Polo Roo (polo.roo@polimi.it) Generzione di oppi L legge di Lorentz i die he un ri elettri q in moto on veloità v in un mpo mgnetio di intensità B è soggett

Dettagli

UNITÀ DI GUIDA E SLITTE

UNITÀ DI GUIDA E SLITTE UNITÀ DI GUIDA E SLITTE TIPOLOGIE L gmm di unità di guid e di slitte proposte è molto mpi. Rggruppimo le guide in fmiglie: Unità di guid d ccoppire cilindri stndrd Si trtt di unità indipendenti, cui viene

Dettagli

BOZZA. 1 2a S/2 S/2. Lezione n. 27. Le strutture in acciaio Le unioni bullonate Le unioni saldate

BOZZA. 1 2a S/2 S/2. Lezione n. 27. Le strutture in acciaio Le unioni bullonate Le unioni saldate Lezione n. 7 Le strutture in cciio Le unioni bullonte Le unioni sldte Unioni Le unioni nelle strutture in cciio devono grntire un buon funzionmento dell struttur e l derenz dell stess llo schem sttico

Dettagli

Compitino di Fisica II del 14/6/2006

Compitino di Fisica II del 14/6/2006 Compitino di Fisic II del 14/6/2006 Ingegneri Elettronic Un solenoide ssimilbile d un solenoide infinito è percorso d un corrente I(t) = I 0 +kt con k > 0. Se il solenoide h un lunghezz H, rggio, numero

Dettagli

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x). OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stbilità dei sistemi di controllo in retrozione Criterio di Nyquist Il criterio di Nyquist Estensione G (s) con gudgno vribile Appliczione sistemi con retrozione positiv 2 Criterio di Nyquist Stbilità

Dettagli

Titolazione Acido Debole Base Forte. La reazione che avviene nella titolazione di un acido debole HA con una base forte NaOH è:

Titolazione Acido Debole Base Forte. La reazione che avviene nella titolazione di un acido debole HA con una base forte NaOH è: Titolzione Acido Debole Bse Forte L rezione che vviene nell titolzione di un cido debole HA con un bse forte NOH è: HA(q) NOH(q) N (q) A (q) HO Per quest rezione l costnte di equilibrio è: 1 = = >>1 w

Dettagli

8 Controllo di un antenna

8 Controllo di un antenna 8 Controllo di un ntenn L ntenn prbolic di un rdr mobile è montt in modo d consentire un elevzione compres tr e =2. Il momento d inerzi dell ntenn, Je, ed il coefficiente di ttrito viscoso, f e, che crtterizzno

Dettagli

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia COME SOPRAVVIVERE ALLA MATEMATICA di Giuli Cnzin e Dominique Cppelletti Come potrete notre inoltrndovi nel corso di Introduzione ll economi, l interpretzione dell teori economic non presuppone conoscenze

Dettagli

ATTUATORE A VITE TRAPEZIA DIMENSIONI DI INGOMBRO. Lunghezza con Attacco A1 Attacco A2 Lc [mm] 142 + Corsa 150 + Corsa T [mm] 129 + Corsa 136 + Corsa

ATTUATORE A VITE TRAPEZIA DIMENSIONI DI INGOMBRO. Lunghezza con Attacco A1 Attacco A2 Lc [mm] 142 + Corsa 150 + Corsa T [mm] 129 + Corsa 136 + Corsa ATTUATORE A VITE TRAPEZIA CLA 20 DIMENSIONI DI INGOMBRO Cors L =Lc + Cors Lc T L =Lc + Cors Lc T Supporto posteriore SP Perno Interruttori FC e potenziometro Attcco A1 Attcco A2 Lunghezz cvo motore 0.3

Dettagli

δl g = δw J + δl p + de em

δl g = δw J + δl p + de em MOTORI PASSO Il motore psso è un prticolre tipo di motore sincrono: l velocità cui gir il suo rotore inftti è univocmente correlt ll frequenz degli impulsi che sono utilizzti per limentre gli vvolgimenti

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 00 Sessione strordinri Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PRBLEMA Con riferimento un sistem monometrico

Dettagli

POLITECNICO DI MILANO IV FACOLTÀ Ingegneria Aerospaziale I Appello di Fisica Sperimentale A+B 17 Luglio 2006

POLITECNICO DI MILANO IV FACOLTÀ Ingegneria Aerospaziale I Appello di Fisica Sperimentale A+B 17 Luglio 2006 POLITECNICO DI MILANO IV FACOLTÀ Ingegneri Aerospzile I Appello di Fisic Sperimentle A+B 7 Luglio 6 Giustificre le risposte e scrivere in modo chiro e leggibile. Sostituire i vlori numerici solo ll fine,

Dettagli

Il Primo Principio della Termodinamica non fornisce alcuna indicazione riguardo ad alcuni aspetti pratici.

Il Primo Principio della Termodinamica non fornisce alcuna indicazione riguardo ad alcuni aspetti pratici. Il Primo Principio dell Termodinmic non fornisce lcun indiczione rigurdo d lcuni spetti prtici. l evoluzione spontne delle trsformzioni; non individu cioè il verso in cui esse possono vvenire. Pistr cld

Dettagli

Controlli Automatici. Trasformate L e Z e schemi a blocchi. Esercizi sulle trasformate L e Z

Controlli Automatici. Trasformate L e Z e schemi a blocchi. Esercizi sulle trasformate L e Z Controlli Automtici Trsformte L e Z e schemi blocchi Esercizi sulle trsformte L e Z Esercizi sulle trsformte L e Z Proposte di esercizi e soluzioni in tempo rele trsformt L di y(t) dt trsformt Z di y(i)

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

Introduzione e strumenti

Introduzione e strumenti Controlli utomtici Introduzione e strumenti Convenzioni generli ed elementi di bse Dll equzione ll rppresentzione grfic L lgebr dei blocchi Clcolo di funzioni di trsferimento di schemi interconnessi 2

Dettagli

Anno 5. Applicazione del calcolo degli integrali definiti

Anno 5. Applicazione del calcolo degli integrali definiti Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei

Dettagli

Definizioni fondamentali

Definizioni fondamentali Definizioni fondmentli Sistem scisse su un rett 1 Un rett si ce orientt qundo su ess è fissto un verso percorrenz Dti due punti qulsisi A e B un rett orientt r, il segmento AB che può essere percorso d

Dettagli

Appunti di Elettrotecnica

Appunti di Elettrotecnica Appunti di Elettrotecnic Premess Il presente opuscolo non può e non vuole essere considerto sostitutivo del libro di testo, vuole semplicemente essere un supporto, per rmmentre gli studenti lcuni degli

Dettagli

Attuatori pneumatici 1400, 2800 e 2 x 2800 cm² Tipo 3271 Comando manuale Tipo 3273

Attuatori pneumatici 1400, 2800 e 2 x 2800 cm² Tipo 3271 Comando manuale Tipo 3273 Attutori pneumtici 00, 00 e x 00 cm² Tipo Comndo mnule Tipo Appliczione Attutore linere per il montggio su vlvole di regolzione Serie 0, 0 e 0 Dimensione: 00 e 00 cm² Cors: fino 0 mm Gli ttutori pneumtici

Dettagli

MACCHINE ELETTRICHE. Macchine Asincrone. Stefano Pastore. Dipartimento di Ingegneria e Architettura Corso di Elettrotecnica (IN 043) a.a.

MACCHINE ELETTRICHE. Macchine Asincrone. Stefano Pastore. Dipartimento di Ingegneria e Architettura Corso di Elettrotecnica (IN 043) a.a. MACCHNE ELETTCHE Mcchine Aincrone Stefno Ptore Diprtimento di ngegneri e Architettur Coro di Elettrotecnic (N 043).. 0-3 ntroduzione Sono dette Mcchine d nduzione (trife) otore gbbi o rotore vvolto Sttore

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

ISTITUTO TECNICO INDUSTRIALE STATALE "FERMI"

ISTITUTO TECNICO INDUSTRIALE STATALE FERMI ISTITUTO TECNICO INDUSTIALE STATALE "EMI" TEVISO GAA NAZIONALE DI MECCANICA 212 ropost di soluzione rim rov cur di Benetton rncesco (vincitore edizione 211 unzionmento: L gru bndier girevole sopr riportt

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

UNIVERSITA DEGLI STUDI DI SALERNO. FACOLTA DI INGEGNERIA Corso di laurea in Ingegneria Meccanica. Tesina del corso di

UNIVERSITA DEGLI STUDI DI SALERNO. FACOLTA DI INGEGNERIA Corso di laurea in Ingegneria Meccanica. Tesina del corso di UNIVERSITA DEGLI STUDI DI SALERNO FACOLTA DI INGEGNERIA Corso di lure in Ingegneri Meccnic Tesin del corso di TRASMISSIONE DEL CALORE Docente Prof. Ing. Gennro Cuccurullo Tesin n.7a Effetti termici del

Dettagli

-STRUTTURE DI LEWIS SIMBOLI DI LEWIS

-STRUTTURE DI LEWIS SIMBOLI DI LEWIS STRUTTURE DI LEWIS SIMBLI DI LEWIS ELETTRI DI VALEZA: sono gli elettroni del guscio esterno, i responsbili principli delle proprietà chimiche di un tomo e quindi dell ntur dei legmi chimici che vengono

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001 Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone Mturità scientific, corso di ordinmento, sessione ordinri 000-001 PROBLEMA 1 Si consideri l seguente relzione tr le vribili reli x, y: 1 1 1 +

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

" Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6

 Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6 CAPITOLO 6 Clcolo integrle 6. Integrle indefinito L nozione fondmentle del clcolo integrle è quell di funzione primitiv di un funzione f (). Tle nozione è in qulche modo speculre ll nozione di funzione

Dettagli

Unità 3 Metodi particolari per il calcolo di reti

Unità 3 Metodi particolari per il calcolo di reti Unità 3 Metodi prticolri per il clcolo di reti 1 Cos c è nell unità Metodi prticolri per il clcolo di reti con un solo genertore Prtitore di tensione Prtitore di corrente Metodi di clcolo di reti con più

Dettagli

3. Funzioni iniettive, suriettive e biiettive (Ref p.14)

3. Funzioni iniettive, suriettive e biiettive (Ref p.14) . Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y

Dettagli

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x)

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x) Nome.Cognome Clsse D 7 Aprile 0 Verific di mtemtic Problem (punti ) Sono dte le funzioni: f ( ) =, g ( ) = ( ) ) determinre il dominio di f() e di g() b) determinre, senz l uso dell clcoltrice f ( ) c)

Dettagli

ATTUATORE A VITE TRAPEZIA DIMENSIONI DI INGOMBRO. Perno. Lunghezza cavo motore 0.3 m. T [mm]

ATTUATORE A VITE TRAPEZIA DIMENSIONI DI INGOMBRO. Perno. Lunghezza cavo motore 0.3 m. T [mm] ATTUATORE A VITE TRAPEZIA ATL 02 Cors Attutore con motore CC L =Lc + Cors Lc T DIMENSIONI DI INGOMBRO Supporto posteriore SP Perno Attutore con motore CA 1-fse o 3-fsi Condenstore Interruttori reed finecors

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

Attuatori pneumatici fino 700 cm 2 Tipo 3271 e Tipo 3277 per montaggio integrato del posizionatore

Attuatori pneumatici fino 700 cm 2 Tipo 3271 e Tipo 3277 per montaggio integrato del posizionatore Attutori pneumtici fino cm Tipo e Tipo per montggio integrto del posiziontore Appliczione Attutore linere per il montggio su vlvole di regolzione, soprttutto per l Serie,, e vlvol microflusso Tipo dimensione

Dettagli

Esame di stato Seconda prova 17 giugno 2004 ESAME DI STATO DI ISTITUTO PROFESSIONALE CORSO DI ORDINAMENTO

Esame di stato Seconda prova 17 giugno 2004 ESAME DI STATO DI ISTITUTO PROFESSIONALE CORSO DI ORDINAMENTO Impinto ESAME DI STATO DI ISTITUTO PROFESSIONALE CORSO DI ORDINAMENTO Indirizzo: TECNICO INDUSTRIE ELETTRICHE Tem di: ELETTROTECNICA, ELETTRONICA ED APPLICAZIONI Soluzione di Ruggero Giometti L impinto

Dettagli

Gioco Interno Tipologie e Norme

Gioco Interno Tipologie e Norme Gioco Interno Tipologie e Norme Per gioco interno si intende l misur complessiv di cui un nello si può spostre rispetto ll ltro in direzione oppost. E necessrio distinguere fr gioco rdile e gioco ssile.

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

Meccanica dei Solidi. Vettori

Meccanica dei Solidi. Vettori Meccnic dei Solidi Prof. Ing. Stefno Avers Università di Npoli Prthenope.. 2005-06 Lezione 2 Vettori Definizione: Un grndezz vettorile (o un vettore) è un grndezz fisic crtterizzt oltre che d un numero

Dettagli

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli:

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli: Acidi Deboli Si definisce cido debole un cido con < 1 che risult perciò solo przilmente dissocito in soluzione. Esempi di cidi deboli: Acido cetico (H OOH) 1.75 1-5 Acido scorbico (vitmin ) 1 6.76 1-5.5

Dettagli

Accoppiamento pompa e sistema

Accoppiamento pompa e sistema Accoppimento pomp e sistem 1/9 Considerimo il sistem idrulico dell Fig. 1 costituito d due bcini, mbedue soggetti ll pressione tmosferic e collegti tr loro d un tubzione: si vuole portre l cqu dl bcino

Dettagli

Il moto rettilineo uniformemente accelerato è un moto che avviene su una retta con accelerazione costante. a = costante

Il moto rettilineo uniformemente accelerato è un moto che avviene su una retta con accelerazione costante. a = costante Prof.. Di Muro Moto rettilineo uniformemente ccelerto ( m.r.u.. ) Il moto rettilineo uniformemente ccelerto è un moto che iene su un rett con ccelerzione costnte. Dll definizione di ccelerzione t t t t

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Il cndidto risolv uno dei due problemi e 5 dei quesiti in cui si rticol il questionrio. PROBLEMA Nel pino sono dti: il cerchio di dimetro OA,

Dettagli

CLASSI PRIME 2013/14

CLASSI PRIME 2013/14 LICEO SCIENTIFICO STATALE G.B. GRASSI CLASSI PRIME 2013/14 INDICAZIONI DI LAVORO PER LA SOSPENSIONE DEL GIUDIZIO IN FISICA Liceo scientifico e liceo delle scienze pplicte In relzione lle esigenze del secondo

Dettagli

a. Sulla base dei dati riportati nel grafico indica se ciascuna delle seguenti affermazioni è vera (V) o falsa (F).

a. Sulla base dei dati riportati nel grafico indica se ciascuna delle seguenti affermazioni è vera (V) o falsa (F). scicolo 3 D. Il polinomio x 3 8 è divisibile per A. x 2 B. x + 8 C. x 4 D. x + 4 D2. Osserv il grfico che riport lcuni dti rccolti dll stzione meteorologic di Udine.. Sull bse dei dti riportti nel grfico

Dettagli

Elementi grafici per Matematica

Elementi grafici per Matematica Elementi grfici per Mtemtic Sommrio: Sistemi di coordinte crtesine... Grfici di funzioni... 4. Definizione... 4. Esempi... 5.3 Verificre iniettività e suriettività dl grfico... 8.4 L rett... 9.5 Esempi

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Mtemtic clsse quint -Gli integrli Quest oper è distriuit con: Licenz Cretive Commons Attriuzione - Non commercile - Non opere derivte. Itli Ing. Alessndro Pochì Appunti di lezione svolti ll

Dettagli

TRASFORMAZIONI GEOMETRICHE DEL PIANO

TRASFORMAZIONI GEOMETRICHE DEL PIANO TRASFORMAZIONI GEOMETRICHE DEL PIANO INTRODUZIONE Per trsformzione geometric pin si intende un corrispondenz iunivoc fr i punti di un pino, ossi un funzione iiettiv che ssoci d ogni punto P del pino un

Dettagli

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1 APITOLO 3 LE SIMMETRIE 3. Richimi di teori Definizione. Si dto un punto del pino; si chim simmetri centrle di centro (che si indic con il simbolo s ) l corrispondenz dl pino in sé che d ogni punto P del

Dettagli

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna verso LA RILEVAZIONE INVALSI SCUOLA SECONDARIA DI secondo GRADO PROVA DI Mtemtic 30 quesiti Febbrio 0 Scuol... Clsse... Alunno... e b sono numeri reli che verificno quest uguglinz: Qunto vle il loro prodotto?

Dettagli

m kg M. 2.5 kg

m kg M. 2.5 kg 4.1 Due blocchi di mss m = 720 g e M = 2.5 kg sono posti uno sull'ltro e sono in moto sopr un pino orizzontle, scbro. L mssim forz che può essere pplict sul blocco superiore ffinchè i blocchi si muovno

Dettagli

NORME APPLICABILI ALLE ARMATURE 9

NORME APPLICABILI ALLE ARMATURE 9 QUADERNO III Strutture in clcestruzzo rmto e legno CALCESTRUZZO ARMATO Sched N : NORME APPLICABILI ALLE ARMATURE 9 Not generle: le indiczioni nel seguito riportte sono trtte dlle norme frncesi BAEL 91

Dettagli

Lezione 7: Rette e piani nello spazio

Lezione 7: Rette e piani nello spazio Lezione 7: Rette e pini nello spzio In quest lezione i metteremo in un riferimento rtesino ortonormle dello spzio. I primi oggetti geometrii he individuimo sono le rette e i pini. Per qunto rigurd le rette

Dettagli

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes I Teoremi di Green, dell divergenz o di Guss e di Stokes In R Si un sottoinsieme limitto di R semplice rispetto d entrmbi gli ssi crtesini con costituit dll unione di un numero finito di sostegni di curve

Dettagli

Cuscinetti ad una corona di sfere a contatto obliquo

Cuscinetti ad una corona di sfere a contatto obliquo Cuscinetti d un coron di sfere conttto obliquo Cuscinetti d un coron di sfere conttto obliquo 232 Definizione ed ttitudini 232 Serie 233 Vrinti 233 Tollernze e giochi 234 Elementi di clcolo 236 Crtteristiche

Dettagli

Conversione A/D e D/A. Quantizzazione

Conversione A/D e D/A. Quantizzazione Conversione A/D e D/A Per il trttmento dei segnli sempre più vengono preferite soluzioni di tipo digitle. È quindi necessrio, in fse di cquisizione, impiegre dispositivi che convertno i segnli nlogici

Dettagli

COGNOME..NOME CLASSE.DATA

COGNOME..NOME CLASSE.DATA COGNOME..NOME CLASSE.DATA FUNZIONE ESPONENZIALE - VERIFICA OBIETTIVI Sper definire un funzione esponenzile. Sper rppresentre un funzione esponenzile. Sper individure le crtteristiche del grfico di un funzione

Dettagli

IRRAGGIAMENTO: APPLICAZIONI ED ESERCIZI

IRRAGGIAMENTO: APPLICAZIONI ED ESERCIZI Elis Gonizzi N mtricol: 3886 Lezione del -- :3-:3 IRRAGGIAMENO: APPLICAZIONI ED EERCIZI E utile l fine di comprendere meglio le ppliczioni e gli esercizi ricordre cos si intend con i termini CORPI NERI

Dettagli

DUOSTEEL GD. Canne Fumarie Doppia Parete Grandi Diametri Coibentazione 50 mm. Canne fumarie in acciaio Inox

DUOSTEEL GD. Canne Fumarie Doppia Parete Grandi Diametri Coibentazione 50 mm. Canne fumarie in acciaio Inox Cnne Fumrie Doppi Prete Grndi Dimetri Coientzione 50 mm Cnne fumrie in cciio Inox Cnne fumrie Doppi Prete Grndi Dimetri INDICE 1 Elemento diritto mm 500... pg. 3 2 Elemento diritto mm 1000... pg. 3 3 Elemento

Dettagli

I costi dell impresa. Litri di benzene per unità di tempo. Linea di isocosto

I costi dell impresa. Litri di benzene per unità di tempo. Linea di isocosto 7 I costi dell impres 7.1. Per l combinzione di equilibrio dei due input, si ved il grfico successivo. L pendenz dell line di isocosto e` pri ll opposto del rpporto tr i prezzi dei fttori: -10 = 2 = -5.

Dettagli

Nome.Cognome. 18 Dicembre 2008 Classe 4G. VERIFICA di MATEMATICA

Nome.Cognome. 18 Dicembre 2008 Classe 4G. VERIFICA di MATEMATICA Nome.Cognome. 8 Dicembre 008 Clsse G VERIFICA di MATEMATICA A) Risolvi le seguenti disequzioni goniometriche sin ) sin + ) 0 6 tn cos + sin ) 0 (punti:0,5) ) tn + tn > 0 sin 5) sin > cos (punti: ) 6) sin

Dettagli

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE Eserizi dell lezione sull Geomeri Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ES ERCIZI SULL' IPERBOLE ESERCIZI SULLA CIRCONFERENZA. Determinre l equzione dell ironferenz

Dettagli

MATEMATICA Classe Prima

MATEMATICA Classe Prima Liceo Clssico di Treiscce Esercizi per le vcnze estive 0 MATEMATICA Clsse Prim Cpitolo Numeri nturli Primi ogni pgin del cpitolo Cpitolo Numeri nturli Primi ogni pgin del cpitolo Per gli llievi promossi

Dettagli

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone 3 Questionrio Quesito 1 Provre che un sfer è equivlente i /3 del cilindro circoscritto. r 4 3 Il volume dell sfer è 3 r Il volume del cilindro

Dettagli

Corsi di Laurea in Ingegneria Meccanica e Informatica e corsi V.O. Anno Accademico 2014/2015 Meccanica Razionale, Fisica Matematica

Corsi di Laurea in Ingegneria Meccanica e Informatica e corsi V.O. Anno Accademico 2014/2015 Meccanica Razionale, Fisica Matematica orsi di Lure in Ingegneri Meccnic e Informtic e corsi V.. nno ccdemico 2014/2015 Meccnic Rzionle, Fisic Mtemtic Nome... N. Mtricol... ncon, 15 gennio 2015 1. Un lmin pin omogene qudrt D di mss m e lto

Dettagli

Superfici di Riferimento (1/4)

Superfici di Riferimento (1/4) Superfici di Riferimento (1/4) L definizione di un superficie di riferimento nsce dll necessità di vere un supporto mtemtico su cui sviluppre il rilievo eseguito sull superficie terrestre. Tle superficie

Dettagli

Ellisse riferita al centro degli assi

Ellisse riferita al centro degli assi Appunti delle lezioni tenute in clsse: ellisse e iperole Ellisse riferit l centro degli ssi Dti due punti F ed F detti fuochi, l ellisse è il luogo geometrico dei punti P del pino per cui è costnte l somm

Dettagli

Ottica ondulatoria. Interferenza e diffrazione

Ottica ondulatoria. Interferenza e diffrazione Ottic ondultori Interferenz e diffrzione Interferenz delle onde luminose Sorgenti coerenti: l differenz di fse rest costnte nel tempo Ond luminos pin che giunge su uno schermo contenente due fenditure

Dettagli

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile Corso di Anlisi Mtemtic Clcolo integrle per funzioni di un vribile Lure in Informtic e Comuniczione Digitle A.A. 2013/2014 Università di Bri ICD (Bri) Anlisi Mtemtic 1 / 40 1 L integrle come limite di

Dettagli

( X, Y ) che danno un livello costante di utilità (curva di livello). Fissando per esempio il valore U 0 per

( X, Y ) che danno un livello costante di utilità (curva di livello). Fissando per esempio il valore U 0 per Funzioni di utilità (finlmente un po di geroglifici, dopo i grffiti) NB: non fte leggere queste pgine un mtemtico, ltrimenti mi msscr!. Definizione e proprietà Considerimo due eni e di interesse per un

Dettagli

ELEMENTI MECCANICI ROTANTI CON FUNZIONE DI IMMAGAZZINAMENTO O TRASFERIMENO DI ENERGIA

ELEMENTI MECCANICI ROTANTI CON FUNZIONE DI IMMAGAZZINAMENTO O TRASFERIMENO DI ENERGIA Freni e frizioni ELEMENTI MECCANICI ROTANTI CON FUNZIONE DI IMMAGAZZINAMENTO O TRASFERIMENO DI ENERGIA 1. forz di ttuzione del meccnismo. coppi trsmess 3. perdit di energi 4. incremento di tempertur 1

Dettagli

07 GUIDA ALLA PROGETTAZIONE. Guida alla progettazione

07 GUIDA ALLA PROGETTAZIONE. Guida alla progettazione 07 Guid ll progettzione Scelt tubzioni e giunti 2 tubi di misur [mm] Dimetro tubzioni unità esterne (A) Giunti 12Hp 1Hp 1Hp Selezionre il dimetro delle unità esterne dll seguente tbell Giunto Y tr unità

Dettagli

5 Materiali magnetici permanenti

5 Materiali magnetici permanenti Mterili gnetici pernenti 54 5 Mterili gnetici pernenti 5.1 Mterili ferrognetici d lt isteresi terili gnetici pernenti sono terili ferrognetici crtterizzti d un elevt isteresi, in fig.1 è ostrt un generic

Dettagli

Progettazione strutturale per elementi finiti Sergio Baragetti

Progettazione strutturale per elementi finiti Sergio Baragetti Progettzione strutturle per elementi finiti Sergio Brgetti Fcoltà di Ingegneri Università degli Studi di Bergmo Il metodo degli Elementi Finiti permette di risolvere il problem dell determinzione dello

Dettagli

Prova n. 1 LEGER TEST

Prova n. 1 LEGER TEST Prov n. 1 LEGER TEST Descrizione L prov si svolge su un percorso delimitto d due coni, posti ll distnz di 20 mt l uno dll ltro. Il cndidto deve percorrere spol l distnz tr i due coni, pssndo dll velocità

Dettagli

FUNZIONI MATEMATICHE. Una funzione lineare è del tipo:

FUNZIONI MATEMATICHE. Una funzione lineare è del tipo: FUNZIONI MATEMATICHE Le relzioni mtemtihe utilizzte per desrivere fenomeni nturli, in iologi ome in ltre sienze, possono ovvimente essere le più svrite. Per lo più si trtt di equzioni lineri, qudrtihe,

Dettagli

Esercizi sulle curve in forma parametrica

Esercizi sulle curve in forma parametrica Esercizi sulle curve in form prmetric Esercizio. L Elic Cilindric. Dt l curv di equzioni prmetriche: xt cos t yt sin t t 0 T ] > 0 b IR zt bt trovre: versore tngente normle binormle vettore curvtur rggio

Dettagli

Problemi di massimo e minimo in Geometria Solida Problemi su poliedri. Indice dei problemi risolti

Problemi di massimo e minimo in Geometria Solida Problemi su poliedri. Indice dei problemi risolti Problemi di mssimo e minimo in Geometri olid Problemi su poliedri Indice dei problemi risolti In generle, un problem si riferisce un figur con crtteristice specifice (p.es., il numero dei lti dell bse)

Dettagli

v 0 = 2,4 m/s T = 1,8 s v = 0 =?

v 0 = 2,4 m/s T = 1,8 s v = 0 =? Esercitzione n 4 FISICA SPERIMENTALE I (C.L. Ing. Edi.) (Prof. Gbriele Fv) A.A. 00/0 Dinic del punto terile. Un corpo viene lncito lungo un pino liscio inclinto di rispetto ll orizzontle con velocità v

Dettagli

PROGRAMMAZIONE DI FISICA PRIMO BIENNIO CLASSI SECONDE

PROGRAMMAZIONE DI FISICA PRIMO BIENNIO CLASSI SECONDE PROGRAMMAZIONE DI FISICA PRIMO BIENNIO CLASSI SECONDE Nel pino di lvoro sono indicte con i numeri d 1 5 le competenze di bse che ciscun unit' didttic concorre sviluppre, secondo l legend riportt di seguito.

Dettagli

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003 Liceo Scientifico Sperimentle nno - Problem Bernrdo Pedone ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI nno - PROBLEMA Nel pino sono dti: il cerchio γ di dimetro OA =, l rett t tngente γ

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2005 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2005 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 005 Sessione suppletiv Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PROBLEMA Sono dti un pirmide

Dettagli

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi Equzioni di grdo Definizioni Equzioni incomplete Equzione complet Relzioni tr i coefficienti dell equzione e le sue soluzioni Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Un equzione è: Un uguglinz

Dettagli

Sessione Suppletiv PNI 006 Sessione Suppletiv PNI 006 Sessione Suppletiv PNI 006 PROBLEMA ) L prbol di equzione V ' (0,0). y h sse di simmetri prllelo ll sse delle ordinte e vertice in L prbol di equzione

Dettagli

E U Q A U Z A I Z O I N O I N DI SE S C E O C N O DO

E U Q A U Z A I Z O I N O I N DI SE S C E O C N O DO EQUAZIONI DI ECONDO GRADO Riepilogo delle soluzioni in bse l segno di < φ : b > : b b Prof I voi, EQUAZIONI DI ECONDO GRADO EQUAZIONI PURE DI ECONDO GRADO : EEMPI ) ) ) 7 7 ) > φ (impossibile) ) impossibil

Dettagli

Movimentazioni lineari

Movimentazioni lineari Sistemi lineri I sistemi lineri ACK sono costituiti d 2 brre d cciio sezione circolre temprte e rettificte in tollernz h e nche cromte nei dimetri. A richiest in ccioi inox. Sono montte rigide e prllele

Dettagli

Teoremi di geometria piana

Teoremi di geometria piana l congruenz teoremi sugli ngoli γ teorem sugli ngoli complementri Se due ngoli sono complementri di uno stesso ngolo α β In generle: Se due ngoli sono complementri di due ngoli congruenti α γ β teorem

Dettagli

Facoltà di Ingegneria

Facoltà di Ingegneria UNIVERSITA DEGLI STUDI DI CAGLIARI Fcoltà di Ingegneri Corso di Lure Specilistic in Ingegneri per l Ambiente e il Territorio TESINA DI CALCOLO NUMERICO Anlisi dell errore nei metodi di risoluzione dei

Dettagli

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0 Equzioni letterli di II grdo Un equzione letterle di II grdo è un equzione che contiene, oltre l letter che rppresent l incognit dell equzione, ltre lettere, dette prmetri, che rppresentno numeri ben determinti,

Dettagli

Lavorazioni delle materie plastiche

Lavorazioni delle materie plastiche Lvorzioni delle mterie plstiche CONTENUTI Lvorzione delle mterie plstiche con prticolre rigurdo llo stmpggio iniezione PREREQUISITI Conoscenz delle proprietà dei mterili Conoscenz degli elementi costituenti

Dettagli

ELEMENTI DI DINAMICA DEI FLUIDI

ELEMENTI DI DINAMICA DEI FLUIDI Corso di Fisic tecnic e mbientle.. 011/01 - Docente: Prof. Crlo Isetti ELEMENTI DI DINAMICA DEI FLUIDI 6.1 GENERALITÀ Il moto più semplice cui si f riferimento è in genere il moto stzionrio, che è crtterizzto

Dettagli

www.scuolainweb.altervista.org Problemi di Fisica La Cinematica Moti unidimensionali Moti nel piano 1. Moti unidimensionali

www.scuolainweb.altervista.org Problemi di Fisica La Cinematica Moti unidimensionali Moti nel piano 1. Moti unidimensionali Problemi di Fisic Moti unidimensionli Moti nel pino. Moti unidimensionli Problem N. Rppresentre grficmente le seguenti leggi del moto rettilineo uniforme e commentrle: ) S 0 -t ) S 5t 3) S -0 + 3t 4) S

Dettagli

d coulomb d volt b trasformatore d alternatore b amperometro d reostato

d coulomb d volt b trasformatore d alternatore b amperometro d reostato ppunti 7 TEST DI VERIFICA 1 Unità i misur ell ri elettri: henry weer volt oulom 2 Unità i misur ell pità elettri: oulom henry fr volt 3 Gener orrente lternt: umultore resistenz 4 Misur l tensione: resistometro

Dettagli

FLESSIONE E TAGLIO (prof. Elio Sacco)

FLESSIONE E TAGLIO (prof. Elio Sacco) Cpitolo FLESSIONE E TALIO (prof. Elio Scco). Sollecitzione di flessione e tglio Si esmin il cso in cui l risultnte delle tensioni genti sull bse dell trve x = L consist in un forz tglinte V, tlechev e

Dettagli

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1 M.Blconi e R.Fontn, Disense di conomi: 3) quilirio del consumtore L scelt di equilirio del consumtore ntegrzione del C. 21 del testo di Mnkiw 1 Prte 1 l vincolo di ilncio Suonimo che il reddito di un consumtore

Dettagli

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez.

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez. Fcoltà di Economi - Università di Sssri Anno Accdemico 2004-2005 Dispense Corso di Econometri Docente: Lucino Gutierrez Algebr Linere Progrmm: 1.1 Definizione di mtrice e vettore 1.2 Addizione e sottrzione

Dettagli