Appunti di azionamenti elettrici I Anno accademico 2009/2010 Docente Petrella Vieni a trovarmi sul mio sito:

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Appunti di azionamenti elettrici I Anno accademico 2009/2010 Docente Petrella Vieni a trovarmi sul mio sito: www.ivanbortolin.it."

Transcript

1 Appunti di azionamenti elettrici I Anno accademico 2009/2010 Docente Petrella Vieni a trovarmi sul mio sito: Ivan Bortolin

2 2

3 Indice 1 Introduzione Informazioni utili L azionamento elettrico Definizione ed elementi di un azionamento elettrico Motore elettrico Struttura di un motore elettrico Motori elettrici impiegati negli azionamenti Paramentri per la progettazione di un A.E Dimensionamento motore Convertitore statico di potenza Tipologie di convertitori Protezione del convertitore Dispositivo di controllo Controllo in catena Controllo in catena chiusa Motori elettrici Il motore elettrico Principio di causa/effetto in un motore elettrico Forza contro ellettro motrice Scelta tra campo magnetico e campo elettrico Modellistica di un attenuatore elettromeccanico Equazioni elettriche Bilancio di energia Energia magnetica immagazzinata. Coenergia Espressione della coppia elettromagnetica Espressione della coppia nei sistemi lineari (coenergia costante) Calcolo della coppia per l attuatore elementare a riluttanza Modello dinamico dell attuaore elementare a riluttanza Attuatori con avvolgimenti multipli Equazioni elettriche Energia magnetica Espressione della coppia elettromagnetica Sistemi ad induzione

4 4 INDICE 4 Dinamica del sistema motore-carico Equazione di equilibrio meccanico Funzione di trasferimento del sistema meccanico Risposta al gradino di coppia Relazione velocità-posizione Risposta al gradino di velocità Risposta alla rampa di velocità Diagramma a blocchi del sistema meccanico completo Traiettorie tipiche del controllo di moto Traiettorie tipiche del controllo di velocità Traiettorie tipiche del controllo di posizione Azionamenti reversibili Tipi di carico: coppie attive e passive Caratteristiche di carico Modelizzazione dei sistemi meccanici Equazioni per il calcolo dell inerzia equivalente Esempio pignone cremagliera Esempio vite-madrevite Esempio motore con cambio Analogia tra un sistema meccanico e un sistema elettrico Esempio generale Il convertitore statico IL duty-cicle Gli interrutori Quadranti di lavoro dello switch SPST Diodo Silicon Controlled Rectifier Bipolar Junction Transistor (BJT) e Insulated Gate Bipolar Transistor (IGBT) Metal-Oxide Semiconductor Field Effect Transistor (MOSFET) Convertitori DC-DC Convertitore Boost Convertitore Buck Convertitore Buck-Boost Convertitore Chopper Convertitore CC-CA Inverte Calcolo della tensione di uscita Comando ad onda quadra (Six Step) Rappresentazione vettoriale della tensione di uscita Tecniche di modulazione PWM Macchina in corrente continua Struttura e schema elementare Principio di funzionamento Funzionamento da generatore

5 INDICE Funzionamento da motore Determinazione del modello dal punto di vista dei circuiti accoppiati Equazioni elettriche Espressione della coppia Rappresentazione circuitale Dinamica dei motori a C.C Modello dinamico della macchina a c.c Limiti e regioni di funzionamento del motore c.c. ad eccitazione indipendente Controllo in velocità del motore in c.c Introduzione Caratteristica meccanica coppia-velocità Controllo di velocità dei motori in c.c Comportamento dinamico del motore c.c. a flusso costante Azionamenti con motore in corrente continua Struttura dell azionamento Azionamento con il solo anello di velocià Azionamenti con anelli di velocità e di corrente Motore a passo (stepper motor) Motori a passo a riluttanza variabile Motori a passo a magneti permanenti Motori a passo ibridi: struttura e principio di funzionamento Modi di alimentazione dei motori a passo Eccitazione a singola fase Eccitazione a doppia fase Funzionamento a mezzo passo Accuratezza nel posizinamento del motore a passo Specifiche delle caratteristiche di un motore a passo Caratteristiche statiche Caratteristiche dinamiche Il motore sincrono a magneti permanenti (versione light) Stuttura e principio di funzionamento Principio di funzionamento in orientamento di campo Motore trifase a induzione o motore asincrono Struttura e principio di funzionamento Analisi del funzionamento in regime sinusoidale

6 6 INDICE

7 Capitolo 1 Introduzione 1.1 Informazioni utili Docente: Roberto Petrella Sito: Modalità d esame: ˆ ˆ 2 o 3 domande orali (scritte) 1 esercizio 7

8 8 CAPITOLO 1. INTRODUZIONE

9 Capitolo 2 L azionamento elettrico 2.1 Definizione ed elementi di un azionamento elettrico Si definisce Azionamento Elettrico (A.E.) l isieme composto da un motore elettrico e dagli apparati d alimentazione, comando e controllo, avente come scopo la regolazione della coppia, della velocità o della posizione di un albero di trasmissione. Secondo questa definizione, l A.E. risulta individuato da tre elementi fondamentali: - IL MOTORE ELETTRICO - IL CONVERTITORE STATICO DI POTENZA - IL DISPOSITIVO DI CONTROLLO A questi elementi ne va aggiunti un quarto, la cosiddetta - MACCHINA AZIONATA che rappresenta il carico dell azionamento, il quale, pur concettualmente distinto dallo stesso, ne viene a determinare, mediante le proprie caratteristiche meccaniche, tutti gli aspetti essenziali. 2.2 Motore elettrico Il motore elettrico è l elemento che trasforma con elevato rendimento, l energia elettrica proveniente dal convertitore statico nell energia meccanica necessaria per imprimere il moto alla macchina azionata. A seconda del tipo di moto reso disponibile si individuano: - MOTORI ROTANTI - MOTORI LINEARI I primi, più usuali, rendono disponibile il moto come rotazione attorno ad un asse (asse del rotore del motore); i secondi, invece, producono un movimento in direzione lineare (direzione di spostamento del movente del motore). 9

10 10 CAPITOLO 2. L AZIONAMENTO ELETTRICO Figura 2.1: Elementi basilari di un azionamento elettrico 2.3 Struttura di un motore elettrico Dal punto di vista strutturale il motore elettrico può essere suddiviso in due parti strettamente interagenti tra loro: una parte fissa detta statore, ed una parte mobile detta rotore (nel caso di moto rotatorio) o movente (nel caso lineare). Le parti fissa e mobile di un motore interagiscono tramite il campo elettromagnetico prodotto dalla alimentazione del motore. Quest interazione si traduce in una coppia (coppia elettromagnetica) disponibile all asse del rotore o in una forza (forza elettromagnetica) lungo la direzione del movente, rispettivamente per motori rotanti e lineari. Ai fini del progetto del convertitore statico e del dispositivo di controllo, il motore elettrico può essere rappresentato mediante due blocchi funzionali: - La parte elettromagnetica, che rappresenta il comportamento degli avvolgimenti di statore e rotore (nel seguito, per comodità, si farà riferimento ai soli motori rotanti, fermo restando che per i motori lineari valgono analoghe considerazioni) della macchina elettrica, cioè la formazione delle correnti, dei campi magnetici e della coppia elettromagnetica, indicata con C e - la parte meccanica che rappresneta il comportamento meccanico per quanto attiene alla parte mobile del motore, e comprende l inerzia delle masse rotanti e le coppie resistenti interne alla macchina La struttura della parte elettromagnetica dipende fortemente dal tipo di motore elettrico. Dal punto di vista funzionale viene rappresentata da modelli circuitali degli avvolgimenti di statore e rotore, descritti da sistemi di equazioni differenziali (eq. elettriche), e dalla espressione, in funzione delle grandezze elettriche, della coppia elettromagnetica. La struttura della parte meccanica è indipendente dal tipo di motore, e dal punto di vista funzionale è descritta mediante la legge dell equilibrio dinamico (eq. meccaniche). In essa interviene, come disturbo esterno, la macchina azionata in termini di coppia resistente indicata con C r.

11 2.4. MOTORI ELETTRICI IMPIEGATI NEGLI AZIONAMENTI 11 Figura 2.2: Parti di un motore elettrico La parte meccanica e quella elettromagnetica interagiscono tra loro in modo diretto mediante la coppia elettromagnetica ed in modo retroattivo mediante la velocità di rotazione ω, che influenza i circuiti elettrici del motore (a livello di tensioni indotte). 2.4 Motori elettrici impiegati negli azionamenti Negli A.E. vengono impiegati motori elettrici di vario tipo secondo le caratteristiche di moto da imprimere alla macchina azionata e della potenza necessaria. I motori posso essere: 1. A CORRENTE CONTINUA (MCC) 2. ASICRONO (MA) 3. SINCRONO A MAGNETI PERMANENTI (MSMP) 4. SINCRONO LINEARE (MSL) 5. RILUTANZA (MSR O MRC) 6. PASSO-PASSO (MPP) Le prime 5 tipologie di motore sono a movimento continuo, mentre l ultima è a movimento incrementato. Vedremo nel seguito, con l avvento dei dispositivi elettronici di potenza e degli odierni convertitori statici, le caratteristiche di impiego dei principali motori elettrici hanno subito un profondo mutamento. In particolare, per i motori in corrente alternata (sincroni ed asincroni) si usa distingure tra: - motori alimentati direttamente da rete (alimentazione convenzionale)

12 12 CAPITOLO 2. L AZIONAMENTO ELETTRICO - motori per azionamenti o servomotori (alimentazione da convertitore statico) I motori sincroni si dividono a loro volta in: - Senza magneti permanenti (sul rotore) o motori a riluttanza (REL). Sul rotore non sono presenti magneti permanenti e la coppia dipende dal rapporto ferro-aria - Con magneti permanenti (PMSP). I magneti sono sulla superficie del rotore e la coppia dipende dal numero di magneti. - Con magneti permanenti interni o annegati (IPMSM: Interior Permanent Magnet Sincromovie Motor). Sul rotore sono presenti magneti e la coppia dipende dal numero di questi e dal rapporto ferro-aria. Il motore per azionamento, destinato ad effettuare una movimentazione a velocità variabile, presenta in genere delle caratteristiche costruttive diverse dal motori alimentati da rete, destinati a funzionare a velocità circa costante. Nei motori passo-passo, le caratteristiche di funzionamento favoriscono un movimento di tipo incrementale, cioè lo spostamento attraverso posizioni successive di equilibrio distanti di una fissata posizione angolare (il passo ). Sono pertanto preferiti nelle applicazioni di posizionamento. Invece, nei motori in corrente continua (c.c.) ed in corrente alternata (c.a) il movimento ottenuto è di tipo continuo, sono pertanto utilizzati preferibilmente (ma non esclusivamente) per la realizzazione di azionamenti a moto continuo. 2.5 Paramentri per la progettazione di un A.E. 1. Alto rapporto potenza/peso 2. Spinte/coppie elevate 3. Alta velocità di avanzamento 4. Alte accelerazioni 5. Alto rendimento (perdite contenute) 6. Alta affidabilità 7. Controllabilità in remoto 8. Compattezza 9. Semplicità di installazione Il 5 punto è importante relativamente alla generazione di calore che poi dovrà essere dissipato.

13 2.6. DIMENSIONAMENTO MOTORE Motore a sezione larga Motore a sezione stretta Figura 2.3: Tipologie di motori 2.6 Dimensionamento motore Esistono due tipologie di motore: 1. A sezione larga e lunghezza proporzionale corta A sezione stretta e lunghezza proporzionale lunga La prima ha un alta inerzia e quindi utili ad esempio per la trazione e spostamento di carichi, mentre la seconda è a bassa inerzia e quindi utili per spostamenti di precisione. 2.7 Convertitore statico di potenza È l elemento che provvede ad alimentare il motore elettrico in modo da produrre le caratteristiche di moto richieste con le prestazioni desiderate. Esso può essere riguardato come l amplificatore di potenza che provvede a modificare, sotto il governo del dispositivo di controllo, le caratteristiche dell energia elettrica proveniente da una sorgente d alimentazione primaria in modo da adattarle all alimentazione del particolare tipo di motore. La sorgente di alimentazione primaria è in genere la rete in corretente alternata (trifase per azionamenti di potenza superiore a qualche kw, monofase per potenze inferiori ad 1-2 kw); in casi particolari può trattarsi di una rete elettrica in corrente continua (azionamenti per trazione su rotaia) oppure batterie di accumulatori (trazione su ruote). In ogni caso il flusso d energia (indicato con frecce larghe nelle figure di questo capitolo) fluisce generalmente dalla sorgente, attraverso il convertitore, al motore elettrico e quindi alla macchina azionata. In queste circostanze la macchina elettrica funziona da motore (Fig ) In alcune particolari condizioni operative, la macchina elettrica si trova a funzionare da generatore, cioè riceve energia meccanica dalla macchina azionata che si trasforma in energia elettrica disponibile ai morsetti del motore (le macchine elettriche sono reversibili, cioè possono funzionare sia da motore che da generatore ). Per mantenere una buona qualità del moto anche in tali

14 14 CAPITOLO 2. L AZIONAMENTO ELETTRICO circostanze, il convertitore deve essere realizzato in modo da permettere il flusso dell energia anche nel senso dal motore verso l alimentazione. Tale energia, quando non può essere restituita alla sorgente primaria (funzionamento in recupero, Fig ) deve essere opportunamente dissipata (Fig ) Funzionamento da motore Funzionamento da generatore con recupero Funzionamento da generatore con dissipazione Figura 2.4: Flusso d energia in un azionamento elettrico Come si è detto, il convertitore ha lo scopo di modificare ( convertire, appunto) le caratteristiche dell energia disponibile dalla sorgente nella forma più adatta all alimentazione del tipo di motore. Per un azionamento a velocità variabile anche l alimentazione dovrà essere variabile, in particolare: - per un motore in c.c. sarà necessario alimentare con una tensione continua di ampiezza variabile. - per un motore in c.a., sarà necessario alimentare con una tensione alternata variabile in ampiezza ed in frequenza. Questa variazione deve avvenire con poche perdite e con segnali di controllo a basso livello di potenza. Questa esigenza è verificata con i convertitori statici, composti da dispositivi elettronici a semiconduttore di vario tipo quali: - diodi, tiristori, GTO - transistori di potenza (detti anche a commutazione ) bipolari (BJT) o ad effetto di campo (MOSFET) collegati a realizzare strutture di conversione secondo diversi tipi di schemi circuitali 1. 1 Il termine convertitore statico fa riferimento al fatto che, nei moderni convertitori, non sono presenti organi in rotazione. Storicamente, infatti sono stati utilizzati dei convertitori rotanti, composti da più macchine elettriche, per ottenere l alimentazione alternata a frequanza/ampiezza variabile, soluzione, oggi, non più utilizzata nella pratica

15 2.8. TIPOLOGIE DI CONVERTITORI Tipologie di convertitori Dal punto di vista funzionale si hanno le seguenti tipologie di convertitori: - Il CONVERTITORE AC/DC non controllato, noto come raddrizzatore, fornisce in uscita una tensione continua di ampiezza costante a partire dalla rete alternata (di ampiezza e frequenza costante) - Il CONVERTITORE AC/DC controllato, noto come raddrizzatore controllato, fornisce in uscita una tensione continua di ampiezza variabile (mediante opportuno comando) a partire dalla rete alternata. - il CONVERTITORE DC/DC, noto come chopper, fornisce in uscita una tensione continua di ampiezza varibile a partire da una sorgente in continua a tensione costante. - Il CONVERTITORE DC/AC, noto come inverter, fornisce in uscita una tesione alternata di ampiezza e frequenza variabili a partire da un ingresso in continua in ampiezza. - Il CONVERTITORE AC/AC, noto come convertitore di frequenza, fornisce in uscita una tensione alternata di ampiezza e frequenza varibili dalla rete alternata (di ampiezza e frequanza costanti). In genere i convertitori per l alimentazione di motori a velocià variabile sono realizzati impiegando uno o più di tali circuiti, in funzione della sorgente primaria di alimentazione che si ha a disposizione e del tipo di motore che occorre azionare. Il convertitore di frequenza ad esempio, per l alimentazione in alternata di un motore a velocità varibile, viene usualmente realizzato ponendo in cascata un raddrizzatore non controllato ed un inverter, quando di alimenti dalla rete in alternata.

16 16 CAPITOLO 2. L AZIONAMENTO ELETTRICO Convertiotre AC/DC Convertitore AC/DC controllato Convertiotre DC/DC Convertitore DC/AC controllato Convertitore AC/AC controllato

17 2.9. PROTEZIONE DEL CONVERTITORE Protezione del convertitore Ogni convertitore statico è provvisto di un opportuno sistema di protezione, il quale assicura che non accadano condizioni operative tali da danneggiare in modo irreparabile i semiconduttori di potenza. Fra le protezioni, quella di massima corrente riveste un ruolo particolarmente rilevante, in quanto deve disinserire rapidamente l alimentazione quando avvengono gravi disturbi quali corto-circuiti o surriscaldamenti. Nei moderni convertitori la protezione (come anche i sensori che indicano la condizione di guasto) è parte integrante dello stesso, ma concettualemente può essere vista in modo separato, come indicato in Fig. 2.5 Figura 2.5: Dispositivi di protezione Il dispositivo di protezione riceve in ingresso il segnale proveniente dai sensori di guasto (ad esempio relativo alla corrente erogata), ed interviene bloccando il convertitore statico o disinserendo, l alimentazione quando il segnale supera il valore di soglia Dispositivo di controllo È l elemento che determina, istante per istante, il valore delle grandezze di comando del convertitore statico in base alla modalità ed alla strategia di controllo adottate per lo specifico azionamento. Per quanto concerne la modalitá di controllo occorre distinguere tra controllo in catena aperta e controllo in catena chiusa (o in contro-reazione ) Controllo in catena Tale modalità è caratterizzata dal fatto che la grandezza da controllare y non viene misurata, ma si può ragionevolmente ritenere individuata (in modo univoco) dalla grandezza di riferimento y R. L assenza di una misura della grandezza da controllare non assicura che, a regime, questa eguagli il valore di riferimento: lo scostamento dipende dalla presenza di disturbi che intervengono sul sistema controllato, e precisamente: - la caratteristica di carici (statica e dinamica) della macchina azionata; - le cadute di tensione nel convertitore; - le variazioni parametriche nel sistema controllato.

18 18 CAPITOLO 2. L AZIONAMENTO ELETTRICO Figura 2.6: Schema del controllo in catena aperta Con lo schema di controllo in catena aperta questi effetti possono essere, se noti, compensati a livello della legge di controllo, ma se si vuole assicurare scostamento nullo bisogna ricorrere al controllo in catena chiusa Controllo in catena chiusa Figura 2.7: Schema del controllo in catena chiusa In tale modalità la grandezza da controllare è misurata attraverso un opportuno sensore o trasduttore ed è confrontata nel nodo comparatore con la grandezza di riferimento. La loro differenza ( errore o scarto di regolazione) diventa l ingresso del blocco di controllo in catena diretta. Il controllo in catena chiusa è adottato quando con un azionamento in catena aperta non si possono assicurare le prestazioni desiderate nelle regolazioni, in particolare: - si vuole che l errore a regime sia nullo indipendentemente dalle caratteristiche statiche del sistema controllato, dalle escursioni della coppia resistente e dalle variazioni dei parametri del motore; - si desidera che le prestazioni dinamiche (rapidità del seguire le variazioni del riferimento con andamento prefissabile) siano ottimali

19 2.10. DISPOSITIVO DI CONTROLLO 19 Pertanto, gli azionamenti di elevate prestazioni sono del tipo a catena chiusa, indicati come servo-azionamenti Il dispositivo di controllo in senso lato può includere diversi blocchi funzionali (anche in funzione della modalità di controllo adottata): - Un generatore di riferimento, avente il compito di fissare, in ogni istante, il valore delle grandezze di comando dell azionamento, cioè la velocità o la posizione di riferimento (y R ) che le parti mobili debbono assicurare via via nel tempo durante il funzionamento (legge di moto) - Una legge di controllo, avente il compito di tradurre il valore di riferimento in grandezza di comando del convertitore statico. Nella determinazione della legge di controllo occorre individuare opportune tecniche, dette strategie di controllo, allo scopo di ottenere le migliori prestazioni dell azionamento di termini di: - funzionamento dinamico (transitori di velocirà o di posizione) - funzionamento a regime (rendimento) Nell ambito delle strategie di controllo rientrano tecniche quali il controllo v/f del motore asincrono, oppure il controllo vettoriale. Pertanto la strategia di controllo è fortemente legata al tipo di motore elettrico, di convertitore ed alla modalità (catena aperta o contro-reazione) adottata per il controllo. All interno della modalità di controllo in contro-reazione vengono usati regolatori di vario tipo (standard, di stato) per manipolare l errore generato al nodo comparatore. Un unità di ingresso/uscita(i/o), con in ingresso dei segnali provenienti dai trasduttori e dai sensori (necessari al controllo in contro-reazione) ed uscita per il comando del convertitore. Nei moderni azionamenti il dispositivo di controllo è realizzato mediante microprocessori dedicati al controllo dei motori elettrici, ossi disponibili sul mercato in forma di microcontrollori o processori di segnale digitale (DSP, Digital Signal Processors). Figura 2.8: Funzioni del dispositivo di controllo

20 20 CAPITOLO 2. L AZIONAMENTO ELETTRICO In definitiva, lo schema a blocchi di un azionamento elettrico con controllo in catena chiusa è illustrato nella figura seguente: Figura 2.9: Schema a blocchi di un azionamneto elettrico Le frecce tratteggiate indicano i fenomeni di contro-reazione tra la macchina azionata ed il motore elettrico (dovuti alla caratteristica statica e dinamica del carico, o al collegamento tramite albero elastico), la retroazione del motore sul convertitore (cadute di tensione) e di questo sulla sorgente primaria (disturbi elettromagnetici sulla rete elettrica). Il flusso di potenza della sorgente, attraverso il convertitore al motore ed alla macchina azionata è indicato con frecce larghe. I segnali di controllo (bassa potenza) a tratto continuo, quelli di protezione con tratto-punto.

21 Capitolo 3 Motori elettrici 3.1 Il motore elettrico Il motore converte potenza elettrica in meccanica, il convertitore elettronico converte potenza meccanica in potenza elettrica. Si ha feedback quando il carico influisce sul motore e quest ultimo influisce sul convertitore. Questo può essere anche interpretato come un flusso di potenza al contrario, quindi parleremo di generatore (eolico, fotovoltaico, Diesel) di corrente elettrica. Per i generatori servono necessariamente dei convertitori bidirezionali. Ad esempio nei generatori eolici le pale girano a un ω non nota (dipendente dal vento), ma la rete elettrica ha caratteristiche precise (necessita di un convertitore) Gli elementi che vanno a costituire il motore sono: - Lo statore: è il componente fermo composto da avvolgimenti in rame. Fig: Il rotore: collegato ad un albero, è il componente che ruota. Sostenuto dentro allo statore da dei cuscinetti che gli consentono di girare. Fig: Rotore Statore Figura 3.1: Componenti di un motore elettrico 3.2 Principio di causa/effetto in un motore elettrico Se controlliamo la corrente negli avvolgimenti, controlliamo la coppia 21

22 22 CAPITOLO 3. MOTORI ELETTRICI Forza contro ellettro motrice La forza contro elettromotrice dipende dalla variazione di flusso concatenato: F CEM = dψ dt La variazione del flusso concatenato dipende da: (3.1) - Variazione del campo magnetico B - Variazione della posizione della spira Figura 3.2: Spira immersa in un campo magnetico Dimostreremo che la coppia C è proporzionale alla corrente i e che la pulsazione ω è proporzionale alla tensione Scelta tra campo magnetico e campo elettrico Per i motori elettrici si utilizza il campo magnetico (tranne in casi particolari) perchè la sua densità di pressione N è di diversi ordini di grandezza maggiore rispetto a quella del campo elettrico: m2 p = 1 B 2 = N B = 1T (3.2) 2 µ 0 m 2 p = 1 2 εe2 4 N E = 10 5 V (3.3) m 2 cm

23 3.3. MODELLISTICA DI UN ATTENUATORE ELETTROMECCANICO 23 Figura 3.3: Attuatore a riluttanza 3.3 Modellistica di un attenuatore elettromeccanico Per introdurre i fondamenti della conversione elettromeccanica dell energia consideriamo la struttura elementare illustrata in Fig. 3.3, nota come attuatore elementare a riluttanza. In essa sono individuabili gli elementi di base dei sistemi di conversione elettromeccanici: una struttura fissa (statore) ed una mobile (rotore) in materiale ferromagnetico; degli avvolgimenti che hanno il compito di generare il flusso magnetico necessario al funzionamento del sistema, ed uno spazio in aria (traferro) disposto tra statore e rotore per consentire il movimento. Nel caso particolare dell attuatore a riluttanza abbiamo un solo avvolgimento disposto sullo statore ed un rotore sagomato (non cilindrico). Il rotore non essendo cilindrico è anisotropo, cioé ha caratteristiche magnetiche che dipendono dalla direzione lungo la quale esse sono considerate. Una volta alimentato l avvolgimento si statore, si genera un flusso (detto principale ) che oltrepassa il traferro, attraversa il rotore e si chiude attraverso lo statore. Per effetto del flusso si genera un coppia (coppia elettromagnetica) che tende ad allineare il rotore con la posizione θ r = π/2 indicata in figura (posizione allineata). In questa trattazione ci proponiamo di collegare, sia in termini qualitativi che analitici, la coppia alle grandezze elettriche che la generano (flusso di corrente) Equazioni elettriche Dal punto di vista elettrico l equazione che descrive il sistema è rappresentata dall equilibrio delle tensioni nell avvolgimento: v = Ri + e (3.4) dove: - v tensione applicata all avvolgimento (in Volt, [V]) - i corrente nell avvolgimento (in Ampere, [A]) - R resistenza dell avvolgimento (in Ohm, [Ω])

24 24 CAPITOLO 3. MOTORI ELETTRICI - e tensione indotta nell avvolgimento, che in base alla legge di Faraday-Neumann-Lenz scritta con la convezione dell utilizzatore è data dalla (3.5) e = dψ (3.5) dt dove Ψ è il flusso concatenato con l avvolgimento 1 (in Weber, [Wb]) È interessante comprendere, qualitativamente, la relazione esistente tra il flusso concatenato e la corrente. Come noto, tali grandezze sono legate dalla Legge di Hopkinson dei circuiti magnetici: Ni = RΦ, N 2 i = RΨ (3.6) dove N è il numero di spire, Φ il flusso principale ed R è la riluttanza del circuito magnetico, definita dalla: R = 1 L (3.7) µ S essendo L ed S rispettivamente la lunghezza e la sezione del tubo di flusso, µ la permeabilità del mezzo. Nel caso in esame, la riluttanza del circuito magnetico dipende dalla posizione del rotore. In particolare al variare di θ r varierà la lunghezza del percorso in aria (che presenta una permeabilità piccola e costante) rispetto a quella del percorso in ferro (che presenta una permeabilità elevata, ma variabile per effetto del fenomeno della saturazione). Di conseguenza si può affermare che nella posizione non allineata (θ r = 0) Fig:?? in cui il traferro è grande, il flusso (a pari corrente) sarà più piccolo ma varierà linearmente con la corrente e di conseguenza R sarà molto grande; mentre nella posizione allineata (θ r = π/2) Fig.3.4, dove invece il traferro è piccolo, il flusso sarà più grande, ma soggetto a saturazione per correnti elevate e di conseguenza la R sarà molto piccola Rotore a θ r = Rotore a θ r = π/2 Figura 3.4: Possibili posizioni del rotore 1 Il flusso concatenato è esprimibile come Ψ = NΦ, dove Φ è il flusso principale, N il numero di spire dell avvolgimento

FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE. a cura di G. SIMONELLI

FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE. a cura di G. SIMONELLI FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE a cura di G. SIMONELLI Nel motore a corrente continua si distinguono un sistema di eccitazione o sistema induttore che è fisicamente

Dettagli

U.D. 6.2 CONTROLLO DI VELOCITÀ DI UN MOTORE IN CORRENTE ALTERNATA

U.D. 6.2 CONTROLLO DI VELOCITÀ DI UN MOTORE IN CORRENTE ALTERNATA U.D. 6.2 CONTROLLO DI VELOCITÀ DI UN MOTORE IN CORRENTE ALTERNATA Mod. 6 Applicazioni dei sistemi di controllo 6.2.1 - Generalità 6.2.2 - Scelta del convertitore di frequenza (Inverter) 6.2.3 - Confronto

Dettagli

Macchine rotanti. Premessa

Macchine rotanti. Premessa Macchine rotanti Premessa Sincrono, asincrono, a corrente continua, brushless sono parecchi i tipi di motori elettrici. Per ognuno teoria e formule diverse. Eppure la loro matrice fisica è comune. Unificare

Dettagli

I motori elettrici più diffusi

I motori elettrici più diffusi I motori elettrici più diffusi Corrente continua Trifase ad induzione Altri Motori: Monofase Rotore avvolto (Collettore) Sincroni AC Servomotori Passo Passo Motore in Corrente Continua Gli avvolgimenti

Dettagli

Il motore a corrente continua, chiamato così perché per. funzionare deve essere alimentato con tensione e corrente

Il motore a corrente continua, chiamato così perché per. funzionare deve essere alimentato con tensione e corrente 1.1 Il motore a corrente continua Il motore a corrente continua, chiamato così perché per funzionare deve essere alimentato con tensione e corrente costante, è costituito, come gli altri motori da due

Dettagli

Circuiti Elettrici. Schema riassuntivo. Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante

Circuiti Elettrici. Schema riassuntivo. Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante Circuiti Elettrici Schema riassuntivo Leggi fondamentali dei circuiti elettrici lineari Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante La conseguenza

Dettagli

Motori Elettrici. Principi fisici. Legge di Lenz: se in un circuito elettrico il flusso concatenato varia nel tempo si genera una tensione

Motori Elettrici. Principi fisici. Legge di Lenz: se in un circuito elettrico il flusso concatenato varia nel tempo si genera una tensione Motori Elettrici Principi fisici Legge di Lenz: se in un circuito elettrico il flusso concatenato varia nel tempo si genera una tensione Legge di Biot-Savart: un conduttore percorso da corrente di intensità

Dettagli

MODELLIZZAZIONE, CONTROLLO E MISURA DI UN MOTORE A CORRENTE CONTINUA

MODELLIZZAZIONE, CONTROLLO E MISURA DI UN MOTORE A CORRENTE CONTINUA MODELLIZZAZIONE, CONTROLLO E MISURA DI UN MOTORE A CORRENTE CONTINUA ANDREA USAI Dipartimento di Informatica e Sistemistica Antonio Ruberti Andrea Usai (D.I.S. Antonio Ruberti ) Laboratorio di Automatica

Dettagli

MACCHINA SINCRONA TRIFASE

MACCHINA SINCRONA TRIFASE MACCHIA SICROA TRIFASE + + + + + + + + + + + + + + + + + + L avvolgimento di eccitazione, percorso dalla corrente continua i e, crea una f.m.m. al traferro e quindi un campo magnetico in modo tale che

Dettagli

Statiche se la trasformazione dell energia avviene senza organi in movimento (es. Trasformatori.)

Statiche se la trasformazione dell energia avviene senza organi in movimento (es. Trasformatori.) Macchine elettriche parte Macchine elettriche Generalità Definizioni Molto spesso le forme di energia in natura non sono direttamente utilizzabili, ma occorre fare delle conversioni. Un qualunque sistema

Dettagli

CONTROLLO SCALARE V/Hz DEL MOTORE ASINCRONO. Prof. Silvio Stasi Dott. Ing. Nadia Salvatore Dott. Ing. Michele Debenedictis

CONTROLLO SCALARE V/Hz DEL MOTORE ASINCRONO. Prof. Silvio Stasi Dott. Ing. Nadia Salvatore Dott. Ing. Michele Debenedictis CONTROLLO SCALARE V/Hz DEL MOTORE ASINCRONO SCHEMA DELL AZIONAMENTO A CATENA APERTA AZIONAMENTO L azionamento a catena aperta comprende il motore asincrono e il relativo convertitore statico che riceve

Dettagli

APPUNTI DI MACCHINE ELETTRICHE versione 0.7

APPUNTI DI MACCHINE ELETTRICHE versione 0.7 APPUNTI DI MACCHINE ELETTRICHE versione 0.7 11 settembre 2007 2 Indice 1 ASPETTI GENERALI 7 1.1 Introduzione........................................ 7 1.2 Classificazione delle macchine elettriche........................

Dettagli

CAPITOLO 1. Motore a corrente continua ad eccitazione indipendente

CAPITOLO 1. Motore a corrente continua ad eccitazione indipendente CAPITOLO Motore a corrente continua ad eccitazione indipendente. - Struttura e principio di funzionamento Una rappresentazione schematica della struttura di un motore a corrente continua a due poli è mostrata

Dettagli

INVERTER per MOTORI ASINCRONI TRIFASI

INVERTER per MOTORI ASINCRONI TRIFASI APPUNTI DI ELETTROTECNICA INVERTER per MOTORI ASINCRONI TRIFASI A cosa servono e come funzionano A cura di Marco Dal Prà www.marcodalpra.it Versione n. 3.3 - Marzo 2013 Inverter Guida Tecnica Ver 3.3 Pag.

Dettagli

1 LA CORRENTE ELETTRICA CONTINUA

1 LA CORRENTE ELETTRICA CONTINUA 1 LA CORRENTE ELETTRICA CONTINUA Un conduttore ideale all equilibrio elettrostatico ha un campo elettrico nullo al suo interno. Cosa succede se viene generato un campo elettrico diverso da zero al suo

Dettagli

ED. Equazioni cardinali della dinamica

ED. Equazioni cardinali della dinamica ED. Equazioni cardinali della dinamica Dinamica dei sistemi La dinamica dei sistemi di punti materiali si può trattare, rispetto ad un osservatore inerziale, scrivendo l equazione fondamentale della dinamica

Dettagli

Le misure di energia elettrica

Le misure di energia elettrica Le misure di energia elettrica Ing. Marco Laracca Dipartimento di Ingegneria Elettrica e dell Informazione Università degli Studi di Cassino e del Lazio Meridionale Misure di energia elettrica La misura

Dettagli

Elettronica Circuiti nel dominio del tempo

Elettronica Circuiti nel dominio del tempo Elettronica Circuiti nel dominio del tempo Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica Circuiti nel dominio del tempo 14 aprile 211

Dettagli

Correnti e circuiti a corrente continua. La corrente elettrica

Correnti e circuiti a corrente continua. La corrente elettrica Correnti e circuiti a corrente continua La corrente elettrica Corrente elettrica: carica che fluisce attraverso la sezione di un conduttore in una unità di tempo Q t Q lim t 0 t ntensità di corrente media

Dettagli

Gli attuatori. Breve rassegna di alcuni modelli o dispositivi di attuatori nel processo di controllo

Gli attuatori. Breve rassegna di alcuni modelli o dispositivi di attuatori nel processo di controllo Gli attuatori Breve rassegna di alcuni modelli o dispositivi di attuatori nel processo di controllo ATTUATORI Definizione: in una catena di controllo automatico l attuatore è il dispositivo che riceve

Dettagli

Sensori di Posizione, Velocità, Accelerazione

Sensori di Posizione, Velocità, Accelerazione Sensori di Posizione, Velocità, Accelerazione POSIZIONE: Sensori di posizione/velocità Potenziometro Trasformatore Lineare Differenziale (LDT) Encoder VELOCITA Dinamo tachimetrica ACCELERAZIONE Dinamo

Dettagli

Programmazione Modulare

Programmazione Modulare Indirizzo: BIENNIO Programmazione Modulare Disciplina: FISICA Classe: 2 a D Ore settimanali previste: (2 ore Teoria 1 ora Laboratorio) Prerequisiti per l'accesso alla PARTE D: Effetti delle forze. Scomposizione

Dettagli

I.T.I. A. MALIGNANI UDINE CLASSI 3 e ELT MATERIA: ELETTROTECNICA PROGRAMMA PREVENTIVO

I.T.I. A. MALIGNANI UDINE CLASSI 3 e ELT MATERIA: ELETTROTECNICA PROGRAMMA PREVENTIVO CORRENTE CONTINUA: FENOMENI FISICI E PRINCIPI FONDAMENTALI - Richiami sulle unità di misura e sui sistemi di unità di misura. - Cenni sulla struttura e sulle proprietà elettriche della materia. - Le cariche

Dettagli

Le Armoniche INTRODUZIONE RIFASAMENTO DEI TRASFORMATORI - MT / BT

Le Armoniche INTRODUZIONE RIFASAMENTO DEI TRASFORMATORI - MT / BT Le Armoniche INTRODUZIONE Data una grandezza sinusoidale (fondamentale) si definisce armonica una grandezza sinusoidale di frequenza multipla. L ordine dell armonica è il rapporto tra la sua frequenza

Dettagli

ALLEGATO al verbale della riunione del 3 Settembre 2010, del Dipartimento di Elettrotecnica e Automazione.

ALLEGATO al verbale della riunione del 3 Settembre 2010, del Dipartimento di Elettrotecnica e Automazione. ALLEGATO al verbale della riunione del 3 Settembre 2010, del Dipartimento di Elettrotecnica e Automazione. COMPETENZE MINIME- INDIRIZZO : ELETTROTECNICA ED AUTOMAZIONE 1) CORSO ORDINARIO Disciplina: ELETTROTECNICA

Dettagli

Strumenti Elettronici Analogici/Numerici

Strumenti Elettronici Analogici/Numerici Facoltà di Ingegneria Università degli Studi di Firenze Dipartimento di Elettronica e Telecomunicazioni Strumenti Elettronici Analogici/Numerici Ing. Andrea Zanobini Dipartimento di Elettronica e Telecomunicazioni

Dettagli

CAPITOLO I CORRENTE ELETTRICA. Copyright ISHTAR - Ottobre 2003 1

CAPITOLO I CORRENTE ELETTRICA. Copyright ISHTAR - Ottobre 2003 1 CAPITOLO I CORRENTE ELETTRICA Copyright ISHTAR - Ottobre 2003 1 INDICE CORRENTE ELETTRICA...3 INTENSITÀ DI CORRENTE...4 Carica elettrica...4 LE CORRENTI CONTINUE O STAZIONARIE...5 CARICA ELETTRICA ELEMENTARE...6

Dettagli

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t;

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t; CAPITOLO CIRCUITI IN CORRENTE CONTINUA Definizioni Dato un conduttore filiforme ed una sua sezione normale S si definisce: Corrente elettrica i Q = (1) t dove Q è la carica che attraversa la sezione S

Dettagli

Curve di risonanza di un circuito

Curve di risonanza di un circuito Zuccarello Francesco Laboratorio di Fisica II Curve di risonanza di un circuito I [ma] 9 8 7 6 5 4 3 0 C = 00 nf 0 5 0 5 w [KHz] RLC - Serie A.A.003-004 Indice Introduzione pag. 3 Presupposti Teorici 5

Dettagli

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it L INTENSITÀ DELLA CORRENTE ELETTRICA Consideriamo una lampadina inserita in un circuito elettrico costituito da fili metallici ed un interruttore.

Dettagli

Introduzione all elettronica

Introduzione all elettronica Introduzione all elettronica L elettronica nacque agli inizi del 1900 con l invenzione del primo componente elettronico, il diodo (1904) seguito poi dal triodo (1906) i cosiddetti tubi a vuoto. Questa

Dettagli

Studio sperimentale della propagazione di un onda meccanica in una corda

Studio sperimentale della propagazione di un onda meccanica in una corda Studio sperimentale della propagazione di un onda meccanica in una corda Figura 1: Foto dell apparato sperimentale. 1 Premessa 1.1 Velocità delle onde trasversali in una corda E esperienza comune che quando

Dettagli

nica Cagliari ) m Viene detto (1) Dal sistema dell energia Un possibile

nica Cagliari ) m Viene detto (1) Dal sistema dell energia Un possibile Viene detto sistema polifase un sistema costituito da più tensioni o da più correnti sinusoidali, sfasate l una rispetto all altra. Un sistema polifase è simmetrico quando le grandezze sinusoidali hanno

Dettagli

Istituto Superiore Vincenzo Cardarelli Istituto Tecnico per Geometri Liceo Artistico A.S. 2014 2015

Istituto Superiore Vincenzo Cardarelli Istituto Tecnico per Geometri Liceo Artistico A.S. 2014 2015 Istituto Superiore Vincenzo Cardarelli Istituto Tecnico per Geometri Liceo Artistico A.S. 2014 2015 Piano di lavoro annuale Materia : Fisica Classi Quinte Blocchi tematici Competenze Traguardi formativi

Dettagli

Corso di Informatica Industriale

Corso di Informatica Industriale Corso di Informatica Industriale Prof. Giorgio Buttazzo Dipartimento di Informatica e Sistemistica Università di Pavia E-mail: buttazzo@unipv.it Informazioni varie Telefono: 0382-505.755 Email: Dispense:

Dettagli

Guida alla scelta di motori a corrente continua

Guida alla scelta di motori a corrente continua Motori Motori in in corrente corrente continua continua 5 Guida alla scelta di motori a corrente continua Riddutore Coppia massima (Nm)! Tipo di riduttore!,5, 8 8 8 Potenza utile (W) Motore diretto (Nm)

Dettagli

2. FONDAMENTI DELLA TECNOLOGIA

2. FONDAMENTI DELLA TECNOLOGIA 2. FONDAMENTI DELLA TECNOLOGIA 2.1 Principio del processo La saldatura a resistenza a pressione si fonda sulla produzione di una giunzione intima, per effetto dell energia termica e meccanica. L energia

Dettagli

GRANDEZZE ALTERNATE SINUSOIDALI

GRANDEZZE ALTERNATE SINUSOIDALI GRANDEZZE ALTERNATE SINUSOIDALI 1 Nel campo elettrotecnico-elettronico, per indicare una qualsiasi grandezza elettrica si usa molto spesso il termine di segnale. L insieme dei valori istantanei assunti

Dettagli

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo Momento di una forza Nella figura 1 è illustrato come forze uguali e contrarie possono non produrre equilibrio, bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo esteso.

Dettagli

Unità 12. La corrente elettrica

Unità 12. La corrente elettrica Unità 12 La corrente elettrica L elettricità risiede nell atomo Modello dell atomo: al centro c è il nucleo formato da protoni e neutroni ben legati tra di loro; in orbita intorno al nucleo si trovano

Dettagli

Sistemi e modelli matematici

Sistemi e modelli matematici 0.0.. Sistemi e modelli matematici L automazione è un complesso di tecniche volte a sostituire l intervento umano, o a migliorarne l efficienza, nell esercizio di dispositivi e impianti. Un importante

Dettagli

Capitolo 1. Generalità sulle macchine elettriche

Capitolo 1. Generalità sulle macchine elettriche Capitolo 1 Generalità sulle macchine elettriche Scopo di questo capitolo è capire come funziona un motore elettrico, quali i princìpi generali che consentono la trasformazione di energia meccanica in energia

Dettagli

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione METODO DELLE FORZE CORSO DI PROGETTZIONE STRUTTURLE a.a. 010/011 Prof. G. Salerno ppunti elaborati da rch. C. Provenzano 1. METODO DELLE FORZE PER L SOLUZIONE DI STRUTTURE IPERSTTICHE 1.1 Introduzione

Dettagli

Elementi di analisi delle reti elettriche. Sommario

Elementi di analisi delle reti elettriche. Sommario I.T.I.S. "Antonio Meucci" di Roma Elementi di analisi delle reti elettriche a cura del Prof. Mauro Perotti Anno Scolastico 2009-2010 Sommario 1. Note sulla simbologia...4 2. Il generatore (e l utilizzatore)

Dettagli

Seconda Legge DINAMICA: F = ma

Seconda Legge DINAMICA: F = ma Seconda Legge DINAMICA: F = ma (Le grandezze vettoriali sono indicate in grassetto e anche in arancione) Fisica con Elementi di Matematica 1 Unità di misura: Massa m si misura in kg, Accelerazione a si

Dettagli

FUNZIONAMENTO DI UN BJT

FUNZIONAMENTO DI UN BJT IL TRANSISTOR BJT Il transistor inventato nel 1947, dai ricercatori Bardeen e Brattain, è il componente simbolo dell elettronica. Ideato in un primo momento, come sostituto delle valvole a vuoto per amplificare

Dettagli

CS. Cinematica dei sistemi

CS. Cinematica dei sistemi CS. Cinematica dei sistemi Dopo aver esaminato la cinematica del punto e del corpo rigido, che sono gli schemi più semplificati con cui si possa rappresentare un corpo, ci occupiamo ora dei sistemi vincolati.

Dettagli

Cuscinetti a strisciamento e a rotolamento

Cuscinetti a strisciamento e a rotolamento Cuscinetti a strisciamento e a rotolamento La funzione dei cuscinetti a strisciamento e a rotolamento è quella di interporsi tra organi di macchina in rotazione reciproca. Questi elementi possono essere

Dettagli

Il motore asincrono trifase

Il motore asincrono trifase 7 Giugno 2008 1SDC007106G0901 Quaderni di Applicazione Tecnica Il motore asincrono trifase Generalità ed offerta ABB per il coordinamento delle protezioni Quaderni di Applicazione Tecnica Il motore asincrono

Dettagli

Moto sul piano inclinato (senza attrito)

Moto sul piano inclinato (senza attrito) Moto sul piano inclinato (senza attrito) Per studiare il moto di un oggetto (assimilabile a punto materiale) lungo un piano inclinato bisogna innanzitutto analizzare le forze che agiscono sull oggetto

Dettagli

SVILUPPO IN SERIE DI FOURIER

SVILUPPO IN SERIE DI FOURIER SVILUPPO IN SERIE DI FOURIER Cenni Storici (Wikipedia) Jean Baptiste Joseph Fourier ( nato a Auxerre il 21 marzo 1768 e morto a Parigi il 16 maggio 1830 ) è stato un matematico e fisico, ma è conosciuto

Dettagli

Un'analogia con il circuito idraulico

Un'analogia con il circuito idraulico Pompa Generatore di tensione (pila) Flusso d acqua PUNTI DI DOMANDA Differenza di potenziale Rubinetto Mulinello Lampadina Corrente elettrica 1. Che cos è l energia elettrica? E la corrente elettrica?

Dettagli

LAVORO, ENERGIA E POTENZA

LAVORO, ENERGIA E POTENZA LAVORO, ENERGIA E POTENZA Nel linguaggio comune, la parola lavoro è applicata a qualsiasi forma di attività, fisica o mentale, che sia in grado di produrre un risultato. In fisica la parola lavoro ha un

Dettagli

PRINCIPI BASILARI DI ELETTROTECNICA

PRINCIPI BASILARI DI ELETTROTECNICA PRINCIPI BASILARI DI ELETTROTECNICA Prerequisiti - Impiego di Multipli e Sottomultipli nelle equazioni - Equazioni lineari di primo grado e capacità di ricavare le formule inverse - nozioni base di fisica

Dettagli

La corrente elettrica

La corrente elettrica Unità didattica 8 La corrente elettrica Competenze Costruire semplici circuiti elettrici e spiegare il modello di spostamento delle cariche elettriche. Definire l intensità di corrente, la resistenza e

Dettagli

Istituto Istruzione Superiore Liceo Scientifico Ghilarza Anno Scolastico 2013/2014 PROGRAMMA DI MATEMATICA E FISICA

Istituto Istruzione Superiore Liceo Scientifico Ghilarza Anno Scolastico 2013/2014 PROGRAMMA DI MATEMATICA E FISICA PROGRAMMA DI MATEMATICA E FISICA Classe VA scientifico MATEMATICA MODULO 1 ESPONENZIALI E LOGARITMI 1. Potenze con esponente reale; 2. La funzione esponenziale: proprietà e grafico; 3. Definizione di logaritmo;

Dettagli

TEORIA PERTURBATIVA DIPENDENTE DAL TEMPO

TEORIA PERTURBATIVA DIPENDENTE DAL TEMPO Capitolo 14 EORIA PERURBAIVA DIPENDENE DAL EMPO Nel Cap.11 abbiamo trattato metodi di risoluzione dell equazione di Schrödinger in presenza di perturbazioni indipendenti dal tempo; in questo capitolo trattiamo

Dettagli

Circuiti Elettrici. Elementi di circuito: resistori, generatori di differenza di potenziale

Circuiti Elettrici. Elementi di circuito: resistori, generatori di differenza di potenziale Circuiti Elettrici Corrente elettrica Legge di Ohm Elementi di circuito: resistori, generatori di differenza di potenziale Leggi di Kirchhoff Elementi di circuito: voltmetri, amperometri, condensatori

Dettagli

LABORATORIO I-A. Cenni sui circuiti elettrici in corrente continua

LABORATORIO I-A. Cenni sui circuiti elettrici in corrente continua 1 UNIVERSITÀ DIGENOVA FACOLTÀDISCIENZEM.F.N. LABORATORIO IA Cenni sui circuiti elettrici in corrente continua Anno Accademico 2001 2002 2 Capitolo 1 Richiami sui fenomeni elettrici Esperienze elementari

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca

ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca Trascrizione del testo e redazione delle soluzioni di Paolo Cavallo. La prova Il candidato svolga una relazione

Dettagli

GRANDEZZE SINUSOIDALI

GRANDEZZE SINUSOIDALI GRANDEE SINUSOIDALI INDICE -Grandezze variabili. -Grandezze periodiche. 3-Parametri delle grandezze periodiche. 4-Grandezze alternate. 5-Grandezze sinusoidali. 6-Parametri delle grandezze sinusoidali.

Dettagli

IMPIANTISTICA DI BORDO

IMPIANTISTICA DI BORDO IMPIANTISTICA DI BORDO 1 ELEMENTI DI ELETTROTECNICA 2 MAGNETISMO ED ELETTROMAGNETISMO 3 PRODUZIONE,TRASFORMAZIONE E DISTRIBUZIONE DELL ENERGIA ELETTRICA A BORDO 4 ALTERNATORI E MOTORI SINCRONI 5 MOTORI

Dettagli

Campi Elettromagnetici e Circuiti I Circuiti con accoppiamento magnetico

Campi Elettromagnetici e Circuiti I Circuiti con accoppiamento magnetico Facoltà di Ingegneria Università degli studi di Pavia Corso di Laurea Triennale in Ingegneria Elettronica e Informatica Campi Elettromagnetici e Circuiti I Circuiti con accoppiamento magnetico Campi Elettromagnetici

Dettagli

LICEO SCIENTIFICO G. LEOPARDI A.S. 2010-2011 FENOMENI MAGNETICI FONDAMENTALI

LICEO SCIENTIFICO G. LEOPARDI A.S. 2010-2011 FENOMENI MAGNETICI FONDAMENTALI LICEO SCIENTIFICO G. LEOPARDI A.S. 2010-2011 FENOMENI MAGNETICI FONDAMENTALI Prof. Euro Sampaolesi IL CAMPO MAGNETICO TERRESTRE Le linee del magnete-terra escono dal Polo geomagnetico Nord ed entrano nel

Dettagli

Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione

Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione 1. L elettrone ha una massa di 9.1 10-31 kg ed una carica elettrica di -1.6 10-19 C. Ricordando che la forza gravitazionale

Dettagli

Applicazione dei sistemi di accumulo elettrici in ambito industriale

Applicazione dei sistemi di accumulo elettrici in ambito industriale Applicazione dei sistemi di accumulo elettrici in ambito industriale D. Iannuzzi, E. Pagano, P. Tricoli Report RSE/2009/46 Ente per le Nuove tecnologie, l Energia e l Ambiente RICERCA SISTEMA ELETTRICO

Dettagli

Teoria quantistica della conduzione nei solidi e modello a bande

Teoria quantistica della conduzione nei solidi e modello a bande Teoria quantistica della conduzione nei solidi e modello a bande Obiettivi - Descrivere il comportamento quantistico di un elettrone in un cristallo unidimensionale - Spiegare l origine delle bande di

Dettagli

Capitolo 7. Circuiti magnetici

Capitolo 7. Circuiti magnetici Capitolo 7. Circuiti magnetici Esercizio 7.1 Dato il circuito in figura 7.1 funzionante in regime stazionario, sono noti: R1 = 7.333 Ω, R2 = 2 Ω, R3 = 7 Ω δ1 = 1 mm, δ2 = 1.3 mm, δ3 = 1.5 mm Α = 8 cm 2,

Dettagli

LA CORRENTE ELETTRICA

LA CORRENTE ELETTRICA L CORRENTE ELETTRIC H P h Prima che si raggiunga l equilibrio c è un intervallo di tempo dove il livello del fluido non è uguale. Il verso del movimento del fluido va dal vaso a livello maggiore () verso

Dettagli

Corrente elettrica (regime stazionario)

Corrente elettrica (regime stazionario) Corrente elettrica (regime stazionario) Metalli Corrente elettrica Legge di Ohm Resistori Collegamento di resistori Generatori di forza elettromotrice Metalli Struttura cristallina: ripetizione di unita`

Dettagli

1. Diodi. figura 1. figura 2

1. Diodi. figura 1. figura 2 1. Diodi 1.1. Funzionamento 1.1.1. Drogaggio 1.1.2. Campo elettrico di buil-in 1.1.3. Larghezza della zona di svuotamento 1.1.4. Curve caratteristiche Polarizzazione Polarizzazione diretta Polarizzazione

Dettagli

Dinamica e Misura delle Vibrazioni

Dinamica e Misura delle Vibrazioni Dinamica e Misura delle Vibrazioni Prof. Giovanni Moschioni Politecnico di Milano, Dipartimento di Meccanica Sezione di Misure e Tecniche Sperimentali giovanni.moschioni@polimi.it VibrazionI 2 Il termine

Dettagli

bipolari, quando essi, al variare del tempo, assumono valori sia positivi che negativi unipolari, quando essi non cambiano mai segno

bipolari, quando essi, al variare del tempo, assumono valori sia positivi che negativi unipolari, quando essi non cambiano mai segno Parametri dei segnali periodici I segnali, periodici e non periodici, si suddividono in: bipolari, quando essi, al variare del tempo, assumono valori sia positivi che negativi unipolari, quando essi non

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

Protezione dai contatti indiretti

Protezione dai contatti indiretti Protezione dai contatti indiretti Se una persona entra in contatto contemporaneamente con due parti di un impianto a potenziale diverso si trova sottoposto ad una tensione che può essere pericolosa. l

Dettagli

Circuiti in Corrente Continua (direct current=dc) RIASSUNTO: La carica elettrica La corrente elettrica Il Potenziale Elettrico La legge di Ohm Il

Circuiti in Corrente Continua (direct current=dc) RIASSUNTO: La carica elettrica La corrente elettrica Il Potenziale Elettrico La legge di Ohm Il Circuiti in Corrente Continua direct currentdc ASSUNTO: La carica elettrica La corrente elettrica l Potenziale Elettrico La legge di Ohm l resistore codice dei colori esistenze in serie ed in parallelo

Dettagli

Cenni di Elettronica non Lineare

Cenni di Elettronica non Lineare 1 Cenni di Elettronica non Lineare RUOLO DELL ELETTRONICA NON LINEARE La differenza principale tra l elettronica lineare e quella non-lineare risiede nel tipo di informazione che viene elaborata. L elettronica

Dettagli

Introduzione. Classificazione delle non linearità

Introduzione. Classificazione delle non linearità Introduzione Accade spesso di dover studiare un sistema di controllo in cui sono presenti sottosistemi non lineari. Alcuni di tali sottosistemi sono descritti da equazioni differenziali non lineari, ad

Dettagli

Esperimentatori: Durata dell esperimento: Data di effettuazione: Materiale a disposizione:

Esperimentatori: Durata dell esperimento: Data di effettuazione: Materiale a disposizione: Misura di resistenza con il metodo voltamperometrico. Esperimentatori: Marco Erculiani (n matricola 454922 v.o.) Noro Ivan (n matricola 458656 v.o.) Durata dell esperimento: 3 ore (dalle ore 9:00 alle

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

PRODUZIONE DI ENERGIA ELETTRICA MEDIANTE PICCOLE CENTRALI IDROELETTRICHE

PRODUZIONE DI ENERGIA ELETTRICA MEDIANTE PICCOLE CENTRALI IDROELETTRICHE PRODUZIONE DI ENERGIA ELETTRICA MEDIANTE PICCOLE CENTRALI IDROELETTRICHE CENTRALI PER LA PRODUZIONE DI ENERGIA ELETTRICA IDROELETTRICHE: per potenze da piccolissime a grandi; impianti a funzionamento molto

Dettagli

IL SAMPLE AND HOLD UNIVERSITÀ DEGLI STUDI DI MILANO. Progetto di Fondamenti di Automatica. PROF.: M. Lazzaroni

IL SAMPLE AND HOLD UNIVERSITÀ DEGLI STUDI DI MILANO. Progetto di Fondamenti di Automatica. PROF.: M. Lazzaroni UNIVERSITÀ DEGLI STUDI DI MILANO FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea in Informatica IL SAMPLE AND HOLD Progetto di Fondamenti di Automatica PROF.: M. Lazzaroni Anno Accademico

Dettagli

FISICA/MENTE ALCUNE QUESTIONI CONNESSE CON LA PRODUZIONE E DISTRIBUZIONE DELL'ENERGIA ELETTRICA. Roberto Renzetti (2004)

FISICA/MENTE ALCUNE QUESTIONI CONNESSE CON LA PRODUZIONE E DISTRIBUZIONE DELL'ENERGIA ELETTRICA. Roberto Renzetti (2004) FISICA/MENTE ALCUNE QUESTIONI CONNESSE CON LA PRODUZIONE E DISTRIBUZIONE DELL'ENERGIA ELETTRICA Roberto Renzetti (2004) PREMESSA L'idea di scrivere queste pagine e di riprendere, ripescandovi, un mio vecchio

Dettagli

LA CORRENTE ELETTRICA CONTINUA

LA CORRENTE ELETTRICA CONTINUA LA CORRENTE ELETTRICA CONTINUA (Fenomeno, indipendente dal tempo, che si osserva nei corpi conduttori quando le cariche elettriche fluiscono in essi.) Un conduttore metallico è in equilibrio elettrostatico

Dettagli

Capitolo 9: PROPAGAZIONE DEGLI ERRORI

Capitolo 9: PROPAGAZIONE DEGLI ERRORI Capitolo 9: PROPAGAZIOE DEGLI ERRORI 9.1 Propagazione degli errori massimi ella maggior parte dei casi le grandezze fisiche vengono misurate per via indiretta. Il valore della grandezza viene cioè dedotto

Dettagli

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti Y T T I Numeri Complessi Operazioni di somma e prodotto su Consideriamo, insieme delle coppie ordinate di numeri reali, per cui si ha!"# $&% '( e )("+* Introduciamo in tale insieme una operazione di somma,/0"#123045"#

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

IL MOTO. 1 - Il moto dipende dal riferimento.

IL MOTO. 1 - Il moto dipende dal riferimento. 1 IL MOTO. 1 - Il moto dipende dal riferimento. Quando un corpo è in movimento? Osservando la figura precedente appare chiaro che ELISA è ferma rispetto a DAVIDE, che è insieme a lei sul treno; mentre

Dettagli

ANNO SCOLASTICO 2014/2015 I.I.S. ITCG L. EINAUDI SEZ.ASSOCIATA LICEO SCIENTIFICO G. BRUNO PROGRAMMA DI FISICA. CLASSE: V A Corso Ordinario

ANNO SCOLASTICO 2014/2015 I.I.S. ITCG L. EINAUDI SEZ.ASSOCIATA LICEO SCIENTIFICO G. BRUNO PROGRAMMA DI FISICA. CLASSE: V A Corso Ordinario ANNO SCOLASTICO 2014/2015 I.I.S. ITCG L. EINAUDI SEZ.ASSOCIATA LICEO SCIENTIFICO G. BRUNO PROGRAMMA DI FISICA CLASSE: V A Corso Ordinario DOCENTE: STEFANO GARIAZZO ( Paola Frau dal 6/02/2015) La corrente

Dettagli

Travature reticolari piane : esercizi svolti De Domenico D., Fuschi P., Pisano A., Sofi A.

Travature reticolari piane : esercizi svolti De Domenico D., Fuschi P., Pisano A., Sofi A. Travature reticolari piane : esercizi svolti e omenico., Fuschi., isano., Sofi. SRZO n. ata la travatura reticolare piana triangolata semplice illustrata in Figura, determinare gli sforzi normali nelle

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

Azionamenti elettrici per la trazione ferroviaria

Azionamenti elettrici per la trazione ferroviaria Azionamenti elettrici per la trazione ferroviaria Ing. Antonino Oscar Di Tommaso Università degli Studi di Palermo DIEET (Dipartimento di Ingegneria Elettrica, Elettronica e delle Telecomunicazioni) Ing.

Dettagli

Corso di Fisica tecnica e ambientale a.a. 2011/2012 - Docente: Prof. Carlo Isetti

Corso di Fisica tecnica e ambientale a.a. 2011/2012 - Docente: Prof. Carlo Isetti Corso di Fisica tecnica e ambientale a.a. 0/0 - Docente: Prof. Carlo Isetti LAVORO D NRGIA 5. GNRALITÀ In questo capitolo si farà riferimento a concetto quali lavoro ed energia termini che hanno nella

Dettagli

Brushless. Brushless

Brushless. Brushless Motori Motori in in corrente corrente continua continua Brushless Brushless 69 Guida alla scelta di motori a corrente continua Brushless Riduttore 90 Riddutore Coppia massima (Nm)! 0,6,7 30 W 5,5 max.

Dettagli

63- Nel Sistema Internazionale SI, l unità di misura del calore latente di fusione è A) J / kg B) kcal / m 2 C) kcal / ( C) D) kcal * ( C) E) kj

63- Nel Sistema Internazionale SI, l unità di misura del calore latente di fusione è A) J / kg B) kcal / m 2 C) kcal / ( C) D) kcal * ( C) E) kj 61- Quand è che volumi uguali di gas perfetti diversi possono contenere lo stesso numero di molecole? A) Quando hanno uguale pressione e temperatura diversa B) Quando hanno uguale temperatura e pressione

Dettagli

Il luogo delle radici (ver. 1.0)

Il luogo delle radici (ver. 1.0) Il luogo delle radici (ver. 1.0) 1 Sia dato il sistema in retroazione riportato in Fig. 1.1. Il luogo delle radici è uno strumento mediante il quale è possibile valutare la posizione dei poli della funzione

Dettagli

LATCH E FLIP-FLOP. Fig. 1 D-latch trasparente per ck=1

LATCH E FLIP-FLOP. Fig. 1 D-latch trasparente per ck=1 LATCH E FLIPFLOP. I latch ed i flipflop sono gli elementi fondamentali per la realizzazione di sistemi sequenziali. In entrambi i circuiti la temporizzazione è affidata ad un opportuno segnale di cadenza

Dettagli

Analisi in regime sinusoidale (parte V)

Analisi in regime sinusoidale (parte V) Appunti di Elettrotecnica Analisi in regime sinusoidale (parte ) Teorema sul massimo trasferimento di potenza attiva... alore della massima potenza attiva assorbita: rendimento del circuito3 Esempio...3

Dettagli