Potenze, esponenziali e logaritmi 1 / 34

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Potenze, esponenziali e logaritmi 1 / 34"

Transcript

1 Potenze, esponenziali e logaritmi / 34

2 Grafico della funzione x 2 e x 2 / 34 y f(x)=x 2 y=x f (x)= x x

3 Le funzioni potenza 3 / 34 Più in generale, si può considerare, per n N, n>0, n pari, la funzione f : [0,+ ) [0,+ ) x x n Anche in questo caso, l inversa esiste ed è indicata con (radice n-esima di x) f (x)= n x

4 La funzione potenza 4 / 34 Nel caso di esponente n dispari, la funzione f(x)=x n realizza una funzione bigettiva f :R R La sua inversa è ancora denotata n x

5 Grafico della funzione x 3 e 3 x 5 / 34 y f(x)= x 3 y=x f (x)= 3 x x

6 6 / 34 Proprietà Proprietà: Sia f : A B invertibile, con A e B sottoinsiemi di R. Allora il grafico di f : B A e il grafico di f risultano uno il simmetrico dell altro rispetto alla bisettrice y = x. mentre Γf ={[x, f(x)] R 2 : x A} Γf = {[t, f (t)] R 2 : t B} = {[f(x), f (f(x))] R 2 : x A} = {[f(x), x] R 2 : x A} Le coordinate dei punti di Γf si ottengono da quelle dei punti di Γf scambiando i ruoli di ascissa e ordinata

7 7 / 34 y P =(y 0,x 0 ) y=x M P=(x 0,y 0 ) x ( x0 + y 0 M =, x ) 0+ y M bisettrice m PP = x 0 y 0 y 0 x 0 = x 0 y 0 x 0 y 0 =

8 Esercizio 8 / 34 Sia la funzione bigettiva definita da: f :R R f(x)= 3x+ Determinare l espressione che definisce f :R R

9 Soluzione 9 / 34 Applicando f a x si ottiene (3x+)=y. Ritorniamo indietro al valore x di partenza, (3x+) =3x/3=x y y 3 Ovvero f (y)= y 3

10 Soluzione 0 / 34 Lo stesso ragionamento, formalizzato in modo algebrico, si realizza scrivendo (3x+)=y e ricavando la x 3x=y x= y 3 = f (y) Per rappresentare convenientemente f nel piano cartesiano, la riscriviamo come f (x)= x 3

11 / 34 y y=3x+ y=x Grafico y= x 3 x

12 2 / 34 Funzioni elementari: Funzioni potenza Funzioni esponenziali Funzioni logaritmiche

13 Proprietà delle potenze 3 / 34 Iniziamo dalle proprietà elementari: x n x m = x n+m = x m x n (x n ) m = x n m =(x m ) n valide per x R, n,m N, n,m.

14 Proprietà delle potenze 4 / 34 Le proprietà delle potenze continuano a essere valide anche quando n,m Q a condizione di porre: x>0 x 0 = n N, n Segue che x n = x n e x n = n x, x m n = x m n =(x m ) n = n x m

15 Proprietà delle potenze Attraverso un opportuno processo di limite si arriva a definire le cosiddette funzioni potenza con esponente reale, cioè f(x)= x a, x>0, dove l esponente a è un qualunque numero reale, non nullo, fissato. Per cogliere la sottigliezza dell argomento notiamo che, se da una parte una scrittura del tipo 3 5/2 ha un significato chiaro, in quanto dall altra una scrittura del tipo 3 5/2 =(3 5 ) /2 = 3 5 richiede un processo non banale di approssimazione / 34

16 Funzione potenza 6 / 34 Continuano a valere le proprietà x a x b = x a+b = x b x a valide per x>0, a,b R (x a ) b = x a b =(x b ) a

17 Grafici della funzione potenza y=x a 7 / 34 y y x x 0<a< a>

18 Grafici della funzione potenza y=x a 8 / 34 y x a<0

19 Funzione esponenziale 9 / 34 Se invece si considera, in x a la base x come fissata e l esponente come variabile, si ottengono le cosiddette funzioni esponenziali. Più precisamente, se a R, a > 0, definiamo la funzione esponenziale di base a come: f(x)= a x

20 Funzione esponenziale 20 / 34 Le principali proprietà di questa famiglia di funzioni sono coerenti con quelle delle potenze. In particolare, a,b,x,y R, con a,b> 0, si ha: a 0 =, x = a x > 0 ; a x+y = a x a y (a b) x = a x b x (a x ) y = a xy =(a y ) x se a>, allora : (x<y) (a x < a y ) se 0<a<, allora : (x<y) (a x > a y ).

21 Grafico della funzione esponenziale 2 / 34 y y x x f(x)=a x, a> f(x)=a x, a<

22 Funzione logaritmo 22 / 34 Guardando i grafici della funzione esponenziale non è difficile convincersi del fatto che, se a, le funzioni esponenziali f : R (0,+ ) x f(x)= a x sono bigettive e quindi invertibili. L inversa f :(0,+ ) R dell esponenziale a x si chiama funzione logaritmo in base a di x, indicato con log a x f : (0,+ ) R x f (x)= log a x

23 Esercizio 23 / 34 Tracciare qualitativamente l andamento grafico della funzione logaritmo f : (0,+ ) R x f(x)= log a x separando i due casi: 0<a< a>.

24 Soluzione Il grafico di f e quello di f sono l uno il simmetrico dell altro rispetto alla bisettrice y = x. Si trova quindi: y y a x y=x log a x x a x log a x y=x x a> 0<a< 24 / 34

25 Proprietà dei logaritmi 25 / 34 Ricordiamo che, dato che a x e log a x sono una l inversa dell altra, valgono le seguenti relazioni fondamentali: log a a x = x a log a x = x

26 Proprietà dei logaritmi 26 / 34 Utilizzando le proprietà delle potenze è possibile ottenere le principali proprietà dei logaritmi. Se a,b,x,y sono numeri reali positivi, con a,b, si ha (i) log a x y=log a x+log a y (ii) log a x α = α log a x, α R (iii) log b x= log a x log a b

27 27 / 34 Verifica (i) log a x+log a y = log a [a log a x+log a y ] = log a [a log a x a log a y ]=log a x y (ii) x α =(a log a x ) α = a α log a x log a x α = log a a α log a x = α log a x (iii) log a x=log a b log b x =(log b x)(log a b) log b x= log a x log a b

28 Un valore abbastanza usato per la base a del logaritmo è a=0. In questo caso, scriveremo 28 / 34 invece di log 0 x. Logx Però la base di gran lunga più usata per i logaritmi è il cosiddetto numero di Nepero e Si tratta di un numero reale irrazionale le cui prime cifre decimali sono riportate nella seguente approssimazione: e 2,7882 La funzione logaritmo con base e è tradizionalmente chiamata logaritmo naturale di x e si indica col simbolo lnx

29 Esercizio 29 / 34 Esercizio: Determinare gli x R che verificano log 4 4 2x 3= x. Soluzione: L equazione diventa: 2xlog 4 4 3= x.

30 Esercizio 30 / 34 Si ottiene 2x 3= x. () Ora, se x<0, la () non può essere verificata, in quanto a destra dell uguale avremmo una quantità positiva, mentre a sinistra ne avremmo una negativa. Quindi si deve avere x 0, per cui la () diventa 2x 3=x, che ovviamente ha come unica soluzione x=3.

31 Esercizio 3 / 34 Esercizio: Determinare gli x R che soddisfano Soluzione: La (2) diventa: 2 8+x + 2 x = 2 2x. (2) x + 2 x =(2 x ) 2.

32 Esercizio 32 / 34 Cioè 2 x[ x] = 0. Poiché 2 x > 0 x R, l unica possibilità è: 2 x = +2 8, da cui x=log 2 (+2 8 )=log 2 (257).

33 Esercizio 33 / 34 Esercizio: Ripetere l esercizio precedente sostituendo la (2) con: 2 8+x 2 x = 2 x. (3) Soluzione: Moltiplicando entrambi i lati dell equazione per la quantità positiva 2 x, vediamo che la (3) equivale a: x 2 2x =,

34 Esercizio 34 / 34 ovvero 2 2x = 2 8 = 255. Applicando il logaritmo in base 2 ad entrambi i membri si ottiene: 2x log 2 2=log Un ultimo passaggio fornisce il risultato seguente: x= 2 log = log = 2 log

Funzioni elementari: logaritmi 1 / 11

Funzioni elementari: logaritmi 1 / 11 Funzioni elementari: logaritmi 1 / 11 Logaritmi La funzione logaritmica é definita come g: (0,+ ) R x log a x con a > 0 e a 1. 2 / 11 Logaritmi La funzione logaritmica é definita come g: (0,+ ) R x log

Dettagli

1.3. Logaritmi ed esponenziali

1.3. Logaritmi ed esponenziali 1.3. Logaritmi ed esponenziali 1. Rappresentazione sugli assi cartesiani 2. Relazione 3. Definizione di funzione 4. La funzione esponenziale 5. Il logaritmo 6. La funzione logaritma 1-3 1 Rappresentazione

Dettagli

ESERCITAZIONE: ESPONENZIALI E LOGARITMI

ESERCITAZIONE: ESPONENZIALI E LOGARITMI ESERCITAZIONE: ESPONENZIALI E LOGARITMI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Esercizio 1 In una coltura batterica, il numero di batteri triplica ogni ora. Se all inizio dell osservazione

Dettagli

Potenze reali, esponenziali e logaritmi

Potenze reali, esponenziali e logaritmi Potenze reali, esponenziali e logaritmi Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Potenze reali, esponenziali e logaritmi 1 / 14 Potenza ad esponente intero positivo

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

Anno 3. Funzioni esponenziali e logaritmi: le 4 operazioni

Anno 3. Funzioni esponenziali e logaritmi: le 4 operazioni Anno 3 Funzioni esponenziali e logaritmi: le 4 operazioni 1 Introduzione In questa lezione impareremo a conoscere le funzioni esponenziali e i logaritmi; ne descriveremo le principali caratteristiche e

Dettagli

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Matematica Funzioni Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Le Funzioni e loro caratteristiche Introduzione L analisi di diversi fenomeni della natura o la risoluzione di problemi

Dettagli

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler)

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) La funzione esponenziale f con base a é definita da f(x) = a x dove a > 0, a 1, e x é un numero reale. Ad esempio, f(x) = 3 x e g(x) = 0.5

Dettagli

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler)

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) La funzione esponenziale f con base a é definita da f(x) = a x dove a > 0, a 1, e x é un numero reale. Ad esempio, f(x) = 3 x e g(x) = 0.5

Dettagli

MATEMATICA. a.a. 2014/15. 1a. Funzioni (II parte):

MATEMATICA. a.a. 2014/15. 1a. Funzioni (II parte): MATEMATICA a.a. 014/15 1a. Funzioni (II parte): Funzioni iniettive, suriettive, bigettive. Funzioni reali. Campo di esistenza. Funzioni pari e dispari Funzione iniettiva y=f() 1 3 X 4 y 6 Y y y 1 y 3 y

Dettagli

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler)

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) La funzione esponenziale f con base a é definita da f(x) = a x dove a > 0, a 1, e x é un numero reale. Ad esempio, f(x) = 3 x e g(x) = 0.5

Dettagli

Equazione esponenziale a x = b con 01; x R; b>0

Equazione esponenziale a x = b con 0<a<1 oppure a>1; x R; b>0 Equazione esponenziale a x = b con 00 Proprietà delle potenze: a n. b n = ( a. b ) n a n : b n = ( a : b ) n a n. a m = a n+m a n : a m = a n-m ( a n ) m = a n a n/m n a = a -n/m

Dettagli

Funzioni e grafici. prof. Andres Manzini

Funzioni e grafici. prof. Andres Manzini Università degli studi di Modena e Reggio Emilia Dipartimento di Scienze e Metodi dell Ingegneria Corso MOOC Iscriversi a Ingegneria Reggio Emilia Introduzione Definizione Si dice funzione (o applicazione)

Dettagli

LOGARITMI ED ESPONENZIALI

LOGARITMI ED ESPONENZIALI 1 LOGARITMI ED ESPONENZIALI 1. (Da Veterinaria 2013) Riscrivendo 9 3x+2 nel formato 3 y, quale sarà il valore di y? a) 3x b) 3x + 4 c) 6x + 2 d) 6x + 4 e) 9x + 6 2. (Da Odontoiatria 2009) Qual è la soluzione

Dettagli

Matematica di base. Lezioni in Aula D5 ogni Venerdi alle 14:30 BLOG: matematicadibase.wordpress.com

Matematica di base. Lezioni in Aula D5 ogni Venerdi alle 14:30 BLOG: matematicadibase.wordpress.com Matematica di base Lezioni in Aula D5 ogni Venerdi alle 14:30 BLOG: matematicadibase.wordpress.com Calendario 21 Ottobre Aritmetica ed algebra elementare 28 Ottobre Geometria elementare 4 Novembre Insiemi

Dettagli

LOGARITMI. log = = con >0, 1; >0 = >0, 1, >0. log =1 >0, 1. notebookitalia.altervista.org

LOGARITMI. log = = con >0, 1; >0 = >0, 1, >0. log =1 >0, 1. notebookitalia.altervista.org LOGARITMI Sia un numero reale positivo ed un numero reale, positivo, diverso da 1; si dice logaritmo di in base il valore da attribuire come esponente alla base per ottenere una potenza uguale all argomento.

Dettagli

IPSSART Aversa - Prof Nunzio ZARIGNO - Anno scolastico I LOGARITMI. Definizione di logaritmo

IPSSART Aversa - Prof Nunzio ZARIGNO - Anno scolastico I LOGARITMI. Definizione di logaritmo IPSSART Aversa Prof Nunzio ZARIGNO Anno scolastico 200910 I LOGARITMI Definizione di logaritmo Definizione Si dice LOGARITMO in base a, con, di un numero reale positivo b, e si scrive log a b, l'esponente

Dettagli

Funzioni Esponenziale e Logaritmica. Prof. Simone Sbaraglia

Funzioni Esponenziale e Logaritmica. Prof. Simone Sbaraglia Funzioni Esponenziale e Logaritmica Prof. Simone Sbaraglia Funzione Esponenziale Vogliamo definire propriamente le funzioni esponenziali e logaritmiche che abbiamo introdotto in precedenza. Qual e` il

Dettagli

Funzioni esponenziali e logaritmiche

Funzioni esponenziali e logaritmiche Funzioni esponenziali e logaritmiche Definizione: Si definisce funzione esponenziale di base a > 0 la funzione reale y = exp a (x) che fa corrispondere ad ogni x R il numero reale positivo a x. Proprietà

Dettagli

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

FUNZIONI E INSIEMI DI DEFINIZIONE

FUNZIONI E INSIEMI DI DEFINIZIONE FUNZIONI E INSIEMI DI DEFINIZIONE In matematica, una funzione f da X in Y consiste in: ) un insieme X detto insieme di definizione I.d.D. (o dominio) di f 2) un insieme Y detto codominio di f 3) una legge

Dettagli

Campo di Esistenza. Il campo di esistenza di una funzione f è il dominio più grande su cui ha significato la legge f.

Campo di Esistenza. Il campo di esistenza di una funzione f è il dominio più grande su cui ha significato la legge f. Campo di Esistenza Il campo di esistenza di una funzione f è il dominio più grande su cui ha significato la legge f. ESERCIZIO. Determinare il campo di esistenza della funzione f(x) = 9+2x. Soluzione:

Dettagli

1 Funzioni reali di una variabile reale

1 Funzioni reali di una variabile reale 1 Funzioni reali di una variabile reale Qualche definizione e qualche esempio che risulteranno utili più avanti Durante tutto questo corso studieremo funzioni reali di una variabile reale, cioè Si ha f

Dettagli

3. (Da Medicina 2006) Quale delle seguenti equazioni rappresenta una funzione y = f(x) tale che f(2) = -1 e f(-1) = 5?

3. (Da Medicina 2006) Quale delle seguenti equazioni rappresenta una funzione y = f(x) tale che f(2) = -1 e f(-1) = 5? QUESITI 1 FUNZIONI 1. (Da Medicina e Odontoiatria 201) Data la funzione f ( x ) = x 6, quale delle seguenti risposte rappresenta la sua funzione inversa? 1 x a) f ( x ) = + 6 1 x b) f ( x ) = 2 1 x c)

Dettagli

Funzioni esponenziali e logaritmiche Indice

Funzioni esponenziali e logaritmiche Indice Funzioni esponenziali e logaritmiche Indice Funzioni esponenziali...1 Funzioni logaritmiche...3 Funzioni esponenziali Definizione: Si definisce funzione esponenziale di base a > 0 la funzione reale y =

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al più un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

Matematica I, Funzione inversa. Funzioni elementari (II).

Matematica I, Funzione inversa. Funzioni elementari (II). Matematica I, 02.10.2012 Funzione inversa. Funzioni elementari (II). 1. Sia f : A B una funzione reale di variabile reale (A, B R); se f e biiettiva, allora la posizione f 1 (b) = unico elemento a A tale

Dettagli

Le Funzioni. Modulo Esponenziali Logaritmiche. Prof.ssa Maddalena Dominijanni

Le Funzioni. Modulo Esponenziali Logaritmiche. Prof.ssa Maddalena Dominijanni Le Funzioni Modulo Esponenziali Logaritmiche Definizione di modulo o valore assoluto Se x è un generico numero reale, il suo modulo o valore assoluto è: x = x se x 0 -x se x

Dettagli

Funzione esponenziale Equazioni esponenziali RIPASSO SULLE POTENZE

Funzione esponenziale Equazioni esponenziali RIPASSO SULLE POTENZE RIPASSO SULLE POTENZE Proprietà delle potenze La formula a n indica l operazione chiamata potenza, ( a è la base ed n l esponente) che consiste nel moltiplicare la base a per se stessa n volte. Per le

Dettagli

Funzioni Pari e Dispari

Funzioni Pari e Dispari Una funzione f : R R si dice Funzioni Pari e Dispari PARI: se f( ) = f() R In questo caso il grafico della funzione è simmetrico rispetto all asse DISPARI: se f( ) = f() R In questo caso il grafico della

Dettagli

Potenze: alcune semplici equazioni

Potenze: alcune semplici equazioni Potenze: alcune semplici equazioni Fissiamo ora un numero reale a ed un numero intero positivo n. Vogliamo risolvere l equazione x n = a definizione: Le eventuali soluzioni prendono il nome di radici n-esime

Dettagli

COMPENDIO ESPONENZIALI LOGARITMI

COMPENDIO ESPONENZIALI LOGARITMI TORINO SETTEMBRE 2010 COMPENDIO DI ESPONENZIALI E LOGARITMI di Bart VEGLIA 1 ESPONENZIALi 1 Equazioni esponenziali Un espressione in cui l incognita compare all esponente di una o più potenze si chiama

Dettagli

Coordinate cartesiane nel piano

Coordinate cartesiane nel piano Coordinate cartesiane nel piano O = (0, 0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

Prof. Emanuele ANDRISANI

Prof. Emanuele ANDRISANI Potenze con esponente razionale Sia a > 0 e a 1. Abbiamo definito a x quando x N. Poniamo a 0 = 1 a x = a m n = n a m se x = m n Q, x > 0, m, n N a x = 1 a x se x Q, x > 0. È così definita la potenza a

Dettagli

Concentriamo la nostra attenzione sull insieme dei numeri razionali Q. In Q sono definite

Concentriamo la nostra attenzione sull insieme dei numeri razionali Q. In Q sono definite Lezioni del 22 e 24 settembre. Numeri razionali. 1. Operazioni, ordinamento. Indichiamo con N, Z, Q gli insiemi dei numeri naturali, interi relativi, e razionali: N = {0, 1, 2,...} Z = {0, ±1, ±2,...}

Dettagli

Appunti di matematica per le Scienze Sociali Parte 1

Appunti di matematica per le Scienze Sociali Parte 1 Appunti di matematica per le Scienze Sociali Parte 1 1 Equazioni 1.1 Definizioni preliminari 1.1.1 Monomi Si definisce monomio ogni prodotto indicato di fattori qualsiasi, cioè uguali o diseguali, numerici

Dettagli

INTRODUZIONE ALL ANALISI MATEMATICA

INTRODUZIONE ALL ANALISI MATEMATICA INTRODUZIONE ALL ANALISI MATEMATICA Intervalli e intorni Funzioni in R e classificazione Proprietà delle funzioni: pari e dispari monotone periodiche Intervallo Un intervallo di estremi a e b è un insieme

Dettagli

FUNZIONI ELEMENTARI Funzione retta

FUNZIONI ELEMENTARI Funzione retta 1 FUNZIONI ELEMENTARI Funzione retta L equazione generale della funzione retta è y = a x + b dove a, b sono numeri reali fissati. Il termine b si chiama termine noto e dà l ordinata dell intersezione tra

Dettagli

1 Fattorizzazione di polinomi

1 Fattorizzazione di polinomi 1 Fattorizzazione di polinomi Polinomio: un polinomio di grado n nella variabile x, è dato da p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0 con a n 0, a 0 è detto termine noto, a k è detto coefficiente

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

Prerequisiti per seguire il corso

Prerequisiti per seguire il corso Prerequisiti per seguire il corso Insiemi numerici e aritmetica elementare. Equazioni e disequazioni di primo e secondo grado. Geometria elementare e geometria analitica: rette, parabole, iperbole equilatera.

Dettagli

Scale Logaritmiche. Matematica con Elementi di Statistica a.a. 2015/16

Scale Logaritmiche. Matematica con Elementi di Statistica a.a. 2015/16 Scale Logaritmiche Scala Logaritmica: sull asse prescelto (ad esempio, l asse x) si rappresenta il punto di ascissa = 0 0 nella direzione positiva si rappresentano, a distanze uguali fra di loro, i punti

Dettagli

ESERCIZIO SVOLTO N 1 ESERCIZIO SVOLTO N 2. Determinare e rappresentare graficamente il dominio della funzione

ESERCIZIO SVOLTO N 1 ESERCIZIO SVOLTO N 2. Determinare e rappresentare graficamente il dominio della funzione ESERCIZIO SVOLTO N 1 Determinare e rappresentare graficamente il dominio della funzione f(x, y) = y 2 x 2 Trovare gli eventuali punti stazionari e gli estremi di f Il dominio della funzione è dato da dom

Dettagli

PREREQUISITI PER SEGUIRE IL CORSO

PREREQUISITI PER SEGUIRE IL CORSO PREREQUISITI PER SEGUIRE IL CORSO Insiemi numerici e aritmetica elementare. Equazioni e disequazioni di primo e secondo grado. Geometria elementare e geometria analitica: rette, parabole, iperbole equilatera.

Dettagli

Ripasso delle matematiche elementari: esercizi proposti

Ripasso delle matematiche elementari: esercizi proposti Ripasso delle matematiche elementari: esercizi proposti I Equazioni e disequazioni algebriche Esercizi sui polimoni.............................. Esercizi sulle equazioni di grado superiore al secondo............

Dettagli

Equazioni esponenziali e logaritmi

Equazioni esponenziali e logaritmi Copyright c 2008 Pasquale Terrecuso Tutti i diritti sono riservati. Equazioni esponenziali e logaritmi 2 equazioni esponenziali..................................................... 3 casi particolari............................................................

Dettagli

Trasformazioni Logaritmiche

Trasformazioni Logaritmiche Trasformazioni Logaritmiche Una funzione y = f(x) può essere rappresentata in scala logaritmica ponendo Si noti che y = f(x) diventa ossia Quando mi conviene? X = log α x, Y = log α y. log α (x) = log

Dettagli

E1. Esponenziali e logaritmi

E1. Esponenziali e logaritmi E. Esponenziali e logaritmi E. Proprietà delle potenze Si elencano le proprietà delle potenze: Se si moltiplicano due potenze con la stessa base gli esponenti si sommano. a b a c =a b+c Se si dividono

Dettagli

Precorso di Matematica

Precorso di Matematica Precorso di Matematica Maria Margherita Obertino mariamargherita.obertino@unito.it Davide Ricauda davide.ricauda@unito.ii Obiettivi del precorso: rapido ripasso degli argomenti di base, già trattati nelle

Dettagli

Funzione Esponenziale

Funzione Esponenziale Funzione Esponenziale y y O f : R (0,+ ), f(x) = a x con a > a 0 =, a = a a x > 0 x R strettamente crescente: x < x 2 a x < ax 2 se x tende a +, a x tende a + se x tende a, a x tende a 0 x O f : R (0,+

Dettagli

ESPONENZIALI E LOGARITMI. chiameremo logaritmica (e si legge il logaritmo in base a di c è uguale a b ).

ESPONENZIALI E LOGARITMI. chiameremo logaritmica (e si legge il logaritmo in base a di c è uguale a b ). ESPONENZIALI E LOGARITMI Data una espressione del tipo a b = c, che chiameremo notazione esponenziale (e dove a>0), stabiliamo di scriverla anche in un modo diverso: log a c = b che chiameremo logaritmica

Dettagli

Alcuni esercizi sulle equazioni di erenziali

Alcuni esercizi sulle equazioni di erenziali Alcuni esercizi sulle equazioni di erenziali Calcolo dell integrale generale Per ciascuna delle seguenti equazioni di erenziali calcolare l insieme di tutte le possibili soluzioni. SUGGERIMENTO: Ricordatevi

Dettagli

Calcolo letterale. 1. Quale delle seguenti affermazioni è vera?

Calcolo letterale. 1. Quale delle seguenti affermazioni è vera? Calcolo letterale 1. Quale delle seguenti affermazioni è vera? (a) m.c.m.(49a b 3 c, 4a 3 bc ) = 98a 3 b 3 c (b) m.c.m.(49a b 3 c, 4a 3 bc ) = 98a 3 b 3 c (XX) (c) m.c.m.(49a b 3 c, 4a 3 bc ) = 49a bc

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

1. FUNZIONI IN UNA VARIABILE

1. FUNZIONI IN UNA VARIABILE 1. FUNZIONI IN UNA VARIABILE Definizione: Dati due insiemi A, B chiamiamo funzione da A in B ogni, f, applicazione (legge, corrispondenza) che associa ad ogni elemento di A uno ed uno solo elemento di

Dettagli

Introduzione. Test d ingresso

Introduzione. Test d ingresso Indice Introduzione Test d ingresso v vii 1 Insiemi e numeri 1 1.1 Insiemi... 1 1.2 Operazionicongliinsiemi... 3 1.3 Insieminumerici,operazioni... 7 1.4 Potenze... 11 1.5 Intervalli... 12 1.6 Valoreassolutoedistanza...

Dettagli

FUNZIONE LOGARITMO. =log,, >0, 1 : 0,+ log

FUNZIONE LOGARITMO. =log,, >0, 1 : 0,+ log FUNZIONE LOGARITMO =log,,>0, 1 : 0,+ log a è la base della funzione logaritmo ed è una costante positiva fissata e diversa da 1 x è l argomento della funzione logaritmo e varia nel dominio Funzione logaritmo

Dettagli

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 4) FUNZIONI ELEMENTARI.

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 4) FUNZIONI ELEMENTARI. Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 4) FUNZIONI ELEMENTARI Giovanni Villani FUNZIONI ELEMENTARI Funzione potenza con esponente n N Si definisce

Dettagli

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che. Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti

Dettagli

Unità Didattica N 2 Le funzioni

Unità Didattica N 2 Le funzioni Unità Didattica N Le funzioni 1 Unità Didattica N Le funzioni 05) Definizione di applicazione o funzione o mappa. 06) Classificazione delle funzioni numeriche 07) Estremi di una funzione, funzioni limitate.

Dettagli

Esponenziali elogaritmi

Esponenziali elogaritmi Esponenziali elogaritmi Potenze ad esponente reale Ricordiamo che per un qualsiasi numero razionale m n prendere n>0) si pone a m n = n a m (in cui si può sempre a patto che a sia un numero reale positivo.

Dettagli

LOGARITMI. Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA. L uguaglianza: a x = b

LOGARITMI. Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA. L uguaglianza: a x = b Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA LOGARITMI L uguaglianza: a x = b nella quale a e b rappresentano due numeri reali noti ed x un incognita, è un equazione

Dettagli

Funzioni elementari: funzioni potenza

Funzioni elementari: funzioni potenza Funzioni elementari: funzioni potenza Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Funzioni elementari: funzioni potenza 1 / 36 Funzioni lineari Come abbiamo già visto,

Dettagli

Anno 3. Equazioni esponenziali e logaritmiche

Anno 3. Equazioni esponenziali e logaritmiche Anno 3 Equazioni esponenziali e logaritmiche 1 Introduzione Lo scopo delle pagine che seguono è quello di passare in rassegna le strategie risolutive per le equazioni esponenziali e logaritmiche. Al termine

Dettagli

05 - Funzioni di una Variabile

05 - Funzioni di una Variabile Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 05 - Funzioni di una Variabile Anno Accademico 2015/2016

Dettagli

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 CAPITOLO 8. LE FUNZIONI. 1. Generalità sulle funzioni.. Le rappresentazioni di una funzione. 3. Le funzioni reali di variabile reale. 4. L espressione

Dettagli

Introduzione alla II edizione. Introduzione. Test d ingresso

Introduzione alla II edizione. Introduzione. Test d ingresso Indice Introduzione alla II edizione Introduzione Test d ingresso v vii ix 1 Insiemi e numeri 1 1.1 Insiemi... 1 1.2 Operazionicongliinsiemi... 3 1.3 Insieminumerici,operazioni... 7 1.4 Potenze... 11 1.5

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

Logaritmo C. Enrico F. Bonaldi 1 LOGARITMO

Logaritmo C. Enrico F. Bonaldi 1 LOGARITMO Logaritmo C. Enrico F. Bonaldi LOGARITMO Premessa Consideriamo che si sappia risolvere il problema: dati due numeri reali a > 0 e n qualunque (intero, razionale, reale e > = < 0), trovare il numero reale

Dettagli

Corso di Analisi Matematica I numeri reali

Corso di Analisi Matematica I numeri reali Corso di Analisi Matematica I numeri reali Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 57 1 Insiemi e logica 2 Campi ordinati 3 Estremo

Dettagli

Anno 3 Luoghi geometrici e funzioni elementari

Anno 3 Luoghi geometrici e funzioni elementari Anno 3 Luoghi geometrici e funzioni elementari 1 Introduzione In questa lezione tratteremo i luoghi geometrici e le funzioni elementari, che sono alla base del metodo analitico. Lo studio della geometria

Dettagli

2 Logaritmi Definizione di logaritmo Proprietà dei logaritmi Soluzioni degli esercizi 10

2 Logaritmi Definizione di logaritmo Proprietà dei logaritmi Soluzioni degli esercizi 10 POTENZE E RADICALI Potenze, Radicali e Logaritmi Indice Potenze e Radicali. Potenze con esponente naturale......................................... Potenze con esponente intero..........................................

Dettagli

SIMMETRIE NEL PIANO CARTESIANO

SIMMETRIE NEL PIANO CARTESIANO Simmetrie nel piano cartesiano - Marzo 011 SIMMETRIE NEL PIANO CARTESIANO SIMMETRIE RISPETTO AGLI ASSI CARTESIANI ASSE X: P ( x,y ) a P1 ( x, y ) ; punto medio: M1 ( x,0) ASSE Y: P ( x,y ) a P ( x, y ),

Dettagli

1 La funzione logaritmica

1 La funzione logaritmica Liceo Scientico Paritario Ven. A. Luzzago di Brescia - A.S. 2011/2012 Equazioni e disequazioni logaritmiche - Simone Alghisi 1 La funzione logaritmica Si è dimostrato che l'equazione esponenziale in forma

Dettagli

Numeri reali. Funzioni reali di variabile reale

Numeri reali. Funzioni reali di variabile reale Numeri reali. Funzioni reali di variabile reale Composizione di funzioni. Per semplicita, da ora in poi fino ad avviso contrario, useremo la seguente nozione di composizione di funzioni (che assume una

Dettagli

Le funzioni reali di una variabile reale

Le funzioni reali di una variabile reale Le funzioni reali di una variabile reale Prof. Giovanni Ianne DEFINIZIONE DI FUNZIONE REALE DI UNA VARIABILE REALE Dati due insiemi non vuoti A, B R, una funzione f da A in B è una relazione fra A e B

Dettagli

Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di

Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di DEFINIZIONE Espressione algebrica costituita dal prodotto tra una parte numerica (coefficiente) e una o più variabili e/o costanti (parte letterale). Variabili e costanti possono comparire elevate a potenza

Dettagli

Precorso CLEF-CLEI, esercizi di preparazione al test finale con soluzioni

Precorso CLEF-CLEI, esercizi di preparazione al test finale con soluzioni Precorso CLEF-CLEI, esercizi di preparazione al test finale con soluzioni ARITMETICA 1. Scomporre in fattori primi 2500 e 5600. Soluzione: Osserviamo che entrambi i numeri sono multipli di 100 = 2 2 5

Dettagli

0.1 Numeri complessi C

0.1 Numeri complessi C 0.1. NUMERI COMPLESSI C 1 0.1 Numeri complessi C Abbiamo visto sopra come l introduzione dei numeri irrazionali può essere motivata dalla necessità di trovare soluzione all equazione x = 0 che non ha soluzioni

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

Le proprietà che seguono valgono x, y > 0, a > 0 a 1, e b qualsiasi. Da queste si possono anche dedurre le seguenti uguaglianze log a 1 = 0

Le proprietà che seguono valgono x, y > 0, a > 0 a 1, e b qualsiasi. Da queste si possono anche dedurre le seguenti uguaglianze log a 1 = 0 Corso di Potenziamento a.a. 009/00 I Logaritmi Fissiamo un numero a > 0, a. Dato un numero positivo t, l equazione a x = t ammette un unica soluzione x che si chiama logaritmo in base a di t e si scrive

Dettagli

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si PROBLEMA Determinare il punto simmetrico di P( ;) rispetto alla retta x y =0 Soluzione Il simmetrico di P rispetto ad una retta r è il punto P che appartiene alla retta passante per P, perpendicolare ad

Dettagli

Esercizi svolti. g(x) = sono una l inversa dell altra. Utilizzare la rappresentazione grafica di f e f 1 per risolvere l equazione f(x) = g(x).

Esercizi svolti. g(x) = sono una l inversa dell altra. Utilizzare la rappresentazione grafica di f e f 1 per risolvere l equazione f(x) = g(x). Esercizi svolti. Discutendo graficamente la disequazione > 3 +, verificare che l insieme delle soluzioni è un intervallo e trovarne gli estremi.. Descrivere in forma elementare l insieme { R : + > }. 3.

Dettagli

Nome Cognome. Classe 3D 25 Febbraio Verifica di matematica

Nome Cognome. Classe 3D 25 Febbraio Verifica di matematica Nome Cognome. Classe D Febbraio Verifica di matematica ) Data l equazione: k 6 a) Scrivi per quali valori di k rappresenta un ellisse, precisando per quali valori è una circonferenza b) Scrivi per quali

Dettagli

Grafici di funzioni: valore assoluto, parabole 1 / 21

Grafici di funzioni: valore assoluto, parabole 1 / 21 Grafici di funzioni: valore assoluto, parabole 1 / 21 Grafico di una funzione 2 / 21 Per prima cosa stabiliamo un collegamento diretto tra la geometria analitica e lo studio di funzioni. Definizione: Siano

Dettagli

Radicali. Consideriamo la funzione che associa ad un numero reale il suo quadrato:

Radicali. Consideriamo la funzione che associa ad un numero reale il suo quadrato: Radicali Radice quadrata Consideriamo la funzione che associa ad un numero reale il suo quadrato: il cui grafico è il seguente: Il grafico della funzione si trova al di sopra dell asse delle x ed è simmetrico

Dettagli

Svolgimento degli esercizi del Capitolo 1

Svolgimento degli esercizi del Capitolo 1 Analisi Matematica a edizione Svolgimento degli esercizi del Capitolo a) Si ha perciò si distinguono due casi: I) se x < 7,siha x 7 se x 7 x 7 7 x se x < 7, x 7 7 x x x 5 x 5, e poiché 5 > 7 la disequazione

Dettagli

I RADICALI QUADRATICI

I RADICALI QUADRATICI I RADICALI QUADRATICI 1. Radici quadrate Definizione di radice quadrata: Si dice radice quadrata di un numero reale positivo o nullo a, e si indica con a, il numero reale positivo o nullo (se esiste) che,

Dettagli

Se la base è 10, il risultato della potenza è una potenza di 10 con tanti zeri quante sono le unità dell esponente:

Se la base è 10, il risultato della potenza è una potenza di 10 con tanti zeri quante sono le unità dell esponente: Definizione di potenza Si definisce potenza ennesima di A, con n intero maggiore di 1, il prodotto di A per se stesso eseguito n volte A n =(AxAxAx A) n volte 2 5 = 2 2 2 2 2=32 Se la base è 10, il risultato

Dettagli

EQUAZIONI DISEQUAZIONI

EQUAZIONI DISEQUAZIONI EQUAZIONI DISEQUAZIONI Indice 1 Background 1 1.1 Proprietà delle potenze................................ 1 1.2 Prodotti notevoli................................... 1 2 Equazioni e disequazioni razionali

Dettagli

Sviluppi e derivate delle funzioni elementari

Sviluppi e derivate delle funzioni elementari Sviluppi e derivate delle funzioni elementari In queste pagine dimostriamo gli sviluppi del prim ordine e le formule di derivazioni delle principali funzioni elementari. Utilizzeremo le uguaglianze lim

Dettagli

Funzioni. Capitolo Concetti preliminari. Definizione. Dati due insiemi A e B, si chiama funzione f da A a B, e la si indica col simbolo

Funzioni. Capitolo Concetti preliminari. Definizione. Dati due insiemi A e B, si chiama funzione f da A a B, e la si indica col simbolo Capitolo Funzioni. Concetti preliminari Definizione. Dati due insiemi A e B, si chiama funzione f da A a B, e la si indica col simbolo f : A B, una corrispondenza che associa ad ogni elemento A un unico

Dettagli

12/10/05 (2 ore): Esercizi vari sull ellisse, iperbole, parabola. Disequazioni in due variabili. Equazione dell iperbole equilatera. Esempi.

12/10/05 (2 ore): Esercizi vari sull ellisse, iperbole, parabola. Disequazioni in due variabili. Equazione dell iperbole equilatera. Esempi. Università degli Studi di Trento Facolta di Scienze Cognitive Corso di Laurea in Scienze e Tecniche di Psicologia Cognitiva Applicata Corso di Analisi Matematica - a.a. 2005/06 Docente: Prof. Anneliese

Dettagli

Breve formulario di matematica

Breve formulario di matematica Luciano Battaia a 2 = a ; lim sin = 1, se 0; sin(α + β) = sin α cos β + cos α sin β; f() = e 2 f () = 2e 2 ; sin d = cos + k; 1,2 = b± ; a m a n = 2a a n+m ; log a 2 = ; = a 2 + b + c; 2 + 2 = r 2 ; e

Dettagli

9. Lezione 9/10/2017. = a 3 a a

9. Lezione 9/10/2017. = a 3 a a 9. Lezione 9/10/017 9.1. Funzioni esponenziali. Scelta una base positiva a possiamo considerare le potenze a n per ogni n N. Valgono le proprietà: a 0 = 1 1 n 1 a = 1 a 1/ = a a a 4/3 = a 3 a a 0.5 = 1

Dettagli

Scale Logaritmiche SCALA LOGARITMICA:

Scale Logaritmiche SCALA LOGARITMICA: Scale Logaritmiche SCALA LOGARITMICA: sull asse prescelto (ad es. asse x) si rappresenta il punto di ascissa 1 = 10 0 nella direzione positiva si rappresentano, a distanze uguali fra di loro, i punti di

Dettagli

EQUAZIONI ESPONENZIALI

EQUAZIONI ESPONENZIALI Equazioni esponenziali elementari EQUAZIONI ESPONENZIALI Le equazioni esponenziali del tipo (o riconducibili ad esso) a =b, dove a>0 è la base e b>0 un qualunque numero positivo, sono dette elementari.

Dettagli