* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE *

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE *"

Transcript

1 * PROBABILITÀ - SCHEDA N. LE VARIABILI ALEATORIE *. Le varabl aleatore Nella scheda precedente abbamo defnto lo spazo camponaro come la totaltà degl est possbl d un espermento casuale; abbamo vsto che gl event possono essere nterpretat come sottonsem dello spazo camponaro e abbamo defnto la funzone d probabltà come funzone che assegna agl event un numero reale compreso fra e. In analoga a quanto abbamo vsto per la rlevazone d dat spermental, ntroducamo la nozone d varable aleatora (o varable casuale), quella d denstà d probabltà (o d dstrbuzone) d una varable aleatora e d funzone d dstrbuzone cumulata. Useremo le varabl aleatore per descrvere gl event e le denstà d probabltà per fornre le probabltà degl event n termn d varabl aleatore. Dato un espermento casuale, una varable aleatora è una funzone che fa corrspondere un numero reale a ogn esto dell espermento. : Ω E IR Se l nseme de valor assunt dalla varable aleatora è fnto o numerable, la varable aleatora s dce dscreta, altrment s dce contnua. Consderamo nzalmente e per semplctà varabl aleatore dscrete. ESEMPIO. Consderamo l'espermento del lanco d una moneta. In questo caso Ω= testa, croce. Consderamo la varable aleatora così defnta: { } ({ testa} ) = e ({ croce} ) = Qund: : { testa,croce} {,} Che cosa è cambato? Samo passat da un nseme non numerco a un nseme numerco. Qual è l vantaggo? Lancamo volte la moneta. Indchamo con,,...,,..., le varabl aleatore corrspondent a lanc. Se voglamo sapere l numero d uscte d testa ne lanc possamo sommare valor delle varabl aleatore. Qund la varable aleatora = ovvero = rappresenta l numero d uscte d testa n lanc. =. La denstà d probabltà e la funzone d dstrbuzone cumulata d una varable aleatora La denstà d probabltà costruto a partre da : f d una varable aleatora dscreta fornsce la probabltà d ogn evento f ( x) = P( = x). Rcordamo che, come n statstca descrttva, usamo le lettere mauscole per ndcare le varabl aleatore e le lettere mnuscole per ndcare valor assunt. In seguto modelleremo spesso l'espermento medante assunzon su una varable casuale e la sua funzone d denstà d probabltà tralascando la descrzone dello spazo camponaro, degl event e delle probabltà degl event.

2 ESEMPIO. Consderamo l lanco d tre monete non truccate e ndchamo con la varable aleatora che ndca l numero totale d teste. La varable assume valor,, e 3 e la denstà d probabltà f è f () =/8, f () =3/8, f () =3/8, f (3) =/8, f ( ) = per ogn altro valore d La denstà d probabltà s può rappresentare con una scrttura che rchama le tabelle utlzzate n statstca descrttva dove sulla prma rga rportavamo dat osservat e sulla seconda le frequenze: x x x 3 x 4 f (x) p p p 3 p 4 Tabella. Denstà d probabltà. Ovvero P( = x) = p con la propretà che p = e p. Notamo che nella defnzone d varable aleatora non s specfca come s possano assegnare le probabltà agl event su cu assume valor la varable; come abbamo gà detto, le condzon sono che tal probabltà sano numer compres fra e, che la loro somma sa e che la probabltà dell unone d due event dsgunt sa la somma delle probabltà de due event. D altra parte l assegnazone delle probabltà non può essere del tutto arbtrara. Se voglamo che la denstà d probabltà d una varable aleatora consenta prevson effcac, è opportuno assegnare agl event probabltà ragonevol e cò è tanto pù possble quanto pù s conosce l fenomeno studato. Come abbamo gà detto, n alcun cas, queste nformazon possono essere ottenute osservando pù volte l fenomeno nelle stesse condzon. In analoga con lo studo delle varabl n statstca defnamo la funzone d dstrbuzone cumulata (o funzone d rpartzone) d una varable aleatora, ndcata con F (o solo con F se è charo a quale varable c s rfersce), la funzone defnta sulla retta reale tale che s verfch l evento x. F ( x) = P( x) Anche n questo caso possamo utlzzare una rappresentazone tramte tabella: F ( x ) concda con la probabltà che x x x 3 x 4 F (x) p p +p p +p +p 3 p +p +p 3 +p 4 Tabella. Funzone d dstrbuzone cumulata. La funzone d dstrbuzone cumulata soddsfa tutte le propretà gà vste n statstca descrttva per le varabl che modellano rlevazon d dat spermental:. F è una funzone crescente o costante;. n corrspondenza d ogn punto d dscontnutà la funzone assume l valore a snstra. 3. la funzone vale per ogn valore mnore all osservazone mnma e vale per ogn valore maggore o uguale all osservazone massma. ESEMPIO 3. Consderamo l lanco d due dad e ndchamo con e l rsultato de due lanc n cu s ha: P (x) /6 /6 /6 /6 /6 /6 F (x) /6 /6 3/6 4/6 / P (x)..... F (x) Il prmo è un dado equlbrato mentre l secondo è truccato.

3 Qu sotto sono rportat grafc delle denstà d probabltà e delle funzon d dstrbuzone cumulata de due dad La varable aletora prmo lanco n cu esce testa Lancamo una moneta e chedamoc dopo quant lanc esce testa. È pù probable che testa esca per la prma volta al prmo lanco, al secondo, al decmo? Possble esperenza (descrtta n fondo alla scheda) E. La prma volta che esce testa. Consderamo la varable aletora T che descrve l prmo lanco n cu esce testa. Qual valor può assumere?,, 3... ma anche,,..., coè un qualsas numero naturale. Pur partendo da una espermento che ha due possbl rsultat, abbamo costruto una varable aleatora che può assumere una nfntà numerable d valor. Cerchamo d costrure la denstà d probabltà d T. Se p è la probabltà che esca testa n cascun lanco, la probabltà che testa esca per la prma volta: - al prmo lanco è p: PT ( = ) = p - al secondo lanco: è la probabltà d: uscta d croce al prmo e uscta d testa al secondo con due event ndpendent; qund: PT ( = ) = (- pp ) - al terzo lanco: è la probabltà d: uscta d croce al prmo e uscta d croce al secondo e uscta d testa al terzo con tre event ndpendent; qund: PT ( = 3) = (- p) p - al -esmo lanco: PT ( ) (- p) = = p f (x) p (-p)p... ( - p) p... Tabella. Denstà d probabltà del prmo lanco. 3

4 Osservamo che cascuna probabltà è compresa fra e e s dmostra che PT ( = ) =. Qu sotto sono rportat grafc delle denstà d probabltà e la funzone d dstrbuzone cumulata d T per una moneta equlbrata e per una con probabltà d uscta d testa uguale a.. Osservamo che ntutvamente s può capre che la somma delle lunghezze delle barrette ne due grafc è uguale, e deve essere uguale a. E la funzone d dtrbuzone cumulata n entramb cas arrva vcnssmo a. = p=. p= p=. p= Trasformazone d una varable aleatora dscreta ESEMPI Consderamo la varable aleatora che assume valor,, con probabltà rspettvamente,.,.. La varable aleatora = assume valor,, 4 con probabltà rspettvamente.,,.. Infatt, ad esempo, assume valore solamente se assume valore e con la probabltà con cu è. f ( x ) [ P ( = x ) ] = f ( y ) [ P ( g ( x )) = ] ESEMPI 6 Consderamo la varable casuale che assume valor,,, con probabltà rspettvamente,.,.,.3. La varable aleatora = assume valor,, 4 con probabltà.,. (=+.),.3. f ( x ) f ( y ) f ( y ) 4

5 ( = ) ] [ P ( = g ( x )) ] [ P ( g ( x )) [ P x = ] In generale, ndchamo con una varable aleatora dscreta che assume valor x,x,,x n, e con f la funzone d denstà assocata a. Se g è una funzone defnta sull nseme de valor assunt da, la varable aleatora =g() assume valor y,..., y n con y =g(x ), y =g(x ),, y n =g(x n ) e ha come funzone d denstà f la funzone tale che f ( y) = f ( x ) x g( x ) = y dove la somma è fatta su tutt gl x che, trasformat tramte la funzone g, hanno come valore y f ( x ) f ( y ) [ P ( = x ) ] [ P ( = g ( x )) ] x f (x ) g(x ) f (x ) x f (x ) g(x ) f (x ) x n f (x n ) g(x n ) f (x n ) Tabella 3. Denstà d probabltà d una varable aleatora trasformata. E. Esperenza: la prma volta che esce testa. Smulate per volte lanc d una moneta equlbrata. Per cascuna smulazone controllate a quale lanco è uscta per la prma volta testa e fate un stogramma d quest valor. È pù probable che testa esca per la prma volta al prmo lanco, al secondo, al decmo?. Smulate per volte lanc d una moneta con probabltà d uscta d testa uguale a.. Per cascuna smulazone controllate a quale lanco è uscta per la prma volta testa e fate un stogramma d quest valor. È pù probable che testa esca per la prma volta al prmo lanco, al secondo, al decmo? 3. Quale formula può descrvere la denstà d probabltà della varable aletatora T prmo lanco n cu esce testa.

LE FREQUENZE CUMULATE

LE FREQUENZE CUMULATE LE FREQUENZE CUMULATE Dott.ssa P. Vcard Introducamo questo argomento con l seguente Esempo: consderamo la seguente dstrbuzone d un campone d 70 sttut d credto numero flal present nel terrtoro del comune

Dettagli

Variabili aleatorie discrete. Probabilità e Statistica I - a.a. 04/05-1

Variabili aleatorie discrete. Probabilità e Statistica I - a.a. 04/05-1 Varabl aleatore dscrete Probabltà e Statstca I - a.a. 04/05 - Defnzone Una varable aleatora è una funzone che assoca ad ogn esto dello spazo campone d un espermento casuale un numero. L nseme de possbl

Dettagli

Variabili statistiche - Sommario

Variabili statistiche - Sommario Varabl statstche - Sommaro Defnzon prelmnar Statstca descrttva Msure della tendenza centrale e della dspersone d un campone Introduzone La varable statstca rappresenta rsultat d un anals effettuata su

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE Matematca e statstca: da dat a modell alle scelte www.dma.unge/pls_statstca Responsabl scentfc M.P. Rogantn e E. Sasso (Dpartmento d Matematca Unverstà d Genova) STATISTICA DESCRITTIVA - SCHEDA N. REGRESSIONE

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

Esercitazione 8 del corso di Statistica (parte 1)

Esercitazione 8 del corso di Statistica (parte 1) Eserctazone 8 del corso d Statstca (parte ) Dott.ssa Paola Costantn Eserczo Marzo 0 Un urna rossa contene 3 pallne banche, nere e galla. S consder l estrazone d due pallne. S calcol la probabltà d estrarre:.

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto numerable. L nseme de

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità alcolo delle Probabltà Quanto è possble un esto? La verosmglanza d un esto è quantfcata da un numero compreso tra 0 e. n partcolare, 0 ndca che l esto non s verfca e ndca che l esto s verfca senza dubbo.

Dettagli

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli

Introduzione al Machine Learning

Introduzione al Machine Learning Introduzone al Machne Learnng Note dal corso d Machne Learnng Corso d Laurea Magstrale n Informatca aa 2010-2011 Prof Gorgo Gambos Unverstà degl Stud d Roma Tor Vergata 2 Queste note dervano da una selezone

Dettagli

CARATTERISTICHE DEI SEGNALI RANDOM

CARATTERISTICHE DEI SEGNALI RANDOM CARATTERISTICHE DEI SEGNALI RANDOM I segnal random o stocastc rvestono una notevole mportanza poché sono present, pù che segnal determnstc, nella maggor parte de process fsc real. Esempo d segnale random:

Dettagli

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità:

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità: ESERCIZIO. S consder una popolazone consstente delle quattro msurazon,, e descrtta dalla seguente dstrbuzone d probabltà: X P(X) ¼ ¼ ¼ ¼ S estrae casualmente usando uno schema d camponamento senza rpetzone

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

Università degli Studi di Cassino, Anno accademico 2004-2005 Corso di Statistica 2, Prof. M. Furno

Università degli Studi di Cassino, Anno accademico 2004-2005 Corso di Statistica 2, Prof. M. Furno Unverstà degl Stud d Cassno, Anno accademco 004-005 Corso d Statstca, Pro. M. Furno Eserctazone del 5//005 dott. Claudo Conversano Eserczo Ad un certo tavolo d un casnò s goca lancando un dado. Il goco

Dettagli

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni Scenze Geologche Corso d Probabltà e Statstca Prove d esame con soluzon 004-005 1 Corso d laurea n Scenze Geologche - Probabltà e Statstca Appello del 1 gugno 005 - Soluzon 1. (Punt 3) In una certa zona,

Dettagli

4.6 Dualità in Programmazione Lineare

4.6 Dualità in Programmazione Lineare 4.6 Dualtà n Programmazone Lneare Ad ogn PL n forma d mn (max) s assoca un PL n forma d max (mn) Spaz e funzon obettvo dvers ma n genere stesso valore ottmo! Esempo: l valore massmo d un flusso ammssble

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Unverstà d Napol Parthenope acoltà d Ingegnera Corso d Metod Probablstc Statstc e Process Stocastc docente: Pro. Vto Pascazo 20 a Lezone: /2/2003 Sommaro Dstrbuzon condzonate: CD, pd, pm Teorema della

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

LEZIONE 2. Riassumere le informazioni: LE MEDIE MEDIA ARITMETICA MEDIANA, MODA, QUANTILI. La media aritmetica = = N

LEZIONE 2. Riassumere le informazioni: LE MEDIE MEDIA ARITMETICA MEDIANA, MODA, QUANTILI. La media aritmetica = = N LE MEDIE LEZIOE MEDIE ALGEBRICHE: calcolate con operazon algebrche su valor del carattere (meda artmetca) per varabl Rassumere le nformazon: MEDIA ARITMETICA MEDIAA, MODA, QUATILI MEDIE LASCHE: determnate

Dettagli

3 (solo esame 6 cfu) Elementi di Analisi Numerica, Probabilità e Statistica, modulo 2: Elementi di Probabilità e Statistica (3 cfu)

3 (solo esame 6 cfu) Elementi di Analisi Numerica, Probabilità e Statistica, modulo 2: Elementi di Probabilità e Statistica (3 cfu) lement d Anals Numerca, Probabltà e Statstca, modulo 2: lement d Probabltà e Statstca ( cfu) Probabltà e Statstca (6 cfu) Scrtto del 06 febbrao 205. Secondo Appello Id: A Nome e Cognome: same da 6 cfu

Dettagli

Università degli Studi di Urbino Facoltà di Economia

Università degli Studi di Urbino Facoltà di Economia Unverstà degl Stud d Urbno Facoltà d Economa Lezon d Statstca Descrttva svolte durante la prma parte del corso d corso d Statstca / Statstca I A.A. 004/05 a cura d: F. Bartolucc Lez. 8/0/04 Statstca descrttva

Dettagli

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI Cenn sulle macchne seuenzal CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI 4.) La macchna seuenzale. Una macchna seuenzale o macchna a stat fnt M e' un automatsmo deale a n ngress e m uscte defnto da: )

Dettagli

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard Corso d Statstca (canale P-Z) A.A. 2009/0 Prof.ssa P. Vcard VALORI MEDI Introduzone Con le dstrbuzon e le rappresentazon grafche abbamo effettuato le prme sntes de dat. E propro osservando degl stogramm

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabltà pr - 1 Che collegamento c è tra gl strument statstc per lo studo de fenomen real e l calcolo delle probabltà? Vedremo che non sempre la conoscenza delle caratterstche d un fenomeno

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso d Statstca medca e applcata 3 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone I concett prncpal che sono stat presentat sono: Mede forme o analtche (Meda artmetca semplce, Meda artmetca

Dettagli

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti Il modello marovano per la rappresentazone del Sstema Bonus Malus rof. Cercara Rocco Roberto Materale e Rferment. Lucd dstrbut n aula. Lemare 995 (pag.6- e pag. 74-78 3. Galatoto G. 4 (tt del VI Congresso

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

Propagazione degli errori statistici. Test del χ 2 per la bontà di adattamento. Metodo dei minimi quadrati.

Propagazione degli errori statistici. Test del χ 2 per la bontà di adattamento. Metodo dei minimi quadrati. Propagazone degl error statstc. Test del χ per la bontà d adattamento. Metodo de mnm quadrat. Eserctazone 14 gennao 004 1 Propagazone degl error casual Sano B 1,..., B delle varabl casual con valor attes

Dettagli

Statistica e calcolo delle Probabilità. Allievi INF

Statistica e calcolo delle Probabilità. Allievi INF Statstca e calcolo delle Probabltà. Allev INF Proff. L. Ladell e G. Posta 06.09.10 I drtt d autore sono rservat. Ogn sfruttamento commercale non autorzzato sarà perseguto. Cognome e Nome: Matrcola: Docente:

Dettagli

(B1) IL RUOLO DELL ANALISI STATISTICA DEI DATI NELLA GESTIONE AZIENDALE DATI GREZZI E INFORMAZIONI INDICI STATISTICI, TABELLE E GRAFICI

(B1) IL RUOLO DELL ANALISI STATISTICA DEI DATI NELLA GESTIONE AZIENDALE DATI GREZZI E INFORMAZIONI INDICI STATISTICI, TABELLE E GRAFICI Unverstà C. Cattaneo Luc, Corso d Statstca, 9 Ottobre 2013 Laboratoro Excel Sessone n. 1 Venerdì 041013 Gruppo PZ Lunedì 071013 Gruppo AD Martedì 081013 Gruppo EO VERSIONE DEFINITIVA (9 Ottobre 2013) degl

Dettagli

V n. =, e se esiste, il lim An

V n. =, e se esiste, il lim An Parttore resstvo con nfnte squadre n cascata. ITIS Archmede CT La Fg. rappresenta un parttore resstvo, formato da squadre d restor tutt ugual ad, conness n cascata, e l cu numero n s fa tendere ad nfnto.

Dettagli

Norma UNI CEI ENV 13005: Guida all'espressione dell'incertezza di misura

Norma UNI CEI ENV 13005: Guida all'espressione dell'incertezza di misura orma UI CEI EV 3005: Guda all'espressone dell'ncertezza d msura L obettvo d una msurazone è quello d determnare l valore del msurando, n altre parole della grandezza da msurare. In generale, però, l rsultato

Dettagli

STATISTICA DESCRITTIVA CON EXCEL

STATISTICA DESCRITTIVA CON EXCEL STATISTICA DESCRITTIVA CON EXCEL Corso d CPS - II parte: Statstca Laurea n Informatca Sstem e Ret 2004-2005 1 Obettv della lezone Introduzone all uso d EXCEL Statstca descrttva Utlzzo dello strumento:

Dettagli

CAPITOLO 3 Incertezza di misura Pagina 26

CAPITOLO 3 Incertezza di misura Pagina 26 CAPITOLO 3 Incertezza d msura Pagna 6 CAPITOLO 3 INCERTEZZA DI MISURA Le operazon d msurazone sono tutte nevtablmente affette da ncertezza e coè da un grado d ndetermnazone con l quale l processo d msurazone

Dettagli

Adattamento di una relazione funzionale ai dati sperimentali

Adattamento di una relazione funzionale ai dati sperimentali Adattamento d una relazone 1 funzonale a dat spermental Sno ad ora abbamo vsto come può essere stmato, con un certo lvello d confdenza, l valore vero d una grandezza fsca (dretta o dervata) con l suo ntervallo

Dettagli

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo Element d teora de goch Govann D Bartolomeo Unverstà degl Stud d Teramo 1. Descrzone d un goco Un generco goco, Γ, che s svolge n un unco perodo, può essere descrtto da una Γ= NSP,,. Ess sono: trpla d

Dettagli

Sviluppo in serie di Fourier. Introduzione e richiami sulle basi di spazi vettoriali. Serie di Fourier di segnali a supporto illimitato

Sviluppo in serie di Fourier. Introduzione e richiami sulle basi di spazi vettoriali. Serie di Fourier di segnali a supporto illimitato eora de segnal Introduzone a segnal determnat tolo untà Introduzone e rcham sulle bas d spaz vettoral Sere d Fourer d segnal a supporto lmtato Spettro d un segnale Sere d Fourer d segnal a supporto llmtato

Dettagli

Analisi dei Segnali. Sergio Frasca. Dipartimento di Fisica Università di Roma La Sapienza

Analisi dei Segnali. Sergio Frasca. Dipartimento di Fisica Università di Roma La Sapienza Sergo Frasca Anals de Segnal Dpartmento d Fsca Unverstà d Roma La Sapenza Versone 13 dcembre 011 Versone aggornata n http://grwavsf.roma1.nfn.t/sp/sp.pdf Sommaro 1 Introduzone: segnal e sstem... 7 1.1

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 2)

Esercizi sulle reti elettriche in corrente continua (parte 2) Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola

Dettagli

Laboratorio 2B A.A. 2013/2014. Elaborazione Dati. Lab 2B CdL Fisica

Laboratorio 2B A.A. 2013/2014. Elaborazione Dati. Lab 2B CdL Fisica Laboratoro B A.A. 013/014 Elaborazone Dat Lab B CdL Fsca Elaborazone dat spermental Come rassumere un nseme d dat spermental? Una statstca è propro un numero calcolato a partre da dat stess. La Statstca

Dettagli

IL GRUPPO SIMMETRICO S n

IL GRUPPO SIMMETRICO S n EMILIO ZAPPA MATRICOLA UNIVERSITA DEGLI STUDI DI TORINO DIPARTIMENTO DI MATEMATICA ANNO ACCADEMICO 00/00 TESINA PER IL LABORATORIO DI COMBINATORICA IL GRUPPO SIMMETRICO S n IL GIOCO DEL Sa A un nseme fnto

Dettagli

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2 RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A La rappresentazone n Complemento a Due d un numero ntero relatvo (.-3,-,-1,0,+1,+,.) una volta stablta la precsone che s vuole ottenere (coè l numero d

Dettagli

Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE. Prof. Dario Amodio d.amodio@univpm.it. Ing. Gianluca Chiappini g.chiappini@univpm.

Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE. Prof. Dario Amodio d.amodio@univpm.it. Ing. Gianluca Chiappini g.chiappini@univpm. Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE Prof. Daro Amodo d.amodo@unvpm.t Ing. Ganluca Chappn g.chappn@unvpm.t http://www.dpmec.unvpm.t/costruzone/home.htm (Ddattca/Dspense) Testo d rfermento: Stefano

Dettagli

5: Strato fisico: limitazione di banda, formula di Nyquist; caratterizzazione del canale in frequenza

5: Strato fisico: limitazione di banda, formula di Nyquist; caratterizzazione del canale in frequenza 5: Strato fsco: lmtazone d banda, formula d Nyqust; caratterzzazone del canale n frequenza Larghezza d banda d un segnale La larghezza d banda d un segnale è data dall ntervallo delle frequenze d cu è

Dettagli

1.2 Calcolo combinatorio Principi basilari Disposizioni con ripetizione

1.2 Calcolo combinatorio Principi basilari Disposizioni con ripetizione .2 Calcolo combnatoro 2.2 Calcolo combnatoro Rcordamo dallesempo.3 che uno spazo d probabltà dscreto (W, P) s dce unforme se W è un nseme fnto e s ha P(A)= A W, per ogn A W. Pertanto, l calcolo della probabltà

Dettagli

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3 Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

ESERCIZI SULLE VARIABILI CASUALI DISCRETE

ESERCIZI SULLE VARIABILI CASUALI DISCRETE ESERCIZI SULLE VARIABILI CASUALI DISCRETE 1) S lanca un dado. Rappresentare la varable casuale: X = " facca mnore d tre ". 2) S lancano due dad. Rappresentare la varable casuale: X = "somma delle facce

Dettagli

Definizione classica di probabilità

Definizione classica di probabilità Corso d Idrologa A.A. 0-0 Teora delle probabltà Prof. Ing. A. Cancellere Dpartmento d Ingegnera Cvle e Ambentale Unverstà d Catana Defnzone classca d probabltà Il concetto d probabltà ha trovato formalzzazone

Dettagli

Dai circuiti ai grafi

Dai circuiti ai grafi Da crcut a graf Il grafo è una schematzzazone grafca semplfcata che rappresenta le propretà d nterconnessone del crcuto ad esso assocato Il grafo è costtuto da un nseme d nod e d lat Se lat sono orentat

Dettagli

LA STATISTICA: OBIETTIVI; RACCOLTA DATI; LE FREQUENZE (EXCEL) ASSOLUTE E RELATIVE

LA STATISTICA: OBIETTIVI; RACCOLTA DATI; LE FREQUENZE (EXCEL) ASSOLUTE E RELATIVE Lezone 6 - La statstca: obettv; raccolta dat; le frequenze (EXCEL) assolute e relatve 1 LA STATISTICA: OBIETTIVI; RACCOLTA DATI; LE FREQUENZE (EXCEL) ASSOLUTE E RELATIVE GRUPPO MAT06 Dp. Matematca, Unverstà

Dettagli

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA Mnstero della Salute D.G. della programmazone santara --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA La valutazone del coeffcente d varabltà dell mpatto economco consente d ndvduare gl ACC e DRG

Dettagli

Campo di applicazione

Campo di applicazione Unverstà del Pemonte Orentale Corso d Laurea n Botecnologa Corso d Statstca Medca Correlazone Regressone Lneare Corso d laurea n botecnologa - Statstca Medca Correlazone e Regressone lneare semplce Campo

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/ Esercizi 2

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/ Esercizi 2 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE AA 2016/2017 1 Esercz 2 Regme d sconto commercale Eserczo 1 Per quale durata una somma a scadenza S garantsce lo stesso valore

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

Università di Cassino. Esercitazioni di Statistica 1 del 19 Febbraio Dott. Mirko Bevilacqua

Università di Cassino. Esercitazioni di Statistica 1 del 19 Febbraio Dott. Mirko Bevilacqua Unverstà d Cassno Eserctazon d Statstca del 9 Febbrao 00 Dott. Mro Bevlacqua DATASET STUDENTI N SESSO ALTEZZA PESO CORSO NUMERO COLORE COLORE (cm) (g) LAUREA SCARPA OCCHI CAPELLI M 79 65 INFORMAICA 43

Dettagli

Programmazione e Controllo della Produzione. Analisi dei flussi

Programmazione e Controllo della Produzione. Analisi dei flussi Programmazone e Controllo della Produzone Anals de fluss Clent SERVIZIO Uscta Quanto al massmo produce l mo sstema produttvo? Quanto al massmo produce la ma macchna? Lo rsolvo con la smulazone? Sarebbe

Dettagli

Statistica descrittiva

Statistica descrittiva Statstca descrttva. Indc d poszone. Per ndc d poszone d un nseme d dat, ordnat secondo la loro randezza, s ntendono alcun valor che cadono all nterno dell nseme. Gl ndc pù usat sono: I. eda. II. edana.

Dettagli

Esercitazioni del corso: STATISTICA

Esercitazioni del corso: STATISTICA A. A. 0-0 Eserctazon del corso: STATISTICA Sommaro Eserctazone : Moda Medana Meda Artmetca Varabltà: Varanza, Devazone Standard, Coefcente d Varazone ESERCIZIO : UNIVERSITÀ DEGLI STUDI DI MILANO BICOCCA

Dettagli

Corso di Logica I. Modulo sul Calcolo dei Sequenti. Dispensa Lezione II.

Corso di Logica I. Modulo sul Calcolo dei Sequenti. Dispensa Lezione II. Corso d Logca I. Modulo sul Calcolo de Sequent. Dspensa Lezone II. Govann Casn Teorema d corrspondenza fra l calcolo su sequent SND e l calcolo de sequent SC. Rproponamo per esteso la dmostrazone della

Dettagli

Modelli 1 @ Clamfim Equazione delle opzioni Teorema di Radon Nykodym 9 dicembre 2013

Modelli 1 @ Clamfim Equazione delle opzioni Teorema di Radon Nykodym 9 dicembre 2013 CLAMFIM Bologna Modell 1 @ Clamfm Equazone delle opzon Teorema d Radon Nykodym 9 dcembre 2013 professor Danele Rtell danele.rtell@unbo.t 1/33? ubblctà http://elsartcle.com/18arhmh Lbero accesso a Legendre

Dettagli

Concetti principale della lezione precedente

Concetti principale della lezione precedente Corso d Statstca medca e applcata 6 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone precedente I concett prncpal che sono stat presentat sono: I fenomen probablstc RR OR ROC-curve Varabl

Dettagli

4. ALGORITMI GREEDY. cambia-monete scheduling a minimo il ritardo. Il problema del cambia-monete. Proprietà di una soluzione ottima

4. ALGORITMI GREEDY. cambia-monete scheduling a minimo il ritardo. Il problema del cambia-monete. Proprietà di una soluzione ottima Il problema del camba-monete. ALGORITMI GREEDY camba-monete schedulng a mnmo l rtardo Scopo. Dat tagl dsponbl: c, c, 5c, 0c, 0c, 50c,, progettare un algortmo che data una certa somma la camb usando l mnmo

Dettagli

Macchine. 5 Esercitazione 5

Macchine. 5 Esercitazione 5 ESERCITAZIONE 5 Lavoro nterno d una turbomacchna. Il lavoro nterno massco d una turbomacchna può essere determnato not trangol d veloctà che s realzzano all'ngresso e all'uscta della macchna stessa. Infatt

Dettagli

Trigger di Schmitt. e +V t

Trigger di Schmitt. e +V t CORSO DI LABORATORIO DI OTTICA ED ELETTRONICA Scopo dell esperenza è valutare l ampezza dell steres d un trgger d Schmtt al varare della frequenza e dell ampezza del segnale d ngresso e confrontarla con

Dettagli

Il campionamento casuale semplice

Il campionamento casuale semplice Il camponamento casuale semplce Metod d estrazone del campone. robabltà d nclusone. π = n N π j = n N n 1 N 1 Stmatore corretto del totale e della meda. Ŷ = Nȳ e ˆȲ = ȳ Varanza degl stmator corrett. V

Dettagli

Capitolo 11: IL METODO DEI MINIMI QUADRATI. Nel Capitolo precedente ci siamo posti il problema di determinare la miglior retta che passa per

Capitolo 11: IL METODO DEI MINIMI QUADRATI. Nel Capitolo precedente ci siamo posti il problema di determinare la miglior retta che passa per Captolo : IL METODO DEI MINIMI QUADRATI. La mglor retta Nel Captolo precedente c samo post l problema d determnare la mglor retta che passa per cert punt spermental, ed abbamo dscusso un metodo graco.

Dettagli

I MODELLI MULTISTATO PER LE ASSICURAZIONI DI PERSONE

I MODELLI MULTISTATO PER LE ASSICURAZIONI DI PERSONE Facoltà d Economa Valutazone de prodott e dell mpresa d asscurazone I MODELLI MULTISTATO PER LE ASSICURAZIONI DI PERSONE Clauda Colucc Letza Monno Gordano Caporal Martna Ragg I Modell Multstato sono un

Dettagli

Il traffico è un gioco?

Il traffico è un gioco? Il traffco è un goco? Gacomo Tomme Dpartmento d Matematca, Unverstà d Psa e-mal: tomme@dm.unp.t Introduzone Il ttolo potrebbe apparre provocatoro, ma n realtà è solo lo spunto per ntrodurre tem che voglamo

Dettagli

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo UNIVERSITA DEGLI STUDI DI BASILICATA FACOLTA DI ECONOMIA Corso d laurea n Economa Azendale Lezon d Statstca (25 marzo 2013) Docente: Massmo Crstallo QUARTILI Dvdono la dstrbuzone n quattro part d uguale

Dettagli

Approfondimenti disciplinari

Approfondimenti disciplinari UNIVERSITÁ DEGLI STUDI DI FERRARA CORSO SPECIALE ABILITANTE anno accademco 2006/2007 CORSO DI: Approfondment dscplnar UNITÁ DIDATTICA DELLA CLASSE A049 LA PROBABILITA DOCENTE: PROF. BERNARDI EROS TITOLO:

Dettagli

Appunti di Econometria

Appunti di Econometria Appunt d Econometra ARGOMENTO [4]: VARIABILI DIPENDENTI BINARIE Mara Lusa Mancus Unverstà Boccon Novembre 200 Introduzone Ne modell econometrc studat fno ad ora la varable dpendente, y, è sempre stata

Dettagli

Esercizio 1. Costruire un esempio di variabili casuali X ed Y tali che Cov(x,y) = 0, ma X ed Y siano dipendenti.

Esercizio 1. Costruire un esempio di variabili casuali X ed Y tali che Cov(x,y) = 0, ma X ed Y siano dipendenti. srcz d conomtra: sr srczo Costrur un smpo d varabl casual d tal ch Cov(,), ma d sano dpndnt. Soluzon Dobbamo vrcar l sgunt condzon: σ [ ] [ ] [ ] covaranza nulla ) ( ) ( ) dpndnza non lnar Prma cosa da

Dettagli

Divagazioni in margine all Introduzione alla Probabilità di P. Baldi A. Visintin Facoltà di Ingegneria di Trento a.a. 2010-11

Divagazioni in margine all Introduzione alla Probabilità di P. Baldi A. Visintin Facoltà di Ingegneria di Trento a.a. 2010-11 Dvagazon n margne all Introduzone alla Probabltà d P. Bald A. Vsntn Facoltà d Ingegnera d Trento a.a. 2010-11 Indce 1. Statstca descrttva. 2. Spaz d probabltà e calcolo combnatoro. 3. Varabl aleatore dscrete.

Dettagli

Test delle ipotesi Parte 2

Test delle ipotesi Parte 2 Test delle potes arte Test delle potes sulla dstrbuzone: Introduzone Test χ sulla dstrbuzone b Test χ sulla dstrbuzone: Eserczo Test delle potes sulla dstrbuzone Molte concluson tratte nell nferenza parametrca

Dettagli

9.6 Struttura quaternaria

9.6 Struttura quaternaria 9.6 Struttura quaternara L'ultmo lvello strutturale é la struttura quaternara. Non per tutte le protene è defnble una struttura quaternara. Infatt l esstenza d una struttura quaternara é condzonata alla

Dettagli

TEORIA DELLA STIMA E DELLA DESCISIONE STATISTICA

TEORIA DELLA STIMA E DELLA DESCISIONE STATISTICA TEORIA DELLA STIMA E DELLA DESCISIOE STATISTICA STIMA A MASSIMA VEROSIMIGLIAZA Per determnare la stma a massma verosmglanza d un parametro θ, partendo da un campone d dat X, bsogna scrvere la denstà d

Dettagli

Premessa essa sulle soluzioni

Premessa essa sulle soluzioni Appunt d Chmca La composzone delle soluzon Premessa sulle soluzon...1 Concentrazone...2 Frazone molare...2 Molartà...3 Normaltà...4 Molaltà...4 Percentuale n peso...4 Percentuale n volume...5 Massa per

Dettagli

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca Eserctazon del corso d Relazon tra varabl Gancarlo Manz Facoltà d Socologa Unverstà degl Stud d Mlano-Bcocca e-mal: gancarlo.manz@statstca.unmb.t Terza eserctazone Mlano, 8 febbrao 7 SOMMARIO TERZA ESERCITAZIONE

Dettagli

Fondamenti di meccanica classica: simmetrie e leggi di conservazione

Fondamenti di meccanica classica: simmetrie e leggi di conservazione Fondament d meccanca classca: smmetre e legg d conservazone d Marco Tulu A. A. 2005/2006 1 Introduzone Un corpo s dce omogeneo se ha n ogn suo punto ugual propretà fsche e chmche, ed è sotropo se n ogn

Dettagli

Analisi dei flussi 182

Analisi dei flussi 182 Programmazone e Controllo Anals de fluss Clent SERVIZIO Uscta Quanto al massmo produce l mo sstema produttvo? Quanto al massmo produce la ma macchna? Anals de fluss 82 Programmazone e Controllo Teora delle

Dettagli

GLI ERRORI SPERIMENTALI NELLE MISURE DI LABORATORIO

GLI ERRORI SPERIMENTALI NELLE MISURE DI LABORATORIO GLI ERRORI SPERIMETALI ELLE MISURE DI LABORATORIO MISURA DI UA GRADEZZA FISICA S defnsce grandezza fsca una propretà de corp sulla quale possa essere eseguta un operazone d msura. Msurare una grandezza

Dettagli

Corso di Automazione Industriale 1. Capitolo 7

Corso di Automazione Industriale 1. Capitolo 7 1 Corso d Automazone Industrale 1 Captolo 7 Teora delle code e delle ret d code Introduzone alla Teora delle Code La Teora delle Code s propone d svluppare modell per lo studo de fenomen d attesa che s

Dettagli

Appendice B. B Elementi di Teoria dell Informazione 1. p k =P(X = x k ) ovviamente, valgono gli assiomi del calcolo della probabilità: = 1;

Appendice B. B Elementi di Teoria dell Informazione 1. p k =P(X = x k ) ovviamente, valgono gli assiomi del calcolo della probabilità: = 1; Appendce B Eleent d Teora dell Inforazone Appendce B B Eleent d Teora dell Inforazone B Introduzone E noto da tepo che fenoen percettv possono essere foralzzat e studat edante la Teora dell Inforazone

Dettagli

Il pendolo fisico. Se l asse è orizzontale, l equazione del moto è, trascurando gli attriti che causano lo smorzamento dell oscillazione, d Mgd 2

Il pendolo fisico. Se l asse è orizzontale, l equazione del moto è, trascurando gli attriti che causano lo smorzamento dell oscillazione, d Mgd 2 l pendolo fsco Un pendolo fsco è un corpo rgdo lbero d rotare attorno ad un asse fsso non passante per l suo centro d massa. l moto del pendolo è completamente descrtto dall angolo d rotazone θ(t), che

Dettagli

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO REALTÀ E MODELLI SCHEDA DI LAVORO 1 Le tabelle d crescta Nella tabella sono rportat dat relatv alle altezze mede delle bambne dalla nascta fno a un anno d età. Stablsc se esste una relazone lneare tra

Dettagli

Statistica Matematica

Statistica Matematica 1 Statstca Matematca Lo studo de fenomen compless, tpc della realtà ndustrale moderna, comporta l adozone d opportun modell matematc che ne descrvano caratter essenzal, funzonal agl obettv che l suddetto

Dettagli

La t di Student. Per piccoli campioni si definisce la variabile casuale. = s N. detta t di Student.

La t di Student. Per piccoli campioni si definisce la variabile casuale. = s N. detta t di Student. Pccol campon I parametr della dstrbuzone d una popolazone sono n generale ncognt devono essere stmat dal campone de dat spermental per pccol campon (N N < 30) z = (x µ)/ )/σ non ha pù una dstrbuzone gaussana

Dettagli

Regressione Multipla e Regressione Logistica: concetti introduttivi ed esempi

Regressione Multipla e Regressione Logistica: concetti introduttivi ed esempi Regressone Multpla e Regressone Logstca: concett ntroduttv ed esemp I Edzone ottobre 014 Vncenzo Paolo Senese vncenzopaolo.senese@unna.t Indce Note prelmnar alla I edzone 1 Regressone semplce e multpla

Dettagli

Allenamenti di matematica: Teoria dei numeri e algebra modulare Soluzioni esercizi

Allenamenti di matematica: Teoria dei numeri e algebra modulare Soluzioni esercizi Allenament d matematca: Teora de numer e algebra modulare Soluzon esercz 29 novembre 2013 1. Canguro salterno. Un canguro salterno s trova a ped d una scala nfnta che ntende salre nel seguente modo: Salta

Dettagli

Laboratorio di Strumentazione e Misura. Cesare Bini

Laboratorio di Strumentazione e Misura. Cesare Bini Laboratoro d Strumentazone e Msura Cesare Bn Corso d laurea n Fsca Anno Accademco 006-007 Quest appunt sono basat sulle lezon del modulo d Laboratoro d Strumentazone e Msura del prmo anno delle lauree

Dettagli

Università degli Studi di Genova T esi di Laurea Specialistica di Ingegneria Gestionale. Indice..2 RINGRAZIAMENTI..5. 2.1 I modelli microscopici...

Università degli Studi di Genova T esi di Laurea Specialistica di Ingegneria Gestionale. Indice..2 RINGRAZIAMENTI..5. 2.1 I modelli microscopici... Indce Indce..2 RINGRAZIAMENTI..5 Captolo 1 Captolo 2 Introduzone.6 Modell matematc.9 2.1 I modell mcroscopc... 9 2.1.1 Il modello Car Followng... 11 2.1.2 Lane Change... 14 2.1.3 Il modello ad Autom Cellular...

Dettagli

I generatori dipendenti o pilotati e gli amplificatori operazionali

I generatori dipendenti o pilotati e gli amplificatori operazionali 108 Lucano De Menna Corso d Elettrotecnca I generator dpendent o plotat e gl amplfcator operazonal Abbamo pù volte rcordato che generator fn ora ntrodott, d tensone e d corrente, vengono dett deal per

Dettagli

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1 APAT Agenza per la Protezone dell Ambente e per Servz Tecnc Dpartmento Dfesa del Suolo / Servzo Geologco D Itala Servzo Tecnologe del sto e St Contamnat * * * Nota nerente l calcolo della concentrazone

Dettagli

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita Automaton Robotcs and System CONTROL Unverstà degl Stud d Modena e Reggo Emla Corso d laurea n Ingegnera Meccatronca MODI E STABILITA DEI SISTEMI DINAMICI CA - 04 ModStablta Cesare Fantuzz (cesare.fantuzz@unmore.t)

Dettagli

Misure di dispersione. Introduzione. Statistica descrittiva. Distribuzioni di probabilità e funzioni di ripartizione. Indici di posizione

Misure di dispersione. Introduzione. Statistica descrittiva. Distribuzioni di probabilità e funzioni di ripartizione. Indici di posizione UNIVERSITA DEL SALENTO CORSO DI LAUREA IN FISICA (a.a. 007/008) Corso d Laboratoro II (Prof. Antono D INNOCENZO) ESERCITAZIONE DI STATISTICA * Lo scopo d questa eserctazone è quello d comncare ad utlzzare

Dettagli

Correlazione lineare

Correlazione lineare Correlazone lneare Varable dpendente Mortaltà per crros 50 45 40 35 30 5 0 15 10 5 0 0 5 10 15 0 5 30 Consumo d alcool Varable ndpendente Metodologa per l anals de dat spermental L anals d stud con varabl

Dettagli

UNIVERSITA DEGLI STUDI DI CATANIA. Dipartimento di Scienze MM FF NN. Corso di Laurea di primo livello in Fisica QUINCONCE DI GALTON

UNIVERSITA DEGLI STUDI DI CATANIA. Dipartimento di Scienze MM FF NN. Corso di Laurea di primo livello in Fisica QUINCONCE DI GALTON UNIVERSITA DEGLI STUDI DI CATANIA Dpartmento d Scenze MM FF NN Corso d Laurea d prmo lvello n Fsca QUINCONCE DI GALTON Dstrbuzon spermental a confronto con dstrbuzon teorche Laboratoro d Fsca I Anno Accademco

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA IL PROBLEMA Supponamo d voler studare l effetto d 4 dverse dete su un campone casuale d 4

Dettagli

Induzione elettromagnetica

Induzione elettromagnetica Induzone elettromagnetca L esperenza d Faraday L'effetto d produzone d corrente elettrca n un crcuto prvo d generatore d tensone fu scoperto dal fsco nglese Mchael Faraday nel 83. Egl studò la relazone

Dettagli

Le forze conservative e l energia potenziale

Le forze conservative e l energia potenziale S dcono conservatve quelle orze che s comportano n accordo alla seguente denzone: La orza F s dce conservatva se l lavoro eseguto da tale orza sul punto materale P mentre s sposta dalla poszone P 1 alla

Dettagli