Introduzione all elettronica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Introduzione all elettronica"

Transcript

1 Introduzione all elettronica L elettronica nacque agli inizi del 1900 con l invenzione del primo componente elettronico, il diodo (1904) seguito poi dal triodo (1906) i cosiddetti tubi a vuoto. Questa disciplina si interessa soprattutto di circuiti con basse correnti/potenze in gioco. Il Diodo è un componente unidirezionale ossia permette la circolazione di corrente in un solo verso. Triodi e Pentodi servono per amplificare la tensione. Diodo Triodo Diversi tipi di valvole Il primo elaboratore elettronico fu l ENIAC creato nel 1946 ed era costituito da tubi a vuoto (o valvole, diodi, triodi e pentodi) in totale vi erano circa valvole ed occupava circa 200 m 2. I componenti elettrici elementari sono: i resistori, i condensatori (dispositivi elettrici in grado di accumulare cariche elettriche), gli induttori (dispositivi elettrici in grado di accumulare energia elettromagnetica) ed i generatori. Resistore Condensatori Induttore Nel 1947 fu realizzato il primo transistor. Dal 1960 si realizzarono i primi computer a transistor ossia dei componenti a semiconduttori che avevano alcuni rilevanti vantaggi rispetto alle valvole, primo fra tutti che avevano un peso minore, poi erano molto meno ingombranti, consumavano molto meno, erano meno fragili. Confronto transistor valvola Diversi tipi di transistor reti elettriche e principi.doc Prof. I. Verde Pagina 1 di 11

2 Grandezze elettriche fondamentali Vediamo alcune grandezze elettriche fondamentali, e come si misurano. La tensione o differenza di potenziale, oi forza elettromotrice, si misura in Volt simbolo V. La tensione elettrica è la causa fisica che spinge le cariche elettriche a passare da un punto a più alta energia potenziale verso un punto ad energia potenziale più bassa, generando una corrente elettrica, se tra i due punti è interposto del materiale conduttore di elettricità. La corrente si misura in Ampere simbolo A. La corrente elettrica è un flusso ordinato di cariche elettriche e corrisponde alla quantità di carica che attraversa una definita superficie, nell'unità di tempo. La potenza si misura in Watt simbolo W La potenza è l'energia fornita o assorbita nell'unità di tempo. Volendo calcolare la potenza vi sono le seguenti formule: P = V * I P = V 2 / R P = R * I 2 La Frequenza si misura in Herz simbolo Hz. La Frequenza indica il numero di periodi dell onda in esame presenti in un secondo. Multipli e Sottomultipli A volte i valori delle grandezze elettriche da considerare risultano o molto grandi o molto piccoli, rispetto all unità di misura fondamentale, pertanto onde ottenere una migliore leggibilità si usano i Multipli o i Sottomultipli Multipli k = Chilo =1000 = 10 3 M = Mega = = 10 6 G = Giga = = 10 9 T = Tera = = Sottomultipli m = milli = 1/1000 = 10-3 µ = micro = 1/ = 10-6 n = nano = 1/ = 10-9 p = pico = 1/ = Esempi: 5400 V = 5,4 kv 0,00025 A = 0,25 ma = 250 µa Hz = 12 Mz 0, A = 56 µa reti elettriche e principi.doc Prof. I. Verde Pagina 2 di 11

3 Introduzione alle reti elettriche Analizziamo le reti elettriche in regime continuo, ovvero circuiti elettrici in cui gli elementi attivi sono generatori di tensione o corrente costanti e gli elementi passivi sono resistenze pure. Un generatore di tensione continua è un componente elettrico bipolare in grado di fornire sempre la stessa tensione qualunque sia la corrente erogata. Un generatore di corrente continua è un componente elettrico bipolare in grado di fornire sempre la stessa corrente qualunque sia la tensione ai suoi capi. Curva caratteristica del generatore di tensione Curva caratteristica del generatore di corrente Simbolo elettrico del generatore di tensione Simbolo elettrico del generatore di corrente La freccia, nei segmenti che indicano la tensione, dice dove si considera il lato positivo. La freccia, nei segmenti che indicano la corrente, dice come si considera il verso della corrente. In continua non consideriamo capacità 1 e induttanze 2 poiché questi, in regime continuo, si traducono rispettivamente in circuiti aperti e cortocircuiti. Infatti nel caso delle capacità la 1 Componente in grado di immagazzinare cariche elettriche 2 Componente che presenta proprietà elettromagnetiche. reti elettriche e principi.doc Prof. I. Verde Pagina 3 di 11

4 corrente che le attraversa dipende dalla variazione di tensione ai loro capi, ma poiché le tensioni in questo caso sono continue, la corrente risulta essere nulla, quindi è un circuito aperto; mentre nel caso delle induttanze la tensione ai loro capi dipende dalla variazione della corrente che le attraversa, ma essendo quest'ultima costante, la tensione risulta essere nulla, e quindi è un cortocircuito. Prendiamo allora in esame il circuito in figura 1 e vediamo alcune definizioni: -con il termine di nodo indichiamo il punto di incontro di almeno tre componenti. Quindi nel nostro circuito i punti B (coincidente con C), F, G (coincidente con H) sono dei nodi, mentre non sono nodi, ma semplici giunzioni tra due elementi, i punti A e D (coincidente con E); -con il termine di ramo indichiamo, invece, quella parte di circuito comprendente componenti elettrici (resistenze e/o generatori), che congiunge due nodi consecutivi qualsiasi. Quindi sono rami del nostro circuito i tratti GHAB, GB, GF, CF, CDEF; -ed infine indichiamo con il termine di maglia l'insieme dei rami che costituiscono un percorso chiuso, ovvero l'insieme dei rami che idealmente percorsi partendo da un nodo ci riportano allo stesso nodo di partenza. Sono maglie del nostro circuito i poligoni ABGHA, BCFGB, CDEFC, ABCFGHA, BCDEFGB, ABCDEFGHA. Fig.1: Un comune circuito con le varie impostazioni di correnti e tensioni Risolvere un circuito elettrico significa calcolare le tensioni e le correnti relative ad ogni componente conoscendo il valore dei componenti presenti. Per fare ciò si impostano convenzionalmente i versi delle varie correnti e tensioni per poterne poi ricavare i valori effettivi tramite i vari principi e teoremi sulle reti elettriche. Non bisogna quindi preoccuparsi se i valori che otteniamo risultano di segno negativo, poiché ciò significa semplicemente che il verso reale, della grandezza calcolata, è opposto a quello che avevamo ipotizzato inizialmente. Così, se dopo aver calcolato le varie correnti e tensioni del circuito in figura, per esempio, risultasse che la I 4, che convenzionalmente abbiamo ipotizzato fluisca dal nodo C al nodo F, vale -3A, vuol dire che, invece, fluisce dal nodo F al nodo C, e di conseguenza anche la tensione V 4 sulla resistenza R 4 ha verso opposto. Da notare che per semplicità le tensioni sulle resistenze vengono sempre segnate opposte alla corrente ipotizzata, questo fa si che risultino nella formula sempre positive, ossia pari ad R*I. reti elettriche e principi.doc Prof. I. Verde Pagina 4 di 11

5 Legge di Ohm generalizzata La legge di Ohm dice che la tensione ai capi di una resistenza è direttamente proporzionale alla corrente che la attraversa, ovvero: V =V A - V B = R I Fig. 2 Legge di Ohm Prendendo in esame un generico ramo di un circuito elettrico composto da generatori e/o da resistenze, possiamo affermare, in base alla legge sopraccitata, che la tensione ai capi del ramo equivale alla somma delle tensioni sui singoli elementi, così per esempio nel caso della figura 3 si ha: V ac = V ab + V bc = R I + V Questo principio va sotto il nome di legge di Ohm generalizzata. Fig.3: Applicazione della legge di Ohm generalizzata Nel caso in cui i versi posti sono diversi, la formula sarà naturalmente diversa, per maggiore chiarezza si riportano i quattro casi possibili: V = R* I + E V = R* I E V = -R* I + E V = -R* I - E reti elettriche e principi.doc Prof. I. Verde Pagina 5 di 11

6 È importante capire se i componenti elettrici sono in serie oppure in parallelo, in quanto in questi casi è possibile semplificare il circuito. Vediamo quindi le definizioni di componenti in serie e parallelo. Due o più componenti sono in serie se sono collegati uno di seguito all altro, ossia appartengono allo stesso ramo. Nel caso di resistori in serie il valore della resistenza equivalente è dato dalla somma delle resistenze. R t = R 1 + R 2 Due o più componenti sono in parallelo se sono collegati tra gli stessi nodi, ossia ambedue i loro terminali sono collegati negli stessi punti. Nel caso di due resistori in parallelo il valore della resistenza equivalente è dato dalla formula: R t = R 1 * R 2 /(R 1 + R 2 ). R t = R 1 * R 2 /(R 1 + R 2 ) ESERCIZIO DI ESEMPIO Assegnato il circuito di figura, calcolare tensione e corrente relativa ad ogni componente. V 1 = 10 V; R 1 = 10 Ω; R 2 = 90 Ω; R 3 = 200 Ω Svolgimento: V 1 = R 1 *I+R 2 *I+R 3 *I da cui si ricava la I: I= V 1 / ( R 1 +R 2 +R 3 ) = 10 /( )= 10 / 300 = 0,033 A calcoliamo ora la tensione su ciascun resistore: V R1 = R 1 *I = 10 * (0,033) = 0,33 V V R2 = R 2 *I = 90 * (0,033) = 2,97 V V R3 = R 3 *I = 200 * (0,033) = 6,67 V reti elettriche e principi.doc Prof. I. Verde Pagina 6 di 11

7 Assegnato il circuito di figura, calcolare tensione e corrente relativa ad ogni componente. V 1 = 10 V; V 2 = 20 V; V 3 = 40 V; R 1 = 10 kω; R 2 = 90 kω; R 3 = 200 kω Svolgimento: Esercizi da svolgere V 1 = R 1 *I+R 2 *I+R 3 *I-V 2 +V 3 da cui si ricava la I: I=(V 1 +V 2 -V 3 )/( R 1 +R 2 +R 3 )= (10 V + 20 V - 40 V)/( )= -10 / 300 = -0,033 ma Si noti che se tutte le resistenze sono espresse in kω la corrente risulta in ma. V R1 = R 1 *I= 10*(-0,033)= -0,33 V V R2 = R 2 *I= 90*(-0,033)= -2,97 V V R3 = R 3 *I= 200*(-0,033)= -6,67 V Calcolare tensione e corrente relativa ad ogni componente nel circuito di figura Esercizio 1. V 1 = 30 V; V 2 = 20 V; R 1 = 10 kω; R 2 = 40 kω; Figura Esercizio 1 Calcolare tensione e corrente relativa ad ogni componente nel circuito di figura Esercizio 2. V 1 = 30 V; V 2 = 20 V; R 1 = 10 kω; R 2 = 30 kω; R 3 = 20 kω; R 4 = 40 kω; R 5 = 50 kω; R 6 = 140 kω; R 7 = 80 kω. Figura Esercizio 2 reti elettriche e principi.doc Prof. I. Verde Pagina 7 di 11

8 I e II principio di Kirchhoff Questi due principi, insieme alla legge di Ohm generalizzata, rappresentano la base dei diversi teoremi relativi alle reti elettriche. Per comprenderne il significato prendiamo come esempio il circuito di figura 4. -I principio di Kirchhoff : la somma algebrica delle correnti che confluiscono in un nodo è uguale a zero. Altro modo per esprimere lo stesso principio è: la somma delle correnti entranti in un nodo è uguale alla somma delle correnti uscenti. Questo principio si basa sul fatto che un nodo idealmente non assorbe energia, quindi le correnti che vi entrano lo attraversano senza alcuna perdita. In base a questo principio, per esempio nel nodo B del circuito in figura, si ha che: I 1 + I 2 = I 3 o anche I 1 + I 2 - I 3 = 0 -II principio di Kirchhoff : in una maglia, la somma algebrica delle f.e.m. è uguale alla somma algebrica delle cadute di tensione sulle resistenze. Altro modo per esprimere lo stesso principio è: la somma algebrica delle tensioni è uguale a zero. Prendiamo ad esempio la maglia ABEFA di figura 4: immaginiamo di percorrere la maglia in un senso, per esempio in senso orario, partendo da un punto qualsiasi, per esempio il punto A, e considerando positive le tensioni che hanno verso concorde a quello di percorrenza e negative quelle con verso opposto, scriviamo l'equazione alla maglia V A - V 1 - V 2 + V 3 - V B = 0 e poiché V=R I si ha: V A - R 1 I 1 - R 2 I 1 + R 3 I 2 - V B = 0 o anche V A - V B = R 1 I 1 + R 2 I 1 - R 3 I 2 Questo principio è una diretta conseguenza della legge di Ohm generalizzata. Infatti potremmo idealmente tagliare in due il circuito in un punto qualsiasi, per esempio sempre il punto A, ed aprendo il circuito, otterremmo un ramo unico la cui tensione ai capi A' e A'' sarebbe sicuramente nulla in quanto il punto A non assorbe energia e quindi ai suoi capi non vi è caduta di tensione. A questo punto, poiché la legge di Ohm generalizzata ci dice che la tensione ai capi del ramo (in questo caso V A'A'' che è uguale a zero) equivale alla somma algebrica delle tensioni sui singoli elementi, si ha che: V A - V 1 - V 2 + V 3 - V B = V A'A'' = 0 N. B. Per poter applicare tali principi necessita segnare il verso delle correnti ed indicare come si intendono le tensioni ai capi dei resistori. Opportuno ricordare la definizione di resistori in serie ed in parallelo: Due resistori sono in serie se sono posti uno di seguito all altro, in tale caso la resistenza equivalente è data dalla somma delle singole resistenze. Due resistori sono in parallelo se sono connessi agli stessi nodi, in tale caso la resistenza equivalente è data dalla seguente relazione: R 1 R 2 / (R 1 + R 2 ). reti elettriche e principi.doc Prof. I. Verde Pagina 8 di 11

9 Si evidenzia quindi che nel caso di n nodi ed r rami: le incognite sono pari al numero di rami r si scrivono n-1 equazioni ai nodi si scrivono r-n-1 equazioni alle maglie quindi in totale sono r equazioni in r incognite pertanto è ammessa una sola soluzione. Fig.4: Circuito esemplificativo per l'equazione delle correnti e per l'equazione alla maglia Azioni da eseguire: 1. segnare le correnti in ogni ramo, 2. scrivere le equazioni ai nodi, n-1 equazioni 3. segnare il verso di percorrenza delle maglie, 4. scrivere le equazioni alle maglie, r-n-1 equazioni. ESERCIZIO DI ESEMPIO Assegnato il circuito di figura 4, calcolare tensione e corrente relativa ad ogni componente. I valori dei componenti sono: V 1 = 10 V; V 2 = 20 V; V 3 = 40 V; R 1 = 10 kω; R 2 = 90 kω; R 3 = 200 kω; R 4 = 10 kω; R 5 = 40 kω; Esercizi da svolgere figura Esercizio 3 Calcolare tensione e corrente relative ad ogni componente del circuito di figura Esercizio 3. reti elettriche e principi.doc Prof. I. Verde Pagina 9 di 11

10 V 1 = 10 V; V 2 = 20 V; V 3 = 40 V; R 1 = 10 kω; R 2 = 90 kω; R 3 = 200 kω; R 4 = 10 kω; Calcolare tensione e corrente relativa ad ogni componente nel circuito di figura Esercizio 4. V 1 = 10 V; V 2 = 20 V; R 1 = 10 kω; R 2 = 90 kω; R 3 = 200 kω; R 4 = 10 kω; R 5 = 90 kω; R 6 = 200 kω; R 7 = 10 kω; figura Esercizio 4 Calcolare tensione e corrente relativa ad ogni componente nel circuito di figura Esercizio 5. V 1 = 10 V; V 2 = 20 V; V 3 = 40 V; R 1 = 10 kω; R 2 = 90 kω; R 3 = 200 kω; R 4 = 10 kω; R 5 = 90 kω; R 6 = 200 kω; R 7 = 10 kω; R 8 = 10 kω; R 9 = 90 kω; figura Esercizio 5 reti elettriche e principi.doc Prof. I. Verde Pagina 10 di 11

11 Il partitore di tensione Molto spesso nella pratica si usa una formula nota come formula del partitore di tensione. Questa è semplicemente una conseguenza della legge di Ohm generalizzata e dei principi di Kirchhoff applicati ad un particolare circuito, detto partitore di tensione, che si presenta come quello di figura 5. Fig.5: Un semplice partitore di tensione Il nome stesso suggerisce il comportamento del circuito, cioè quello di "partizionare" (suddividere) la tensione V, ai capi delle due resistenze, in due tensioni V1 e V2. Tramite Kirchhoff scriviamo l'equazione alla maglia V - V 1 - V 2 = 0 da cui V = R 1 I + R 2 I E poiché la corrente I vale: I = V / (R 1 +R 2 ) si ha che V = V R 1 + V R 2 appare quindi chiaro che V1 e V2 valgono rispettivamente R 1 +R 2 R 1 +R 2 V 1 = V R 1 / (R 1 +R 2 ) V 2 = V R 2 / (R 1 +R 2 ) che rappresentano, appunto, la formula del partitore di tensione. Ciò significa che per calcolare la tensione VR su una resistenza R facente parte di una serie di resistenze sottoposte a tensione V, è sufficiente moltiplicare V per il rapporto tra la resistenza stessa e la resistenza totale del circuito. Applicazioni Quando si ha una tensione a disposizione e se ne richiede un altra più piccola, si può usare il partitore di tensione. Il problema da risolvere sarà quindi del tipo: si ha una tensione di 12 V si vuole una tensione di 4 V, progettare il circuito. Utilizzando il partitore di tensione la relazione che ci interessa è: Vu = Vi R2 / (R1+R2) in cui si hanno le incognite R1 ed R2 pertanto si fissa il valore di una resistenza e si calcolerà il valore dell altra. Si avrà quindi un problema che presenta un equazione con due incognite, quindi ammette infinite soluzioni, pertanto si fissa un incognita a piacere e si calcola l altra. Nella realtà come fissare il valore delle resistenze dipende dal problema specifico. Questo tipo di soluzione è di fatto praticabile solo nel caso in cui si ha a che fare con un utilizzatore che assorbe correnti contenute altrimenti è facile capire, dai valori che risultano, che il circuito non è di fatto utilizzabile. reti elettriche e principi.doc Prof. I. Verde Pagina 11 di 11

Elettronica Analogica. Luxx Luca Carabetta. Nello studio dell elettronica analogica ci serviamo di alcune grandezze:

Elettronica Analogica. Luxx Luca Carabetta. Nello studio dell elettronica analogica ci serviamo di alcune grandezze: Grandezze elettriche Serie e Parallelo Legge di Ohm, Principi di Kirchhoff Elettronica Analogica Luxx Luca Carabetta Premessa L elettronica Analogica, si appoggia su segnali che possono avere infiniti

Dettagli

Circuiti in Corrente Continua (direct current=dc) RIASSUNTO: La carica elettrica La corrente elettrica Il Potenziale Elettrico La legge di Ohm Il

Circuiti in Corrente Continua (direct current=dc) RIASSUNTO: La carica elettrica La corrente elettrica Il Potenziale Elettrico La legge di Ohm Il Circuiti in Corrente Continua direct currentdc ASSUNTO: La carica elettrica La corrente elettrica l Potenziale Elettrico La legge di Ohm l resistore codice dei colori esistenze in serie ed in parallelo

Dettagli

1 LA CORRENTE ELETTRICA CONTINUA

1 LA CORRENTE ELETTRICA CONTINUA 1 LA CORRENTE ELETTRICA CONTINUA Un conduttore ideale all equilibrio elettrostatico ha un campo elettrico nullo al suo interno. Cosa succede se viene generato un campo elettrico diverso da zero al suo

Dettagli

Circuiti Elettrici. Elementi di circuito: resistori, generatori di differenza di potenziale

Circuiti Elettrici. Elementi di circuito: resistori, generatori di differenza di potenziale Circuiti Elettrici Corrente elettrica Legge di Ohm Elementi di circuito: resistori, generatori di differenza di potenziale Leggi di Kirchhoff Elementi di circuito: voltmetri, amperometri, condensatori

Dettagli

Circuiti Elettrici. Schema riassuntivo. Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante

Circuiti Elettrici. Schema riassuntivo. Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante Circuiti Elettrici Schema riassuntivo Leggi fondamentali dei circuiti elettrici lineari Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante La conseguenza

Dettagli

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it L INTENSITÀ DELLA CORRENTE ELETTRICA Consideriamo una lampadina inserita in un circuito elettrico costituito da fili metallici ed un interruttore.

Dettagli

ESERCIZI DI ELETTROTECNICA

ESERCIZI DI ELETTROTECNICA 1 esercizi in corrente continua completamente svolti ESERCIZI DI ELETTROTECNICA IN CORRENTE CONTINUA ( completamente svolti ) a cura del Prof. Michele ZIMOTTI 1 2 esercizi in corrente continua completamente

Dettagli

PRINCIPI BASILARI DI ELETTROTECNICA

PRINCIPI BASILARI DI ELETTROTECNICA PRINCIPI BASILARI DI ELETTROTECNICA Prerequisiti - Impiego di Multipli e Sottomultipli nelle equazioni - Equazioni lineari di primo grado e capacità di ricavare le formule inverse - nozioni base di fisica

Dettagli

Unità 12. La corrente elettrica

Unità 12. La corrente elettrica Unità 12 La corrente elettrica L elettricità risiede nell atomo Modello dell atomo: al centro c è il nucleo formato da protoni e neutroni ben legati tra di loro; in orbita intorno al nucleo si trovano

Dettagli

LABORATORIO I-A. Cenni sui circuiti elettrici in corrente continua

LABORATORIO I-A. Cenni sui circuiti elettrici in corrente continua 1 UNIVERSITÀ DIGENOVA FACOLTÀDISCIENZEM.F.N. LABORATORIO IA Cenni sui circuiti elettrici in corrente continua Anno Accademico 2001 2002 2 Capitolo 1 Richiami sui fenomeni elettrici Esperienze elementari

Dettagli

Correnti e circuiti a corrente continua. La corrente elettrica

Correnti e circuiti a corrente continua. La corrente elettrica Correnti e circuiti a corrente continua La corrente elettrica Corrente elettrica: carica che fluisce attraverso la sezione di un conduttore in una unità di tempo Q t Q lim t 0 t ntensità di corrente media

Dettagli

Elementi di analisi delle reti elettriche. Sommario

Elementi di analisi delle reti elettriche. Sommario I.T.I.S. "Antonio Meucci" di Roma Elementi di analisi delle reti elettriche a cura del Prof. Mauro Perotti Anno Scolastico 2009-2010 Sommario 1. Note sulla simbologia...4 2. Il generatore (e l utilizzatore)

Dettagli

VERIFICA DEI PRINCIPI DI KIRCHHOFF, DEL PRINCIPIO DI SOVRAPPOSIZIONE DEGLI EFFETTI, DEL TEOREMA DI MILLMAN

VERIFICA DEI PRINCIPI DI KIRCHHOFF, DEL PRINCIPIO DI SOVRAPPOSIZIONE DEGLI EFFETTI, DEL TEOREMA DI MILLMAN FCA D PNCP D KCHHOFF, DL PNCPO D SOAPPOSZON DGL FFTT, DL TOMA D MLLMAN Un qualunque circuito lineare (in cui agiscono più generatori) può essere risolto applicando i due principi di Kirchhoff e risolvendo

Dettagli

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t;

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t; CAPITOLO CIRCUITI IN CORRENTE CONTINUA Definizioni Dato un conduttore filiforme ed una sua sezione normale S si definisce: Corrente elettrica i Q = (1) t dove Q è la carica che attraversa la sezione S

Dettagli

Capitolo 7. Circuiti magnetici

Capitolo 7. Circuiti magnetici Capitolo 7. Circuiti magnetici Esercizio 7.1 Dato il circuito in figura 7.1 funzionante in regime stazionario, sono noti: R1 = 7.333 Ω, R2 = 2 Ω, R3 = 7 Ω δ1 = 1 mm, δ2 = 1.3 mm, δ3 = 1.5 mm Α = 8 cm 2,

Dettagli

LA CORRENTE ELETTRICA CONTINUA

LA CORRENTE ELETTRICA CONTINUA LA CORRENTE ELETTRICA CONTINUA (Fenomeno, indipendente dal tempo, che si osserva nei corpi conduttori quando le cariche elettriche fluiscono in essi.) Un conduttore metallico è in equilibrio elettrostatico

Dettagli

Corrente elettrica (regime stazionario)

Corrente elettrica (regime stazionario) Corrente elettrica (regime stazionario) Metalli Corrente elettrica Legge di Ohm Resistori Collegamento di resistori Generatori di forza elettromotrice Metalli Struttura cristallina: ripetizione di unita`

Dettagli

Analogia tra il circuito elettrico e il circuito idraulico

Analogia tra il circuito elettrico e il circuito idraulico UNIVERSITÁ DEGLI STUDI DELL AQUILA Scuola di Specializzazione per la Formazione degli Insegnanti nella Scuola Secondaria Analogia tra il circuito elettrico e il circuito idraulico Prof. Umberto Buontempo

Dettagli

La corrente elettrica

La corrente elettrica La corrente elettrica La corrente elettrica è un movimento di cariche elettriche che hanno tutte lo stesso segno e si muovono nello stesso verso. Si ha corrente quando: 1. Ci sono cariche elettriche; 2.

Dettagli

La corrente elettrica

La corrente elettrica PROGRAMMA OPERATIVO NAZIONALE Fondo Sociale Europeo "Competenze per lo Sviluppo" Obiettivo C-Azione C1: Dall esperienza alla legge: la Fisica in Laboratorio La corrente elettrica Sommario 1) Corrente elettrica

Dettagli

I.T.I. A. MALIGNANI UDINE CLASSI 3 e ELT MATERIA: ELETTROTECNICA PROGRAMMA PREVENTIVO

I.T.I. A. MALIGNANI UDINE CLASSI 3 e ELT MATERIA: ELETTROTECNICA PROGRAMMA PREVENTIVO CORRENTE CONTINUA: FENOMENI FISICI E PRINCIPI FONDAMENTALI - Richiami sulle unità di misura e sui sistemi di unità di misura. - Cenni sulla struttura e sulle proprietà elettriche della materia. - Le cariche

Dettagli

Elettronica I Grandezze elettriche e unità di misura

Elettronica I Grandezze elettriche e unità di misura Elettronica I Grandezze elettriche e unità di misura Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

Le Armoniche INTRODUZIONE RIFASAMENTO DEI TRASFORMATORI - MT / BT

Le Armoniche INTRODUZIONE RIFASAMENTO DEI TRASFORMATORI - MT / BT Le Armoniche INTRODUZIONE Data una grandezza sinusoidale (fondamentale) si definisce armonica una grandezza sinusoidale di frequenza multipla. L ordine dell armonica è il rapporto tra la sua frequenza

Dettagli

LA CORRENTE ELETTRICA

LA CORRENTE ELETTRICA L CORRENTE ELETTRIC H P h Prima che si raggiunga l equilibrio c è un intervallo di tempo dove il livello del fluido non è uguale. Il verso del movimento del fluido va dal vaso a livello maggiore () verso

Dettagli

Elettronica Circuiti nel dominio del tempo

Elettronica Circuiti nel dominio del tempo Elettronica Circuiti nel dominio del tempo Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica Circuiti nel dominio del tempo 14 aprile 211

Dettagli

Esercizi e considerazioni pratiche sulla legge di ohm e la potenza

Esercizi e considerazioni pratiche sulla legge di ohm e la potenza Esercizi e considerazioni pratiche sulla legge di ohm e la potenza Come detto precedentemente la legge di ohm lega la tensione e la corrente con un altro parametro detto "resistenza". Di seguito sono presenti

Dettagli

La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente

La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente Unità G16 - La corrente elettrica continua La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente 1 Lezione 1 - La corrente elettrica

Dettagli

Curve di risonanza di un circuito

Curve di risonanza di un circuito Zuccarello Francesco Laboratorio di Fisica II Curve di risonanza di un circuito I [ma] 9 8 7 6 5 4 3 0 C = 00 nf 0 5 0 5 w [KHz] RLC - Serie A.A.003-004 Indice Introduzione pag. 3 Presupposti Teorici 5

Dettagli

La corrente elettrica

La corrente elettrica Unità didattica 8 La corrente elettrica Competenze Costruire semplici circuiti elettrici e spiegare il modello di spostamento delle cariche elettriche. Definire l intensità di corrente, la resistenza e

Dettagli

CAPITOLO 1. Motore a corrente continua ad eccitazione indipendente

CAPITOLO 1. Motore a corrente continua ad eccitazione indipendente CAPITOLO Motore a corrente continua ad eccitazione indipendente. - Struttura e principio di funzionamento Una rappresentazione schematica della struttura di un motore a corrente continua a due poli è mostrata

Dettagli

FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE. a cura di G. SIMONELLI

FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE. a cura di G. SIMONELLI FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE a cura di G. SIMONELLI Nel motore a corrente continua si distinguono un sistema di eccitazione o sistema induttore che è fisicamente

Dettagli

Elettronica delle Telecomunicazioni Esercizi cap 2: Circuiti con Ampl. Oper. 2.1 Analisi di amplificatore AC con Amplificatore Operazionale reale

Elettronica delle Telecomunicazioni Esercizi cap 2: Circuiti con Ampl. Oper. 2.1 Analisi di amplificatore AC con Amplificatore Operazionale reale 2. Analisi di amplificatore AC con Amplificatore Operazionale reale Un amplificatore è realizzato con un LM74, con Ad = 00 db, polo di Ad a 0 Hz. La controreazione determina un guadagno ideale pari a 00.

Dettagli

Statiche se la trasformazione dell energia avviene senza organi in movimento (es. Trasformatori.)

Statiche se la trasformazione dell energia avviene senza organi in movimento (es. Trasformatori.) Macchine elettriche parte Macchine elettriche Generalità Definizioni Molto spesso le forme di energia in natura non sono direttamente utilizzabili, ma occorre fare delle conversioni. Un qualunque sistema

Dettagli

CAPITOLO I CORRENTE ELETTRICA. Copyright ISHTAR - Ottobre 2003 1

CAPITOLO I CORRENTE ELETTRICA. Copyright ISHTAR - Ottobre 2003 1 CAPITOLO I CORRENTE ELETTRICA Copyright ISHTAR - Ottobre 2003 1 INDICE CORRENTE ELETTRICA...3 INTENSITÀ DI CORRENTE...4 Carica elettrica...4 LE CORRENTI CONTINUE O STAZIONARIE...5 CARICA ELETTRICA ELEMENTARE...6

Dettagli

Istituto Superiore Vincenzo Cardarelli Istituto Tecnico per Geometri Liceo Artistico A.S. 2014 2015

Istituto Superiore Vincenzo Cardarelli Istituto Tecnico per Geometri Liceo Artistico A.S. 2014 2015 Istituto Superiore Vincenzo Cardarelli Istituto Tecnico per Geometri Liceo Artistico A.S. 2014 2015 Piano di lavoro annuale Materia : Fisica Classi Quinte Blocchi tematici Competenze Traguardi formativi

Dettagli

Programmazione Modulare

Programmazione Modulare Indirizzo: BIENNIO Programmazione Modulare Disciplina: FISICA Classe: 2 a D Ore settimanali previste: (2 ore Teoria 1 ora Laboratorio) Prerequisiti per l'accesso alla PARTE D: Effetti delle forze. Scomposizione

Dettagli

Strumenti Elettronici Analogici/Numerici

Strumenti Elettronici Analogici/Numerici Facoltà di Ingegneria Università degli Studi di Firenze Dipartimento di Elettronica e Telecomunicazioni Strumenti Elettronici Analogici/Numerici Ing. Andrea Zanobini Dipartimento di Elettronica e Telecomunicazioni

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

TRANSITORI BJT visto dal basso

TRANSITORI BJT visto dal basso TRANSITORI BJT visto dal basso Il transistore BJT viene indicato con il simbolo in alto a sinistra, mentre nella figura a destra abbiamo riportato la vista dal basso e laterale di un dispositivo reale.

Dettagli

nica Cagliari ) m Viene detto (1) Dal sistema dell energia Un possibile

nica Cagliari ) m Viene detto (1) Dal sistema dell energia Un possibile Viene detto sistema polifase un sistema costituito da più tensioni o da più correnti sinusoidali, sfasate l una rispetto all altra. Un sistema polifase è simmetrico quando le grandezze sinusoidali hanno

Dettagli

1. Determinazione del valore di una resistenza mediante misura voltamperometrica

1. Determinazione del valore di una resistenza mediante misura voltamperometrica 1. Determinazione del valore di una resistenza mediante misura voltamperometrica in corrente continua Si hanno a disposizione : 1 alimentatore di potenza in corrente continua PS 2 multimetri digitali 1

Dettagli

MODELLIZZAZIONE, CONTROLLO E MISURA DI UN MOTORE A CORRENTE CONTINUA

MODELLIZZAZIONE, CONTROLLO E MISURA DI UN MOTORE A CORRENTE CONTINUA MODELLIZZAZIONE, CONTROLLO E MISURA DI UN MOTORE A CORRENTE CONTINUA ANDREA USAI Dipartimento di Informatica e Sistemistica Antonio Ruberti Andrea Usai (D.I.S. Antonio Ruberti ) Laboratorio di Automatica

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca

ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca Trascrizione del testo e redazione delle soluzioni di Paolo Cavallo. La prova Il candidato svolga una relazione

Dettagli

ALLEGATO al verbale della riunione del 3 Settembre 2010, del Dipartimento di Elettrotecnica e Automazione.

ALLEGATO al verbale della riunione del 3 Settembre 2010, del Dipartimento di Elettrotecnica e Automazione. ALLEGATO al verbale della riunione del 3 Settembre 2010, del Dipartimento di Elettrotecnica e Automazione. COMPETENZE MINIME- INDIRIZZO : ELETTROTECNICA ED AUTOMAZIONE 1) CORSO ORDINARIO Disciplina: ELETTROTECNICA

Dettagli

Prof. Antonino Cucinotta LABORATORIO DI ELETTRONICA CIRCUITI RADDRIZZATORI

Prof. Antonino Cucinotta LABORATORIO DI ELETTRONICA CIRCUITI RADDRIZZATORI Materiale e strumenti: Prof. Antonino Cucinotta LABORATORIO DI ELETTRONICA CIRCUITI RADDRIZZATORI -Diodo raddrizzatore 1N4001 (50 V 1A) -Ponte raddrizzatore da 50 V 1 A -Condensatori elettrolitici da 1000

Dettagli

IL TRASFORMATORE Prof. S. Giannitto Il trasformatore è una macchina in grado di operare solo in corrente alternata, perché sfrutta i principi dell'elettromagnetismo legati ai flussi variabili. Il trasformatore

Dettagli

Protezione dai contatti indiretti

Protezione dai contatti indiretti Protezione dai contatti indiretti Se una persona entra in contatto contemporaneamente con due parti di un impianto a potenziale diverso si trova sottoposto ad una tensione che può essere pericolosa. l

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

negativa Forza repulsiva Forza attrattiva

negativa Forza repulsiva Forza attrattiva 1 Corrente elettrica 1.1 Carica elettrica Sebbene le cariche elettriche siano tra i costituenti fondamentali della materia, l elettricità in natura è un fenomeno relativamente raro, se si eccettuano i

Dettagli

Compito di SISTEMI E MODELLI. 19 Febbraio 2015

Compito di SISTEMI E MODELLI. 19 Febbraio 2015 Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.

Dettagli

PROGETTO ALIMENTATORE VARIABILE CON LM 317. di Adriano Gandolfo www.adrirobot.it

PROGETTO ALIMENTATORE VARIABILE CON LM 317. di Adriano Gandolfo www.adrirobot.it PROGETTO ALIMENTATORE VARIABILE CON LM 37 di Adriano Gandolfo www.adrirobot.it L'integrato LM37 Questo integrato, che ha dimensioni identiche a quelle di un normale transistor di media potenza tipo TO.0,

Dettagli

Calcolo delle linee elettriche a corrente continua

Calcolo delle linee elettriche a corrente continua Calcolo delle linee elettriche a corrente continua Il calcolo elettrico delle linee a corrente continua ha come scopo quello di determinare la sezione di rame della linea stessa e la distanza tra le sottostazioni,

Dettagli

Le misure di energia elettrica

Le misure di energia elettrica Le misure di energia elettrica Ing. Marco Laracca Dipartimento di Ingegneria Elettrica e dell Informazione Università degli Studi di Cassino e del Lazio Meridionale Misure di energia elettrica La misura

Dettagli

Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione

Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione 1. L elettrone ha una massa di 9.1 10-31 kg ed una carica elettrica di -1.6 10-19 C. Ricordando che la forza gravitazionale

Dettagli

Esponenziali elogaritmi

Esponenziali elogaritmi Esponenziali elogaritmi Potenze ad esponente reale Ricordiamo che per un qualsiasi numero razionale m n prendere n>0) si pone a m n = n a m (in cui si può sempre a patto che a sia un numero reale positivo.

Dettagli

Analisi in regime sinusoidale (parte V)

Analisi in regime sinusoidale (parte V) Appunti di Elettrotecnica Analisi in regime sinusoidale (parte ) Teorema sul massimo trasferimento di potenza attiva... alore della massima potenza attiva assorbita: rendimento del circuito3 Esempio...3

Dettagli

Inizia presentazione

Inizia presentazione Inizia presentazione Che si misura in ampère può essere generata In simboli A da pile dal movimento di spire conduttrici all interno di campi magnetici come per esempio nelle dinamo e negli alternatori

Dettagli

Campi Elettromagnetici e Circuiti I Circuiti con accoppiamento magnetico

Campi Elettromagnetici e Circuiti I Circuiti con accoppiamento magnetico Facoltà di Ingegneria Università degli studi di Pavia Corso di Laurea Triennale in Ingegneria Elettronica e Informatica Campi Elettromagnetici e Circuiti I Circuiti con accoppiamento magnetico Campi Elettromagnetici

Dettagli

Impianto elettrico nelle applicazioni aeronautiche. ITIS Ferentino Trasporti e Logistica Costruzione del Mezzo Aeronautico

Impianto elettrico nelle applicazioni aeronautiche. ITIS Ferentino Trasporti e Logistica Costruzione del Mezzo Aeronautico Impianto elettrico nelle applicazioni aeronautiche ITIS Ferentino Trasporti e Logistica Costruzione del Mezzo Aeronautico prof. Gianluca Venturi Indice generale Richiami delle leggi principali...2 La prima

Dettagli

LATCH E FLIP-FLOP. Fig. 1 D-latch trasparente per ck=1

LATCH E FLIP-FLOP. Fig. 1 D-latch trasparente per ck=1 LATCH E FLIPFLOP. I latch ed i flipflop sono gli elementi fondamentali per la realizzazione di sistemi sequenziali. In entrambi i circuiti la temporizzazione è affidata ad un opportuno segnale di cadenza

Dettagli

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali 1 Numeri naturali La successione di tutti i numeri del tipo: 0,1, 2, 3, 4,..., n,... forma l'insieme dei numeri naturali, che si indica con il simbolo N. Tale insieme si può disporre in maniera ordinata

Dettagli

FUNZIONAMENTO DI UN BJT

FUNZIONAMENTO DI UN BJT IL TRANSISTOR BJT Il transistor inventato nel 1947, dai ricercatori Bardeen e Brattain, è il componente simbolo dell elettronica. Ideato in un primo momento, come sostituto delle valvole a vuoto per amplificare

Dettagli

LE FUNZIONI MATEMATICHE

LE FUNZIONI MATEMATICHE ALGEBRA LE FUNZIONI MATEMATICHE E IL PIANO CARTESIANO PREREQUISITI l l l l l conoscere il concetto di insieme conoscere il concetto di relazione disporre i dati in una tabella rappresentare i dati mediante

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

1. Scopo dell esperienza.

1. Scopo dell esperienza. 1. Scopo dell esperienza. Lo scopo di questa esperienza è ricavare la misura di tre resistenze il 4 cui ordine di grandezza varia tra i 10 e 10 Ohm utilizzando il metodo olt- Amperometrico. Tale misura

Dettagli

PROGRAMMA SVOLTO. a.s. 2012/2013

PROGRAMMA SVOLTO. a.s. 2012/2013 Liceo Scientifico Statale LEONARDO DA VINCI Via Cavour, 6 Casalecchio di Reno (BO) - Tel. 051/591868 051/574124 - Fax 051/6130834 C. F. 92022940370 E-mail: LSLVINCI@IPERBOLE.BOLOGNA.IT PROGRAMMA SVOLTO

Dettagli

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Trasformazioni Geometriche 1 Roberto Petroni, 2011 1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni

Dettagli

Corso di Informatica Industriale

Corso di Informatica Industriale Corso di Informatica Industriale Prof. Giorgio Buttazzo Dipartimento di Informatica e Sistemistica Università di Pavia E-mail: buttazzo@unipv.it Informazioni varie Telefono: 0382-505.755 Email: Dispense:

Dettagli

EM-LAB MISURE ELETTROMAGNETICHE: DAL LABORATORIO TRADIZIONALE A QUELLO REAL-TIME Una guida alla preparazione delle esperienze

EM-LAB MISURE ELETTROMAGNETICHE: DAL LABORATORIO TRADIZIONALE A QUELLO REAL-TIME Una guida alla preparazione delle esperienze LICEO SCIENTIFICO DI STATO G. GALILEI PESCARA (PE) EM-LAB MISURE ELETTROMAGNETICHE: DAL LABORATORIO TRADIZIONALE A QUELLO REAL-TIME Una guida alla preparazione delle esperienze Laboratorio di fisica on-line

Dettagli

I motori elettrici più diffusi

I motori elettrici più diffusi I motori elettrici più diffusi Corrente continua Trifase ad induzione Altri Motori: Monofase Rotore avvolto (Collettore) Sincroni AC Servomotori Passo Passo Motore in Corrente Continua Gli avvolgimenti

Dettagli

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione METODO DELLE FORZE CORSO DI PROGETTZIONE STRUTTURLE a.a. 010/011 Prof. G. Salerno ppunti elaborati da rch. C. Provenzano 1. METODO DELLE FORZE PER L SOLUZIONE DI STRUTTURE IPERSTTICHE 1.1 Introduzione

Dettagli

PERICOLI DERIVANTI DALLA CORRENTE ELETTRICA

PERICOLI DERIVANTI DALLA CORRENTE ELETTRICA PERICOLI DERIVANTI DALLA CORRENTE ELETTRICA CONTATTI DIRETTI contatti con elementi attivi dell impianto elettrico che normalmente sono in tensione CONTATTI INDIRETTI contatti con masse che possono trovarsi

Dettagli

U.D. 6.2 CONTROLLO DI VELOCITÀ DI UN MOTORE IN CORRENTE ALTERNATA

U.D. 6.2 CONTROLLO DI VELOCITÀ DI UN MOTORE IN CORRENTE ALTERNATA U.D. 6.2 CONTROLLO DI VELOCITÀ DI UN MOTORE IN CORRENTE ALTERNATA Mod. 6 Applicazioni dei sistemi di controllo 6.2.1 - Generalità 6.2.2 - Scelta del convertitore di frequenza (Inverter) 6.2.3 - Confronto

Dettagli

63- Nel Sistema Internazionale SI, l unità di misura del calore latente di fusione è A) J / kg B) kcal / m 2 C) kcal / ( C) D) kcal * ( C) E) kj

63- Nel Sistema Internazionale SI, l unità di misura del calore latente di fusione è A) J / kg B) kcal / m 2 C) kcal / ( C) D) kcal * ( C) E) kj 61- Quand è che volumi uguali di gas perfetti diversi possono contenere lo stesso numero di molecole? A) Quando hanno uguale pressione e temperatura diversa B) Quando hanno uguale temperatura e pressione

Dettagli

Cenni di Elettronica non Lineare

Cenni di Elettronica non Lineare 1 Cenni di Elettronica non Lineare RUOLO DELL ELETTRONICA NON LINEARE La differenza principale tra l elettronica lineare e quella non-lineare risiede nel tipo di informazione che viene elaborata. L elettronica

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

GRUPPO DI CONTINUITA' 12 V - BATTERIA BACKUP

GRUPPO DI CONTINUITA' 12 V - BATTERIA BACKUP GRUPPO DI CONTINUITA' 12 V - BATTERIA BACKUP Salve, questo circuito nasce dall'esigenza pratica di garantire continuità di funzionamento in caso di blackout (accidentale o provocato da malintenzionati)

Dettagli

In un collegamento in parallelo ogni lampadina ha. sorgente di energia (pile) del circuito. i elettrici casalinghi, dove tutti gli utilizzatori sono

In un collegamento in parallelo ogni lampadina ha. sorgente di energia (pile) del circuito. i elettrici casalinghi, dove tutti gli utilizzatori sono I CIRCUITI ELETTRICI di CHIARA FORCELLINI Materiale Usato: 5 lampadine Mammut 4 pile da 1,5 volt (6Volt)+Portabatteria Tester (amperometro e voltmetro) I circuiti in Parallelo In un collegamento in parallelo

Dettagli

Istituto Istruzione Superiore Liceo Scientifico Ghilarza Anno Scolastico 2013/2014 PROGRAMMA DI MATEMATICA E FISICA

Istituto Istruzione Superiore Liceo Scientifico Ghilarza Anno Scolastico 2013/2014 PROGRAMMA DI MATEMATICA E FISICA PROGRAMMA DI MATEMATICA E FISICA Classe VA scientifico MATEMATICA MODULO 1 ESPONENZIALI E LOGARITMI 1. Potenze con esponente reale; 2. La funzione esponenziale: proprietà e grafico; 3. Definizione di logaritmo;

Dettagli

Esperimentatori: Durata dell esperimento: Data di effettuazione: Materiale a disposizione:

Esperimentatori: Durata dell esperimento: Data di effettuazione: Materiale a disposizione: Misura di resistenza con il metodo voltamperometrico. Esperimentatori: Marco Erculiani (n matricola 454922 v.o.) Noro Ivan (n matricola 458656 v.o.) Durata dell esperimento: 3 ore (dalle ore 9:00 alle

Dettagli

GRANDEZZE ALTERNATE SINUSOIDALI

GRANDEZZE ALTERNATE SINUSOIDALI GRANDEZZE ALTERNATE SINUSOIDALI 1 Nel campo elettrotecnico-elettronico, per indicare una qualsiasi grandezza elettrica si usa molto spesso il termine di segnale. L insieme dei valori istantanei assunti

Dettagli

FILTRI PASSIVI. Un filtro elettronico seleziona i segnali in ingresso in base alla frequenza.

FILTRI PASSIVI. Un filtro elettronico seleziona i segnali in ingresso in base alla frequenza. FILTRI PASSIVI Un filtro è un sistema dotato di ingresso e uscita in grado di operare una trasmissione selezionata di ciò che viene ad esso applicato. Un filtro elettronico seleziona i segnali in ingresso

Dettagli

1 n. Intero frazionato. Frazione

1 n. Intero frazionato. Frazione Consideriamo un intero, prendiamo un rettangolo e dividiamolo in sei parti uguali, ciascuna di queste parti rappresenta un sesto del rettangolo, cioè una sola delle sei parti uguali in cui è stato diviso.

Dettagli

2. FONDAMENTI DELLA TECNOLOGIA

2. FONDAMENTI DELLA TECNOLOGIA 2. FONDAMENTI DELLA TECNOLOGIA 2.1 Principio del processo La saldatura a resistenza a pressione si fonda sulla produzione di una giunzione intima, per effetto dell energia termica e meccanica. L energia

Dettagli

ANNO SCOLASTICO 2014/2015 I.I.S. ITCG L. EINAUDI SEZ.ASSOCIATA LICEO SCIENTIFICO G. BRUNO PROGRAMMA DI FISICA. CLASSE: V A Corso Ordinario

ANNO SCOLASTICO 2014/2015 I.I.S. ITCG L. EINAUDI SEZ.ASSOCIATA LICEO SCIENTIFICO G. BRUNO PROGRAMMA DI FISICA. CLASSE: V A Corso Ordinario ANNO SCOLASTICO 2014/2015 I.I.S. ITCG L. EINAUDI SEZ.ASSOCIATA LICEO SCIENTIFICO G. BRUNO PROGRAMMA DI FISICA CLASSE: V A Corso Ordinario DOCENTE: STEFANO GARIAZZO ( Paola Frau dal 6/02/2015) La corrente

Dettagli

Appunti sulle disequazioni

Appunti sulle disequazioni Premessa Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) Appunti sulle disequazioni Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire

Dettagli

Capitolo 4 Protezione dai contatti indiretti.

Capitolo 4 Protezione dai contatti indiretti. Capitolo 4 Protezione dai contatti indiretti. La protezione contro i contatti indiretti consiste nel prendere le misure intese a proteggere le persone contro i pericoli risultanti dal contatto con parti

Dettagli

IMPIANTI FOTOVOLTAICI PER LA PRODUZIONE DI ENERGIA ELETTRICA INSTALLATI SU EDIFICI

IMPIANTI FOTOVOLTAICI PER LA PRODUZIONE DI ENERGIA ELETTRICA INSTALLATI SU EDIFICI IMPIANTI FOTOVOLTAICI PER LA PRODUZIONE DI ENERGIA ELETTRICA INSTALLATI SU EDIFICI LINEE D INDIRIZZO PER LA VALUTAZIONE DEI RISCHI CORRELATI ALL INSTALLAZIONE DI IMPIANTI FOTOVOTAICI SU EDIFICI DESTINATI

Dettagli

LA LEGGE DI OHM La verifica sperimentale della legge di Ohm

LA LEGGE DI OHM La verifica sperimentale della legge di Ohm Laboratorio di.... Scheda n. 2 Livello: Base A.S.... Classe. NOME..... DATA... Prof.... LA LEGGE D OHM La verifica sperimentale della legge di Ohm Conoscenze - Conoscere la legge di Ohm - Conoscere lo

Dettagli

Gli attuatori. Breve rassegna di alcuni modelli o dispositivi di attuatori nel processo di controllo

Gli attuatori. Breve rassegna di alcuni modelli o dispositivi di attuatori nel processo di controllo Gli attuatori Breve rassegna di alcuni modelli o dispositivi di attuatori nel processo di controllo ATTUATORI Definizione: in una catena di controllo automatico l attuatore è il dispositivo che riceve

Dettagli

1. Diodi. figura 1. figura 2

1. Diodi. figura 1. figura 2 1. Diodi 1.1. Funzionamento 1.1.1. Drogaggio 1.1.2. Campo elettrico di buil-in 1.1.3. Larghezza della zona di svuotamento 1.1.4. Curve caratteristiche Polarizzazione Polarizzazione diretta Polarizzazione

Dettagli

APPUNTI DI MACCHINE ELETTRICHE versione 0.7

APPUNTI DI MACCHINE ELETTRICHE versione 0.7 APPUNTI DI MACCHINE ELETTRICHE versione 0.7 11 settembre 2007 2 Indice 1 ASPETTI GENERALI 7 1.1 Introduzione........................................ 7 1.2 Classificazione delle macchine elettriche........................

Dettagli

L'amplificatore operazionale - principi teorici

L'amplificatore operazionale - principi teorici L'amplificatore operazionale - principi teorici Cos'è? L'amplificatore operazionale è un circuito integrato che produce in uscita una tensione pari alla differenza dei suoi due ingressi moltiplicata per

Dettagli

Effetti fisiopatologici della corrente elettrica sul corpo umano

Effetti fisiopatologici della corrente elettrica sul corpo umano Effetti fisiopatologici della corrente elettrica sul corpo umano La vita è regolata a livello cerebrale, muscolare e biologico da impulsi di natura elettrica. Il cervello è collegato ai muscoli ed a tutti

Dettagli

Se log a. b = c allora: A) a b = c B) c a = b C) c b = a D) b c = a E) a c = b. L espressione y = log b x significa che:

Se log a. b = c allora: A) a b = c B) c a = b C) c b = a D) b c = a E) a c = b. L espressione y = log b x significa che: MATEMATICA 2005 Se log a b = c allora: A) a b = c B) c a = b C) c b = a D) b c = a E) a c = b L espressione y = log b x significa che: A) y é l esponente di una potenza di base b e di valore x B) x è l

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

THE WORLD OF DC/DC-CONVERTERS. SCEGLIERE UN CONVERTITORE DC / DC Convertitori DC/DC, quali sono i criteri più importanti?

THE WORLD OF DC/DC-CONVERTERS. SCEGLIERE UN CONVERTITORE DC / DC Convertitori DC/DC, quali sono i criteri più importanti? SCEGLIERE UN CONVERTITORE DC / DC Convertitori DC/DC, quali sono i criteri più importanti? Un convertitore DC / DC è utilizzato, generalmente, quando la tensione di alimentazione disponibile non è compatibile

Dettagli

DE e DTE: PROVA SCRITTA DEL 26 Gennaio 2015

DE e DTE: PROVA SCRITTA DEL 26 Gennaio 2015 DE e DTE: PROVA SCRITTA DEL 26 Gennaio 2015 ESERCIZIO 1 (DE,DTE) Un transistore bipolare n + pn con N Abase = N Dcollettore = 10 16 cm 3, µ n = 0.09 m 2 /Vs, µ p = 0.035 m 2 /Vs, τ n = τ p = 10 6 s, S=1

Dettagli