Magnetostatica: forze magnetiche e campo magnetico

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Magnetostatica: forze magnetiche e campo magnetico"

Transcript

1 Magnetostatica: foze magnetiche e campo magnetico Lezione 6 Campo di induzione magnetica B() (nomenclatua stoica ; in ealtà si dovebbe chiamae, e spesso lo è, campo magnetico) è un campo di foze vettoiale nello spazio, cioè una gandezza fisica con modulo B B e diezione, funzione della posizione nello spazio ( x, y, z) (teoie di aaday-maxwell) Azione del campo di induzione magnetica (ad esempio vicino a una calamita o magnete natuale): oientamento di aghi magnetici ul magnete e sugli aghi magnetici (bussole) sono definiti i poli od e ud; gli aghi si oientano secondo linee in modo da fomae una catena (poli opposti si attaggono, poli uguali si espingono)

2 Rappesentazione del campo magnetico pe mezzo di linee di foza: la diezione del campo è tangente alle linee, che escono dal polo (od) ed entano dal polo (ud) Campo di induzione magnetica della tea Polo od Tea ole B Dipolo magnetico: oggetto simile al dipolo elettico: è fomato da due poli magnetici opposti a distanza d, la stuttua delle linee di foza è simile Polo ud

3 Azione del campo di induzione magnetica: foze su fili pecosi da una coente elettica (seconda legge di Laplace) B l campo di induzione magnetica tatto di filo, oientato nel veso della coente La foza è popozionale alla coente, alla lunghezza del tatto di filo e al campo, ed è dietta pependicolamente alle diezioni del filo e del campo secondo la egola del cacciavite (o della mano desta) l B l B vettoe podotto vettoiale ta i vettoi l e B Più esattamente: foza infinitesima su un tatto di filo di lunghezza infinitesima d dl B

4 Podotto vettoiale a b c a pepend. a b modulo a bc e c sen se b c a b c se b c a b a a è nella diezione di avanzamento della vite c il podotto vettoiale non è commutativo! oza del campo B modulo l c b B b c B sen l l B z y x tena di assi catesiani otogonali (x,y,z)

5 La foza su fili definisce completamente B l B [ ] [ l B] [ B] l i definisce il Tesla, unità di misua di B dimensioni di B T A m i usa anche il Gauss: Gauss -4 T oza Coente Lunghezza Esempi: Elettomagnete B T eomagnete B. T Campo magnetico teeste -4 T oza totale su filo ettilineo in campo magnetico unifome e pependicolae al filo B costante, π/, sen dietta veso sinista d Bsen dl B dl filo filo filo imbologia: Campo entante nel foglio Campo uscente dal foglio B L dl L

6 Esempio di calcolo: foza totale su un cicuito semicicolae in campo magnetico unifome (vedi figua) B dietto come x aggio del semicechio coente d l tatto di filo infinitesimo angolo ta la diezione di dl e quella di B oza sul tatto ettilineo del cicuito: diezione entante nel piano L B diezione entante nel piano diezione uscente dal piano oza sul tatto semicicolae: diezione uscente dal piano; dato che dl d e che l angolo va da a π pecoendo il semicechio (nel veso della coente) si ha π [ ] B B L B sen dl B sen d B cos semicechio π L O y d d l uguale e opposta alla pecedente. Quindi la foza totale è nulla. (questa conclusione è valida pe spie di foma qualsiasi pecose da coente!). aà possibile peò un moto di otazione (coppia di foze e momento meccanico) B x

7 Momento meccanico su una spia Vista di fonte z B x pia ettangolae di supeficie a b, con coente, immesa in campo magnetico unifome B dietto come x oze sui tatti dietti come x (paalleli a B) : nulle oze sui tatti dietti come z (pependicolai a B) : B b Vista dall alto B y B x e hanno diezioni opposte coppia di foze moto otatoio intono al punto centale O momento meccanico ispetto a O: M Coente entante nel foglio Coente uscente dal foglio Angolo ta B e la nomale alla supeficie della spia a a a sen + sen bb sen M B sen n

8 Momento meccanico coente supeficie campo π n o B n π / Am [ M] [ B] Am T Am m B o n Momento meccanico zeo (posizione di equilibio instabile) enegia massima U + B Momento meccanico massimo enegia zeo M B Enegia della spia nel campo magnetico: U U B cos (si icava calcolando il lavoo meccanico pe la otazione della spia) Momento meccanico zeo (posizione di equilibio stabile) enegia minima U - B (.B la nomale n alla spia coisponde alla egola del cacciavite uotando secondo la otazione della coente) Motoi elettici: si ottiene lavoo meccanico sfuttando il movimento della spia nel campo di induzione magnetica, vaiando nel tempo sinusoidalmente la coente pe mantenee momento meccanico e otazione (motoi sinconi)

9 l campo magnetico B viene geneato da: magneti + on è possibile isolae un polo magnetico (ad esempio dividendo il mateiale in pezzi più piccoli); i poli e sono sempe accoppiati. Al limite le linee di foza di B si ichiudono su se stesse; non esistono caiche magnetiche (diffeenza col campo elettico) on ci sono sogenti del campo B; si dice che il campo B è solenoidale. B Geometia del campo B Φ Legge di Gauss pe B B B n d! up. chiusa e in foma puntuale div B

10 l campo magnetico B viene geneato da: coenti Lezione 7 (pima ossevazione speimentale: Oested 89) l campo di induzione magnetica infinitesimo db nel punto P ceato dal tatto di filo infinitesimo dl è dato dalla legge di Biot-avat (o pima legge di Laplace) db in modulo: db d l 3 4 π db sen d l a) è pependicolae a dl e a secondo la egola del podotto vettoiale b) è invesamente popozionale a (legge dell inveso del quadato) c) è popozionale alla coente e alla lunghezza del filo tatto infinitesimo di filo, oientato nel veso della coente vettoe posizione del punto P da O (ad angolo ispetto a dl ) d l O d l in P: campo di induzione magnetica B uscente dal foglio (egola della mano desta) P

11 Costante di popozionalità : dipende dalla scelta di definie B dalla foza esecitata su fili pecosi da coente (vedi) Def.: pemeabilità magnetica del vuoto: 7 7 Tm/A /A l appoto ta le costanti nelle leggi che definiscono i campi, costante elettica / costante magnetica è indipendente dalla scelta dell'unità elettica e ha le dimensioni di una velocità al quadato ( la luce ) ε l campo di induzione magnetica B geneato da conduttoi pecosi da coenti saà quindi dato da C m ε m C /s s d l B db 3 fili fili c i dimosta che pe i campi magnetici geneati da coenti vale seconda equazione di Maxwell: la divegenza di B è sempe zeo B B x y Bz div B + + x y z (a meno che non venga scopeto un monopolo magnetico )

12 campo di induzione magnetica B geneato da conduttoe ettilineo ilo conduttoe infinito dietto come z e pecoso da coente ; B è pependicolae al filo e quindi giace su un qualunque piano pepend. al filo. Data la simmetia cilindica, le linee di foza del campo B sono cicolai. Calcoliamo il campo nel punto P, a distanza R dal punto di intesezione del filo col piano Osseviamo che: dl dz R sen ; z + R B( inp) db sen d l filo + R filo dz 3/ ( z R ) + R z + R π R Quindi B è invesamente popozionale alla distanza dal filo z + B π R d l z O R P B vista dall alto: osseviamo che la diezione delle linee di foza cicolai e la diezione della coente sono legate dalla egola del cacciavite (o mano desta) B

13 campo di induzione magnetica B sull asse di una spia cicolae pia cicolae di aggio a, pecosa da coente e giacente sul piano x-y; sul punto indicato dell asse, il tatto di spia dl contibuisce al campo di induzione magnetica pe la quantità db ; dato che dl è pependicolae al aggio vettoe si ha: d l db dl 3 dl 4 ( ) π z + a Pe la simmetia cicolae, il tatto di spia dl, opposto a dl, contibuisce con il campo db che ha la stessa componente su z, ma componente opposta sul piano x-y. Quindi la pate di campo di induzione magnetica che non si annulla è db cos (con cos a/ ). l campo totale B è dietto come z e vale: B db cos cos dl z + a spia spia a ( ) dl a ( z + a ) z + a spia ( z + a ) B( z) a ( z + a ) 3/ 3/ π a dl y db a z db cos db dl B la diezione delle linee di foza e la diezione della coente sono legate dalla egola del cacciavite (o mano desta) x

14 oza magnetica ta conduttoi paalleli Due conduttoi paalleli di lunghezza L e a distanza d con coenti e di veso concode l conduttoe genea un campo B ( ) (dietto come linee di foza cicolai) π ul conduttoe agisce la foza di modulo L B ( d) L π d Pe simmetia (come è evidente dalla fomula) anche sul conduttoe agisce la stessa foza, dietta veso il conduttoe (legge di azione e eazione) l B( d ) d e diezione veso il conduttoe B Due conduttoi paalleli con coenti nello stesso veso si attaggono con una foza pe unità di lunghezza : L ( ) π d e le coenti scoono in vesi opposti (discodi) è evidente che le foze sono in diezioni opposte Due conduttoi paalleli con coenti in vesi opposti si espingono con una foza pe unità di lunghezza : L π d La definizione pecisa dell Ampee (unità di misua della coente elettica del istema ntenazionale) avviene attaveso la misua di foze ta fili conduttoi

15 Da caiche elettiche: (dalla legge di Coulomb) Q E( ) k Campo elettostatico div E Φ Campi E e B: alcune somiglianze e diffeenze ρ ε Q E n d cont E ε up. chiusa E Pemette di calcolae E pe vaie configuazioni di caiche geneazione del campo linee di foza geometia del campo: Legge di Gauss B Campo magnetostatico Da coenti elettiche (caiche in movimento) Legge di Biot-avat db Φ B d l 3 4 π up. chiusa div B B n d on pemette di calcolae B! Campo consevativo, esiste la funzione Potenziale e E pecoso chiuso ds Lavoo delle foze del campo cicuitazione Esiste funzione Potenziale? (o!, si vedà più avanti) B pecoso chiuso ds??

Magnetostatica: forze magnetiche e campo magnetico

Magnetostatica: forze magnetiche e campo magnetico Magnetostatica: foze magnetiche e campo magnetico Lezione 6 Campo di induzione magnetica () (nomenclatua stoica ; in ealtà si dovebbe chiamae, e spesso lo è, campo magnetico) è un campo di foze vettoiale

Dettagli

CORRENTI ELETTRICHE E CAMPI MAGNETICI STAZIONARI

CORRENTI ELETTRICHE E CAMPI MAGNETICI STAZIONARI CORRENT ELETTRCHE E CAMP MAGNETC STAZONAR Foze magnetiche su una coente elettica; Coppia magnetica su una coente in un cicuito chiuso; Azioni meccaniche su dipoli magnetici; Applicazione (Galvanometo);

Dettagli

Cariche in campo magnetico: Forza magnetica

Cariche in campo magnetico: Forza magnetica Lezione 18 Campo magnetico I Stoicamente, i geci sapevano che avvicinando un pezzo di magnetite a della limatua di feo questa lo attaeva. La magnetite ea il pimo esempio noto di magnete pemanente. Come

Dettagli

FORZA AGENTE SU UN TRATTO DI FILO RETTILINEO. Dispositivo sperimentale

FORZA AGENTE SU UN TRATTO DI FILO RETTILINEO. Dispositivo sperimentale FORZA AGENTE SU UN TRATTO DI FILO RETTILINEO 0 Dispositivo speimentale Consideiamo pe semplicità un campo magnetico unifome, le linee di foza sono paallele ed equidistanti. Si osseva una foza di oigine

Dettagli

La magnetostatica. Le conoscenze sul magnetismo fino al 1820.

La magnetostatica. Le conoscenze sul magnetismo fino al 1820. Le conoscenze sul magnetismo fino al 1820. La magnetostatica Le nozioni appese acquisite nel coso dei secoli sui fenomeni magnetici fuono schematizzate elativamente tadi ispetto alle pime ossevazioni,

Dettagli

Campo magnetico: fatti sperimentali

Campo magnetico: fatti sperimentali Campo magnetico: fatti speimentali Le popietà qualitative dei magneti e la pesenza di un campo magnetico teeste eano conosciute da tempo, ma le pime misue quantitative e le teoie e gli espeimenti pe deteminane

Dettagli

I principi della Dinamica. L azione di una forza è descritta dalle leggi di Newton, possono fare Lavoro e trasferire Energia

I principi della Dinamica. L azione di una forza è descritta dalle leggi di Newton, possono fare Lavoro e trasferire Energia I pincipi della Dinamica Un oggetto si mette in movimento quando viene spinto o tiato o meglio quando è soggetto ad una foza 1. Le foze sono gandezze fisiche vettoiali che influiscono su un copo in modo

Dettagli

Corrente elettrica. Definizione. dq i = dt. Unità di misura. 1Coulomb 1 Ampere = 1secondo. Verso della corrente

Corrente elettrica. Definizione. dq i = dt. Unità di misura. 1Coulomb 1 Ampere = 1secondo. Verso della corrente Nome file j:\scuola\cosi\coso fisica\elettomagnetismo\coente continua\coenti elettiche.doc Ceato il 05/1/003 3.07.00 Dimensione file: 48640 byte Elaboato il 15/01/004 alle oe.37.13, salvato il 10/01/04

Dettagli

GRANDEZZE MAGNETICHE Prof. Chirizzi Marco www.elettrone.altervista.org marco.chirizzi@libero.it

GRANDEZZE MAGNETICHE Prof. Chirizzi Marco www.elettrone.altervista.org marco.chirizzi@libero.it Soenoide GRANDEZZE MAGNETICHE Pof. Chiizzi Maco www.eettone.atevista.og maco.chiizzi@ibeo.it PREMESSA La pesente dispensa ha come obiettivo queo di gaantie agi aievi de coso di Fisica de biennio, ad indiizzo

Dettagli

12 L energia e la quantità di moto - 12. L impulso

12 L energia e la quantità di moto - 12. L impulso L enegia e la quantità di moto -. L impulso Il momento angolae e il momento d inezia Il momento angolae nalizziamo alcuni moti di otazione. Se gli attiti sono tascuabili, una uota di bicicletta messa in

Dettagli

Grandezze cinematiche angolari (1)

Grandezze cinematiche angolari (1) Uniesità degli Studi di Toino D.E.I.A.F.A. MOTO CIRCOLARE UNIFORME FISICA CdL Tecnologie Agoalimentai Uniesità degli Studi di Toino D.E.I.A.F.A. Genealità () Moto di un punto mateiale lungo una ciconfeenza

Dettagli

Facoltà di Ingegneria Fisica II Compito A

Facoltà di Ingegneria Fisica II Compito A Facoltà di ngegneia Fisica 66 Compito A Esecizio n Un filo di mateiale isolante, con densità di caica lineae costante, viene piegato fino ad assumee la foma mostata in figua (la pate cicolae ha aggio e

Dettagli

ONDE ELETTROMAGNETICHE

ONDE ELETTROMAGNETICHE ONDE ELETTROMAGNETICHE Teoia delle onde EM e popagazione (B. Peite) mecoledì 8 febbaio 1 Coso di Compatibilità Elettomagnetica 1 Indice degli agomenti Fenomeni ondulatoi La matematica dell onda La legge

Dettagli

int Schiusa Schiusa r r Φ = r r S o 1 Anno scolastico

int Schiusa Schiusa r r Φ = r r S o 1 Anno scolastico Anno scolastico 4 + ε ε int dt E d C dt d E C Q E S o S Schiusa Schiusa gandezza definizione fomula Foza di Loentz Foza agente su una caica q in moto con velocità v in una egione in cui è pesente un campo

Dettagli

Dinamica. Se un corpo non interagisce con altri corpi la sua velocità non cambia.

Dinamica. Se un corpo non interagisce con altri corpi la sua velocità non cambia. Poblema fondamentale: deteminae il moto note le cause (foze) pe oa copi «puntifomi» Dinamica Se un copo non inteagisce con alti copi la sua velocità non cambia. Se inizialmente femo imane in quiete, se

Dettagli

FI.CO. 2. ...sempre più fico! ( Fisica Comprensibile per geologi) Programma di Fisica 2 - (v 5.0-2002) A.J. 2000 Adriano Nardi

FI.CO. 2. ...sempre più fico! ( Fisica Comprensibile per geologi) Programma di Fisica 2 - (v 5.0-2002) A.J. 2000 Adriano Nardi FI.CO. 2 ( Fisica Compensibile pe geologi) Pogamma di Fisica 2 - (v 5.0-2002)...sempe più fico! A.J. 2000 Adiano Nadi La fisica dovebbe essee una scienza esatta. Questo papio non può gaantie la totale

Dettagli

durante lo spostamento infinitesimo dr la quantità data dal prodotto scalare F dr

durante lo spostamento infinitesimo dr la quantità data dal prodotto scalare F dr 4. Lavoo ed enegia Definizione di lavoo di una foza Si considea un copo di massa m in moto lungo una ceta taiettoia. Si definisce lavoo infinitesimo fatto dalla foza F duante lo spostamento infinitesimo

Dettagli

IL MOMENTO ANGOLARE E IL MOMENTO D INERZIA

IL MOMENTO ANGOLARE E IL MOMENTO D INERZIA . L'IMPULS 0 DI MT IL MMENT NGLRE E IL MMENT D INERZI Il momento angolae nalizziamo alcuni moti di otazione. Se gli attiti sono tascuabili, una uota di bicicletta messa in otazione può continuae a giae

Dettagli

Potenziale elettrico per una carica puntiforme isolata

Potenziale elettrico per una carica puntiforme isolata Potenziale elettico pe una caica puntifome isolata Consideiamo una caica puntifome positiva. Il campo elettico geneato da uesta caica è: Diffeenza di potenziale elettico ta il punto ed il punto B: B ds

Dettagli

Sistemi inerziali Forza centripeta e forze apparenti Forza gravitazionale. 03/11/2011 G. Pagnoni 1

Sistemi inerziali Forza centripeta e forze apparenti Forza gravitazionale. 03/11/2011 G. Pagnoni 1 Sistemi ineziali Foza centipeta e foze appaenti Foza gavitazionale 03/11/011 G. Pagnoni 1 Sistemi ineziali Sistema di ifeimento ineziale: un sistema in cui è valida la pima legge di Newton (I legge della

Dettagli

Energia potenziale e dinamica del punto materiale

Energia potenziale e dinamica del punto materiale Enegia potenziale e dinamica del punto mateiale Definizione geneale di enegia potenziale (facoltativo) In modo geneale, la definizione di enegia potenziale può esee pesentata come segue. Sia un punto di

Dettagli

Lezione 3. Applicazioni della Legge di Gauss

Lezione 3. Applicazioni della Legge di Gauss Applicazioni della Legge di Gauss Lezione 3 Guscio sfeico di aggio con caica totale distibuita unifomemente sulla supeficie. immetia sfeica, dipende solo da supeficie sfeica di aggio

Dettagli

6 INDUZIONE ELETTROMAGNETICA

6 INDUZIONE ELETTROMAGNETICA 6 INDUZIONE ELETTOMAGNETIA Patendo dall ipotesi di simmetia dei fenomeni natuali pe cui se una coente esecita un influenza su di una calamita così una calamita deve pote modificae lo stato di una coente

Dettagli

Legge di Coulomb e campo elettrostatico

Legge di Coulomb e campo elettrostatico A. hiodoni esecizi di Fisica II Legge di oulomb e campo elettostatico Esecizio Te caiche positive uguali sono fisse nei vetici di un tiangolo euilateo di lato l. alcolae (a) la foza elettica agente su

Dettagli

Campo elettrostatico nei conduttori

Campo elettrostatico nei conduttori Campo elettostatico nei conduttoi Consideeemo conduttoi metallici (no gas, semiconduttoi, ecc): elettoni di conduzione libei di muovesi Applichiamo un campo elettostatico: movimento di caiche tansiente

Dettagli

EX 1 Una cassa di massa m=15kg è ferma su una superficie orizzontale scabra. Il coefficiente di attrito statico è µ s

EX 1 Una cassa di massa m=15kg è ferma su una superficie orizzontale scabra. Il coefficiente di attrito statico è µ s STATICA EX Una cassa di massa m=5kg è fema su una supeficie oizzontale scaba. Il coefficiente di attito statico è µ s = 3. Supponendo che sulla cassa agisca una foza F fomante un angolo di 30 ispetto al

Dettagli

Il candidato risolva uno dei due problemi e 4 degli 8 quesiti scelti nel questionario.

Il candidato risolva uno dei due problemi e 4 degli 8 quesiti scelti nel questionario. LICEO SCIENTIFICO SCUOLE ITALIANE ALL ESTERO (AMERICHE) SESSIONE ORDINARIA Il candidato isolva uno dei due poblemi e degli 8 quesiti scelti nel questionaio. N. De Rosa, La pova di matematica pe il liceo

Dettagli

Il campo magnetico. campo magnetico B (si misura in Telsa (T)) carica genera campo elettrico campo elettrico imprime forza su carica

Il campo magnetico. campo magnetico B (si misura in Telsa (T)) carica genera campo elettrico campo elettrico imprime forza su carica Il campo magnetico caica genea campo elettico campo elettico impime foza su caica e allo stesso modo caica in moto genea campo magnetico campo magnetico impime foza su caica in moto campo magnetico (si

Dettagli

Sorgenti del campo magnetico.

Sorgenti del campo magnetico. Sogenti del campo magnetico. n Campo magnetico podotto da una coente n ima legge elementae di Laplace n Legame campo elettico e magnetico Campo magnetico podotto da una coente n ima legge elementae di

Dettagli

4 IL CAMPO MAGNETICO STATICO

4 IL CAMPO MAGNETICO STATICO 4 IL CAMPO MAGNETICO STATICO Analogamente al caso dei fenomeni elettici anche i fenomeni magnetici eano noti sin dagli antichi geci i quali denominaono il mineale poveniente dalla egione di in Macedonia

Dettagli

Elettrostatica. P. Maestro Elettrostatica pag. 1

Elettrostatica. P. Maestro Elettrostatica pag. 1 Elettostatica Composizione dell atomo Caica elettica Legge di Coulomb Campo elettico Pincipio di sovapposizione Enegia potenziale del campo elettico Moto di una caica in un campo elettico statico Teoema

Dettagli

Campo magnetico B. Polo Nord. Terra. Polo Sud. Lezione V 1/15

Campo magnetico B. Polo Nord. Terra. Polo Sud. Lezione V 1/15 Leione V Campo magnetico B 1/15 Polo Nod N S S N Tea Sole Polo Sud Alcuni mineali (es. magnetite, da Magnesia Tessaglia) attiano il feo. Aghi calamitati si oientano nel campo magnetico teeste. Leione V

Dettagli

FISICA GENERALE II Esercitazione D tutorato ESERCIZI CON SOLUZIONE

FISICA GENERALE II Esercitazione D tutorato ESERCIZI CON SOLUZIONE FSCA GENERALE Esecitazione D tutoato -3 ESERCZ CON SOLUZONE. Un conduttoe cilindico cavo, di aggio esteno a =. cm e aggio inteno b =.6 cm, è pecoso da una coente =A, distibuita uniomemente sulla sua sezione.

Dettagli

La carica elettrica. F.Soramel Fisica Generale II - A. A. 2 0 0 4 / 0 5 1

La carica elettrica. F.Soramel Fisica Generale II - A. A. 2 0 0 4 / 0 5 1 La caica elettica 8 H.C. Oested connessione ta eletticità e magnetismo M. Faday speimentale puo, non scive fomule 85 J.C. Maxwell fomalia le idee di Faaday I geci avevano ossevato che l amba (elekton)

Dettagli

Campo magnetico, forza magnetica, momenti meccanici sui circuiti piani

Campo magnetico, forza magnetica, momenti meccanici sui circuiti piani Campo magnetico, foza magnetica, momenti meccanici sui cicuiti piani Esecizio 1 Un potone d enegia cinetica E k 6MeV enta in una egione di spazio in cui esiste un campo magnetico B1T otogonale al piano

Dettagli

SESTA LEZIONE: campo magnetico, forza magnetica, momenti meccanici sui circuiti piani

SESTA LEZIONE: campo magnetico, forza magnetica, momenti meccanici sui circuiti piani A. Chiodoni esecizi di Fisica II SESTA LEZIONE: campo magnetico, foza magnetica, momenti meccanici sui cicuiti piani Esecizio 1 Un potone d enegia cinetica E k 6MeV enta in una egione di spazio in cui

Dettagli

Conduttori in equilibrio elettrostatico

Conduttori in equilibrio elettrostatico onduttoi in equilibio elettostatico In un conduttoe in equilibio, tutte le caiche di conduzione sono in equilibio Se una caica di conduzione è in equilibio, in quel punto il campo elettico è nullo caica

Dettagli

Il teorema di Gauss e sue applicazioni

Il teorema di Gauss e sue applicazioni Il teoema di Gauss e sue applicazioi Cocetto di flusso Cosideiamo u campo uifome ed ua supeficie piaa pepedicolae alle liee di campo. Defiiamo flusso del campo attaveso la supeficie la uatità : = (misuata

Dettagli

4. DINAMICA. I tre principi della dinamica per un corpo puntiforme (detto anche punto materiale o particella) sono:

4. DINAMICA. I tre principi della dinamica per un corpo puntiforme (detto anche punto materiale o particella) sono: 4.1 Pincipi della dinamica 4. DINAMICA I te pincipi della dinamica pe un copo puntifome (detto anche punto mateiale o paticella) sono: 1) pincipio di intezia di Galilei; 2) legge dinamica di Newton; 3)

Dettagli

Fisica Generale - Modulo Fisica II Esercitazione 3 Ingegneria Gestionale-Informatica POTENZIALE ELETTRICO ED ENERGIA POTENZIALE

Fisica Generale - Modulo Fisica II Esercitazione 3 Ingegneria Gestionale-Informatica POTENZIALE ELETTRICO ED ENERGIA POTENZIALE PTNZIL LTTRIC D NRGI PTNZIL Ba. Una caica elettica q mc si tova nell oigine di un asse mente una caica negativa q 4 mc si tova nel punto di ascissa m. Sia Q il punto dell asse dove il campo elettico si

Dettagli

Fisica Generale A. Gravitazione universale. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico 2015 2016. Maurizio Piccinini

Fisica Generale A. Gravitazione universale. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico 2015 2016. Maurizio Piccinini A.A. 015 016 Mauizio Piccinini Fisica Geneale A Gavitazione univesale Scuola di Ineneia e Achitettua UNIBO Cesena Anno Accademico 015 016 A.A. 015 016 Mauizio Piccinini Gavitazione Univesale 1500 10 0

Dettagli

Polo Universitario della Spezia G. Marconi

Polo Universitario della Spezia G. Marconi Nicolò Beveini Appunti di Fisica pe il Coso di lauea in Infomatica Applicata Polo Univesitaio della Spezia G. Maconi Nicolò Beveini Appunti di fisica Indice 1. La misua delle gandezze fisiche... 4 1.1

Dettagli

Il magnetismo. Il Teorema di Ampere: la circuitazione del campo magnetico.

Il magnetismo. Il Teorema di Ampere: la circuitazione del campo magnetico. Il magnetismo Il Teoema di Ampee: la cicuitazione del campo magnetico. Richiamiamo la definizione geneale di cicuitazione pe un campo vettoiale Definizione: si definisce cicuitazione di un campo vettoiale

Dettagli

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO REALTÀ E MODELLI SCHEDA DI LAVORO 1 La siepe Sul eto di una villetta deve essee ealizzato un piccolo giadino ettangolae di m, ipaato da una siepe posta lungo il bodo Dato che un lato del giadino è occupato

Dettagli

SETTIMA-OTTAVA LEZIONE: sorgenti del campo magnetico, legge di Ampere, legge di Biot-Sawart

SETTIMA-OTTAVA LEZIONE: sorgenti del campo magnetico, legge di Ampere, legge di Biot-Sawart . Chiodoni esecizi di Fisica II SETTIM-OTTV LEZIONE: sogenti del campo magnetico, legge di mpee, legge di Biot-Sawat Esecizio 1 Due spie cicolai di aggio 3cm, aventi lo stesso asse, sono poste in piani

Dettagli

Corso di Elettrotecnica 1 - Cod. 9200 N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria

Corso di Elettrotecnica 1 - Cod. 9200 N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria Schede di lettotecnica Coso di lettotecnica - Cod. 900 N Diploma Univesitaio Teledidattico in Ingegneia Infomatica ed utomatica Polo Tecnologico di lessandia cua di Luca FRRRIS Scheda N Sistemi tifase:

Dettagli

C.I. FISICA APPLICATA Modulo di FISICA MEDICA

C.I. FISICA APPLICATA Modulo di FISICA MEDICA UNIVERSITÀ POLITECNICA DELLE MARCHE FACOLTÀDI DI MEDICINA E CHIRURGIA C.L.S. Odontoiatia e Potesi Dentaia C.I. FISICA APPLICATA Modulo di FISICA MEDICA A.A. 006/07 D. Fabizio Fioi D. Fabizio FIORI Dipatimento

Dettagli

Gravitazione. Dati due corpi di massa m 1 e m 2, posti ad una distanza r, tra di essi si esercita una forza attrattiva data in modulo da

Gravitazione. Dati due corpi di massa m 1 e m 2, posti ad una distanza r, tra di essi si esercita una forza attrattiva data in modulo da Gavitazione Dati due copi di massa m 1 e m 2, posti ad una distanza, ta di essi si esecita una foza attattiva data in modulo da F = G m 1m 2 dove G è una costante univesale, avente lo stesso valoe pe tutte

Dettagli

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO REALTÀ E MDELLI SCHEDA DI LAVR La clessida ad acqua Ipotizziamo che la clessida ad acqua mostata in figua sia fomata da due coni pefetti sovapposti La clessida impiega,5 minuti pe svuotasi e supponiamo

Dettagli

Gravitazione Universale

Gravitazione Universale Gavitazione Univesale Liceo Ginnasio Statale S.M. Legnani Anno Scolastico 2007/08 Classe 3B IndiizzoClassico Pof.Robeto Squellati 1 Le leggi di Kepleo Ossevando la posizione di Mate ispetto alle alte stelle,

Dettagli

L = F s cosα = r F r s

L = F s cosα = r F r s LVORO Se su un copo agisce una foza F, il lavoo compiuto dalla foza pe uno spostamento s è (podotto scalae di due vettoi): L = F s cosα = F s F α s LVORO L unità di misua del lavoo nel S.I. si chiama Joule:

Dettagli

IL POTENZIALE. = d quindi: LAB

IL POTENZIALE. = d quindi: LAB 1 IL POTENZIALE Sappiamo che il campo gavitazionale è un campo consevativo cioè nello spostamento di un copo ta due punti del campo gavitazionale teeste, le foze del campo compiono un lavoo che dipende

Dettagli

IL POTENZIALE. Nello spostamento successivo B B, poiché la forza elettrica risulta perpendicolare allo spostamento, il lavoro L è nullo.

IL POTENZIALE. Nello spostamento successivo B B, poiché la forza elettrica risulta perpendicolare allo spostamento, il lavoro L è nullo. 1 I POTENZIAE Sappiamo che il campo gavitazionale è un campo consevativo cioè nello spostamento di un copo ta due punti del campo gavitazionale teeste, le foze del campo compiono un lavoo che dipende dalla

Dettagli

Sulla carica viene esercitata la forza magnetica. traiettoria circolare.

Sulla carica viene esercitata la forza magnetica. traiettoria circolare. Moto di caiche in Campo Magnetico Consideiamo una paticella di massa m e caica puntifome +q in moto con velocità v pependicolae ad un campo B unifome. B α v + F F v Nel piano α, B veso l alto Sulla caica

Dettagli

Biomeccanica. Cinematica Dinamica Statica dei corpi rigidi Energia e principi di conservazione

Biomeccanica. Cinematica Dinamica Statica dei corpi rigidi Energia e principi di conservazione Biomeccanica Cinematica Dinamica Statica dei copi igidi Enegia e pincipi di consevazione Posizione: definita da : z modulo, diezione, veso vettoe s s z s s y unità di misua (S.I.) : meto x s x y Taiettoia:

Dettagli

Sorgenti del campo magnetico. Forze tra correnti

Sorgenti del campo magnetico. Forze tra correnti Campo magnetico pag 31 A. Scimone Sogenti el campo magnetico. Foze ta coenti Un campo magnetico può essee pootto a una coente elettica. Espeienze i questo tipo fuono effettuate nella pima ventina i anni

Dettagli

Nome..Cognome. classe 5D 29 Novembre VERIFICA di FISICA: Elettrostatica Domande

Nome..Cognome. classe 5D 29 Novembre VERIFICA di FISICA: Elettrostatica Domande Nome..ognome. classe 5 9 Novembe 8 RIFI di FISI: lettostatica omande ) ai la definizione di flusso di un campo vettoiale attaveso una supeficie. nuncia il teoema di Gauss pe il campo elettico (senza dimostalo)

Dettagli

qq r Elettrostatica Legge di Coulomb permette di calcolare la forza che si esercita tra due particelle cariche.

qq r Elettrostatica Legge di Coulomb permette di calcolare la forza che si esercita tra due particelle cariche. lettostatica La mateia è costituita da atomi. Gli atomi sono fomati da un nucleo, contenete paticelle neute (neutoni) e paticelle caiche positivamente (potoni). Intono al nucleo ci sono paticelle caiche

Dettagli

Fisica per Medicina. Lezione 22 - Campo magnetico. Dr. Cristiano Fontana

Fisica per Medicina. Lezione 22 - Campo magnetico. Dr. Cristiano Fontana Fisica pe Medicina Lezione 22 - Campo magnetico D. Cistiano Fontana Dipatimento di Fisica ed Astonomia Galileo Galilei Univesità degli Studi di Padova 1 dicembe 2017 ndice Elettomagnetismo Campo magnetico

Dettagli

Campi elettrici e magnetici a bassa frequenza: sorgenti e metodi di valutazione

Campi elettrici e magnetici a bassa frequenza: sorgenti e metodi di valutazione Coso di Maste di secondo livello Sistemi Infomativi Geogafici pe il monitoaggio e la gestione del teitoio Campi elettici e magnetici a bassa fequenza: sogenti e metodi di valutazione Ing. Nicola Zoppetti

Dettagli

Lezione XV Cinghie. Organi di trasmissione. Normalmente gli assi di rotazione delle due pulegge sono paralleli.

Lezione XV Cinghie. Organi di trasmissione. Normalmente gli assi di rotazione delle due pulegge sono paralleli. Ogani di tasmissione Ogani flessibili Nelle macchine tovano numeose applicazioni tanto ogani flessibili popiamente detti (cinghie e funi), quanto ogani costituiti da elementi igidi ta loo aticolati (catene).

Dettagli

I poli magnetici isolati non esistono

I poli magnetici isolati non esistono Il campo magnetico Le prime osservazioni dei fenomeni magnetici risalgono all antichità Agli antichi greci era nota la proprietà della magnetite di attirare la limatura di ferro Un ago magnetico libero

Dettagli

AZIONE A DISTANZA E TEORIA DI CAMPO (1)

AZIONE A DISTANZA E TEORIA DI CAMPO (1) Il campo elettico AZION A DITANZA TOIA DI CAMPO () Come fanno due caiche elettiche ad inteagie fa di loo? All inizio del 9 si sono confontate due ipotesi:.le caiche si scambiano dei messaggei e uindi si

Dettagli

Operatori divergenza e rotore in coordinate cilindriche

Operatori divergenza e rotore in coordinate cilindriche Opeatoi divegena e otoe Univesità di Roma To Vegata Pof. Ing. Paolo Sammaco Opeatoi divegena e otoe in coodinate cilindiche Dott. Ing. Macello Di Risio 1 Sistema di ifeimento Si assume il sistema di ifeimento

Dettagli

La legge di Lenz - Faraday Neumann

La legge di Lenz - Faraday Neumann 1 La legge di Lenz - Faaday Neumann Il flusso del campo magnetico B Pe dae una veste matematica alle conclusioni delle espeienze viste nella lezione pecedente, abbiamo bisogno di definie una nuova gandezza

Dettagli

Il campo magnetico B 1

Il campo magnetico B 1 Magnetismo natuale l campo magnetico 1 Polo No N S S N Tea Sole Polo Su Alcuni mineali (es. magnetite, a Magnesia Tessaglia) attiano il feo. Aghi calamitati si oientano nel campo magnetico teeste. Dipoli

Dettagli

Politecnico di Milano. Dipartimento di Fisica. G. Valentini. Meccanica

Politecnico di Milano. Dipartimento di Fisica. G. Valentini. Meccanica Politecnico di Milano Dipatimento di Fisica G. Valentini Meccanica I INDICE LA FISICA ED IL METODO SPERIMENTALE. INTRODUZIONE. IL METODO SPERIMENTALE GRANDEZZE FISICHE ED INDICI DI STATO 4. DEFINIZIONE

Dettagli

Momenti. Momento di inerzia, momento di una forza, momento angolare

Momenti. Momento di inerzia, momento di una forza, momento angolare Momenti Momento di inezia, momento di una foza, momento angolae Conce&o di Momento I momenti in fisica sono cose molto divese fa loo. Cetamente non hanno sempe la stessa unità di misua; ed avemo cua di

Dettagli

Momenti. Momento di inerzia, momento di una forza, momento angolare

Momenti. Momento di inerzia, momento di una forza, momento angolare Momenti Momento di inezia, momento di una foza, momento angolae Conce&o di Momento I momenti in fisica sono cose molto divese fa loo. Cetamente non hanno sempe la stessa unità di misua; ed avemo cua di

Dettagli

Le Trasmissioni Meccaniche

Le Trasmissioni Meccaniche Le Tasmissioni Meccaniche Gli inganaggi sono componenti meccanici utilizzati nelle tasmissioni. Una tasmissione meccanica è un meccanismo destinato a tasmettee potenza da un motoe pimo ad una macchina

Dettagli

Meccanica Gravitazione

Meccanica Gravitazione Meccanica 016-017 Gavitazione 3 oza Mediatoe Gavitazione Intensità elativa Andaento asintotico Raggio d'azione Inteazione fote gluone 10 38 0 10-15 Inteazione elettoagnetica Inteazione debole fotone 10

Dettagli

Politecnico di Milano Fondamenti di Fisica Sperimentale a.a Facoltà di Ingegneria Industriale - Ind. Aero-Energ-Mecc

Politecnico di Milano Fondamenti di Fisica Sperimentale a.a Facoltà di Ingegneria Industriale - Ind. Aero-Energ-Mecc Politecnico di Milano Fondamenti di Fisica Speimentale a.a. 9-1 - Facoltà di Ingegneia Industiale - Ind. Aeo-Eneg-Mecc II pova in itinee - 5/7/1 Giustificae le isposte e scivee in modo chiao e leggibile.

Dettagli

IL CAMPO ELETTROMAGNETICO DIPENDENTE DAL TEMPO

IL CAMPO ELETTROMAGNETICO DIPENDENTE DAL TEMPO IL CAMPO ELETTROMAGNETICO DIPENDENTE DAL TEMPO Legge di Faaday-Heny (o dell induzione elettomagnetica); Applicazioni della legge dell induzione e.m., caso della spia otante; Il fenomeno dell autoinduzione

Dettagli

5 PROPRIETÀ MAGNETICHE DEI MATERIALI

5 PROPRIETÀ MAGNETICHE DEI MATERIALI 5 PROPRETÀ AGNETCE DE ATERAL A seguito della scopeta di Østed dell azione agnetica podotta da un filo conduttoe pecoso da coente l ipotesi più natuale che olti fisici avanzaono pe spiegae questo effetto

Dettagli

REALIZZAZIONE DIGITALE DI ALGORITMI DI CONTROLLO DIRETTO DI COPPIA PER MOTORI ASINCRONI

REALIZZAZIONE DIGITALE DI ALGORITMI DI CONTROLLO DIRETTO DI COPPIA PER MOTORI ASINCRONI UNIVERSITÀ DEGLI STUDI DI PARMA DIPARTIMENTO DI INGEGNERIA DELL INFORMAZIONE Dottoato di Riceca in Tecnologie dell Infomazione XXIV Ciclo Andea Rossi REALIZZAZIONE DIGITALE DI ALGORITMI DI CONTROLLO DIRETTO

Dettagli

Appunti su argomenti monografici per il corso di FM1 Prof. Pierluigi Contucci. Gravità e Teorema di Gauss

Appunti su argomenti monografici per il corso di FM1 Prof. Pierluigi Contucci. Gravità e Teorema di Gauss 1 Appunti su agomenti monogafici pe il coso di FM1 Pof. Pieluigi Contucci Gavità e Teoema di Gauss Vogliamo dimostae, a patie dalla legge di gavitazione univesale che il campo gavitazionale geneato da

Dettagli

Esercizi Scheda N Fisica II. Esercizi con soluzione svolti

Esercizi Scheda N Fisica II. Esercizi con soluzione svolti Esecizi Scheda N. 45 Fisica II Esecizio. Esecizi con soluzione svolti Un filo ettilineo, indefinito, pecoso da una coente di intensità i=4 A, è immeso in un mezzo omogeneo, isotopo, indefinito e di pemeabilità

Dettagli

F 1 F 2 F 3 F 4 F 5 F 6. Cosa è necessario per avere una rotazione?

F 1 F 2 F 3 F 4 F 5 F 6. Cosa è necessario per avere una rotazione? Cosa è necessaio pe avee una otazione? Supponiamo di vole uotae il sistema in figua intono al bullone, ovveo intono all asse veticale passante pe, usando foze nel piano oizzontale aventi tutte lo stesso

Dettagli

Effetto Hall. flusso reale dei portatori se positivi. flusso reale dei portatori se negativi

Effetto Hall. flusso reale dei portatori se positivi. flusso reale dei portatori se negativi Appunti di Fisica II Effetto Hall L'effetto Hall è un fenomeno legato al passaggio di una coente I, attaveso ovviamente un conduttoe, in una zona in cui è pesente un campo magnetico dietto otogonalmente

Dettagli

( ) ( ) ( ) ( ) Esercizi 2 Legge di Gauss

( ) ( ) ( ) ( ) Esercizi 2 Legge di Gauss Esecizi Legge di Gauss. Un involuco sfeico isolante ha aggi inteno ed esteno a e b, ed e caicato con densita unifome ρ. Disegnae il diagamma di E in funzione di La geometia e mostata nella figua: Usiamo

Dettagli

AI VERTICI DI UN QUADRATO DI LATO 2L SONO POSTE 4 CARICHE UGUALI Q. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE.

AI VERTICI DI UN QUADRATO DI LATO 2L SONO POSTE 4 CARICHE UGUALI Q. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE. ESERCIZIO 1 AI VERTICI DI UN UADRATO DI LATO SONO POSTE 4 CARICHE UGUALI. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE. 4 caiche uguali sono poste ai vetiti di un quadato. L asse di un quadato

Dettagli

SELEZIONE DI ESERCIZI DI ELETTROSTATICA.

SELEZIONE DI ESERCIZI DI ELETTROSTATICA. Fisica geneale II, a.a. 13/14 SELEZIONE DI ESEIZI DI ELETTOSTATIA..1. Un pocesso elettolitico divide 1.3 mg di Nal (massa di una mole = 59 g) in Na + e l. Le caiche positive vengono allontanate da quelle

Dettagli

ESERCIZI DI CALCOLO STRUTTURALE

ESERCIZI DI CALCOLO STRUTTURALE ESERCIZIO A1 ESERCIZI DI CACOO SRUURAE Pate A: ave incastata Calcolo delle eazioni vincolai con caichi concentati o distibuiti P 1 P 1 = 10000 N = 1.2 m Sia la stuttua in figua soggetta al caico P 1 applicato

Dettagli

Università degli Studi della Tuscia di Viterbo Dipartimento di ecologia e sviluppo economico sostenibile Facoltà di Agraria

Università degli Studi della Tuscia di Viterbo Dipartimento di ecologia e sviluppo economico sostenibile Facoltà di Agraria Univesità degli Studi della Tuscia di Vitebo Dipatimento di ecologia e sviluppo economico sostenibile Facoltà di Agaia Univesità degli Studi della Tuscia Dottoato di Riceca in Scienze Ambientali XIX Ciclo

Dettagli

Richiami di Fisica Generale

Richiami di Fisica Generale Richiami di Fisica Geneale Slide 1 Caica elettica (I) La caica elettica (q) è la popietà delle paticelle sensibili alla foza (inteazione) elettomagnetica, così come la massa (o caica) gavitazionale (m)

Dettagli

5. CAMBIO. 5.1. descrizione

5. CAMBIO. 5.1. descrizione ambio powe - shift 5. AMBIO 5.. descizione Tattasi di cambio meccanico a te velocità avanti e te velocità indieto, ealizzate mediante cinque iduttoi epicicloidali vaiamente collegati ta loo. Tutte le cinque

Dettagli

Il moto circolare uniforme

Il moto circolare uniforme Il moto cicolae unifome Il moto cicolae unifome: peiodo e fequenza Un copo che i muoe lungo una taiettoia cicolae con elocità calae cotante ipaa pe la poizione iniziale a intealli fii di tempo. Definiamo

Dettagli

Misura della componente orizzontale del campo magnetico terrestre

Misura della componente orizzontale del campo magnetico terrestre Misua della componente oizzontale del campo magnetico teeste Pemessa teoica In tale pemessa vengono sintetizzati i peequisiti che si itengono indispensabili pe l'esecuzione e la compensione dell'espeienza

Dettagli

Fisica Generale A. 9. Forze Inerziali. Cambiamento di Sistema di Riferimento. SdR in Moto Traslatorio Rettilineo Uniforme (II)

Fisica Generale A. 9. Forze Inerziali. Cambiamento di Sistema di Riferimento. SdR in Moto Traslatorio Rettilineo Uniforme (II) isica Geneale A 9. oze Ineziali http://campus.cib.unibo.it/2429/ ctobe 21, 2010 ambiamento di istema di ifeimento ome cambia la descizione del moto passando da un d a un alto? In paticolae, come cambia

Dettagli

CAPITOLO 11 La domanda aggregata II: applicare il modello IS-LM

CAPITOLO 11 La domanda aggregata II: applicare il modello IS-LM CPITOLO 11 La domanda aggegata II: applicae il modello - Domande di ipasso 1. La cuva di domanda aggegata appesenta la elazione invesa ta il livello dei pezzi e il livello del eddito nazionale. Nel capitolo

Dettagli

Potenza volumica. Legge di Joule in forma locale

Potenza volumica. Legge di Joule in forma locale Potenza volumica. Legge di Joule in foma locale Si considei un tubo di flusso elementae all inteno di un copo conduttoe nel quale ha sede un campo di coente. n da La potenza elettica che fluisce nel bipolo

Dettagli

CINEMATICA DEL MOTO ROTATORIO DI UNA PARTICELLA

CINEMATICA DEL MOTO ROTATORIO DI UNA PARTICELLA CINEMAICA DEL MOO OAOIO DI UNA PAICELLA MOO CICOLAE: VELOCIA ANGOLAE ED ACCELEAZIONE ANGOLAE Si considei un pticell P in moto cicole che descive un co di ciconfeenz s. L ngolo di otzione ispetto d un sse

Dettagli

Corso di fisica generale con elementi di fisica tecnica

Corso di fisica generale con elementi di fisica tecnica Corso di fisica generale con elementi di fisica tecnica Aniello (Daniele) Mennella Dipartimento di Fisica Secondo modulo Parte prima (fondamenti di elettromagnetismo) Lezione 3 Campi magnetici e forza

Dettagli

Compendio sui Sensori

Compendio sui Sensori Compendio sui Sensoi Gli Inteuttoi di Posizione pemettono il ilevamento mediante il contatto fisico dietto (fine cosa); l oggetto dunque, poggia fisicamente sopa l inteuttoe chiudendo e/o apendo un contatto;

Dettagli

7. Campo magnetostatico

7. Campo magnetostatico 7. Campo magnetostatico 7.1 Aspetti fenomenologici Inteazioni (attattive e epulsive) ta magneti (magnetite) In ogni magnete si possono individuae due poli che chiamiamo polo + (nod) e polo - (sud) Due

Dettagli

E, ds. - Flusso totale uscente dalla superficie chiusa S: è la somma di tutti i flussi elementari, al tendere a zero delle aree infinitesime: r )

E, ds. - Flusso totale uscente dalla superficie chiusa S: è la somma di tutti i flussi elementari, al tendere a zero delle aree infinitesime: r ) Flusso del campo elettico e legge di Gauss. - Si definisce supeficie gaussiana una ipotetica supeficie S chiusa, che contiene un volume V. - La legge di Gauss mette in elazione i valoi dei campi elettici

Dettagli

ELETTROTECNICA Ingegneria Industriale

ELETTROTECNICA Ingegneria Industriale ELETTROTECNICA Ingegneia Industiale CAMPI ELETTROMAGNETICI Stefano Pastoe Dipatimento di Ingegneia e Achitettua Coso di Elettotecnica (43IN) a.a. 15-16 Foza di Coulomb Nel 1785, Chales Coulomb fece degli

Dettagli

SECONDA LEZIONE (4 ore): CONDUTTORI e DIELETTRICI

SECONDA LEZIONE (4 ore): CONDUTTORI e DIELETTRICI SECONDA LEZIONE (4 oe): CONDUTTORI e DIELETTRICI Conduttoi in campo elettico Polaizzazione della mateia Vettoe polaizzazione Vettoe spostamento elettico Suscettività elettica Capacità Condensatoi Enegia

Dettagli

Fisica II CdL Chimica. Magnetismo

Fisica II CdL Chimica. Magnetismo Magnetismo Magnetismo gli effetti magnetici da magneti natuali sono noti da molto tempo. Sono ipotate ossevazioni degli antichi Geci sin dall 800 A.C. la paola magnetismo deiva dalla paola geca pe un ceto

Dettagli

Facoltà di Ingegneria

Facoltà di Ingegneria Facoltà di Ingegneia Poa in Itinee di Fisica I (a. a. 004-005) 6 Noebe 004 COPITO C Esecizio n. 1 Un copo di assa è appoggiato su di un piano oizzontale scabo, con coefficiente di attito dinaico µ d. Coe

Dettagli