Campo di validità: al crescere della velocità del fluido, la relazione fra portata defluente e perdita di carico diviene non più lineare.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Campo di validità: al crescere della velocità del fluido, la relazione fra portata defluente e perdita di carico diviene non più lineare."

Transcript

1 La Legge d DARCY Campo d valdtà: al crescere della veloctà del fludo, la relaone fra portata defluente e perdta d carco dvene non pù lneare. d ν umero d Reynolds de granul: Re dove d è l dametro medo del f meo poroso La lneartà vene meno per Re 0 (cala l effetto delle fore vscose rspetto a uelle neral). Cò s verfca n vcnana d grand po d emungmento/rcarca, sorgent, ecc. In genere c s trova nel campo d valdtà della Legge d Darcy

2 Conduttvtà Idraulca La Conduttvtà Idraulca [L/T] è defnble n un meo sotropo come la PORTATA SPECIFICA PER UITA DI GRADIETE IDRAULICO ed è uno scalare che esprme la facltà con cu l fludo vene trasportato negl spa nterstal. È possble separare l nfluena delle propretà del fludo da uelle della matrce solda esprmendo come: ρ g k µ k g ν n cu g è l acceleraone d gravtà, e k [L 2 ] detta PERMEAILITA del meo poroso dpende solo dalle propretà della matrce solda e può essere determnato emprcamente: Far ed Hatch (933) teorcamente: oeny-carman (937) 2 2 ( ) 3 n α P n m 3 00 k C0 2 2 β n d ( n) M k m m s β coeff. d compattaone (β 5) α fattore d forma de gran (α 6 sferco, α 7.7 spgoloso) P m percentuale n peso della sabba tra magle contgue del setacco d dametro medo d m M s area della superfce della matrce solda per untà d volume C 0 coeffcente (C 0 0.2)

3 Conduttvtà Idraulca Valor tpc della Conduttvtà Idraulca (cm/s) Ghaa pulta 0 2 (molto permeable) Sabba pulta o msta con ghaa 0-3 (permeable) Sabba fne o argllosa (poco permeable) Arglla (pratcamente mpermeable)

4 Trasmssvtà T S consder l flusso attraverso un acufero confnato d spessore, omogeneo ed sotropo e caratterato da conduttvtà draulca T ello schema b-dmensonale: La trasmssvtà T rappresenta l flusso drco per untà d larghea dell acufero, attraverso l ntera altea dell acufero, uando vene sottoposto ad un carco draulco untaro

5 Euaon tr-dmensonal del moto L euaone del moto ottenuta spermentalmente nella forma della legge d Darcy è valda per un flusso mono-dmensonale d un fludo ncomprmble n meo omogeneo. el caso d campo d moto tr-dmensonale, l euaone d Darcy può essere generalata nella forma: J grad h h V / n ovvero, nelle tre dreon: x y h nv x h nv y h nv x y Le euaon sono valde anche nel caso d meo non omogeneo ma sotropo, n cu coè: (x, y, )

6 OMOGEEITA ED ISOTROPIA DEL MEZZO Euaon tr-dmensonal del moto Se la permeabltà k è la stessa n tutt punt del meo poroso, l meo è detto OMOGEEO Se la permeabltà n cascun punto è ndpendente dalla dreone, l meo è detto ISOTROPO In molt cas gl acufer natural sono O OMOGEEI ed AISOTROPI. La non omogenetà è spesso dovuta alle stratfcaon delle formaon geologche che costtuscono l meo poroso. 2 2

7 FLUSSO ORIZZOTALE n MEZZO STRATIFICATO h Euaon tr-dmensonal del moto h2 2 2 ( ) 2 { Σ L L L L P e n cu: P e è la Conduttvtà Idraulca Euvalente del flusso parallelo

8 FLUSSO VERTICALE n MEZZO STRATIFICATO Euaon tr-dmensonal del moto h A h 2 2 A 2 A... 2 A e A A A e n cu:..: (se esste almeno un 0 0) e è la Conduttvtà Idraulca Euvalente del flusso normale alle stratfcaon

9 Euaon tr-dmensonal del moto Le euaon generalate d Darcy per meo ansotropo dventano: x y xx yx x h x h x h x xy yy y h y h y h y x y h h h I nove coeffcent costtuscono l tensore della conduttvtà draulca : xx yx x xy yy y x y In forma compatta s può scrvere: h j h x j (convenone d Ensten)

10 Acufero Freatco Ipotes d Duput Approssmaone della superfce freatca e della franga d capllartà h Mavs & Tsu, 939 C 2.2 n d n H 3/ 2 d H dam. medo gran (n) n porostà; h c n pollc Poo d osservaone reale Dstrbuone dell umdtà nel suolo approssmata Polubarnova-ochna, 952 h C 0.45 n d n 0 d 0 dam. gran al 0% (cm) n porostà; h 0 n cm p C - p 0 Superfce Freatca h C Franga d capllartà Grado d Saturaone, S w Valor tpc d h C 2-5 cm sabba gross cm sabba cm sabba fne cm lmo 2-4 m arglla Dstrbuone della pressone se h C <<, vene trascurata

11 Approssmaone d Duput Acufero Freatco Ipotes d Duput ella maggor parte delle falde acufere natural, la pendena della superfce freatca è molto pccola (/00 /000). poo d osservaone s θ dx ddh h(x) x eupotenal x x In ogn punto della superfce freatca, che rappresenta una lnea d corrente, la portata specfca ha dreone tangente alla lnea d corrente e modulo (poché p 0 ed h ): s dh ds d ds sen ϑ Duput suggersce se θ è pccolo, d sostture sen θ con tan θ dh/dx (l che euvale ad assumere che le superfc eupotenal sano vertcal, coè h è funone della sola x, ovvero che la dstrbuone della pressone sa drostatca con dp/d-ρg). Pertanto: x dh dx h h( x) La portata rsulta dunue: (se W è la larghea) x Wh dh dx

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo UNIVERSITA DEGLI STUDI DI BASILICATA FACOLTA DI ECONOMIA Corso d laurea n Economa Azendale Lezon d Statstca (25 marzo 2013) Docente: Massmo Crstallo QUARTILI Dvdono la dstrbuzone n quattro part d uguale

Dettagli

Lezione n. 7. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità. Antonino Polimeno 1

Lezione n. 7. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità. Antonino Polimeno 1 Chmca Fsca Botecnologe santare Lezone n. 7 Legge d Raoult Legge d Henry Soluzon deal Devazon dall dealt dealtà Antonno Polmeno 1 Soluzon / comportamento deale - Il dagramma d stato d una soluzone bnara,

Dettagli

PROBLEMA 1. Soluzione. β = 64

PROBLEMA 1. Soluzione. β = 64 PROBLEMA alcolare l nclnazone β, rspetto al pano stradale, che deve avere un motocclsta per percorrere, alla veloctà v = 50 km/h, una curva pana d raggo r = 4 m ( Fg. ). Fg. Schema delle condzon d equlbro

Dettagli

Geotecnica Esercitazione 1/2013

Geotecnica Esercitazione 1/2013 Geotecnca Eserctazone 1/2013 # 1 - Note le quanttà q n gramm present su ogn setacco d dametro assegnato, rportate n Tab. 1, rappresentare le curve granulometrche e classfcare terren a, b, c. # 2 La Tab.

Dettagli

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Integrazone numerca dell equazone del moto per un sstema lneare vscoso a un grado d lbertà Prof. Adolfo Santn - Dnamca delle Strutture 1 Introduzone 1/2 L equazone del moto d un sstema vscoso a un grado

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso d Statstca medca e applcata 3 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone I concett prncpal che sono stat presentat sono: Mede forme o analtche (Meda artmetca semplce, Meda artmetca

Dettagli

Università di Cassino. Esercitazioni di Statistica 1 del 19 Febbraio Dott. Mirko Bevilacqua

Università di Cassino. Esercitazioni di Statistica 1 del 19 Febbraio Dott. Mirko Bevilacqua Unverstà d Cassno Eserctazon d Statstca del 9 Febbrao 00 Dott. Mro Bevlacqua DATASET STUDENTI N SESSO ALTEZZA PESO CORSO NUMERO COLORE COLORE (cm) (g) LAUREA SCARPA OCCHI CAPELLI M 79 65 INFORMAICA 43

Dettagli

NATURA ATOMICA DELLA MATERIA

NATURA ATOMICA DELLA MATERIA NATURA ATOMICA DLLA MATRIA Un qualunque fludo è costtuto da un gran numero d partcelle (sa sngol atom che molecole) n un contnuo moto dsordnato defnto agtaone termca. Questo fenomeno sta alla base de cosddett

Dettagli

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA PER L AMBIENTE E IL TERRITORIO METODI DI LOCALIZZAZIONE DEL RISALTO IDRAULICO RELATORE Ch.mo Prof. Ing.

Dettagli

Sollecitazione di Taglio

Sollecitazione di Taglio Sollectazone d Taglo In lnea teorca s può avere solo sollectazone d taglo, ma n realtà essa s accompagna sempre a momento flettente y T T x Cononostante, anche n presenza d taglo l momento flettente s

Dettagli

Soluzione: Il campo generato da un elemento di filo dl è. db r = (1)

Soluzione: Il campo generato da un elemento di filo dl è. db r = (1) 1 Eserco 1 - Un flo conduttore percorso da corrente ha la forma mostrata n fgura dove tratt rettlne sono molto lungh. S calcol l campo d nduone magnetca ( dreone, verso e modulo) nel punto P al centro

Dettagli

MOTO DEI FLUIDI REALI: LE EQUAZIONI DI NAVIER-STOKES

MOTO DEI FLUIDI REALI: LE EQUAZIONI DI NAVIER-STOKES MOO EI FLUII REALI: LE EQUAZIONI I NAVIER-SOKES M. Capozz Copyrght AEPRON utt rtt Rservat - www.adepron.t MOO EI FLUII REALI: LE EQUAZIONI I NAVIER-SOKES Marco CAPOZZI * * Ingegnere Meccanco; Master n

Dettagli

CONFORMITA DEL PROGETTO

CONFORMITA DEL PROGETTO AMGA - Azenda Multservz S.p.A. - Udne pag. 1 d 6 INDICE 1. PREMESSA...2 2. CALCOLI IDRAULICI...3 3. CONFORMITA DEL PROGETTO...6 R_Idr_Industre_1 Str.doc AMGA - Azenda Multservz S.p.A. - Udne pag. 2 d 6

Dettagli

Ripartizione stati tensionali tra le fasi di un terreno

Ripartizione stati tensionali tra le fasi di un terreno 1 Rpartzone stat tensonal tra le fas d un terreno I carch estern e le forze d massa agent sul mezzo soldo contnuo deale sono eulbrat dalle tenson defnte con t δ F = lm δ A 0 δ A δf Nel terreno (mezzo granulare

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

Ettore Limoli. Lezioni di Matematica Prof. Ettore Limoli. Sommario. Calcoli di regressione

Ettore Limoli. Lezioni di Matematica Prof. Ettore Limoli. Sommario. Calcoli di regressione Sto Personale d Ettore Lmol Lezon d Matematca Prof. Ettore Lmol Sommaro Calcol d regressone... 1 Retta d regressone con Ecel... Uso della funzone d calcolo della tendenza... 4 Uso della funzone d regressone

Dettagli

Trasformatore monofase. Le norme definiscono il rendimento convenzionale di un trasformatore come: = + Perdite

Trasformatore monofase. Le norme definiscono il rendimento convenzionale di un trasformatore come: = + Perdite Rendmento l rendmento effettvo d un trasformatore vene defnto come: otenza erogata al carco η otenza assorbta dalla rete 1 1 1 1 Le norme defnscono l rendmento convenzonale d un trasformatore come: η otenza

Dettagli

CAMPI MAGNETICI E INDUZIONE ELETTROMAGNETICA

CAMPI MAGNETICI E INDUZIONE ELETTROMAGNETICA CAMPI MAGETICI E IDUZIOE ELETTOMAGETICA Quando s para d camp magnetc, pù propramente s para d: B r IDUZIOE MAGETICA (o denstà d fusso magnetco) H r ITESITÀ DI CAMPO MAGETICO r r L equazone che ega queste

Dettagli

LIOFILIZZAZIONE. Liofilizzazione Riduzione del contenuto di acqua per sublimazione

LIOFILIZZAZIONE. Liofilizzazione Riduzione del contenuto di acqua per sublimazione Loflzzazone Ruzone el contenuto acqua per sublmazone Obettv tablzzazone Ruzone peso e volume trutturazone rncp Trasporto calore Trasporto matera Vantagg Alle basse temperature eserczo aottate è preservata

Dettagli

UNIVERSITA DI PALERMO CORSO DI IMPIANTI DI TRATTAMENTO SANITARIO-AMBIENTALE FILTRAZIONE

UNIVERSITA DI PALERMO CORSO DI IMPIANTI DI TRATTAMENTO SANITARIO-AMBIENTALE FILTRAZIONE UNIVERSITA DI PALERMO DIPARTIMENTO DI INGEGNERIA CIVILE AMBIENTALE E AEROSPAZIALE CORSO DI IMPIANTI DI TRATTAMENTO SANITARIO-AMBIENTALE FILTRAZIONE a cura d: Prof. Ing. Gaspare Vvan e Ing. Mchele Torregrossa

Dettagli

CALCOLI MACROSCOPICI: TRASPORTO DI MATERIA

CALCOLI MACROSCOPICI: TRASPORTO DI MATERIA CCOI MCROSCOPICI: TRSPORTO DI MTERI a veloctà d trasferento d assa attraverso l nterfacca ha, per process d separaone, un ruolo altrettanto portante delle condon d equlbro terodnaco tra le fas perchè deterna

Dettagli

Elettronica dello Stato Solido Prova scritta del 4 settembre 2007

Elettronica dello Stato Solido Prova scritta del 4 settembre 2007 Elettronca dello Stato Soldo Prova scrtta del 4 settebre 7 Cognoe e Noe Matrcola Fla Posto Es.) In un esperento d dffrazone d ragg n un crstallo cubco, la cella untara del retcolo recproco s trova ad essere

Dettagli

Il lavoro L svolto da una forza costante è il prodotto scalare della forza per lo spostamento del punto di applicazione della forza medesima

Il lavoro L svolto da una forza costante è il prodotto scalare della forza per lo spostamento del punto di applicazione della forza medesima avoro ed Energa F s Fs cos θ F// s F 0 0 se: s 0 θ 90 Il lavoro svolto da una orza costante è l prodotto scalare della orza per lo spostamento del punto d applcazone della orza medesma [] [M T - ] N m

Dettagli

Campo di applicazione

Campo di applicazione Unverstà del Pemonte Orentale Corso d Laurea n Botecnologa Corso d Statstca Medca Correlazone Regressone Lneare Corso d laurea n botecnologa - Statstca Medca Correlazone e Regressone lneare semplce Campo

Dettagli

Scrivere 2.1 cm implica dire che la misura sia compresa nell intervallo mm

Scrivere 2.1 cm implica dire che la misura sia compresa nell intervallo mm Il lto d un ddo è pr. cm. Usndo le cfre sgnfctve per stmre l errore clcolre l volume del cuo. Supponendo che l devzone stndrd nell msur del lto s d mm clcolre l devzone stndrd che ssoct ll msur del volume.

Dettagli

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3 Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

MODELLISTICA DI SISTEMI DINAMICI

MODELLISTICA DI SISTEMI DINAMICI CONTROLLI AUTOMATICI Ingegnera Gestonale http://www.automazone.ngre.unmore.t/pages/cors/controllautomatcgestonale.htm MODELLISTICA DI SISTEMI DINAMICI Ing. Federca Gross Tel. 059 2056333 e-mal: federca.gross@unmore.t

Dettagli

Soluzione del compito di Fisica febbraio 2012 (Udine)

Soluzione del compito di Fisica febbraio 2012 (Udine) del compto d Fsca febbrao (Udne) Elettrodnamca È data una spra quadrata d lato L e resstenza R, ed un flo percorso da corrente lungo z (ved fgura). Dcamo a e b le dstanze del lato parallelo pù vcno e pù

Dettagli

LA CAPACITÀ ELETTRICA DEI CORPI

LA CAPACITÀ ELETTRICA DEI CORPI Pagna 1 d 6 LA CAPACIÀ ELERICA DEI CORPI La capactà elettrca de corp rappresenta l atttudne de corp ad osptare sulla loro superfce una certa quanttà d carca elettrca. L U.I. d msura è l FARAD segue pertanto

Dettagli

Teorema di Thévenin-Norton

Teorema di Thévenin-Norton 87 Teorema d Téenn-Norton E detto ance teorema d rappresentazone del bpolo, consente nfatt d rappresentare una rete lneare a due morsett (A, B) con: un generatore d tensone ed un resstore sere (Téenn)

Dettagli

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni Scenze Geologche Corso d Probabltà e Statstca Prove d esame con soluzon 004-005 1 Corso d laurea n Scenze Geologche - Probabltà e Statstca Appello del 1 gugno 005 - Soluzon 1. (Punt 3) In una certa zona,

Dettagli

POLITECNICO DI BARI - DICATECh Corso di Laurea in Ingegneria Ambientale e del Territorio IDRAULICA AMBIENTALE - A.A. 2015/2016 ESONERO 15/01/2016

POLITECNICO DI BARI - DICATECh Corso di Laurea in Ingegneria Ambientale e del Territorio IDRAULICA AMBIENTALE - A.A. 2015/2016 ESONERO 15/01/2016 POLITECNICO DI BARI - DICATECh Corso d Laurea n Ingegnera Ambentale e del Terrtoro IDRAULICA AMBIENTALE - A.A. 015/016 ESONERO 15/01/016 ESERCIZIO 1 S consder la rete aperta n fgura, nella quale le portate

Dettagli

Meridiana Verticale. c 2002 A.Palmas. 9 agosto 2002

Meridiana Verticale. c 2002 A.Palmas. 9 agosto 2002 Merdana Vertcale c 2002.Palmas 9 aosto 2002 Stato: prma bozza ppunt sul calcolo d una merdana vertcale a parete 1 Gnomone e punto radale Lo nomone delle merdane vertcal è orentato n modo da essere parallelo

Dettagli

Verifica termoigrometrica delle pareti

Verifica termoigrometrica delle pareti Unverstà Medterranea d Reggo Calabra Facoltà d Archtettura Corso d Tecnca del Controllo Ambentale A.A. 2009-200 Verfca termogrometrca delle paret Prof. Marna Mstretta ANALISI IGROTERMICA DEGLI ELEMENTI

Dettagli

CARATTERISTICHE DEI SEGNALI RANDOM

CARATTERISTICHE DEI SEGNALI RANDOM CARATTERISTICHE DEI SEGNALI RANDOM I segnal random o stocastc rvestono una notevole mportanza poché sono present, pù che segnal determnstc, nella maggor parte de process fsc real. Esempo d segnale random:

Dettagli

CAPITOLO 16 CEDIMENTI DI FONDAZIONI SUPERFICIALI

CAPITOLO 16 CEDIMENTI DI FONDAZIONI SUPERFICIALI CAPITOLO 6 6. Introduone I cedment delle fondaon superfcal sono gl spostament vertcal del pano d posa, e sono l rsultato (l ntegrale) delle deformaon vertcal del terreno sottostante la fondaone. Tal deformaon

Dettagli

Modelli con varabili binarie (o qualitative)

Modelli con varabili binarie (o qualitative) Modell con varabl bnare (o qualtatve E( Y X α + βx + ε quando Y è una varable benoullana Y 1 0 s ha l modello lneare d probabltà Pr( Y 1 X α + βx + ε dove valor stmat della Y assumono l sgnfcato d probabltà.

Dettagli

pendii naturali e delle scarpate artificiali, le tensioni di taglio stesso lungo potenziali superfici di scorrimento.

pendii naturali e delle scarpate artificiali, le tensioni di taglio stesso lungo potenziali superfici di scorrimento. Anals d stabltà de pend Quando l pano campagna non è orzzontale, come nel caso de pend natural e delle scarpate artfcal, le tenson d taglo ndotte dalle forze gravtazonal tendono a smuovere l terreno stesso

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Appello di FISICA, 22 febbraio 2011

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Appello di FISICA, 22 febbraio 2011 CORSO DI LAUREA IN SCIENZE BIOLOGICHE Appello d FISICA, febbrao 11 1) Un autocarro con massa a peno carco par a M = 1.1 1 4 kg percorre con veloctà costante v = 7 km/h, un tratto stradale rettlneo. A causa

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI IL LEGAME TRA DUE VARIABILI I METODI DELLA CORRELAZIONE Prof.ssa G. Sero, Prof. P. Trerotol, Cattedra d Statstca Medca, Unverstà d Bar 1/19 IL PROBLEMA

Dettagli

La t di Student. Per piccoli campioni si definisce la variabile casuale. = s N. detta t di Student.

La t di Student. Per piccoli campioni si definisce la variabile casuale. = s N. detta t di Student. Pccol campon I parametr della dstrbuzone d una popolazone sono n generale ncognt devono essere stmat dal campone de dat spermental per pccol campon (N N < 30) z = (x µ)/ )/σ non ha pù una dstrbuzone gaussana

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto numerable. L nseme de

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 2)

Esercizi sulle reti elettriche in corrente continua (parte 2) Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola

Dettagli

Sensori meccanici. Caratterizzazione dei sensori meccanici: principio di funzionamento e grandezza misurata

Sensori meccanici. Caratterizzazione dei sensori meccanici: principio di funzionamento e grandezza misurata Sensor meccanc Caratterzzazone de sensor meccanc: prncpo d fnzonamento e grandezza msrata. I segnal meccanc d maggor nteresse. Pressone ed accelerazone (le ntà d msra del S.I.). Defnzone del tensore degl

Dettagli

TRASMISSIONE DEL CALORE PER IRRAGGIAMENTO

TRASMISSIONE DEL CALORE PER IRRAGGIAMENTO TRASMISSIONE DEL CALORE PER IRRAGGIAMENTO ε T A Q ε T A Trasmssone del calore per rraggamento Indce. Lo spettro elettromagnetco e la radazone termca. Interazone della radazone termca con la matera 3. La

Dettagli

Progetto di travi in c.a.p isostatiche Il tracciato del cavi e il cavo risultante

Progetto di travi in c.a.p isostatiche Il tracciato del cavi e il cavo risultante Unverstà degl Stud d Roma Tre - Facoltà d Ingegnera Laurea magstrale n Ingegnera Cvle n Protezone Corso d Cemento Armato Precompresso A/A 2015-16 Progetto d trav n c.a.p sostatche Il traccato del cav e

Dettagli

Potenzialità degli impianti

Potenzialità degli impianti Unverstà degl Stud d Treste a.a. 2009-2010 Impant ndustral Potenzaltà degl mpant Impant ndustral Potenzaltà degl mpant 1 Unverstà degl Stud d Treste a.a. 2009-2010 Impant ndustral Defnzone della potenzaltà

Dettagli

2. Le soluzioni elettrolitiche

2. Le soluzioni elettrolitiche . Le soluzon elettroltche Classfcazone degl elettrolt: 1) soluzon elettroltche ) solvent onc: a) sal fus b) lqud onc 3) elettrolt sold Struttura del solvente Interazone one/solvente Interazone one/one

Dettagli

PARTE II LA CIRCOLAZIONE IDRICA

PARTE II LA CIRCOLAZIONE IDRICA PARTE II LA CIRCOLAZIONE IDRICA La acque d precptazone atmosferca che gungono al suolo scorrono n superfce o penetrano n profondtà dando orgne alla crcolazone, la quale subsce l nfluenza d molt fattor

Dettagli

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive Prncp d ngegnera elettrca Lezone 6 a Anals delle ret resste Anals delle ret resste L anals d una rete elettrca (rsoluzone della rete) consste nel determnare tutte le corrent ncognte ne ram e tutt potenzal

Dettagli

- Riproduzione riservata - 1

- Riproduzione riservata - 1 Razze: Setter Inglese Bracco Francese tpo Prene D Franco Barsottn Va Bugallo 1b 56040 Crespna (PI) www.allevamentodelbugallo.t nfo@allevamentodelbugallo.t Parentela e consangunetà; Parentela; genetcamente

Dettagli

Fisica Quantistica III Esercizi Natale 2009

Fisica Quantistica III Esercizi Natale 2009 Fisica Quantistica III Esercizi Natale 009 Philip G. Ratcliffe (philip.ratcliffe@uninsubria.it) Dipartimento di Fisica e Matematica Università degli Studi dell Insubria in Como via Valleggio 11, 100 Como

Dettagli

CAPITOLO 2: PRIMO PRINCIPIO

CAPITOLO 2: PRIMO PRINCIPIO Introduzone alla ermodnamca Esercz svolt CAIOLO : RIMO RINCIIO Eserczo n 7 Una certa quanttà d Hg a = atm e alla temperatura = 0 C è mantenuta a = costante Quale dventa la se s porta la temperatura a =

Dettagli

MODELLI DI SISTEMI. Principi di modellistica. Considerazioni energetiche. manca

MODELLI DI SISTEMI. Principi di modellistica. Considerazioni energetiche. manca ONTOI UTOMTII Ingegnera della Gestone Industrale e della Integrazone d Impresa http://www.automazone.ngre.unmore.t/pages/cors/ontrollutomatcgestonale.htm MODEI DI SISTEMI Ing. ug Bagott Tel. 05 0939903

Dettagli

RIPARTIZIONE DELLE FORZE SISMICHE ORIZZONTALI

RIPARTIZIONE DELLE FORZE SISMICHE ORIZZONTALI RIPARTIZIONE DELLE FORZE SISMICHE ORIZZONTALI (Modellazone approssmata alla rnter) Le strutture degl edfc sottopost alle forze ssmche sono organsm spazal pù o meno compless, l cu comportamento va analzzato

Dettagli

RAPPRESENTAZIONE DI MISURE. carta millimetrata

RAPPRESENTAZIONE DI MISURE. carta millimetrata carta mllmetrata carta mllmetrata non è necessaro rportare sul foglo la tabella (ma auta; l mportante è che sta da qualche parte) carta mllmetrata 8 7 6 5 4 3 smbolo della grandezza con untà d msura!!!

Dettagli

Laboratorio 2B A.A. 2013/2014. Elaborazione Dati. Lab 2B CdL Fisica

Laboratorio 2B A.A. 2013/2014. Elaborazione Dati. Lab 2B CdL Fisica Laboratoro B A.A. 013/014 Elaborazone Dat Lab B CdL Fsca Elaborazone dat spermental Come rassumere un nseme d dat spermental? Una statstca è propro un numero calcolato a partre da dat stess. La Statstca

Dettagli

VERIFICHE DI S.L.U. SECONDO LE NTC 2008 TRAVE IN C.A. PROGETTO E VERIFICA ARMATURA A TAGLIO

VERIFICHE DI S.L.U. SECONDO LE NTC 2008 TRAVE IN C.A. PROGETTO E VERIFICA ARMATURA A TAGLIO VERIFICHE DI S.L.U. SECONDO LE NTC 2008 TRAVE IN C.A. PROGETTO E VERIFICA ARMATURA A TAGLIO In questo esempo eseguremo l progetto e la verfca delle armature trasversal d una trave contnua necessare per

Dettagli

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità:

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità: ESERCIZIO. S consder una popolazone consstente delle quattro msurazon,, e descrtta dalla seguente dstrbuzone d probabltà: X P(X) ¼ ¼ ¼ ¼ S estrae casualmente usando uno schema d camponamento senza rpetzone

Dettagli

Richiami di Termodinamica Applicata

Richiami di Termodinamica Applicata Unverstà degl Stud d aglar ors d Studo n Ingegnera hca ed Elettrca Rcha d Terodnaca Applcata Il ro rncpo della Terodnaca, o rncpo d onservazone dell Energa, n tern dfferenzal e con rferento all untà d

Dettagli

Statistica - metodologie per le scienze economiche e sociali /2e S. Borra, A. Di Ciaccio - McGraw Hill

Statistica - metodologie per le scienze economiche e sociali /2e S. Borra, A. Di Ciaccio - McGraw Hill Statstca - metodologe per le scenze economche e socal /e S Borra, A D Cacco - McGraw Hll Es Soluzone degl esercz del captolo 7 In base agl arrotondament effettuat ne calcol, s possono rscontrare pccole

Dettagli

MODELLI. 4.1 Paramagnete semplice a spin-1/2

MODELLI. 4.1 Paramagnete semplice a spin-1/2 MODELLI In questo captolo vengono studat prncpal modell descrvent sstem caratterzzat da un comportamento collettvo che l rende nteressant dal punto d vsta della fsca de fenomen crtc. Verrà dato partcolare

Dettagli

Turbomacchine. Un ulteriore classificazione avviene in base alle modalità con cui l energia viene scambiata:

Turbomacchine. Un ulteriore classificazione avviene in base alle modalità con cui l energia viene scambiata: 1/11 a) Classfcazone delle macchne draulche b) Element costtutv d una turbomacchna c) Trangol d veloctà d) Turbomacchna radale e) Turbomacchna assale f) Esempo d calcolo Turbomacchne S defnsce come macchna

Dettagli

7. METODO DELLE FORZE IMPOSTAZIONE GENERALE INFLUENZA DEGLI SPOSTAMENTI DEI VINCOLI

7. METODO DELLE FORZE IMPOSTAZIONE GENERALE INFLUENZA DEGLI SPOSTAMENTI DEI VINCOLI aptolo7 ETODO DEE FORZE - IPOSTZIONE GENERE 7. ETODO DEE FORZE IPOSTZIONE GENERE INFUENZ DEGI SPOSTENTI DEI VINOI SPOSTENTI SSEGNTI DEI VINOI Supponamo he alun vnol abbano spostament / rotaon assegnat

Dettagli

TERMODINAMICA E TERMOFLUIDODINAMICA. Cap. 10 TRASMISSIONE DEL CALORE PER IRRAGGIAMENTO

TERMODINAMICA E TERMOFLUIDODINAMICA. Cap. 10 TRASMISSIONE DEL CALORE PER IRRAGGIAMENTO TERMODINAMICA E TERMOFLUIDODINAMICA Cap. 0 TRASMISSIONE DEL CALORE PER IRRAGGIAMENTO ε 2 T 2 A 2 Q 2 ε T A G. Cesn Termodnamca e termofludodnamca - Cap. 0_Irraggamento Cap. 0 Trasmssone del calore per

Dettagli

PROPRIETA DI TRASPORTO METODI DI CALCOLO TEORICO E CORRELAZIONI. proprietà di trasporto: valori numerici

PROPRIETA DI TRASPORTO METODI DI CALCOLO TEORICO E CORRELAZIONI. proprietà di trasporto: valori numerici MEODI DI CALCOLO EORICO E CORRELAZIONI propretà trasporto: valor numerc at spermental approcc teorc meto prettv equazon correlazone possbltà prevsone teorca legate alla congrutà el moello fsco gas lut

Dettagli

TORRI DI RAFFREDDAMENTO PER L ACQUA

TORRI DI RAFFREDDAMENTO PER L ACQUA TORRI DI RAFFREDDAMENTO PER ACQUA Premessa II funzonamento degl mpant chmc rchede generalmente gross quanttatv d acqua: questa, oltre ad essere utlzzata drettamente n alcune lavorazon, come lavagg, dssoluzon,

Dettagli

Dai circuiti ai grafi

Dai circuiti ai grafi Da crcut a graf Il grafo è una schematzzazone grafca semplfcata che rappresenta le propretà d nterconnessone del crcuto ad esso assocato Il grafo è costtuto da un nseme d nod e d lat Se lat sono orentat

Dettagli

5 Scambiatori di calore

5 Scambiatori di calore 5 Scambator d calore S tratta d dspostv che consentono l trasfermento d calore, n genere tra due flud, drettamente o attraverso una parete solda d separazone. La trasmssone d calore avvene per convezone

Dettagli

Campi magnetici variabili nel tempo. Esercizi.

Campi magnetici variabili nel tempo. Esercizi. Camp magnetc varabl nel tempo. Esercz. Mauro Sata Versone provvsora. Novembre 2014 1 Per comment o segnalazon d error scrvere, per favore, a: maurosata@tscalnet.t Indce 1 Induzone elettromagnetca. 1 2

Dettagli

Generalità. Problema: soluzione di una equazione differenziale alle derivate ordinarie di ordine n: ( )

Generalità. Problema: soluzione di una equazione differenziale alle derivate ordinarie di ordine n: ( ) Generaltà Problema: soluzone d una equazone derenzale alle dervate ordnare d ordne n: n n K soggetta alle n condzon nzal: K n Ovvero rcercare la soluzone d un sstema d n equazon derenzal ordnare del prmo

Dettagli

Variabili aleatorie discrete. Probabilità e Statistica I - a.a. 04/05-1

Variabili aleatorie discrete. Probabilità e Statistica I - a.a. 04/05-1 Varabl aleatore dscrete Probabltà e Statstca I - a.a. 04/05 - Defnzone Una varable aleatora è una funzone che assoca ad ogn esto dello spazo campone d un espermento casuale un numero. L nseme de possbl

Dettagli

La contabilità analitica nelle aziende agrarie

La contabilità analitica nelle aziende agrarie 2 La contabltà analtca nelle azende agrare Estmo rurale ed element d contabltà (analtca) S. Menghn Corso d Laurea n Scenze e tecnologe agrare Percorso Economa ed Estmo Contabltà generale e cont. ndustrale

Dettagli

Le forze conservative e l energia potenziale

Le forze conservative e l energia potenziale S dcono conservatve quelle orze che s comportano n accordo alla seguente denzone: La orza F s dce conservatva se l lavoro eseguto da tale orza sul punto materale P mentre s sposta dalla poszone P 1 alla

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

LA REGRESSIONE LINEARE SEMPLICE

LA REGRESSIONE LINEARE SEMPLICE LA REGRESSIONE LINEARE SEMPLICE L ANALISI DI REGRESSIONE La regressoe è volta alla rcerca d u modello atto a descrvere la relazoe esstete tra ua varable Dpedete e ua varable dpedete (regressoe semplce)

Dettagli

Misure Topografiche Tradizionali

Misure Topografiche Tradizionali Msure Topografche Tradzonal Grandezze da levare ngol Dstanze Gonometr Dstanzometro Stazone Totale Prsma Dslvell Lvello Stada Msure Strettamente Necessare Soluzone geometrca Msure Sovrabbondant Compensazone

Dettagli

Relazioni tra variabili: Correlazione e regressione lineare

Relazioni tra variabili: Correlazione e regressione lineare Dott. Raffaele Casa - Dpartmento d Produzone Vegetale Modulo d Metodologa Spermentale Febbrao 003 Relazon tra varabl: Correlazone e regressone lneare Anals d relazon tra varabl 6 Produzone d granella (kg

Dettagli

LE ACQUE SOTTERRANEE

LE ACQUE SOTTERRANEE LE ACQUE SOTTERRANEE Acque sotterranee: si organizzano in corpi idrici con caratteristiche differenti a seconda del tipo di materiale Rocce cristalline o sedimentarie: circolano prevalentemente lungo fratture

Dettagli

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2 RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A La rappresentazone n Complemento a Due d un numero ntero relatvo (.-3,-,-1,0,+1,+,.) una volta stablta la precsone che s vuole ottenere (coè l numero d

Dettagli

MEDIA DI Y (ALTEZZA):

MEDIA DI Y (ALTEZZA): Uverstà d Casso Eserctazo d Statstca del 4 Marzo 0 Dott. Mrko Bevlacqua ESERCIZIO Su u collettvo d dvdu soo stat rlevat caratter X Peso( kg) e Altezza ( cm) otteamo la seguete dstrbuzoe d frequeza coguta:

Dettagli

STRATIGRAFIE PARTIZIONI VERTICALI

STRATIGRAFIE PARTIZIONI VERTICALI STRATIGRAFI PARTIZIONI VRTICALI 6. L solamento acustco: tecnche, calcol 2 Trasmssone rumor In edlza s possono dstnguere dfferent tp d rumor: rumor aere (vocare de vcn da altre untà abtatve, rumor provenent

Dettagli

CORSO DI LAUREA TRIENNALE IN SCIENZE GEOLOGICHE (8015) CORSO: PRINCIPI DI MECCANICA DELLE TERRE E DELLE ROCCE L ACQUA NEL MEZZO POROSO.

CORSO DI LAUREA TRIENNALE IN SCIENZE GEOLOGICHE (8015) CORSO: PRINCIPI DI MECCANICA DELLE TERRE E DELLE ROCCE L ACQUA NEL MEZZO POROSO. CORSO DI LAUREA TRIENNALE IN SCIENZE GEOLOGICHE (8015) CORSO: PRINCIPI DI MECCANICA DELLE TERRE E DELLE ROCCE L ACQUA NEL MEZZO POROSO Docente: Alessandro Gargini (E-mail: alessandro.gargini@unibo.it)

Dettagli

Moduli su un dominio a ideali principali Maurizio Cornalba versione 15/5/2013

Moduli su un dominio a ideali principali Maurizio Cornalba versione 15/5/2013 Modul su un domno a deal prncpal Maurzo Cornalba versone 15/5/2013 Sa A un anello commutatvo con 1. Indchamo con A k l modulo somma dretta d k cope d A. Un A-modulo fntamente generato M s dce lbero se

Dettagli

INTRODUZIONE ALL ESPERIENZA 4: STUDIO DELLA POLARIZZAZIONE MEDIANTE LAMINE DI RITARDO

INTRODUZIONE ALL ESPERIENZA 4: STUDIO DELLA POLARIZZAZIONE MEDIANTE LAMINE DI RITARDO INTODUZION ALL SPINZA 4: STUDIO DLLA POLAIZZAZION DIANT LAIN DI ITADO Un utle rappresentazone su come agscono le lamne su fasc coerent è ottenuta utlzzando vettor e le matrc d Jones. Vettore d Jones e

Dettagli

Istituto Universitario di Architettura di Venezia A.A CONDENSAZIONE SUPERFICIALE ED INTERSTIZIALE DEL VAPORE NELLE STRUTTURE EDILIZIE

Istituto Universitario di Architettura di Venezia A.A CONDENSAZIONE SUPERFICIALE ED INTERSTIZIALE DEL VAPORE NELLE STRUTTURE EDILIZIE Isttuto Unverstaro d Archtettura d Veneza A.A. 004-005 15. CONDENSAZIONE SUPEFICIALE ED INTESTIZIALE DEL VAPOE NELLE STUTTUE EDILIZIE 15.1 CONDENSAZIONE SUPEFICIALE La condensazone del vapore sulle superfc

Dettagli

I vettori. Grandezze scalari: Grandezze vettoriali

I vettori. Grandezze scalari: Grandezze vettoriali Grndee sclr: I ettor engono defnte dl loro lore numerco esemp: lunghe d un segmento, re d un fgur pn, tempertur d un corpo, ecc. Grndee ettorl engono defnte, oltre che dl loro lore numerco, d un dreone

Dettagli

I balconi appoggiati su mensole

I balconi appoggiati su mensole 1 I balcon appoggat su mensole Con un sstema costruttvo ogg n dsuso, per l mpego d nuov metod che garantscono una maggore scurezza, nelle costruzon realzzate sno a crca un secolo fa balcon venvano ottenut

Dettagli

Calcolo della potenza e dell energia necessaria per la climatizzazione di un edificio

Calcolo della potenza e dell energia necessaria per la climatizzazione di un edificio Calcolo della potenza e dell energa necessara per la clmatzzazone d un edfco Rcambo d ara Ø dsperson Rcambo d ara φ φ dsperson + φ rcambo d'ara φ dsperson ΣUS (t nt t est ) φ rcambo d'ara Σn V ρ ara c

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA IL PROBLEMA Supponamo d voler studare l effetto d 4 dverse dete su un campone casuale d 4

Dettagli

29. Mezzi elastici RELAZIONE SFORZO-DEFORMAZIONE

29. Mezzi elastici RELAZIONE SFORZO-DEFORMAZIONE 29. Mezzi elastici I mezzi continui solidi sono caratterizzati da piccole deformazioni, che consentono di stabilire una relazione lineare tra sforzo e deformazione nota come legge di Hook. Linearizzando

Dettagli

MORFOMETRIA DEI BACINI IDROGRAFICI

MORFOMETRIA DEI BACINI IDROGRAFICI MORFOMETRI DEI BCINI IDROGRFICI BCINO IDROGRFICO CURV IPSOGRFIC α(z) area elementare avente quota z a area cumulata progressva area totale del bacno Data la quota Z, fornsce l area complessva a posta a

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita Automaton Robotcs and System CONTROL Unverstà degl Stud d Modena e Reggo Emla Corso d laurea n Ingegnera Meccatronca MODI E STABILITA DEI SISTEMI DINAMICI CA - 04 ModStablta Cesare Fantuzz (cesare.fantuzz@unmore.t)

Dettagli

PERDITE DI POTENZA NEI TRASFORMATORI Prof.

PERDITE DI POTENZA NEI TRASFORMATORI    Prof. EDITE DI OTENZA NEI TASFOATOI www.elettrone.altervsta.org www.proessore.mypoast.com www.marcochrzz.blogspot.com ro. arco Chrzz EESSA Il trasormatore è una mchna elettrca statca, coè prva d part n movmento.

Dettagli

La Regressione X Variabile indipendente o esplicativa. La regressione. La Regressione. Y Variabile dipendente

La Regressione X Variabile indipendente o esplicativa. La regressione. La Regressione. Y Variabile dipendente Unverstà d Macerata Dpartmento d Scenze Poltche, della Comuncazone e delle Relaz. Internazonal La Regressone Varable ndpendente o esplcatva Prezzo n () () 1 1 Varable dpendente 15 1 1 1 5 5 6 6 61 6 1

Dettagli

Materials Handling and Logistics Technology. Linea guida. Settembre 2010

Materials Handling and Logistics Technology. Linea guida. Settembre 2010 Materals Handlng and Logstcs Technology Lnea guda Settembre 2010 2 PAVIMENTI PER L USO DI CARRELLI PER VNA 1 Scopo 3 2 Rferment 3 3 Defnzon 4 4 Requst 5 4.1 Pavment 5 4.1.1 Generaltà 5 4.1.2 Deflessone

Dettagli

Gas ideale (perfetto):

Gas ideale (perfetto): C.d.L. Scenze e ecnologe grare,.. 2015/2016, Fsca Gas deale (perfetto): non esste n realtà drogeno e elo assomglano d pù a un gas deale - le molecole sono puntform; - nteragscono tra loro e con le paret

Dettagli

Analisi del moto pre e post urto del veicolo

Analisi del moto pre e post urto del veicolo Captolo Anals del moto pre e post urto del vecolo 3.1 Moto rettlneo p. xx 3.1.1 Accelerazone unforme p. xx 3.1. Dstanza per l arresto del vecolo ed evtabltà p. xx 3.1.3 Dagramm veloctà-tempo e dstanza

Dettagli

31/03/2012. Collusione (Cabral cap.8 PRN capp. 13-14) Il modello standard. Collusione nel modello di Bertrand. Collusione nel modello di Bertrand

31/03/2012. Collusione (Cabral cap.8 PRN capp. 13-14) Il modello standard. Collusione nel modello di Bertrand. Collusione nel modello di Bertrand Collusone (Cabral cap.8 PRN capp. 13-14) Accord tact o esplct per aumentare l potere d mercato e pratcare prezz pù elevat rspetto all equlbro non cooperatvo corrspondente Esste un vantaggo dalla collusone

Dettagli