FUNZIONI RADICE. = x dom f Im f grafici. Corso Propedeutico di Matematica. Politecnico di Torino CeTeM. 7 Funzioni Radice RICHIAMI DI TEORIA

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "FUNZIONI RADICE. = x dom f Im f grafici. Corso Propedeutico di Matematica. Politecnico di Torino CeTeM. 7 Funzioni Radice RICHIAMI DI TEORIA"

Transcript

1 Politecico di Torio 7 Fuzioi Radice FUNZIONI RADICE RICHIAMI DI TEORIA f ( x) = x dom f Im f grafici. = = =7 =9. dispari R R Grafici di fuzioi radici co pari pari [,+ ) [,+ ).. = = =6 = Politecico di Torio Pagia di Data ultima revisioe //

2 Politecico di Torio 7 Fuzioi Radice Proposizioe: le fuzioi radice verificao le relazioi: x = x per ogi x, +, [ ) [ ) x = x per ogi x, +, Proposizioe: siao a e b umeri reali tali che a, b e siao ed m umeri aturali tali che, m. Valgoo le segueti proprietà:. ab = a b a a. = b b. ( a) m = = a m m. a a m m. a = a Defiizioe: m se N, e se x defiiamo x = x ; se p e q iteri positivi, primi tra loro, e se x defiiamo x se p e q iteri positivi, primi tra loro, e se x> defiiamo x p q p q q p = x ; = x p q. Politecico di Torio Pagia di Data ultima revisioe //

3 Politecico di Torio 7 Fuzioi Radice ESEMPI 8. Ridurre allo stesso idice i radicali segueti,,, 7. Calcoliamo il m.c.m tra gli idici dei radicali: m. c. m(,,, ) 8 = Utilizzado la proprietà () possiamo scrivere: = = = 7 = 7 = 7 6, = = 6 6 8, = = 8, m+ m+ m +. Semplificare l'espressioe a b, dove a, b. Utilizzado la proprietà (), abbiamo: ( m ) ( m+ ) m+ + m+ m+ m+ m+ m+ a b = a b = a b = a b. Ridurre xy ad u uico radicale, suppoedo x> e y. x Applicado le proprietà delle radici otteiamo: x xy xy xy xy y = x = x = x = x Politecico di Torio Pagia di Data ultima revisioe //

4 Politecico di Torio 7 Fuzioi Radice. Date le segueti espressioi, portare fuori sego di radice i fattori il cui espoete è maggiore o uguale all'idice della radice. a b x co a, b, x I geerale, applicado le proprietà delle radici, abbiamo a b = a b = a b, suppoedo a, b. Cerchiamo di isolare el radicado u fattore di espoete (idice della radice): a b x = a b b x x = ab x bx = ab x bx 8x y z Osserviamo che, a differeza dell'esercizio precedete, i questo caso o è stato specificato il campo di variabilità di x e y: occorre, duque, applicare le proprietà co ua certa cautela (ricordiamo che le proprietà soo valide se i fattori che compogoo il radicado soo positivi). I geerale, per ogi x R, x x se x = x se x < = x, poiché la radice quadrata, come ogi radice di idice pari, è ua quatità positiva. Teedo coto di questa osservazioe abbiamo: 8x y z = xyz y = xyz y = z xy y Politecico di Torio Pagia di Data ultima revisioe //

5 Politecico di Torio 7 Fuzioi Radice. Dire per quali valori di x la relazioe ( x 6 6 x 6) ( x ) ( x ) + + = + + è corretta. 6 6 Poedo, per comodità, x + x + 6 = y, la relazioe diveta: y = y. Poiché 6 y 6 y se y =, deduciamo che i valori di x da cosiderare soo quelli per cui y, y se y < vale a dire x (, ] [, + ) 6. Determiare il domiio delle fuzioi f ( x) = x, f ( x) = x x +, g x = x, = + + e dire per quali valori di x valgoo le relazioi: f ( x) = f ( x) e g ( x) g ( x) g x x x x Il domiio di f è { x R: x }, vale a dire dom f = ( ] [ + ),,. =. La fuzioe f è il prodotto di due radici quadrate: il suo domiio è l'itersezioe dei domii delle fuzioi y y = x +, vale a dire dom f = { x R: x } { x R: x } = [, + ). L'uguagliaza delle due fuzioi f e f è verificata solo ell'itersezioe dei loro domii: = dom dom = [, + ) f x f x x f f = x e Le radici cubiche, come tutte le radici di idice dispari, o dao problemi; abbiamo: dom g = R e dom g = R. quidi: g x = g x x dom g dom g = R Politecico di Torio Pagia di Data ultima revisioe //

6 Politecico di Torio 7 Fuzioi Radice 7. Risolvere algebricamete ed iterpretare geometricamete l'equazioe irrazioale x + 6 = x. Dobbiamo teere coto del campo di defiizioe e della positività della radice a primo membro: - la radice quadrata esiste se e solo se il radicado è positivo o uguale a zero: x + 6 x. - la radice quadrata è ua quatità positiva, quidi il secodo membro dell'equazioe deve essere positivo: x x L'equazioe ha sigificato se queste codizioi soo verificate cotemporaeamete: Elevado al quadrato ambo i membri dell'equazioe, otteiamo: x + 6 = x x + x x = x =, x = Solo x verifica la codizioe di esisteza, ed è, pertato, l'uica soluzioe accettabile. x x. x 7 y=rad(x+6) Geometricamete, la soluzioe dell'equazioe rappreseta il puto (abbiamo y=x- 6 puto di itersezioe visto, algebricamete, che l'equazioe ha ua sola soluzioe) di itersezioe tra i grafici delle fuzioi y = x + 6 e y = x. Possiamo disegare il grafico di y = x + = ( x + ) grafico di y = x ed applicado le trasformazioi: δ, 6 partedo dal (, ) y = x τ y = x y = x + Politecico di Torio Pagia 6 di Data ultima revisioe //

7 Politecico di Torio 7 Fuzioi Radice 8. Risolvere algebricamete ed iterpretare geometricamete l'equazioe irrazioale 7x 6 = x. Geometricamete, la soluzioe dell'equazioe rappreseta il/i puto/i di itersezioe tra i grafici delle fuzioi y = 7x 6 y = x. e y=radcub(7x-6) y=x puti di itersezioe Possiamo tracciare il grafico di 6 y = 7x 6 = 7 x, partedo da quello di 7 y = x, co le segueti trasformazioi: δ, 7 y = x τ, 7 y = 7x y = 7 x Dal disego osserviamo che le due curve hao puti di itersezioe: per determiarli risolviamo algebricamete l'equazioe, elevado ambo i membri al cubo: 7x 6 = x 7x 6 = x x 7x + 6= x + x x = x = x = x = Politecico di Torio Pagia 7 di Data ultima revisioe //

8 Politecico di Torio 7 Fuzioi Radice 9. Risolvere graficamete e algebricamete la disequazioe irrazioale 6 x x. soluzioe grafica Disegiamo i grafici delle fuzioi f( x) = 6 x e f ( x) = x. Si tratta di trovare gli x per cui il grafico di f si svolge al di sotto del grafico di f o coicide co esso. Il grafico di 6 f x = 6 x = x si può otteere al partire dal - - x 6/ y=rad(6-x) y=x- puto di itersezioe soluzioe grafico di y = x co le trasformazioi: 6 y x y = y = x σ δ, τ, y = x 6 y = x - - Osserviamo che le due curve hao u puto di itersezioe x >: il grafico di f sta al di sotto del grafico di f per x x Per determiare x risolviamo l'equazioe 6 x = x ; elevado ambo i membri al quadrato si ha: 6 x = x 6 x = x x + x + x = x = x = Poiché x >, abbiamo x =. 6,. Politecico di Torio Pagia 8 di Data ultima revisioe //

9 Politecico di Torio 7 Fuzioi Radice soluzioe algebrica Osservazioe: La disequazioe irrazioale della forma f ( x) g( x) < equivale a : [ ] < < f x g x f x g x se è dispari g( x) f x f x < g x f x > se è pari [ ] < g( x) La disequazioe irrazioale della forma f ( x) g( x) > equivale a : [ ] > > f x g x f x g x se è dispari g( x) f x f x > g x g x < f x [ ] > g( x) se è pari Politecico di Torio Pagia 9 di Data ultima revisioe //

10 Politecico di Torio 7 Fuzioi Radice Applicado le regole suddette alla ostra disequazioe, otteiamo: 6 x 6 x x x > 6 x ( x ) 6 6 x x > > 6 + x x x, x x x x. Risolvere graficamete la disequazioe x > x. Disegiamo i grafici delle fuzioi f ( x) = x e sopra del grafico di f. f x = x. Si tratta di trovare gli x per cui il grafico di f si svolge al di Osserviamo che il grafico della fuzioe f o si può otteere a partire da y= x utilizzado le trasformazioi del piao. Per tracciare il grafico proseguiamo el seguete modo: - determiiamo dom f = (, ] [, + ) e Im f [, ) = +. - elevado al quadrato ambo i membri dell'equazioe y = x otteiamo y = x x y =, che è l'equazioe di ua iperbole equilatera riferita ai propri assi, co cetro ell'origie del sistema di riferimeto e vertici ei puti V = (-, ) e V = (,). Politecico di Torio Pagia di Data ultima revisioe //

11 Politecico di Torio 7 Fuzioi Radice - il grafico di f corrispode ai rami di iperbole al di sopra dell'asse x (ifatti Im f [, ) = + ). y=rad(x^-) il grafico di f si ottiee a partire dal grafico di y= x co la seguete trasformazioe: (, ) τ y = x y = x y=rad(x^-) y= x - soluzioe Osserviamo che o vi soo puti di itersezioe tra le due curve. Il grafico di f si svolge al di sopra del grafico di f per ogi (, ] [, ) x dom f dom f = Politecico di Torio Pagia di Data ultima revisioe //

12 Politecico di Torio 7 Fuzioi Radice. Risolvere graficamete la disequazioe x < x + Tracciamo i grafici delle fuzioi f ( x) = x e. g( x) = x + Osservazioe: per costruire il grafico di y = f ( x ) a partire da quello di y = f(x) si ripete seza modifiche il grafico di y=f(x) per x e lo si estede ai valori egativi di x i modo simmetrico rispetto all'asse delle ordiate. y=rad( x -) y=rad( x+ ) puti di itersezioe soluzioe Grafico di f ( x) otteedo f ( x) Grafico di g( x) = x : applichiamo la traslazioe τ(,) a y = x, x = x + : partedo da g ( x ) = x, abbiamo g x = g x = x ; otteiamo g(x) applicado a g (x) la traslazioe τ(-,). = ; si ha f ( x) = f ( x ) La soluzioe della disequazioe è ( x, ] [, ) dell'equazioe f(x) = g(x). + dove x è la soluzioe x Per risolverla eleviamo al quadrato ambo i membri, otteedo l'equazioe x = x + x =, Politecico di Torio Pagia di Data ultima revisioe //

IPSAA U. Patrizi Città di Castello (PG) Classe 5A Tecnico Agrario. Lezione di martedì 10 novembre 2015 (4 e 5 ora) Disciplina: MATEMATICA

IPSAA U. Patrizi Città di Castello (PG) Classe 5A Tecnico Agrario. Lezione di martedì 10 novembre 2015 (4 e 5 ora) Disciplina: MATEMATICA IPSAA U. Patrizi Città di Castello (PG) Classe A Tecico Agrario Lezioe di martedì 0 ovembre 0 (4 e ora) Disciplia: MATEMATICA La derivata della fuzioe composta Fuzioe composta Df(g())f (g())g () Questa

Dettagli

Radicali. Esistenza delle radici n-esime: Se n è pari: ogni numero reale non negativo (cioè positivo o nullo) ha esattamente una radice n-esima in R.

Radicali. Esistenza delle radici n-esime: Se n è pari: ogni numero reale non negativo (cioè positivo o nullo) ha esattamente una radice n-esima in R. Radicali Radici quadrate Si dice radice quadrata di u umero reale a, e si idica co a, il umero reale positivo o ullo (se esiste) che, elevato al quadrato, dà come risultato a. Esisteza delle radici quadrate:

Dettagli

2.5 Convergenza assoluta e non

2.5 Convergenza assoluta e non .5 Covergeza assoluta e o Per le serie a termii complessi, o a termii reali di sego o costate, i criteri di covergeza si qui visti o soo applicabili. L uico criterio geerale, rozzo ma efficace, è quello

Dettagli

Definizione 1. Data una successione (a n ) alla scrittura formale. 1) a 1 + a a n +, si dà il nome di serie.

Definizione 1. Data una successione (a n ) alla scrittura formale. 1) a 1 + a a n +, si dà il nome di serie. SERIE NUMERICHE Defiizioe. Data ua successioe (a ) alla scrittura formale ) a + a 2 + + a +, si dà il ome di serie. I umeri a, a 2,, a, rappresetao i termii della serie, i particolare a è il termie geerale

Dettagli

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33)

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33) Defiizioe di umero reale come allieameto decimale co sego. Numeri reali positivi. Numeri razioali: defiizioe e proprietà di desità Numeri reali Defiizioe: U umero reale è u allieameto decimale co sego,

Dettagli

1 Esponenziale e logaritmo.

1 Esponenziale e logaritmo. Espoeziale e logaritmo.. Risultati prelimiari. Lemma a b = a b Lemma Disuguagliaza di Beroulli per ogi α e per ogi ln a k b k. k=0 + α + α Teorema Disuguagliaza delle medie Per ogi ln, per ogi upla {a

Dettagli

ESERCIZI SULLE SERIE

ESERCIZI SULLE SERIE ESERCIZI SULLE SERIE. Dimostrare che la serie seguete è covergete: =0 + + A questa serie applichiamo il criterio del cofroto. Dovedo quidi dimostrare che la serie è covergete si tratterà di maggiorare

Dettagli

Richiami sulle potenze

Richiami sulle potenze Richiami sulle poteze Dopo le rette, le fuzioi più semplici soo le poteze: Distiguiamo tra: - poteze co espoete itero - poteze co espoete frazioario (razioale) - poteze co espoete reale = Domiio delle

Dettagli

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n.

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n. SERIE DI POTENZE Esercizi risolti Esercizio x 2 + 2)2. Esercizio 2 + x 3 + 2 3. Esercizio 3 dove a è u umero reale positivo. Esercizio 4 x a, 2x ) 3 +. Esercizio 5 x! = x + x 2 + x 6 + x 24 + x 20 +....

Dettagli

ORDINAMENTO 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1

ORDINAMENTO 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 www.matefilia.it ORDINAMENTO 1 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Due osservatori si trovao ai lati opposti di u grattacielo, a livello del suolo. La cima dell edificio dista 16 metri dal primo

Dettagli

Algoritmi e Strutture Dati (Elementi)

Algoritmi e Strutture Dati (Elementi) Algoritmi e Strutture Dati (Elemeti Esercizi sulle ricorreze Proff. Paola Boizzoi / Giacarlo Mauri / Claudio Zadro Ao Accademico 00/003 Apputi scritti da Alberto Leporati e Rosalba Zizza Esercizio 1 Posti

Dettagli

Geometria analitica: rette e piani

Geometria analitica: rette e piani Geometria aalitica: rette e piai Coordiate polari Cambiameti di riferimeto el piao Cambiameti di riferimeto i geerale Isometrie Simmetrie Isometrie el piao Isometrie ello spazio 2 2006 Politecico di Torio

Dettagli

1.6 Serie di potenze - Esercizi risolti

1.6 Serie di potenze - Esercizi risolti 6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo

Dettagli

LE EQUAZIONI IRRAZIONALI

LE EQUAZIONI IRRAZIONALI LE EQUAZIONI IRRAZIONALI Per ricordare H Data ua qualsiasi equazioe A B, saiamo che ad essa si ossoo alicare i ricii di equivaleza che cosetoo di aggiugere o togliere esressioi ai due membri oure moltilicare

Dettagli

(1 2 3) (1 2) Lezione 10. I gruppi diedrali.

(1 2 3) (1 2) Lezione 10. I gruppi diedrali. Lezioe 0 Prerequisiti: Simmetrie di poligoi regolari. Gruppi di permutazioi. Cetro di u gruppo. Cetralizzate di u elemeto di u gruppo. Riferimeto al testo: [PC] Sezioe 5.4 I gruppi diedrali. Ogi simmetria

Dettagli

Precorso di Matematica. Parte IV : Funzioni e luoghi geometrici

Precorso di Matematica. Parte IV : Funzioni e luoghi geometrici Facoltà di Igegeria Precorso di Matematica 1. Equazioi e disequazioi Parte IV : Fuzioi e luoghi geometrici Richiamiamo brevemete la ozioe di fuzioe, che sarà utilizzato i quest ultima parte del precorso.

Dettagli

Cosa vogliamo imparare?

Cosa vogliamo imparare? Cosa vogliamo imparare? risolvere i modo approssimato equazioi del tipo f()=0 che o solo risolubili i maiera esatta ed elemetare tramite formule risolutive. Esempio: log( ) 1= 0 Iterpretazioe grafica Come

Dettagli

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4 Quarto Compito di Aalisi Matematica Corso di laurea i Iformatica, corso B 5 Luglio 016 Soluzioi Esercizio 1 Determiare tutti i umeri complessi z tali che z = 3 4 i. Soluzioe. Scrivedo z = a + bi, si ottiee

Dettagli

Soluzioni. 2 2n+1 3 2n. n=1. 3 2n 9. n=1. Il numero 2 può essere raccolto fuori dal segno di sommatoria: = 2. n=1 = = 8 5.

Soluzioni. 2 2n+1 3 2n. n=1. 3 2n 9. n=1. Il numero 2 può essere raccolto fuori dal segno di sommatoria: = 2. n=1 = = 8 5. 60 Roberto Tauraso - Aalisi Calcolare la somma della serie Soluzioi + 3 R La serie può essere riscritta el modo seguete: + 4 3 9 Il umero può essere raccolto fuori dal sego di sommatoria: + 4 3 9 Si tratta

Dettagli

GLI INSIEMI NUMERICI

GLI INSIEMI NUMERICI GLI INSIEMI NUMERICI R 2 π 2, _ -,8 2,89 Q Z N -2 2 28-87 -87 _, 7,76267 7 - e 2,7-7 -,6 _ -,627 7 6 R Numeri Reali Q Numeri Razioali Z Numeri Iteri Relativi N Numeri Naturali Dal diagramma di Eulero-Ve

Dettagli

Esercizi proposti. f(x), f(x), f(x), f(x + 1), f(x) + 1. x 2 x 1 se x 1, 4 x se x > 1 2, 2).

Esercizi proposti. f(x), f(x), f(x), f(x + 1), f(x) + 1. x 2 x 1 se x 1, 4 x se x > 1 2, 2). Esercizi proposti 1. Risolvere la disequazioe + 1.. Disegare i grafici di a) y = 1 + + 3 ; b) y = 1 ; c) y = log 10 + 1). 3. Si cosideri la fuzioe f) = ; disegare i grafici di f), f), f), f + 1), f) +

Dettagli

LICEO delle SCIENZE UMANE B. PASCAL

LICEO delle SCIENZE UMANE B. PASCAL LICEO delle SCIENZE UMANE B. PASCAL Prof. Loredaa Maario INDICE 1. Scomposizioe di poliomi 1.1 Raccoglimeto totale a fattor comue..3 1. Raccoglimeto parziale a fattor comue 3 1.3 Triomio scompoibile el

Dettagli

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi:

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi: Isiemi umerici Soo oti l isieme dei umeri aturali: N {1,, 3,, l isieme dei umeri iteri relativi: Z {0, ±1, ±, ±3, N {0 ( N e, l isieme dei umeri razioali: Q {p/q : p Z, q N. Si ottiee questo ultimo isieme,

Dettagli

Esercizi su serie numeriche - svolgimenti

Esercizi su serie numeriche - svolgimenti Esercizi su serie umeriche - svolgimeti Osserviamo che vale la doppia diseguagliaza + si, e quidi la serie è a termii positivi Duque la somma della serie esiste fiita o uguale a + Ioltre valgoo le diseguagliaze

Dettagli

Precorso di Matematica, aa , (IV)

Precorso di Matematica, aa , (IV) Precorso di Matematica, aa 01-01, (IV) Poteze, Espoeziali e Logaritmi 1. Nel campo R dei umeri reali, il umero 1 e caratterizzato dalla proprieta che 1a = a, per ogi a R; per ogi umero a 0, l equazioe

Dettagli

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c)

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c) SERIE NUMERICHE Esercizi risolti. Calcolare la somma delle segueti serie telescopiche: a) b). Verificare utilizzado la codizioe ecessaria per la covergeza) che le segueti serie o covergoo: a) c) ) log

Dettagli

1 + 1 ) n ] n. < e nα 1 n

1 + 1 ) n ] n. < e nα 1 n Esercizi preparati e i parte svolti martedì 0.. Calcolare al variare di α > 0 Soluzioe: + ) α Per α il ite è e; se α osserviamo che da + /) < e segue che α + ) α [ + ) ] α < e α Per α > le successioi e

Dettagli

( ) ( ) ( )( ) PROBLEMA Fissiamo un sistema di riferimento in cui A ( 0;0) C x y : siano α l angolo , ( ; ) l angolo ˆ

( ) ( ) ( )( ) PROBLEMA Fissiamo un sistema di riferimento in cui A ( 0;0) C x y : siano α l angolo , ( ; ) l angolo ˆ Soluzioe a cura di: lessadra iglio, Liceo lassico Vittorio lfieri, Torio Giuliaa ru, Liceo Scietifico Isaac Newto, hivasso (TO) laudia hau, IRRE Val d osta toella uppari, Liceo Scietifico Galileo Ferraris,

Dettagli

Lezione 4. Gruppi di permutazioni

Lezione 4. Gruppi di permutazioni Lezioe 4 Prerequisiti: Applicazioi tra isiemi Lezioi e Gruppi di permutazioi I questa lezioe itroduciamo ua classe ifiita di gruppi o abeliai Defiizioe 41 ia X u isieme o vuoto i dice permutazioe su X

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

a) la funzione costante k. Sia k un numero reale e consideriamo la funzione che ad ogni numero reale x associa k: x R k

a) la funzione costante k. Sia k un numero reale e consideriamo la funzione che ad ogni numero reale x associa k: x R k ALCUNE FUNZIONI ELEMENTARI ( E NON) E LORO GRAFICI (*) a) la fuzioe costate k. Sia k u umero reale e cosideriamo la fuzioe che ad ogi umero reale x associa k: x R k Tale fuzioe è detta fuzioe costate k;

Dettagli

Unità Didattica N 32 Grandezze geometriche omogenee e loro misura

Unità Didattica N 32 Grandezze geometriche omogenee e loro misura Uità Didattica N 3 Uità Didattica N 3 01) Classi di gradezze omogeee 0) Multipli e sottomultipli di ua gradezza geometrica 03) Gradezze commesurabili ed icommesurabili 04) Rapporto di due gradezze 05)

Dettagli

Esercizi sui limiti di successioni

Esercizi sui limiti di successioni AM0 - AA 03/4 ALFONSO SORRENTINO Esercizi sui iti di successioi Esercizio svolto a) Usado la defiizioe di ite, dimostare che: + 3 si π cos e ) e b) 0 Soluzioe Comiciamo da a) Vogliamo dimostrare che: ε

Dettagli

Radici, potenze, logaritmi in campo complesso.

Radici, potenze, logaritmi in campo complesso. SOMMARIO NUMERI COMPLESSI... Formula di Eulero... Coiugato di u umero complesso... 3 Poteza -esima di u umero complesso z (formula di De Moivre... 3 Radice -esima di z... 3 Osservazioi... Logaritmo di

Dettagli

Esercizi di econometria: serie 2

Esercizi di econometria: serie 2 Esercizi di ecoometria: serie Esercizio Per quali delle segueti uzioi di desità cogiuta le variabili casuali ed soo idipedeti?......3.4.5..5 (a) (b) 3 4....3.6.9..4...5..5 3.. 3.8..4.6 (c) (d) Nel caso

Dettagli

Le successioni: intro

Le successioni: intro Le successioi: itro Si cosideri la seguete sequeza di umeri:,, 2, 3, 5, 8, 3, 2, 34, 55, 89, 44, 233, detti di Fiboacci. Essa rappreseta il umero di coppie di coigli preseti ei primi 2 mesi i u allevameto!

Dettagli

Cerchi di Mohr - approfondimenti

Cerchi di Mohr - approfondimenti Comportameto meccaico dei materiali Cerchi di Mohr - approfodimeti Stato di tesioe e di deformazioe Cerchi di Mohr - approfodimeti L algebra dei cerchi di Mohr Proprietà di estremo dei cerchi di Mohr Costruzioe

Dettagli

Esercizi svolti. 1. Calcolare i seguenti limiti: log(1 + 3x) x 2 + 2x. x 2 + 3 sin 2x. l) lim. b) lim. x 0 sin x. 1 e x2 d) lim. c) lim.

Esercizi svolti. 1. Calcolare i seguenti limiti: log(1 + 3x) x 2 + 2x. x 2 + 3 sin 2x. l) lim. b) lim. x 0 sin x. 1 e x2 d) lim. c) lim. Esercizi svolti. Calcolare i segueti iti: a log + + c ± ta 5 + 5 si π e b + si si e d + f + 4 5 g + 6 4 6 h 4 + i + + + l ± + log + log 7 log 5 + 4 log m + + + o cos + si p + e q si s e ta cos e u siπ

Dettagli

1 Congruenze. Definizione 1.1. Siano a, b, n Z con n 2, definiamo a b (mod n) se n a b.

1 Congruenze. Definizione 1.1. Siano a, b, n Z con n 2, definiamo a b (mod n) se n a b. 1 Cogrueze Defiizioe 1.1. Siao a, b, Z co 2, defiiamo a b (mod ) se a b. Proposizioe 1.2. 2 la cogrueza mod è ua relazioe di equivaleza su Z. a a () perché a a a b () b a () a b () b c () a b b c a c =

Dettagli

CALCOLO COMBINATORIO

CALCOLO COMBINATORIO CALCOLO COMBINATORIO Che cosa sigifica cotare Tutti coosciamo la successioe dei umeri iteri Naturali N = {0, 1,,, } si tratta di ua struttura metale fodametale, chiaramete presete alla ostra ituizioe che

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2010

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 00 Il cadidato risolva uo dei due problemi e 5 dei 0 quesiti i cui si articola il questioario. PROBLEMA Sia ABCD u quadrato di lato, P u puto di

Dettagli

ANALISI MATEMATICA 1. Funzioni elementari

ANALISI MATEMATICA 1. Funzioni elementari ANALISI MATEMATICA Fuzioi elemetari Trovare le soluzioi delle segueti disequazioi ) x + 4 5 > 8 + 5x 0 ) 5x + 0 > 0, x 4 < 0 3) x x 3 4) x + x + > 3 x + 4 5) 5x 4x x + )x ) 6) x x + > 0, x + 5x + 6 0,

Dettagli

Principio di induzione: esempi ed esercizi

Principio di induzione: esempi ed esercizi Pricipio di iduzioe: esempi ed esercizi Pricipio di iduzioe: Se ua proprietà P dipedete da ua variabile itera vale per e se, per ogi vale P P + allora P vale su tutto Variate del pricipio di iduzioe: Se

Dettagli

Solidi e volumi Percorso: Il problema della misura

Solidi e volumi Percorso: Il problema della misura Solidi e volumi Percorso: Il problema della misura Abilità Coosceze Nuclei Collegameti esteri Calcolare perimetri e aree Equivaleza el piao ed Spazio e figure Fisica di poligoi. equiscompoibilità tra Disego

Dettagli

1 Congruenze. Definizione 1.1. a, b, n Z n 2, allora definiamo a b (mod n) se n a b.

1 Congruenze. Definizione 1.1. a, b, n Z n 2, allora definiamo a b (mod n) se n a b. 1 Cogrueze Defiizioe 1.1. a, b, Z 2, allora defiiamo a b (mod ) se a b. Proposizioe 1.2. 2 la cogrueza mod è ua relazioe di equivaleza su Z. a a () perché a a a b () b a () a b () b c () a b b c a c =

Dettagli

POLITECNICO di BARI - I Facoltà di INGEGNERIA Corso di Laurea in INGEGNERIA MECCANICA (Corso B) A.A. 2011/2012. per ogni n N

POLITECNICO di BARI - I Facoltà di INGEGNERIA Corso di Laurea in INGEGNERIA MECCANICA (Corso B) A.A. 2011/2012. per ogni n N POLITECNICO di BARI - I Facoltà di INGEGNERIA Corso di Laurea i INGEGNERIA MECCANICA Corso B) A.A. / ) Dimostrare, utilizzado il pricipio di iduzioe, che a) b) c) d) k= log + ) = log + ) per ogi N k k

Dettagli

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma 1 Serie di poteze È stato dimostrato che la serie geometrica x (1.1) coverge se e solo se la ragioe x soddisfa la disuguagliaza 1 < x < 1. I realtà c è covergeza assoluta i ] 1, 1[. Per x 1 la serie diverge

Dettagli

Serie di Fourier / Esercizi svolti

Serie di Fourier / Esercizi svolti Serie di Fourier / Esercizi svolti ESERCIZIO. da Si cosideri la fuzioe f : R R, periodica di periodo e data ell itervallo (, ] se

Dettagli

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ LE DERIVATE. GENERALITÀ Defiizioe A) Ituitiva. La derivata, a livello ituitivo, è u operatore tale che: a) ad ua fuzioe f associa u altra fuzioe; b) obbedisce alle segueti regole di derivazioe: () D a

Dettagli

Programma (orientativo) secondo semestre 32 ore - 16 lezioni

Programma (orientativo) secondo semestre 32 ore - 16 lezioni Programma (orietativo) secodo semestre 32 ore - 6 lezioi 3 lezioi: successioi e serie 4 lezioi: itegrali 2-3 lezioi: equazioi differeziali 4 lezioi: sistemi di equazioi e calcolo vettoriale e matriciale

Dettagli

PNI SESSIONE SUPPLETIVA QUESITO 1

PNI SESSIONE SUPPLETIVA QUESITO 1 www.matefilia.it PNI 004 - SESSIONE SUPPLETIVA QUESITO La fuzioe f(x) = 3x six x 3six della fuzioe, per x + : è, per x +, ua forma idetermiata del tipo. Il limite A) No esiste; B) è 3/; C) è /3 ; D) è

Dettagli

16 - Serie Numeriche

16 - Serie Numeriche Uiversità degli Studi di Palermo Facoltà di Ecoomia CdS Statistica per l Aalisi dei Dati Apputi del corso di Matematica 6 - Serie Numeriche Ao Accademico 03/04 M. Tummiello, V. Lacagia, A. Cosiglio, S.

Dettagli

Sottospazi associati a matrici e forma implicita. Sottospazi associati a una matrice Dimensione e basi con riduzione Sottospazi e sistemi. Pag.

Sottospazi associati a matrici e forma implicita. Sottospazi associati a una matrice Dimensione e basi con riduzione Sottospazi e sistemi. Pag. Spazi vettoriali Sottospazi associati a ua matrice Dimesioe e basi co riduzioe Sottospazi e sistemi 2 Pag. 1 2006 Politecico di Torio 1 Spazi delle righe e delle coloe Sia A M m, ua matrice m x. Allora

Dettagli

PROPRIETÀ DELLE POTENZE IN BASE 10

PROPRIETÀ DELLE POTENZE IN BASE 10 PROPRIETÀ DELLE POTENZE IN BASE Poteze i base co espoete itero positivo Prediamo u umero qualsiasi che deotiamo co la lettera a e u umero itero positivo che deotiamo co la lettera Per defiizioe (cioè per

Dettagli

Preparazione al corso di statistica Prof.ssa Cerbara

Preparazione al corso di statistica Prof.ssa Cerbara Preparazioe al corso di statistica Prof.ssa Cerbara Esistoo molti isiemi umerici, ciascuo co caratteristiche be precise. Alcui importatissimi isiemi umerici soo: N: isieme dei umeri aturali, cioè tutti

Dettagli

Diottro sferico. Capitolo 2

Diottro sferico. Capitolo 2 Capitolo 2 Diottro sferico Si idica co il termie diottro sferico ua calotta sferica che separa due mezzi co idice di rifrazioe diverso. La cogiugete il cetro di curvatura C della calotta co il vertice

Dettagli

STATISTICA 1 ESERCITAZIONE 5

STATISTICA 1 ESERCITAZIONE 5 STATISTICA ESERCITAZIONE 5 Dott. Giuseppe Padolfo 28 Ottobre 203 VARIABILITA IN TERMINI DI DISPERSIONE DA UN CENTRO Cetro Me o μ La dispersioe viee misurata come sitesi delle distaze tra le uità statistiche

Dettagli

Campionamento casuale da popolazione finita (caso senza reinserimento )

Campionamento casuale da popolazione finita (caso senza reinserimento ) Campioameto casuale da popolazioe fiita (caso seza reiserimeto ) Suppoiamo di avere ua popolazioe di idividui e di estrarre u campioe di uità (co < ) Suppoiamo di studiare il carattere X che assume i valori

Dettagli

RISOLUZIONE MODERNA DI PROBLEMI ANTICHI

RISOLUZIONE MODERNA DI PROBLEMI ANTICHI RISOLUZIONE MODERNA DI PROBLEMI ANTICHI L itelletto, duque, che o è la verità, o comprede mai la verità i modo così preciso da o poterla compredere (poi acora) più precisamete, all ifiito, perché sta alla

Dettagli

Elementi di calcolo combinatorio

Elementi di calcolo combinatorio Appedice A Elemeti di calcolo combiatorio A.1 Disposizioi, combiazioi, permutazioi Il calcolo combiatorio si occupa di alcue questioi iereti allo studio delle modalità secodo cui si possoo raggruppare

Dettagli

1 I sistemi di equazioni

1 I sistemi di equazioni 1.1 Le equazioi lieari i due icogite 1 I sistemi di equazioi Ua equazioe lieare i due icogite x, y R, i cui cioè le due icogite compaioo solo al primo grado, può essere scritta ella forma ormale: ax +

Dettagli

Esercizi di Analisi II

Esercizi di Analisi II Esercizi di Aalisi II Ao Accademico 008-009 Successioi e serie di fuzioi. Serie di poteze. Studiare la covergeza della successioe di fuzioi (f ) N, dove f : [, ] R è defiita poedo f (x) := x +.. Studiare

Dettagli

a'. a' e b n y se e solo se x, y, divisi per n danno lo stesso resto.

a'. a' e b n y se e solo se x, y, divisi per n danno lo stesso resto. E.5. Cogrueze Nella sezioe D. (esempio (d)) abbiamo itrodotto la relazioe di cogrueza modulo : dati due umeri iteri x, y e u umero itero positivo diciamo che x è cogruo a y modulo (i formula x y se è u

Dettagli

DETERMINANTI (SECONDA PARTE). NOTE DI ALGEBRA LINEARE

DETERMINANTI (SECONDA PARTE). NOTE DI ALGEBRA LINEARE DETERMINANTI (SECONDA PARTE). NOTE DI ALGEBRA LINEARE 2010-11 MARCO MANETTI: 21 DICEMBRE 2010 1. Sviluppi di Laplace Proposizioe 1.1. Sia A M, (K), allora per ogi idice i = 1,..., fissato vale lo sviluppo

Dettagli

Proposizione 1. Due sfere di R m hanno intersezione non vuota se e solo se la somma dei loro raggi e maggiore della distanza fra i loro centri.

Proposizione 1. Due sfere di R m hanno intersezione non vuota se e solo se la somma dei loro raggi e maggiore della distanza fra i loro centri. Laboratorio di Matematica, A.A. 009-010; I modulo; Lezioi II e III - schema. Limiti e isiemi aperti; SB, Cap. 1 Successioi di vettori; SB, Par. 1.1, pp. 3-6 Itori sferici aperti. Nell aalisi i ua variabile

Dettagli

Una raccolta di esercizi

Una raccolta di esercizi Corso di Aalisi matematica per Fisici (aa 007-08) (prof Alfoso Villai) Ua raccolta di esercizi (aggiorameto: maggio 008) Risolvere le segueti equazioi ell icogita : a) ( + ) = ( ); b) ( 8) = 9; c) 4 =

Dettagli

LIMITI DI SUCCESSIONI

LIMITI DI SUCCESSIONI LIMITI DI SUCCESSIONI Formalmete, ua successioe di elemeti di u dato isieme A è u'applicazioe dall'isieme N dei umeri aturali i A: L'elemeto a della successioe è quidi l'immagie a = f) del umero secodo

Dettagli

Tutorato di Probabilità 1, foglio I a.a. 2007/2008

Tutorato di Probabilità 1, foglio I a.a. 2007/2008 Tutorato di Probabilità, foglio I a.a. 2007/2008 Esercizio. Siao A, B, C, D eveti.. Dimostrare che P(A B c ) = P(A) P(A B). 2. Calcolare P ( A (B c C) ), sapedo che P(A) = /2, P(A B) = /4 e P(A B C) =

Dettagli

Esercizi sulle successioni

Esercizi sulle successioni Esercizi sulle successioi 1 Verificare, attraverso la defiizioe, che la successioe coverge a 2 3. a := 2 + 3 3 7 2 Verificare, attraverso la defiizioe, che la successioe coverge a 0. a := 4 + 3 3 5 + 7

Dettagli

1. I numeri naturali. 2. Confronto degli interi naturali. 3. Il sistema di numerazione decimale

1. I numeri naturali. 2. Confronto degli interi naturali. 3. Il sistema di numerazione decimale umeri aturali Scrivere il precedete e il successivo dei segueti umeri Milleciquecetoovatacique ottomilasettecetoottatuo Diecimilioisettecetoottatuomilaciquecetoveti Zero umiliardosettecetomilioiciquecetomila

Dettagli

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii)

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii) Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi : Riferimeti: R.Adams, Calcolo Differeziale. -Si cosiglia vivamate di fare gli esercizi del testo. Cap. 9.5 - Serie di poteze,

Dettagli

Cenni di topologia di R

Cenni di topologia di R Cei di topologia di R. Sottoisiemi dei umeri reali Studieremo le proprietà dei sottoisiemi dei umeri reali, R, che hao ad esempio la forma: = (, ) (,) 6 8 = [,] { ;6;8} { } = (, ) (,) [, + ) Defiizioe:

Dettagli

Immaginario Un numero immaginario si ottiene moltiplicando un numero reale per i, dove si intende con i la radice quadrata di meno uno.

Immaginario Un numero immaginario si ottiene moltiplicando un numero reale per i, dove si intende con i la radice quadrata di meno uno. Immagiario U umero immagiario si ottiee moltiplicado u umero reale per i, dove si itede co i la radice quadrata di meo uo. Immagie Data ua fuzioe y=f(x) di domiio A e codomiio B si chiama immagie di x

Dettagli

2 Criteri di convergenza per serie a termini positivi

2 Criteri di convergenza per serie a termini positivi Uiversità Roma Tre L. Chierchia 65 (29//7) 2 Criteri di covergeza per serie a termii positivi I questo paragrafo cosideriamo serie a termii positivi ossia serie a co a > 0. Si ricordi che ua serie a termii

Dettagli

1. DISUGUAGLIANZE GEOMETRICHE

1. DISUGUAGLIANZE GEOMETRICHE . DISUGUAGLIANZE GEOMETRICHE (SOLUZIONI) POTENZE E RADICI Siao m, N, a b 0, allora valgoo: a m b m, b m a m, e si ha l uguagliaza se e solo se a = b oppure m = 0. Esercizio. Dimostra che per ogi coppia

Dettagli

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57 Tracce di soluzioi di alcui esercizi di matematica - gruppo 42-57 4. Limiti di successioi Soluzioe dell Esercizio 42.. Osserviamo che a = a +6 e duque la successioe prede valori i {a,..., a 6 } e ciascu

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2007

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2007 ESAME DI STAT DI LIE SIENTIFI RS DI RDINAMENT 7 Il cadidato risolva uo dei due problemi e 5 dei quesiti i cui si articola il questioario. PRLEMA Si cosiderio i triagoli la cui base è A e il cui vertice

Dettagli

Istituzioni di Matematiche (CH-CI-MT) V o foglio di esercizi

Istituzioni di Matematiche (CH-CI-MT) V o foglio di esercizi Istituzioi di Matematiche (CH-CI-MT) V o foglio di esercizi ESERCIZIO. Si determiio le soluzioi dell equazioe x x + 5 = 0. Idicata co z 0 la soluzioe co parte immagiaria positiva, si disegi el piao di

Dettagli

Università degli Studi della Calabria Facoltà di Ingegneria. 26 giugno 2012

Università degli Studi della Calabria Facoltà di Ingegneria. 26 giugno 2012 Uiversità degli Studi della Calabria Facoltà di Igegeria Correzioe della Secoda Prova Scritta di alisi Matematica 2 giugo 202 cura dei Prof. B. Sciuzi e L. Motoro. Secoda Prova Scritta di alisi Matematica

Dettagli

= Pertanto. Per la formula di Navier ( σ = ), gli sforzi normali σ più elevati nella sezione varranno: di compressione);

= Pertanto. Per la formula di Navier ( σ = ), gli sforzi normali σ più elevati nella sezione varranno: di compressione); La sezioe di trave di figura è soggetta ad u mometo flettete pari a 000 knmm e ed u azioe di taglio pari a 5 kn, etrambe ageti su u piao verticale passate per l asse s-s. Calcolare gli sforzi σ e τ massimi

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 3 Prova scritta del 6//3 Esercizio Suppoiamo che ua variabile aleatoria Y abbia la seguete desita : { hx e 3/x, x > f Y (y) =, x, co h opportua costate positiva.

Dettagli

Per approssimare la funzione, occorre determinare la derivata prima e seconda:

Per approssimare la funzione, occorre determinare la derivata prima e seconda: Esercizi sul Poliomio di Taylor Approssimare lafuzioe f() = l(+si) coilpoliomio di Taylor di ordie = e puto iiziale 0 = 0. Soluzioe Per approssimare la fuzioe, occorre determiare la derivata prima e secoda:

Dettagli

I appello - 29 Giugno 2007

I appello - 29 Giugno 2007 Facoltà di Igegeria - Corso di Laurea i Ig. Iformatica e delle Telecom. A.A.6/7 I appello - 9 Giugo 7 ) Studiare la covergeza putuale e uiforme della seguete successioe di fuzioi: [ ( )] f (x) = cos (

Dettagli

3.1 Rappresentazione dello stato tensionale nel piano di Mohr: circoli di Mohr.

3.1 Rappresentazione dello stato tensionale nel piano di Mohr: circoli di Mohr. DIDATTICA DI PROGETTAZIONE DELLE COSTRUZIONI PROF. CARMELO MAJORANA MODULO TRE I CONCETTI FONDAMENTALI NELL ANALISI DELLA TENSIONE PARTE B) MODULO PER LO SPECIALIZZANDO Modulo. Rappresetazioe dello stato

Dettagli

Corso di laurea in Matematica Corso di Analisi Matematica 1-2 AA Dott.ssa Sandra Lucente Successioni numeriche

Corso di laurea in Matematica Corso di Analisi Matematica 1-2 AA Dott.ssa Sandra Lucente Successioni numeriche Corso di laurea i Matematica Corso di Aalisi Matematica -2 AA. 0809.. Cooscere. Dott.ssa Sadra Lucete. Successioi umeriche Defiizioe di successioe, isieme degli elemeti della successioe, successioe defiita

Dettagli

Congruenze in ; l insieme quoziente / n

Congruenze in ; l insieme quoziente / n Cogrueze i ; l isieme quoziete / Per ogi, si cosideri i la relazioe, che per il mometo deoteremo co ( ), così defiita: a ( ) b divide a-b Esempio: 5 (7 ) 19, perché 7 5-19=-14, metre 4 o è ella relazioe

Dettagli

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge.

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge. Le successioi A parole ua successioe é u isieme ifiito di umeri disposti i u particolare ordie. Piú rigorosamete, ua successioe é ua legge che associa ad ogi umero aturale u altro umero (ache o aturale):

Dettagli

LE MISURE DI TENDENZA CENTRALE

LE MISURE DI TENDENZA CENTRALE STATISTICA DESCRITTIVA LE MISURE DI TENDENZA CENTRALE http://www.biostatistica.uich.itit OBIETTIVO Esempio: Nella tabella seguete soo riportati i valori del tasso glicemico rilevati su 0 pazieti: Idividuare

Dettagli

2T(n/2) + n se n > 1 T(n) = 1 se n = 1

2T(n/2) + n se n > 1 T(n) = 1 se n = 1 3 Ricorreze Nel caso di algoritmi ricorsivi (ad esempio, merge sort, ricerca biaria, ricerca del massimo e/o del miimo), il tempo di esecuzioe può essere descritto da ua fuzioe ricorsiva, ovvero da u equazioe

Dettagli

3. Calcolo letterale

3. Calcolo letterale Parte Prima. Algera 1) Moomi Espressioe algerica letterale 42 Isieme di umeri relativi, talui rappresetati da lettere, legati fra loro da segi di operazioi. Moomio Espressioe algerica che o cotiee le operazioi

Dettagli

Serie numeriche e di funzioni - Esercizi svolti

Serie numeriche e di funzioni - Esercizi svolti Serie umeriche e di fuzioi - Esercizi svolti Serie umeriche Esercizio. Discutere la covergeza delle serie segueti a) 3, b) 5, c) 4! (4), d) ( ) e. Esercizio. Calcolare la somma delle serie segueti a) (

Dettagli

Stima della media di una variabile X definita su una popolazione finita

Stima della media di una variabile X definita su una popolazione finita Stima della media di ua variabile X defiita su ua popolazioe fiita otazioi: popolazioe, campioe e strati Popolazioe. umerosità popolazioe; Ω {ω,..., ω } popolazioe X variabile aleatoria defiita sulla popolazioe

Dettagli

Università di Milano Bicocca Esercitazione 4 di Matematica per la Finanza 24 Aprile 2015

Università di Milano Bicocca Esercitazione 4 di Matematica per la Finanza 24 Aprile 2015 Uiversità di Milao Bicocca Esercitazioe 4 di Matematica per la Fiaza 24 Aprile 205 Esercizio Completare il seguete piao di ammortameto: 000 2 3 234 3 6 369 Osserviamo iazitutto che, per il vicolo di chiusura

Dettagli

L Ultimo teorema di Fermat e le terne Pitagoriche

L Ultimo teorema di Fermat e le terne Pitagoriche L Ultimo teorema di Fermat e le tere Pitagoriche Aspetto aritmetico e geometrico A cura di Fracesco Di Noto Eugeio Amitrao ( http://www.atuttoportale.it/) Coteuti dell articolo: Titolo Pag. Abstract.........

Dettagli

Materiale didattico relativo al corso di Matematica generale Prof. G. Rotundo a.a.2009/10

Materiale didattico relativo al corso di Matematica generale Prof. G. Rotundo a.a.2009/10 Materiale didattico relativo al corso di Matematica geerale Prof. G. Rotudo a.a.2009/10 ATTENZIONE: questo materiale cotiee i lucidi utilizzati per le lezioi. NON sostituisce il libro, che deve essere

Dettagli

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino)

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino) Corso di Laurea Trieale i Matematica Calcolo delle Probabilità I doceti G. Nappo, F. Spizzichio Prova di martedì luglio tempo a disposizioe: 3 ore. Scrivere su ogi foglio NOME e COGNOME. Le risposte devoo

Dettagli

Esercizi svolti su successioni e serie di funzioni

Esercizi svolti su successioni e serie di funzioni Esercizi svolti su successioi e serie di fuzioi Esercizio. Calcolare il limite putuale di f ) = 2 +, [0, + ). Dimostrare che o si ha covergeza uiforme su 0, + ), metre si ha covergeza uiforme su [a, +

Dettagli

Esame di Probabilità e Statistica del 9 luglio 2007 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova).

Esame di Probabilità e Statistica del 9 luglio 2007 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Esame di Probabilità e Statistica del 9 luglio 27 Corso di Laurea Trieale i Matematica, Uiversità degli Studi di Padova). Cogome Nome Matricola Es. 1 Es. 2 Es. 3 Es. 4 Somma Voto fiale Attezioe: si cosegao

Dettagli

S n. Soluzione. Il numero N dei chicchi di grano è: N Si tratta di una serie geometrica di ragione 2. cioè:

S n. Soluzione. Il numero N dei chicchi di grano è: N Si tratta di una serie geometrica di ragione 2. cioè: ESAME DI STATO DI LICEO SCIENTIFICO Sessioe Ordiaria 6 PIANO NAZIONALE INFORMATICA Questioario Quesito Si arra che l ivetore del gioco degli scacchi chiedesse di essere compesato co chicchi di grao: u

Dettagli

A.S ABSTRACT

A.S ABSTRACT ILLUSIONI GEOMETRICHE E NUMERI DI IBONACCI A.S. 00-0 GUGLIELMO SACCO (C) ENRICO IZZO (C) ABSTRACT I questo articolo vegoo messe i luce alcue "illusioi" geometriche elle quali giocao u ruolo chiave le proprietà

Dettagli