La previsione della domanda nella supply chain

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "La previsione della domanda nella supply chain"

Transcript

1 La previsione della domanda nella supply chain La previsione della domanda 1 Linea guida Il ruolo della prerevisione nella supply chain Le caraerisiche della previsione Le componeni della previsione ed i meodi di previsione Approcci di base alla previsione della domanda La previsione della domanda con le serie soriche Le misure dell errore di previsione Aspei praici della previsione della domanda La previsione della domanda 2

2 Il ruolo della prerevisione nella supply chain Sono la base di ue le decisioni sraegiche e di pianificazione in una supply chain È uilizzaa sia per processi di ipo pull che di ipo push Esempi: Produzione: scheduling, giacenza, programmazione aggregaa Markeing: allocazione degli saff di vendia promozioni, inroduzione di nuovi prodoi Finanza: invesimeni in impiani ed arezzaure, pianificazione del budge Personale: programmazione della manodopera, poliiche di assunzione e di inerruzione del rapporo di lavoro Tue le decisioni sono inerconnesse La previsione della domanda 3 Le caraerisiche della previsione Le previsioni sono incere e sbagliae. Devono fornire i valori aesi della previsione nonché la sima dell errore di misure. Le previsioni di lungo ermini sono meno accurae di quelle di breve ermine (è imporane definire l orizzone emporale della previsione) Le previsioni aggregae sono più accurae di quelle disaggregae La previsione della domanda 4

3 Approccio di base alla previsione della domanda Comprendere gli obieivi della previsione Inegrare la pianificazione della domanda e la previsione Idenificare i faori principali che influenzano al previsione della domanda Comprendere ed idenificare i segmeni dei clieni Deerminare le appropriae ecniche di previsione Sabilire le presazioni e gli errori di misura della previsione La previsione della domanda 5 Faori ambienali rilevani Condizioni generali del mercao e sao dell'economia Azioni dei concorreni Azioni di ipo legislaivo Tendenza del mercao Ciclo di via del prodoo Sili e moda Cambiameni nella domanda dei consumaori Innovazione ecnologica La previsione della domanda 6

4 Le caraerisiche della previsione PARAMETRI DA CONSIDERARE Prodoi Gruppi di prodoi Assiemi TECNICHE PREVISIONALI Qualiaive Quaniaive UNITÀ DI MISURA INTERVALLO DI TEMPO Seimane Mesi Trimesri ORIZZONTE DELLA PREVISIONE COMPONENTI DELLA PREVISIONE Tendenza Componene sagionale Componene ciclica Componene random ACCURATEZZA DELLA PREVISIONE REVISIONE DEI PARAMETRI DEL MODELLO DI PREVISIONE La previsione della domanda 7 I meodi di previsione VINCOLI: Poliiche gesionali Disponibilià delle risorse Condizioni del mercao Tecnologia DATI IN INGRESSO: Ricerche di mercao Dai sorici sulla domanda Pubblicià Promozioni Opinioni MODELLI PREVISIONALI DATI IN USCITA: Sime sulla domanda e sul periodo di richiesa Per prodoo Per cliene Per zona geografica FATTORI AMBIENTALI: Economici Sociali Poliici Culurali La previsione della domanda 8

5 I meodi di previsione MODELLI DI PREVISIONE QUANTITATIVI (saisico maemaici) QUALITATIVI (raccola di opinioni) Analisi delle serie soriche Indicaori economici Modelli economerici Opinioni di esperi Ricerche di mercao Delphi La previsione della domanda 9 I meodi di previsione Qualiaivi: principalmene soggeivi: si basano sulla raccola ed analisi di giudizi ed opinioni Serie emporali: usano i dai sorici della domanda Saici Adaaivi Causali: usano le relazioni ra la domanda ed alri faori per sviluppare la previsione Simulazione Imiano le scele del consumaore che incremenano al domanda Possono combinare la serie emporali ed i meodi causali La previsione della domanda 10

6 Componeni di una osservazione Domanda osservaa = componene sisemaica + componene random Livello (domanda auale desagionalizzaa) Tendenza (crescia o calo della domanda) Sagionale (fluuazioni sagionali prevedibili Componene sisemaica : valore aeso della domanda Componene random : la pare della previsione che devia dalla componene sisemaica Errore di previsione: differenza ra la previsione e la domanda auale La previsione della domanda 11 Analisi delle serie soriche rend sisemaiche cicliche componeni oscillaorie sagionali casuali La previsione della domanda 12

7 Analisi delle serie soriche Domanda endenza domanda Livello sagionale ciclica random -100 periodo La previsione della domanda 13 Saici Adaaivi I meodi di previsione Media mobile Smorzameno esponenziale semplice Modello di Hol (con endenza) Modello di Winer (con endenza e sagionalià) La previsione della domanda 14

8 La previsione della domanda con le serie soriche L obieivo consise nel prevedere la componene sisemaica della domanda araverso modelli di naura diversa Moliplicaivo: (livello)(endenza)(sagionale) Addiivo: livello + endenza + sagionale Miso: (livello + endenza)(sagionale) Meodi saici Previsione adaaiva La previsione della domanda 15 Meodi saici Assumendo un modello miso: Componene sisemaica = (livello + endenza)(sagionale) F +l = [L + ( + l)t]s +l = previsione effeuae nel periodo per la domanda del periodo + l L = sima della componene di livello nel periodo 0 T = sima della componene di endenza S = sima della componene sagionale per il periodo D = domanda reale nel periodo F = previsione della domanda nel periodo La previsione della domanda 16

9 Meodi saici Sima delle componeni di livello e di endenza Sima della componene sagionale La previsione della domanda 17 Sima delle componeni di livello e di endenza Prima d simare le componeni di livello e di endenza I dai della domanda vanno desagionalizzai Domanda desagionalizzaa = domanda che sarebbe saa osservaa in assenza di fluuazioni sagionali Periodicià (p) Il numero di periodi dopo i quali la sagionalià si ripee Per i dai di domanda dell esempio seguene risula p = 4 rimesri La previsione della domanda 18

10 Analisi delle serie soriche Trimesre Domanda D II, III, IV, I, II, III, IV, I, II, III, IV, I, Prevedere la domanda per i prossimi quaro rimesri La previsione della domanda 19 Analisi delle serie soriche ,2 97,3 97,4 98,1 98,2 98,3 98,4 99,1 99,2 99,3 99,4 00,1 La previsione della domanda 20

11 Desagionalizzazione della domanda D D = i = p 2 1 p 2 D + 1 p 2 + D / p p p 2 i = + 1 p 2 2 D / ( 2 p) per p pari per p dispari La previsione della domanda 21 Desagionalizzazione della domanda Per i dai dell esempio p = 4 è pari D 3 = {D1 + D5 + Somma(i=2 4) [2Di]}/8 = [(2)(13000)+(2)(23000)+(2)(34000)]}/8 = D 4 = {D2 + D6 + Somma(i=3 5) [2Di]}/8 ={ [(2)(23000)+(2)(34000)+(2)(10000)]/ 8 = La previsione della domanda 22

12 Desagionalizzazione della domanda Periodo Domanda D Domanda desagionalizzaa La previsione della domanda 23 Desagionalizzazione della domanda Tra la domanda desagionalizzaa ed il empo esise la seguene relazione D = L + T Con D = domanda desagionalizzaa al periodo L = componee di livello (domanda desagionalizzaa al periodo 0) T = componee di endenza (asso di crescia della domanda desagionalizzaa) La endenza può essere deerminaa araverso una regressione lineare ra la domanda desagionalizzaa ed il empo La previsione della domanda 24

13 45000 Desagionalizzazione della domanda D = domanda Domanda D Domanda desagionalizzaa Lineare (Domanda desagionalizzaa) periodo La previsione della domanda 25 Sima dei faori sagionali Usando le precedeni equazioni si calcolano i faori di sagionalià per ogni periodo D S = D Ad esempio pei il periodo 2 si ha D2 = (524)(2) = D2 = S2 = 13000/19487 = 0.67 La previsione della domanda 26

14 Sima dei faori sagionali Periodo Domanda D Domanda Linea di desagionalizzaa endenza S , , , , , , , , , , , ,66 sommaoria S su p periodi 3,894 4,029 4,048 La previsione della domanda 27 Sima dei faori sagionali Il faore sagionale complessivo per una sagione è infine calcolao coma la media di ui i faori della medesima sagione In presenza di r cicli sagionali per ui i periodi della classe p+i, 1<i<p, il faore sagionale della sagione i risula S i = r 1 j = 0 S r j p+ i Per i dai dell esempio con re cicli sagionali di ampiezza pari a quaro periodi (p=4) si avrà S1 = ( )/3 = 0.47 S2 = ( )/3 = 0.68 S3 = ( )/3 = 1.17 S4 = ( )/3 = 1.67 La previsione della domanda 28

15 Sima della previsione Usando le equazioni di previsione si poranno valuare le previsioni della domanda per i successivi quaro periodi: F13 = (L+13T)S1 = [18439+(13)(524)](0.47) = F14 = (L+14T)S2 = [18439+(14)(524)](0.68) = F15 = (L+15T)S3 = [18439+(15)(524)](1.17) = F16 = (L+16T)S4 = [18439+(16)(524)](1.67) = La previsione della domanda 29 Previsione adaaiva Le sime delle componeni di livello, di endenza e sagionale vengono adaae dopo l osservazione di ogni valore reale della domanda Passi generali nella sima adaaiva Medie mobili Smorzameno esponenziale semplice Smorzameno esponenziale con correzione per la endenza (modello di Hol) Smorzameno esponenziale con correzione per la endenza e la sagionalià (modello di Winer) La previsione della domanda 30

16 Formule di base per la previsione adaaiva F +1 = (L + l T )S +1 = previsione per il periodo +l nel periodo L = sima della componene di livello alla fine del periodo T = sima della componene di endenza alla fine del periodo S = sima del faore di sagionalià per il periodo F = sima della domanda per il periodo (effeuaa al periodo -1 o precedeni) D = domanda reale osservaa nel periodo E = errore di previsione nel periodo A = deviazione assolua per il periodo = E MAD = Mean Absolue Deviaion = valore medio degli A La previsione della domanda 31 Passi generali per la previsione adaaiva Inizializzazione: valuare le sime iniziali della componeni di livello (L 0 ), di endenza(t 0 ), ed i faori sagionali (S 1,,S p ) Previsione: valuare la domanda per il periodo +1 usando l equazione generale Sima dell errore: valuare l errore E +1 = F +1 - D +1 Modificare le sime: Modificare le sime del livello (L +1 ), enenza (T +1 ), e faore sagionale (S +p+1 ), dao l errore E +1 della previsione Ripeere i passi per ogni periodo seguene La previsione della domanda 32

17 Medie mobili Usae quando la domanda non manifesa endenza o sagionalià osservabili La componene sisemaica della domanda coincide con la componene di livello La componene di livello nel periodo è la domanda media valuaa sugli ulimi N periodi (media mobile di ordine N) La previsione correne per ui i periodi fuuri è la sessa ed è basaa sulla auale sima della componene di livello L = (D + D D -N+1 ) / N F +1 = L and F +n = L dopo l osservazione della domanda per il periodo +1, revisionare le sime come diseguio indicao: L +1 = (D +1 + D + + D -N+2 ) / N F +2 = L +1 La previsione della domanda 33 Medie mobili Per i dai dell esempio uilizzao Valuare alla fine del periodo 4 la sima della domanda per i periodi da 5 a 8 usando una media mobile di ordine quaro L4 = (D4+D3+D2+D1)/4 = ( )/4 = F5 = = F6 = F7 = F8 Domanda reale osservaa nel periodo 5 D5 = Errore di previsione nel periodo 5, E5 = F5 - D5 = = 9500 Revisionare la sima della componene di livello nel periodo 5: L5 = (D5+D4+D3+D2)/4 = ( )/4 = F6 = L5 = La previsione della domanda 34

18 Smorzameno esponenziale semplice Usao quando la domanda non manifesa endenza o sagionalià La componene sisemaica della domanda coincide con la componene di livello La sima iniziale della componene di livello, L 0, viene assuna pari alla media di ui i dai sorici La previsione auale per ui i periodi fuuri è pari alla sima auale della componee di livello così come di seguio indicao: F +1 = L and F +n = L Dopo l osservazione della domanda del periodo +1 D +1,revisionare la sima della componee di livello: L +1 = αd +1 + (1-α)L L +1 = Sum (n=0 o +1) [α(1-α) n D +1-n ] La previsione della domanda 35 Smorzameno esponenziale semplice L + 1 = α D (1 α ) L Piccoli valori di α: maggior sabilià e minore pronezza Elevai valori di α:maggiore pronezza e minore sabilià L 1 n + 1 = α (1 α ) D + 1 n + (1 α ) n= 0 D 1 La previsione della domanda 36

19 Smorzameno esponenziale semplice Per i dai dell esempio uilizzao L 0 = media di ui i 12 periodi di dai (o opporuna sima) F 1 = L 0 = Domanda osservaa per il periodo 1: D 1 = 8000 Errore di previsione per il periodo 1, E 1 : E 1 = F 1 -D 1 = = Assumendo α = 0.1, la sima revisionaa del livello per il periodo 1 divena: L 1 = αd 1 + (1-α)L 0 = (0.1)(8000) + (0.9)(22083) = F 2 = L 1 = La previsione della domanda 37 Smorzameno esponenziale semplice α = 0,10 Periodo Domanda Livello Previsione Errore Errore MSE MAD errore MAPE TS assoluo % ,3E % 176% ,6E % 118% ,9E % 83% 2, ,2E % 72% 0, ,2E % 81% 1, ,5E % 70% 2, ,4E % 62% 2, ,0E % 60% -0, ,0E % 62% 0, ,4E % 63% 1, ,8E % 60% 0, ,1E % 59% -1,38 La previsione della domanda 38

20 domanda Smorzameno esponenziale semplice periodo La previsione della domanda 39 Smorzameno esponenziale con correzione per la endenza (Modello di Hol) Adao quando la domanda presena componene di livello e di enenza senza evidenziare fenomeni di sagionalià Le sime iniziali delle componeni di livello e di endenza possono essere oenua araverso una regressione lineare semplice del ipo: D = a + b T 0 = a L 0 = b nel periodo, la previsione per i periodi fuuri è oenua dalle: F +1 = L + T F +n = L + nt La previsione della domanda 40

21 Smorzameno esponenziale con correzione per la endenza (Modello di Hol) Dopo l osservazione della domanda per il periodo, revisionare le sima come di seguio: L +1 = αd +1 + (1-α)(L + T ) T +1 = β(l +1 -L ) + (1-β)T α = cosane di smorzameno per il livello β = cosane di smorzameno per la endenza In base ai dai dell esempio descrio, usando una regressione lineare, si oiene, L 0 = (inercea) T 0 = 1549 (pendenza) La previsione della domanda 41 Smorzameno esponenziale con correzione per la endenza (Modello di Hol) L T = α D = β ( L (1 α ) ( L L ) + (1 β ) T + T ) La previsione della domanda 42

22 Smorzameno esponenziale con correzione per la endenza (Modello di Hol) Previsione per il periodo 1: F 1 = L 0 + T 0 = = Domanda osservaa per il periodo 1 = D1 = 8000 E 1 = F 1 -D 1 = = 5564 Assumendo α = 0.1, β = 0.2 L 1 = αd 1 + (1-α)(L 0 +T 0 ) = (0.1)(8000) + (0.9)(13564) = T 1 = β(l 1 -L 0 ) + (1-β)T 0 = (0.2)( ) + (0.8)(1549) = 1438 F 2 = L 1 + T 1 = = F 5 = L 1 + 4T 1 = (4)(1438) = La previsione della domanda 43 Smorzameno esponenziale con correzione per la endenza (Modello di Hol) α = 0,10 β = 0,20 Periodo Domanda Livello Tendenza Previsione Errore Errore MSE MAD errore MAPE TS assoluo % ,0E % 70% ,5E % 40% ,7E % 37% -0, ,6E % 40% -2, ,8E % 55% -0, ,6E % 49% -0, ,0E % 42% -0, ,4E % 41% -1, ,0E % 52% 0, ,6E % 58% 1, ,1E % 54% 1, ,8E % 52% 0,043 La previsione della domanda 44

23 Smorzameno esponenziale con correzione per la endenza (Modello di Hol) domanda periodo La previsione della domanda 45 Smorzameno esponenziale con correzione per la endenza e la sagionalià (modello di Winer) Appropriao quando la componene sisemaica della domanda manifesa livello, endenza e sagionalià Componene sisemaica = (livello + endenza)(faore sagionale) Assume periodicià pari a p periodi Oenere sime iniziali del livello (L 0 ), della endenza (T 0 ), e dei faori sagionali (S 1,,S p ) usando le procedure per la previsione saica Nel periodo, la previsione per i periodi fuuri è daa dalla: F +1 = (L +T )(S +1 ), F +n = (L + nt )S +n La previsione della domanda 46

24 Smorzameno esponenziale con correzione per la endenza e la sagionalià Dopo l osservazione della domanda del periodo+1, revisionare le sime per livello, endenza e faori sagionali come di seguio: L +1 = α(d +1 /S +1 ) + (1-α)(L +T ) T +1 = β(l +1 -L ) + (1-β)T S +p+1 = γ(d +1 /L +1 ) + (1-γ)S +1 α = cosane di smorzameno per il livello β = cosane di smorzameno per la endenza γ = cosane di smorzameno per i faori sagionali Per i dai dell esempio descrio le sime iniziali di livello, endenza e faori sagionali sono ricavae dal modello di previsione saica La previsione della domanda 47 Smorzameno esponenziale con correzione per la endenza e la sagionalià D + 1 L + = α + (1 α ) ( L + T S T = β ( L + 1 L ) + (1 β ) S D T p+ 1 = γ + ( 1 γ ) S + 1 L + 1 ) La previsione della domanda 48

25 Smorzameno esponenziale con correzione per la endenza e la sagionalià L 0 = T 0 = 524 S 1 =0.47, S 2 =0.68, S 3 =1.17, S 4 =1.67 F1 = (L0 + T0)S1 = ( )(0.47) = 8913 La domanda osservaa per il periodo 1 risula D 1 = 8000 Errore di previsione per il periodo 1 E 1 = F 1 -D 1 = = 913 Assumendo α = 0.05, β=0.1, γ=0.1; revisionare le sime del livello, endenza periodo 1 e del faore sagionale per il periodo 5 L 1 = α(d 1 /S 1 )+(1-α)(L 0 +T 0 ) = (0.1)(8000/0.47)+(0.9)( )=18769 T 1 = β(l 1 -L 0 )+(1-β)T 0 = (0.2)( )+(0.8)(524) = 485 S 5 = γ(d 1 /L 1 )+(1-γ)S 1 = (0.1)(8000/18769)+(0.9)(0.47) = 0.47 F 2 = (L 1 +T 1 )S 2 = ( )(0.68) = La previsione della domanda 49 Smorzameno esponenziale con correzione per la endenza e la sagionalià α = 0,05 β = 0,10 γ = 0,10 Periodo Domanda Livello Tendenza Faore Previsione Errore Errore MSE MAD errore MAPE TS sagionale assoluo % , ,9E % 11% , ,4E % 6% , ,7E % 5% , ,4E % 4% , ,0E % 3% 3, , ,1E % 6% -2, , ,1E % 7% 0, , ,7E % 6% 0, , ,6E % 7% -0, , ,6E % 9% 2, , ,8E % 9% -0, , ,4E % 8% -0, , , , , La previsione della domanda 50

26 Smorzameno esponenziale con correzione per la endenza e la sagionalià domanda periodo La previsione della domanda 51 Misure dell errore di previsione Errore di previsione E = F -D Mean square error (MSE) MSE 1 n 2 n = E n = 1 MAD 1 = n n A n = 1 Deviazione assolua A = E Mean absolue deviaion (MAD) σ = 1.25MAD La previsione della domanda 52

27 Misure dell errore di previsione Mean absolue percenage error (MAPE) n E n bias = D MAPE bias n = E TS = n = 1 n = 1 MAD bias mosra se la previsione sovrasima e soosima coerenemene la domanda; dovrebbe fluuare aorno allo 0 Tracking signal Dovrebbe aesarsi nel campo di valori+6 non verificandosi ale condizione si dovrebbe uilizzare un differene meodo di previsione La previsione della domanda 53 Aspei praici delle previsioni Collaborare nel processo di cosruzione della previsione I valori dei dai dipendono dallo sadio della supply chain nel quale vengono simai Porre aenzione per disinguere i dai di vendie da quelli di domanda La previsione della domanda 54

La programmazione aggregata nella supply chain. La programmazione aggregata nella supply chain 1

La programmazione aggregata nella supply chain. La programmazione aggregata nella supply chain 1 La programmazione aggregaa nella supply chain La programmazione aggregaa nella supply chain 1 Linea guida Il ruolo della programmazione aggregaa nella supply chain Il problema della programmazione aggregaa

Dettagli

LEZIONE 3 INDICATORI DELLE PRINCIPALI VARIABILI MACROECONOMICHE. Argomenti trattati: definizione e misurazione delle seguenti variabili macroecomiche

LEZIONE 3 INDICATORI DELLE PRINCIPALI VARIABILI MACROECONOMICHE. Argomenti trattati: definizione e misurazione delle seguenti variabili macroecomiche LEZIONE 3 INDICATORI DELLE RINCIALI VARIABILI MACROECONOMICHE Argomeni raai: definizione e misurazione delle segueni variabili macroecomiche Livello generale dei prezzi, Tasso d inflazione, π IL nominale,

Dettagli

Media Mobile di ampiezza k (k pari) Esempio: Vendite mensili di shampoo

Media Mobile di ampiezza k (k pari) Esempio: Vendite mensili di shampoo Media Mobile di ampiezza k (k pari) Esempio: Vendie mensili di shampoo Mese y 1 266,0 2 145,9 3 183,1 4 119,3 5 180,3 6 168,5 7 231,8 8 224,5 9 192,8 10 122,9 11 336,5 12 185,9 1 194,3 2 149,5 3 210,1

Dettagli

Argomenti trattati. Rischio e Valutazione degli investimenti. Teoria della Finanza Aziendale. Costo del capitale

Argomenti trattati. Rischio e Valutazione degli investimenti. Teoria della Finanza Aziendale. Costo del capitale Teoria della Finanza Aziendale Rischio e Valuazione degli invesimeni 9 1-2 Argomeni raai Coso del capiale aziendale e di progeo Misura del bea Coso del capiale e imprese diversificae Rischio e flusso di

Dettagli

Lezione n.12. Gerarchia di memoria

Lezione n.12. Gerarchia di memoria Lezione n.2 Gerarchia di memoria Sommario: Conceo di gerarchia Principio di localià Definizione di hi raio e miss raio La gerarchia di memoria Il sisema di memoria è molo criico per le presazioni del calcolaore.

Dettagli

La vischiosità dei depositi a vista durante la recente crisi finanziaria: implicazioni in una prospettiva di risk management

La vischiosità dei depositi a vista durante la recente crisi finanziaria: implicazioni in una prospettiva di risk management La vischiosià dei deposii a visa durane la recene crisi finanziaria: implicazioni in una prospeiva di risk managemen Igor Gianfrancesco Camillo Gilibero 31/01/1999 31/07/1999 31/01/2000 31/07/2000 31/01/2001

Dettagli

SCELTE INTERTEMPORALI E DEBITO PUBBLICO

SCELTE INTERTEMPORALI E DEBITO PUBBLICO SCELTE INTERTEMPORALI E DEBITO PUBBLICO Lo sudio delle poliiche economiche con il modello IS-LM permee di analizzare gli effei di breve periodo delle decisioni di poliica fiscale e monearia del governo.

Dettagli

Struttura dei tassi per scadenza

Struttura dei tassi per scadenza Sruura dei assi per scadenza /45-Unià 7. Definizione del modello ramie gli -coupon bonds preseni sul mercao Ipoesi di parenza Sul mercao sono preseni all isane ZCB che scadono fra,2,,n periodi Periodo:

Dettagli

Sviluppare una metodologia di analisi per valutare la convenienza economica di un nuovo investimento, tenendo conto di alcuni fattori rilevanti:

Sviluppare una metodologia di analisi per valutare la convenienza economica di un nuovo investimento, tenendo conto di alcuni fattori rilevanti: Analisi degli Invesimeni Obieivo: Sviluppare una meodologia di analisi per valuare la convenienza economica di un nuovo invesimeno, enendo cono di alcuni faori rilevani: 1. Dimensione emporale. 2. Grado

Dettagli

L ipotesi di rendimenti costanti di scala permette di scrivere la (1) in forma intensiva. Ponendo infatti c = 1/L, possiamo scrivere

L ipotesi di rendimenti costanti di scala permette di scrivere la (1) in forma intensiva. Ponendo infatti c = 1/L, possiamo scrivere DIPRTIMENTO DI SCIENZE POLITICHE Modello di Solow (1) 1 a. a. 2015-2016 ppuni dalle lezioni. Uso riservao Maurizio Zenezini Consideriamo un economia (chiusa e senza inerveno dello sao) in cui viene prodoo

Dettagli

RISPOSTA NEL DOMINIO DEL TEMPO

RISPOSTA NEL DOMINIO DEL TEMPO RISPOSTA NEL DOMINIO DEL TEMPO Nel dominio del empo le variabili sono esaminae secondo la loro evoluzione emporale. Normalmene si esamina la risposa del sisema a un segnale di prova canonico, cioè si sollecia

Dettagli

1.7. Il modello completo e le sue proprietà

1.7. Il modello completo e le sue proprietà La Teoria Generale 1 1.7. Il modello compleo e le sue proprieà Il ragionameno svolo fino a queso puno è valido per un livello dao del salario nominale e dei prezzi. Le grandezze preseni nel modello, per

Dettagli

Analisi e valutazione degli investimenti

Analisi e valutazione degli investimenti Analisi e valuazione degli invesimeni Indice del modulo L analisi degli invesimeni e conceo di invesimeno Il valore finanziario del empo e aualizzazione Capializzazione e aualizzazione Il coso opporunià

Dettagli

La valutazione d azienda: conciliazione tra metodo diretto ed indiretto

La valutazione d azienda: conciliazione tra metodo diretto ed indiretto Valuazione d azienda La valuazione d azienda: conciliazione ra meodo direo ed indireo di Maeo Versiglioni (*) e Filippo Riccardi (**) La meodologia maggiormene uilizzaa per la valuazione d azienda, è quella

Dettagli

La volatilità delle attività finanziarie

La volatilità delle attività finanziarie 4.30 4.5 4.0 4.5 4.0 4.05 4.00 3.95 3.90 3.85 3.80 3.75 3.70 3.65 3.60 3.55 3.50 3.45 3.40 3.35 3.30 3.5 3.0 3.5 3.0 3.05 3.00.95.70.65.60.55.50.45.40.35.30.5.0.5.0.05.00.95.90.85.80.75.70.65.60.55.50.45.40.35.30.5.0.5.0.05.00

Dettagli

Apertura nei Mercati Finanziari

Apertura nei Mercati Finanziari Lezione 20 (BAG cap. 6.2, 6.4-6.5 e 18.5-18.6) La poliica economica in economia apera Corso di Macroeconomia Prof. Guido Ascari, Universià di Pavia Aperura nei Mercai Finanziari 1) Gli invesiori possono

Dettagli

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo)

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo) V A = AMPIEZZA = lunghezza di V A ALTERNATA Proiezione di V X ISTANTE = velocià angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un inervallo di empo) DEVE ESSERE COSTANTE Angolo

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Universià di Napoli Parenope Facolà di Ingegneria Corso di Comunicazioni Elerice docene: Prof. Vio Pascazio a Lezione: 7/04/003 Sommario Caraerizzazione energeica di processi aleaori Processi aleaori nel

Dettagli

4 La riserva matematica

4 La riserva matematica 4 La riserva maemaica 4.1 Inroduzione La polizza, come si è viso, viene cosruia in modo da essere in equilibrio auariale alla daa di sipula = 0 e rispeo alla base ecnica del I ordine: se X è il flusso

Dettagli

Introduzione all analisi delle serie storiche e dei metodi di previsione

Introduzione all analisi delle serie storiche e dei metodi di previsione Inroduzione all analisi delle serie soriche e dei meodi di previsione Indice. Capiolo inroduivo,. Inroduzione.2 Fasi di un analisi di previsione e sruura delle dispense 2. Meodi e srumeni di base, 5 2.

Dettagli

Analisi di Mercato. Facoltà di Economia. La pubblicità. Creare la conoscenza di un prodotto. Creare l'immagine di marca. Influenzare gli atteggiamenti

Analisi di Mercato. Facoltà di Economia. La pubblicità. Creare la conoscenza di un prodotto. Creare l'immagine di marca. Influenzare gli atteggiamenti Obieivi della pubblicià Creare la conoscenza di un prodoo Analisi di Mercao Facolà di Economia francesco mola La pubblicià Creare l'immagine di marca Influenzare gli aeggiameni Rafforzare la fedelà alla

Dettagli

tp = 0 P + t r a 0 P Il modello di crescita aritmetico deriva dalla logica del tasso di interesse semplice

tp = 0 P + t r a 0 P Il modello di crescita aritmetico deriva dalla logica del tasso di interesse semplice Eserciazione 7: Modelli di crescia: arimeica, geomerica, esponenziale. Calcolo del asso di crescia e del empo di raddoppio. Popolazione sabile e sazionaria. Viviana Amai 03/06/200 Modelli di crescia Nella

Dettagli

L'UTILIZZO DI TRADING RULES IN MODELLI A CAMBIAMENTO DI REGIME (SWITCHING REGIMES)

L'UTILIZZO DI TRADING RULES IN MODELLI A CAMBIAMENTO DI REGIME (SWITCHING REGIMES) L'UTILIZZO DI TRADING RULES IN MODELLI A CAMBIAMENTO DI REGIME (SWITCHING REGIMES) Monica Billio Universià Ca Foscari e GRETA, Venezia Michele Paron GRETA, Venezia Inroduzione. Moli meodi di analisi ecnica

Dettagli

UNIVERSITA DEGLI STUDI DI SASSARI. L approccio time series per l analisi e la previsione della disoccupazione sarda

UNIVERSITA DEGLI STUDI DI SASSARI. L approccio time series per l analisi e la previsione della disoccupazione sarda UNIVERSITA DEGLI STUDI DI SASSARI FACOLTA DI SCIENZE POLITICHE MASTER IN STATISTICA APPLICATA L approccio ime series per l analisi e la previsione della disoccupazione sarda Relaore: Prof. Paolo Maana

Dettagli

A.A. 2013/14 Esercitazione - IRPEF TESTO E SOLUZIONI

A.A. 2013/14 Esercitazione - IRPEF TESTO E SOLUZIONI A.A. 2013/14 Eserciazione - IRPEF TESTO E SOLUZIONI Esercizio 1 - IRPEF Il signor X, che vive solo e non ha figli, ha percepio, nel corso dell anno correne, i segueni reddii: - Reddii da lavoro dipendene

Dettagli

Le basi della valutazione secondo i cash flow. Aswath Damodaran

Le basi della valutazione secondo i cash flow. Aswath Damodaran Le basi della valuazione secondo i cash flow Aswah Damodaran Valuazione secondo i cash flow: le basi dell'approccio Valore = = n CF = 1 1+ r ( ) dove, n = anni di via dell'aivià CF = Cash flow nel periodo

Dettagli

Differenziazione di prodotto e qualità in monopolio

Differenziazione di prodotto e qualità in monopolio Economia Indusriale Capiolo 7 Differenziazione di prodoo e qualià in monopolio Beoni Michela Gallizioli Giorgio Gaverina Alessandra Rai Nicola Signori Andrea AGENDA Concei di differenziazione vericale

Dettagli

del segnale elettrico trifase

del segnale elettrico trifase Rappresenazione del segnale elerico rifase Gli analizzaori di poenza e di energia Qualisar+ consenono di visualizzare isananeamene le caraerisiche di una ree elerica rifase. Rappresenazione emporale I

Dettagli

Economia e gestione delle imprese - 01

Economia e gestione delle imprese - 01 Economia e gesione delle imprese - 01 L impresa come organizzazione che crea valore Leve di creazione di ricchezza e responsabilià sociale Prima pare : L impresa che crea valore 1. L impresa 2. L evoluzione

Dettagli

Gestione della produzione MRP e MRPII

Gestione della produzione MRP e MRPII Sommario Gesione della produzione e Inroduzione Classificazione Misure di presazione La Disina Base Logica Lo Sizing in II Inroduzione Inroduzione Def: Gesire la produzione significa generare e sfruare

Dettagli

Il valore delle. Argomenti. Domande chiave. Teoria della Finanza Aziendale Prof. Arturo Capasso A.A. 2005-2006

Il valore delle. Argomenti. Domande chiave. Teoria della Finanza Aziendale Prof. Arturo Capasso A.A. 2005-2006 - 4 Teoria della Finanza Aziendale rof. Aruro Capasso A.A. 5-6 Il valore delle A. azioni ordinarie - Argomeni Rendimeni richiesi rezzi delle azioni e ES Cash Flows e valore economico d impresa - 3 Domande

Dettagli

Economia e gestione delle imprese - 07. Sommario. Liquidità e solvibilità

Economia e gestione delle imprese - 07. Sommario. Liquidità e solvibilità Economia e gesione delle imprese - 07 Obieivi: Descrivere i processi operaivi della gesione finanziaria nel coneso aziendale. Analizzare le decisioni di invesimeno. Analizzare le decisioni di finanziameno.

Dettagli

flusso in uscita (FU) Impresa flusso in entrata (FE)

flusso in uscita (FU) Impresa flusso in entrata (FE) Analisi degli invesimeni Il bilancio è una sinesi a poseriori della siuazione di un'azienda. La valuazione degli invesimeni è un enaivo di valuare a priori la validià delle scele dell'azienda. L'invesimeno

Dettagli

Università degli Studi di Padova

Università degli Studi di Padova Universià degli Sudi di Padova FACOLTÀ DI SCIENZE STATISTICHE Corso di Laurea Specialisica in Scienze Saisiche, Economiche, Finanziarie e Aziendali VALUTAZIONE DELL EFFICACIA DELLA PUBBLICITÀ NEL MERCATO

Dettagli

La Previsione della Domanda. La previsione della domanda è un elemento chiave della gestione aziendale

La Previsione della Domanda. La previsione della domanda è un elemento chiave della gestione aziendale La Previsione della omanda La previsione della domanda è un elemeno chiave della gesione aziendale Cosi Cliene Vanaggio compeiivo esi I mod 001 1 ermiene rocesso oninuo Personalizzao Prodoo Indifferenziao

Dettagli

Esercizi di Matematica Finanziaria

Esercizi di Matematica Finanziaria Esercizi di Maemaica Finanziaria Copyrigh SDA Bocconi Faori nanziari Classi care e rappresenare gra camene i segueni faori nanziari per : (a) = + ; 8 (b) = ( + ; ) (c) = (d) () = ; (e) () = ( + ; ) (f)

Dettagli

UNIVERSITA DEGLI STUDI DI PADOVA

UNIVERSITA DEGLI STUDI DI PADOVA UNIVERSITA DEGLI STUDI DI PADOVA FACOLTA DI SCIENZE STATISTICHE CORSO DI LAUREA SPECIALISTICA IN SCIENZE STATISTICHE ECONOMICHE, FINANZIARIE E AZIENDALI RELAZIONE FINALE: METODI STATISTICI PER LA GESTIONE

Dettagli

IL FENOMENO DELLA LONGEVITA ED IL RISCHIO DI MODELLO: ANALISI E MISURA

IL FENOMENO DELLA LONGEVITA ED IL RISCHIO DI MODELLO: ANALISI E MISURA IL FENOMENO DELLA LONGEVITA ED IL RISCHIO DI MODELLO: ANALISI E MISURA Valeria D Amao Doorao in Maemaica per l Analisi economica e la Finanza XX Ciclo Coordinaore: Prof. Emilia Di Lorenzo Tuor: Prof. Emilia

Dettagli

V AK. Fig.1 Caratteristica del Diodo

V AK. Fig.1 Caratteristica del Diodo 1 Raddrizzaore - Generalià I circuii raddrizzaori uilizzano componeni come i Diodi che presenano la caraerisica di unidirezionalià, cioè permeono il passaggio della correne solo in un verso. In figura

Dettagli

TEMPUS PECUNIA EST COLLANA DI MATEMATICA PER LE SCIENZE ECONOMICHE FINANZIARIE E AZIENDALI

TEMPUS PECUNIA EST COLLANA DI MATEMATICA PER LE SCIENZE ECONOMICHE FINANZIARIE E AZIENDALI TEPUS PECUNIA EST COLLANA DI ATEATICA PER LE SCIENZE ECONOICHE FINANZIARIE E AZIENDALI 3 Direore Bearice VENTURI Universià degli Sudi di Cagliari Comiao scienifico Umbero NERI Universiy of aryland Russel

Dettagli

Facoltà di Agraria - Università di Sassari Anno Accademico 2004-2005. Analisi Costi e Benefici

Facoltà di Agraria - Università di Sassari Anno Accademico 2004-2005. Analisi Costi e Benefici Facolà di Agraria - Universià di Sassari Anno Accademico 004-005 Dispense Corso di Pianificazione e Difesa del erriorio Docene: Luciano Guierrez Analisi Cosi e Benefici. Inroduzione. Decisioni individuali

Dettagli

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova dell 8 febbraio 2008. Esercizio 1 (6 punti)

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova dell 8 febbraio 2008. Esercizio 1 (6 punti) MATEMATICA FINANZIARIA A.A. 007 008 Prova dell 8 febbraio 008 Nome Cognome Maricola Esercizio (6 puni) La vendia raeale di un bene di valore 000 prevede il pagameno di rae mensili posicipae cosani calcolae

Dettagli

LA GESTIONE COORDINATA DEGLI ATTIVI E DEI PASSIVI NEI FONDI PENSIONE

LA GESTIONE COORDINATA DEGLI ATTIVI E DEI PASSIVI NEI FONDI PENSIONE LA GESTIONE COORDINATA DEGLI ATTIVI E DEI PASSIVI NEI FONDI PENSIONE Prof. PAOLO DE ANGELIS Auario - Sudio ACRA Do. STEFANO VISINTIN Auario - Sudio Auariale Visinin & Associai Roma 19 giugno 2012 ASPETTI

Dettagli

UNIVERSITA DEGLI STUDI DI PADOVA

UNIVERSITA DEGLI STUDI DI PADOVA UNIVERSITA DEGLI STUDI DI PADOVA FACOLTA DI SCIENZE STATISTICHE TESI DI LAUREA IN STATISTICA ECONOMIA E FINANZA STIMA DELLA VOLATILITA NEI MERCATI FINANZIARI CON DATI INFRA-GIORNALIERI: ALCUNI CONFRONTI

Dettagli

Lezione 11. Inflazione, produzione e crescita della moneta

Lezione 11. Inflazione, produzione e crescita della moneta Lezione 11 (BAG cap. 10) Inflazione, produzione e crescia della monea Corso di Macroeconomia Prof. Guido Ascari, Universià di Pavia Tre relazioni ra produzione, disoccupazione e inflazione Legge di Okun

Dettagli

Controllo di processo e automazione

Controllo di processo e automazione 6.5 Conrollo di processo e auomazione 6.5. Inroduzione L auomazione e il conrollo di processo sono essenziali per il funzionameno sicuro e reddiizio degli impiani perolchimici e di raffinazione. Di seguio

Dettagli

Giorgio Porcu. Appunti di SISTEMI. ITI Elettronica Classe QUINTA

Giorgio Porcu. Appunti di SISTEMI. ITI Elettronica Classe QUINTA Giorgio Porcu Appuni di SSTEM T Eleronica lasse QUNTA Appuni di SSTEM T Eleronica - lasse QUNTA 1. TEORA DE SSTEM SSTEMA ollezione di elemeni che ineragiscono per realizzare un obieivo. l ermine è applicabile

Dettagli

2. Politiche di gestione delle scorte

2. Politiche di gestione delle scorte deerminisica variabile nel empo Quando la domanda viaria nel empo, il problema della gesione dell invenario divena preamene dinamico. e viene deo di lo-sizing. Consideriamo il caso in cui la domanda pur

Dettagli

Un po di teoria. cos è un condensatore?

Un po di teoria. cos è un condensatore? Sudio sperimenale del processo di carica e scarica di un condensaore cos è un condensaore? Un po di eoria Un condensaore è un sisema di due conduori affacciai, dei armaure, separai da un isolane. Esso

Dettagli

Cenni di Matematica Finanziaria

Cenni di Matematica Finanziaria Cenni di Maemaica Finanziaria M.Leizia Guerra Facolà di Economia Universià di Urbino Carlo Bo Leggi e regimi finanziari Operazioni finanziarie elemenari Un conrao finanziario ra due soggei Alfa e Bea prevede

Dettagli

LA TEORIA DEL CICLO ECONOMICO REALE (RBC: Real Business Cycle) Però offre una diversa spiegazione delle fluttuazioni economiche:

LA TEORIA DEL CICLO ECONOMICO REALE (RBC: Real Business Cycle) Però offre una diversa spiegazione delle fluttuazioni economiche: LA TEORIA DEL CICLO ECONOMICO REALE (RBC: Real Business Cycle) Edward Presco, Finn Kydland, Rober King, ecc. Si inserisce nel filone della NMC: - Equilibrio generale walrasiano; - incerezza e dinamica:

Dettagli

Anche sugli impianti in esercizio è possibile intervenire attuando una serie di soluzioni in grado di ridurre sensibilmente il consumo di energia.

Anche sugli impianti in esercizio è possibile intervenire attuando una serie di soluzioni in grado di ridurre sensibilmente il consumo di energia. Risparmio Energeico Risparmio Energeico per Scale e Tappei Mobili La riduzione dei consumi di energia proveniene dalle foni fossili non rinnovabili (perolio, carbone) è una delle priorià assolue, insieme

Dettagli

Metodi stocastici per l individuazione di casi di Manipolazione e di insider trading

Metodi stocastici per l individuazione di casi di Manipolazione e di insider trading Approfondimeni l Regulaion Meodi socasici per l individuazione di casi di Manipolazione e di insider rading Marcello Minenna presena un modello probabilisico per l individuazione di possibili fenomeni

Dettagli

Università di Pisa - Polo della Logistica di Livorno Corso di Laurea in Economia e Legislazione dei Sistemi Logistici. Anno Accademico: 2013/14

Università di Pisa - Polo della Logistica di Livorno Corso di Laurea in Economia e Legislazione dei Sistemi Logistici. Anno Accademico: 2013/14 Universià di isa - olo della Logisica di Livorno Corso di Laurea in Economia e Legislazione dei Sisemi Logisici Anno Accademico: 03/4 CORSO DI SISTEMI DI MOVIMENTAZIONE E STOCCAGGIO Docene: Marino Lupi

Dettagli

Lezione 10. (BAG cap. 9) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia

Lezione 10. (BAG cap. 9) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia Lezione 10 (BAG cap. 9) Il asso naurale di disoccupazione e la curva di Phillips Corso di Macroeconomia Prof. Guido Ascari, Universià di Pavia In queso capiolo Inrodurremo uno degli oggei più conosciui

Dettagli

LA DINAMICA DEL DEBITO PUBBLICO. UN ANALISI DEL CASO ITALIANO, 1980-1996

LA DINAMICA DEL DEBITO PUBBLICO. UN ANALISI DEL CASO ITALIANO, 1980-1996 Liuc Papers n. 33, Serie Economia e Impresa 8, seembre 1996 LA DINAMICA DEL DEBITO PUBBLICO. UN ANALISI DEL CASO ITALIANO, 1980-1996 Angelo Marano Inroduzione Le dimensioni anomale che il debio pubblico

Dettagli

Osservabilità (1 parte)

Osservabilità (1 parte) eoria dei sisemi - Capiolo 9 sservabilià ( pare) Inroduzione al problema della osservabilià: osservazione e ricosruzione. Sai indisinguibili e sai non osservabili...3 Soospazi di osservabilià e non osservabilià

Dettagli

Esercitazione n 2. Morganti Nicola Matr. 642686. Molla ad elica cicilindrica

Esercitazione n 2. Morganti Nicola Matr. 642686. Molla ad elica cicilindrica ar. 64686 olla ad elica cicilindrica Eserciazione n 9 In figura è rappresenao un basameno sospeso anivibrane di una macchina nella quale viene originaa una forza perurbane alernaa sinusoidale di inensià

Dettagli

1.7. Il modello completo e le sue proprietà

1.7. Il modello completo e le sue proprietà Macroeconomia neoclassica 1 1.7. Il modello compleo e le sue proprieà Disponiamo ora di ui gli elemeni necessari a rappresenare il modello compleo e l equilibrio. I dai del modello sono: 1. numero degli

Dettagli

La matrice di contabilità sociale (SAM): uno strumento per la valutazione IPI, 2009

La matrice di contabilità sociale (SAM): uno strumento per la valutazione IPI, 2009 La marice di conabilià sociale (SAM): uno srumeno per la valuazione IPI, 2009 Sono vieae le riproduzioni del eso, dei dai e dei conenui informaici dei CD allegai non auorizzai dall IPI con qualsiasi mezzo

Dettagli

Introduzione all analisi quantitativa dei beni pubblici. Italo M. Scrocchia

Introduzione all analisi quantitativa dei beni pubblici. Italo M. Scrocchia Diparimeno di Scienze Economiche, Maemaiche e Saisiche Universià degli Sudi di Foggia Inroduzione all analisi quaniaiva dei beni pubblici Ialo M. Scrocchia Quaderno n. 27/2008 Esemplare fuori commercio

Dettagli

LA MODELLAZIONE DEGLI IMPIANTI DI CONVERSIONE DELL ENERGIA NEL MERCATO LIBERO. Sergio Rech

LA MODELLAZIONE DEGLI IMPIANTI DI CONVERSIONE DELL ENERGIA NEL MERCATO LIBERO. Sergio Rech LA MODELLAZIONE DEGLI IMPIANTI DI CONVERSIONE DELL ENERGIA NEL MERCATO LIBERO Sergio Rech Diparimeno di Ingegneria Indusriale Universià di Padova Mercai energeici e meodi quaniaivi: un pone ra Universià

Dettagli

PIL NOMINALE, PIL REALE E DEFLATORE

PIL NOMINALE, PIL REALE E DEFLATORE PIL NOMINALE, PIL REALE E DEFLATORE Il PIL nominale (o a prezzi correni) Come sappiamo il PIL è il valore di ui i beni e servizi finali prodoi in un cero periodo all inerno del paese. Se per calcolare

Dettagli

MANIAGO 9 APRILE 2014 IDEA PROGETTU ALE E RISULTATI Affitta?sì

MANIAGO 9 APRILE 2014 IDEA PROGETTU ALE E RISULTATI Affitta?sì hp://www.affiasi-dolomii.i/ MANIAGO 9 APRILE 2014 IDEA PROGETTU ALE E RISULTATI Affia?sì Comunià Monana del FRIULI OCCIDENTALE 1 hp://www.affiasi-dolomii.i/ o «Affi a?sì! ENTI FINANZIATORI Regione Friuli

Dettagli

ESEMPI DI ESERCIZI SU IRPEF ED IRES

ESEMPI DI ESERCIZI SU IRPEF ED IRES ESEMPI DI ESERCIZI SU IRPEF ED IRES 1. Irpef 1) Dopo avere definio il conceo di progressivià delle impose, si indichino le modalià per la realizzazione di un sisema di impose progressivo. 2) Il signor

Dettagli

Terminologia relativa agli aggregati

Terminologia relativa agli aggregati N. 17 I/10 Terminologia relaiva agli aggregai Schede ecniche Edilizia Genio civile 1 Presupposi Con l'inroduzione delle Norme europee (EN) riguardani gli aggregai, la erminologia finora uilizzaa è saa

Dettagli

SELEZIONE DI UN PORTAFOGLIO MEDIANTE LA FORZA RELATIVA

SELEZIONE DI UN PORTAFOGLIO MEDIANTE LA FORZA RELATIVA UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI SCIENZE STATISTICHE CORSO DI LAUREA IN STATISTICA, ECONOMIA E FINANZA SELEZIONE DI UN PORTAFOGLIO MEDIANTE LA FORZA RELATIVA RELATORE: Ch.mo Prof. Francesco

Dettagli

I confronti alla base della conoscenza

I confronti alla base della conoscenza I confroni alla ase della conoscenza Un dao uaniaivo rae significao dal confrono con alri dai Il confrono è la prima e più immediaa forma di analisi dei dai I confroni Daa una grandezza G, due suoi valori

Dettagli

In questo caso entrambi i gruppi chiedono copertura completa: q = d = 100.

In questo caso entrambi i gruppi chiedono copertura completa: q = d = 100. Soluzione dell Esercizio 1: Assicurazioni a) In un mercao perfeamene concorrenziale, deve valere la condizione di profii aesi nulli: E(P)=0. E possibile mosrare che ale condizione implica che l impresa

Dettagli

Previsione della domanda e ottimizzazione delle scorte di magazzino della CAME s.p.a.

Previsione della domanda e ottimizzazione delle scorte di magazzino della CAME s.p.a. UNIVERSITA DEGLI STUDI DI PADOVA FACOLTA DI SCIENZE STATISTICHE CORSO DI LAUREA IN STATISTICA E TECNOLOGIE INFORMATICHE RELAZIONE FINALE Previsione della domanda e oimizzazione delle score di magazzino

Dettagli

Ist. di economia, Corso di Laurea in Ing. Gestionale, I canale (A-L), A.A Prof. R. Sestini

Ist. di economia, Corso di Laurea in Ing. Gestionale, I canale (A-L), A.A Prof. R. Sestini Is. di economia, Corso di Laurea in Ing. Gesionale, I canale (A-L), A.A. 2008-2009. Prof. R. Sesini SCHEMA DELLE LEZIONI DELLA TREDICESIMA SETTIMANA ELEMENTI di CONTABILITA ECONOMICA NAZIONALE e di MACROECONOMIA

Dettagli

Operazioni finanziarie. Operazioni finanziarie

Operazioni finanziarie. Operazioni finanziarie Operazioni finanziarie Una operazione finanziaria è uno scambio di flussi finanziari disponibili in isani di empo differeni. Disinguiamo ra: operazioni finanziarie in condizioni di cerezza, quando ui gli

Dettagli

La Riassicurazione. Prof. Cerchiara Rocco Roberto. email: rocco.cerchiara@unical.it. Materiale e Riferimenti

La Riassicurazione. Prof. Cerchiara Rocco Roberto. email: rocco.cerchiara@unical.it. Materiale e Riferimenti Prof. R.R. Cerciara La Riassicurazione Prof. Cerciara Rocco Robero email: rocco.cerciara@unical.i Maeriale e Riferimeni 1. Lucidi disribuii in aula. Daboni, pagg. 13-17 e 137-148 (Leggere Riassicurazione

Dettagli

Ottobre 2009. ING ClearFuture

Ottobre 2009. ING ClearFuture Oobre 2009 ING ClearFuure Una crescia cosane. Con una solida proezione nel empo. ING ClearFuure è la soluzione assicuraiva Uni Linked di dirio lussemburghese, realizzaa apposiamene da ING Life Luxembourg

Dettagli

Teoria delle leggi finanziarie. S. Corsaro Matematica Finanziaria a.a. 2007/08

Teoria delle leggi finanziarie. S. Corsaro Matematica Finanziaria a.a. 2007/08 Teoria delle leggi finanziarie Inensià di ineresse L inensià di ineresse relaiva al periodo da x ad y è definia come adimensionale I( xy, ) 1 ixy (, ) γ ( xy, ) = = C y x ( dimensione di empo -1 ) L inensià

Dettagli

Soluzione degli esercizi del Capitolo 2

Soluzione degli esercizi del Capitolo 2 Sisemi di auomazione indusriale - C. Boniveno, L. Genili, A. Paoli 1 degli esercizi del Capiolo 2 dell Esercizio E2.1 Il faore di uilizzazione per i processi in esame è U = 8 16 + 12 48 + 6 24 = 1. L algorimo

Dettagli

Un modello econometrico multifattoriale dell Indice Comit generale della Borsa di Milano

Un modello econometrico multifattoriale dell Indice Comit generale della Borsa di Milano WORKING PAPER n. 00.08 Novembre 2000 Un modello economerico mulifaoriale dell Indice Comi generale della Borsa di Milano Renaa Bonfiglio 1 Paolo Guderzo 2 1 Unicredio di Milano 2 Universià Cà Foscari di

Dettagli

Opportunità di arbitraggio nel mercato del BTP Futures: una verifica empirica.

Opportunità di arbitraggio nel mercato del BTP Futures: una verifica empirica. Opporunià di arbiraggio nel mercao del BTP Fuures: una verifica empirica. Andrea Giacomelli Grea, Venezia Domenico Sarore Universià Ca' Foscari e Grea, Venezia Michele Trova Inesa Asse Managemen Come è

Dettagli

Le polizze rivalutabili

Le polizze rivalutabili Capiolo 6 Le polizze rivaluabili 6.1 Inroduzione Le polizze via rivaluabili sono sae inrodoe nel mercao ialiano negli anni di ala inflazione e oggi, con l eccezione delle polizze TCM, hanno compleamene

Dettagli

I metodi di valutazione degli interventi

I metodi di valutazione degli interventi Corso di Traspori e Terriorio prof. ing. Agosino Nuzzolo I meodi di valuazione degli inerveni Pare prima: l analisi l finanziaria 1 La valuazione degli inerveni Esame e confrono di inerveni (progei) alernaivi

Dettagli

6 Le polizze rivalutabili

6 Le polizze rivalutabili 6 Le polizze rivaluabili 6.1 Inroduzione Le polizze via rivaluabili sono sae inrodoe nel mercao ialiano negli anni di ala inflazione e oggi ui i conrai dei rami via proposi dalla compagnie ialiane, con

Dettagli

Sistemi di drenaggio urbano. Prof. Antonino Cancelliere. I sistemi di drenaggio urbano

Sistemi di drenaggio urbano. Prof. Antonino Cancelliere. I sistemi di drenaggio urbano Corso di Proezione Idraulica del Terriorio Sisemi di drenaggio urbano Prof. Anonino Cancelliere Diparimeno di Ingegneria Civile e Ambienale Universià di Caania acance@dica.unic.i 095 7382718 I sisemi di

Dettagli

COMPORTAMENTO SISMICO DELLE STRUTTURE

COMPORTAMENTO SISMICO DELLE STRUTTURE COMPORTAMENTO SISMICO DELLE STRUTTURE Durane un erreoo, le oscillazioni del erreno di fondazione provocano nelle sovrasani sruure delle oscillazioni forzae. Quando il erreoo si arresa, i ovieni della sruura

Dettagli

UNIVERSITA DEGLI STUDI DI PADOVA

UNIVERSITA DEGLI STUDI DI PADOVA UNIVERSITA DEGLI STUDI DI PADOVA Facolà di Scienze Saisiche CORSO DI LAUREA IN STATISTICA, ECONOMIA E FINANZA RELAZIONE FINALE: INFLUENZA DI ALCUNI CARATTERI SOCIOECONOMICI NELLE SCELTE DI PORTAFOGLIO

Dettagli

Programmazione della produzione a lungo termine e gestione delle scorte

Programmazione della produzione a lungo termine e gestione delle scorte Programmazione della produzione a lungo ermine e gesione delle score Coneso. Il problema della gesione delle score consise nel pianificare e conrollare i processi di approvvigionameno dei magazzini di

Dettagli

DEFICIT E DEBITO PUBBLICO

DEFICIT E DEBITO PUBBLICO DEFICIT E DEITO PULICO Defici e debio pubblico Se il governo di uno Sao spende più di quano incassa, si genera un defici pubblico. Viceversa, si parla di surplus. Il defici è finanziao dallo Sao ricorrendo

Dettagli

NOTA METODOLOGICA SUL MODELLO PREVISIVO EXCELSIOR PER GLI ANNI 2013-2017

NOTA METODOLOGICA SUL MODELLO PREVISIVO EXCELSIOR PER GLI ANNI 2013-2017 NOTA METODOLOGICA SUL MODELLO PREVISIVO EXCELSIOR PER GLI ANNI 2013-2017 1 SOMMARIO PREMESSA... 3 1. IL MODELLO ECONOMETRICO PER LA STIMA DEGLI STOCK SETTORIALI... 3 Foni... 3 Meodologia... 3 La formulazione

Dettagli

Fabio Grasso LA PREVIDENZA COMPLEMENTARE: I PROFILI TECNICI

Fabio Grasso LA PREVIDENZA COMPLEMENTARE: I PROFILI TECNICI Fabio Grasso Direore Diparimeno di Scienze Saisiche Presidene Area Didaica delle Scienze Saisiche, Auariali e Finanziarie Universià degli Sudi di Roma La Sapienza LA PREVIDENZA COMPLEMENTARE: I PROFILI

Dettagli

x ( x, x,..., x ) (8.5, 10.3, 9.6, 8.7, 11.2, 9.9, 7.9, 10, 9, 11.1)

x ( x, x,..., x ) (8.5, 10.3, 9.6, 8.7, 11.2, 9.9, 7.9, 10, 9, 11.1) Serie Sorice e Processi Socasici Federico Andreis Inroduzione Desiderando inrodurre inuiivamene il conceo di serie sorica basa fare riferimeno a qualsiasi fenomeno misurabile ce varia nel empo e la cui

Dettagli

Analisi delle serie storiche: modelli ARCH e GARCH. Prof. M. Ferrara

Analisi delle serie storiche: modelli ARCH e GARCH. Prof. M. Ferrara Analisi delle serie soriche: modelli ARCH e GARCH Prof. M. Ferrara 1 Scele di porafoglio Markowiz ci insegna che i parameri decisionali fondamenali per operare scele di porafoglio sono: Media Varianza

Dettagli

9. Conversione Analogico/Digitale

9. Conversione Analogico/Digitale 9.1. Generalià 9. Conversione Analogico/Digiale 9.1. Generalià In un converiore analogico/digiale, il problema di fondo consise nello sabilire la corrispondenza ra la grandezza analogica di ingresso (che

Dettagli

Indice generale della produzione industriale. indice grezzo corretto per i giorni lavorativi destagionalizzato. marzo 07.

Indice generale della produzione industriale. indice grezzo corretto per i giorni lavorativi destagionalizzato. marzo 07. Indice generale della produzione indusriale indice grezzo correo per i giorni lavoraivi desagionalizzao 0.0 0.0 00.0 indice 90.0 80.0 70.0 60.0 50.0 marzo 06 giugno 06 seembre 06 dicembre 06 marzo 07 giugno

Dettagli

7 I convertitori Analogico/Digitali.

7 I convertitori Analogico/Digitali. 7 I converiori Analogico/Digiali. 7 1. Generalià Un volmero numerico, come si evince dal nome, è uno srumeno che effeua misure di ensione mediane una conversione analogicodigiale della grandezza in ingresso

Dettagli

IL DIMENSIONAMENTO DEGLI IMPIANTI IDROSANITARI Vasi d espansione e accumuli

IL DIMENSIONAMENTO DEGLI IMPIANTI IDROSANITARI Vasi d espansione e accumuli FOCUS TECNICO IL DIMENSIONAMENTO DEGLI IMIANTI IDROSANITARI asi d espansione e accumuli RODUZIONE DI ACQUA CALDA SANITARIA Due sono i sisemi normalmene uilizzai per produrre acqua calda saniaria: quello

Dettagli

L integrazione europea e il mercato del lavoro: un analisi teorica ed empirica in un contesto insider/outsider

L integrazione europea e il mercato del lavoro: un analisi teorica ed empirica in un contesto insider/outsider L inegrazione europea e il mercao del lavoro: un analisi eorica ed empirica in un coneso insider/ousider Michela Marinoia Doorao in Scienze Economiche Universià degli Sudi di Milano Via Conservaorio, 7

Dettagli

Lezione n.7. Variabili di stato

Lezione n.7. Variabili di stato Lezione n.7 Variabili di sao 1. Variabili di sao 2. Funzione impulsiva di Dirac 3. Generaori impulsivi per variabili di sao disconinue 3.1 ondizioni iniziali e generaori impulsivi In quesa lezione inrodurremo

Dettagli

FUNZIONI REALI DI UNA VARIABILE REALE E APPLICAZIONI

FUNZIONI REALI DI UNA VARIABILE REALE E APPLICAZIONI CAPITOLO FUNZIONI REALI DI UNA VARIABILE REALE E APPLICAZIONI Sono le funzioni aveni come dominio e codominio dei sooinsiemi dei numeri reali; esse sono alla base dei modelli maemaici preseni in ogni campo

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO

ESAME DI STATO DI LICEO SCIENTIFICO ESAME DI STATO DI LICEO SCIENTIFICO SIMULAZIONE DELLA II PROVA A.S. 014-15 Indirizzo: SCIENTIFICO Tema di: MATEMATICA 1 Nome del candidao Classe Il candidao risolva uno dei due problemi; il problema da

Dettagli

Finanza aziendale Corso progredito I Modulo

Finanza aziendale Corso progredito I Modulo Finanza aziendale Corso progredio I Modulo a.a. 2006-2007 Tesi consigliai Manelli A., 2003, Finanza aziendale. L efficienza dei mercai, analisi fondamenale e analisi ecnica, Clua, Ancona - esclusi capioli

Dettagli

Il modello di Black-Scholes. Il modello di Black-Scholes/2

Il modello di Black-Scholes. Il modello di Black-Scholes/2 Il modello di Black-Scholes Si raa sosanzialmene del modello in empo coninuo che si oiene facendo endere a 0 nel modello binomiale. Come vedremo, è un modello di fondamenale imporanza, e per esso a Myron

Dettagli