Il problema del solido di rivoluzione, avente resistenza minima all'avanzamento, nei "Principia" di Newton. Vittorio Banfi 1

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Il problema del solido di rivoluzione, avente resistenza minima all'avanzamento, nei "Principia" di Newton. Vittorio Banfi 1"

Transcript

1 Il problema el solio i rivoluzione, avente resistenza minima Vittorio Banfi - Introuzione Nello Scolio ella Proposizione XXXIV (Libro II ei "Philosophiae Naturalis Principia mathematica", I. Newton presenta il problema el solio rotono che sperimenta la minima resistenza all'avanzamento uano si muove, attraverso un mezzo non molto enso, con velocità costante iretta secono l'asse el corpo. La precisazione: mezzo non molto enso, si riferisce all'assunzione, a parte i Newton, i resistenza proporzionale al uarato ella velocità el corpo stesso rispetto al mezzo. La formulazione el problema può enunciarsi sinteticamente così: "Cercasi la curva passante per ue punti ati e che, ruotano attorno a un asse passante per le ascisse i etti punti, genera un solio il uale muovenosi immerso in un mezzo nella irezione el suo asse, incontri una resistenza minima". Ancorché formulazioni generali su problemi i stazionarietà i certe granezze nello stuio elle proprietà el mono fisico fossero state espresse, seppur vagamente, a Galileo e a A. Borelli nel XVII secolo, sicuramente il problema i Newton appartiene al rango i uelli attinenti al calcolo elle variazioni, in senso proprio e contemporaneo el termine. Per comprenere i risultati analitici e le conclusioni i Newton occorre premettere alcune consierazioni i natura storica. I contemporanei i Newton ebbero aluante perplessità a fronte elle affermazioni e elle consierazioni a carattere geometrico, alcune el tutto incomprensibili, contenute nei "Principia". A una prima lettera, con richiesta i spiegazioni, a parte i D. Gregory, fu risposto al Nostro con un ocumento esplicativo, allo stesso Gregory incluso in un libro al titolo "Newtoni methous fluctionum". Ulteriori ettagli chiarificatori contenuti in una secona lettera i Newton a Gregory, furono "salvati" a J.C. Aams in un'appenice al suo "Catalogo ella collezione i Portsmouth i libri e articoli scritti a o appartenenti a Sir I. Newton" (Cambrige, 888. Con i ettagli ei calcoli così resi isponibili, una ricostruzione el suo metoo è stata possibile a parte i O. Bolza (bibl., A.R. Forsyth e E.T. Whitesie (bibl.. Nel prosieguo i uesto scritto saranno consierati uesti stui nella traccia el commento generale i S. Chanrasekhar (bibl.. - La soluzione oierna meiante le euazioni i Eulero-Lagrange Prima i presentare il metoo i Newton è utile consierare la soluzione offerta oggigiorno al calcolo elle variazioni. E rappresentata in Figura la curva yy(x, che con la rotazione attorno al proprio asse genera il solio i rivoluzione che si esiera abbia la minima resistenza. In base a uanto etto al paragrafo, etta resistenza è fornita alla formula Cv, con C opportuna costante, uano è sperimentata all'elemento superficiale, perpenicolare al vettore v r. Sia nn la tangente in N inclinata rispetto all'asse, coinciente con l'asse x, i un angolo ϑ. La resistenza offerta al mezzo è fornita all'integrale seguente: R Cv s s π y sinϑ sin ϑ ( ove s è l'arco misurato lungo la curva (a partire a un'origine prefissata s 0, y è l'orinata ella curva nel punto generico N, esseno poi C e v noti. La curva yf(x cercata sia espressa in forma parametrica (parametro t ossia Centro i Astroinamica G. Colombo

2 x x y y ( t ( t ( Figura La curva yy(x che, con la rotazione attorno al proprio asse (coinciente con l asse x, genera il solio i minima resistenza entrante nel mezzo con velocità v. y x &, y& t t Inichiamo con, le erivate prime, rispetto al parametro t ato, elle ue variabili x e y. Inoltre t s & y, ( pertanto y& sinϑ cosϑ y y& ( ( ( Sostitueno le preceenti formule nella ( otteniamo

3 s yy R πcv s Cv x y x y π ( t t yy x y t. (4 Nella (4 t è il valore el parametro t in corrisponenza el punto P, t uello in corrisponenza el punto P. La (4 si scrive anche t yy t R πcv t t πcv t Ft x y (5 esseno F F ( x, & y, & y. (6 Le euazioni i Eulero-Lagrange, nel nostro caso, porgono t t F F y& F x F y F F y& t t (7 Poiché F è inipenente a x [in conseguenza ella (6], alla prima elle (7 euciamo F 0 ossia F costante K. Derivano poi rispetto a l'espressione F otteniamo F ( K e uini

4 ( K costante. (8 A uesto punto, utilizzano le (, poniamo cosϑ ϑ sin ϑ y& cot (9 Dalla (8 euciamo K 4 y& y y ( ; (0 la preceente consente i esprimere la variabile y in funzione i. Infatti si ha K ( K y ( e uini y K ( y Ma l'espressione è legata a uella i in moo semplice: y y y cot ϑ. y Allora alla ( ricaviamo K che, integrata, porge 4

5 x K ln C 4 4 0, ( con C 0 costante 'integrazione. E sufficiente porre le conizioni al contorno per calcolare le costanti K e C 0. Nel punto P (Figura abbiamo tt e (ati e ugualmente nel punto P abbiamo tt e. Pertanto K e C 0 risultano eterminate. Il solio i rotazione poi, oltre la superficie consierata (cioè uella causata alla rotazione el tratto P P, è completato a una porzione terminale tronco-conica, meiante consierazioni contenute nelle pagine e 56- ella bibl.. - La soluzione ottenuta a Newton Innanzitutto viene stabilito al Nostro che la soluzione richiee le conizioni i stazionarietà ella uantità t t t t t Ft, (4 in base alla (4 el paragrafo preceente. Newton intene stazionarietà, perché uest'ultima proprietà implica necessariamente la minimizzazione, per ovvie consierazioni i natura fisica. Nel suo calcolo elle flussioni la uantità a estra el segno uguale nella (4 è il limite ella sommatoria N Fn n t n, ei prootti F n (cioè lungo la curva tra t e t per i piccoli intervalli t n aiacenti (uguali o no tra loro, non importa, uano N tene all'infinito e insieme i t n tenono a zero. Consierano l'infinitesimo, così ottenuto sotto il segno i integrale, avremo t y ( y ( t ( t yy t ( ( y y. (5 Con riferimento alla Figura, consieriamo un trapezoie elementare costruito intorno a un punto generico D, el tratto compreso tra P e P. Il punto D avrà coorinate correnti x e y; siano uini ADEe, δyαdaa, yab, δxαeh, mentre ovviamente il tratto elementare i curva interessato,, è ato a BD. Segueno il ragionamento i Newton l'area el trapezoie BDHEB, e uini l'espressione (5, eve risultare stazionaria, al variare el tratto (cioè BD, se uest'ultimo è un tratto infinitesimo ella curva cercata. Successivamente, "sommano" tutte ueste aree infinitesime (in numero infinito, si ottiene l'integrale (4, che risulterà effettivamente stazionario. 5

6 Supponiamo ora i effettuare uno spostamento el tratto i curva (teneno B e fissi in moo a ottenere un tratto "variato" ', pari a BC nella Figura, ove ε è una uantità anch'essa infinitesima. A uesto punto, per imostrare che il tratto BD è effettivamente un tratto elementare ella curva cercata, è sufficiente scrivere che la uantità ottenuta sommano uella relativa ai ue trapezoii DeEB e HeD è uguale alla uantità ottenuta sommano uella relativa ai ue trapezoii Ce'EB e He'C. In termini analitici y y y y δy δx y ( y y ( ε y y δy ( δx ε y e uini yy y y δ y. ( δx ε y ( δx y ( ε ( y y Quest'ultima si può scrivere, per efinizione i erivata parziale, nel seguente moo: yy ε ( y δy y ε. (6 ( y ( δx( δx y Questa uguaglianza eve essere ottenuta per ualsiasi valore arbitrario i δx e δy. Quini anche per δxδy0. Pertanto alla (6 yy costante, (7 y ( cioè anche, ivieno per t numeratore e enominatore ella preceente, y y t t y t costante, (8 ossia 6

7 ( costante, che è ientica alla (8. Figura Trapezoie elementare intorno al punto generico D ella curva (nel tratto compreso tra P e P. 4 - Una conclusione contenuta nei "Principia" Nel citato Scolio (vei introuzione ei "Principia", I. Newton (bibl.4 propone un'affermazione, accompagnata a una costruzione geometrica, che risulta comprensibile solo alla luce ella preceente ricostruzione analitica (basata a sua volta principalmente sulle lettere inirizzate a Newton a D. Gregory. Ecco il passo in oggetto: "Se la figura DNFG è una curva i tipo tale che se a un suo punto ualsiasi N viene abbassata verso l'asse AB la perpenicolare NM, e al punto ato G viene conotta la retta GR che sia parallela alla retta tangente alla figura in N, e che tagli in R l'asse prolungato, MN starà a GR come (GR a 4BR(GB, il solio che viene escritto meiante la rivoluzione i uesta figura intorno all'asse AB, muovenosi nel preetto mezzo raro a A verso B, subisce una resistenza minore i uella i ualunue altro solio circolare escritto con la meesima lunghezza e larghezza". 7

8 Figura Diagramma originale contenuto nei Principia. Ripreniamo la (9 el paragrafo, ossia cosϑ ϑ sin ϑ y& cot (9 e inoltre la ( riscritta così y K ( ( y, (9 esseno il punto N inicato in Figura, intermeio tra P e P sulla curva. Il punto G, che efiniremo in seguito, ha per orinata y BG, mentre N ha per orinata mm on ymn, cot ϑ, in cui cos ϑ e sin ϑ. Ripreneno la (9 e nn nn consierano il membro a sinistra calcolato nel punto generico N e assumeno il punto G tale per cui (ossia ϑ 45, avremo y cosϑ sin ϑ y 4 e uini MN cos sin BG 4 ϑ ϑ. (0 8

9 Ora, per costruzione, valgono le formule BR cos ϑ GR e BG sin ϑ GR che, sostituite nella (0, porgono ( BG ( GR 4 BR MN GR e finalmente MN GR 4BR ( GR ( BG BG. ( La ( è il risultato enunciato nello Scolio, che sarebbe incomprensibile se non fosse erivato alla preceente trattazione. 5 - Osservazioni finali Il ragionamento escritto al paragrafo ha consentito a Newton i giungere alle euazioni risolventi e uini all'affermazione contenuta nello Scolio. Tutto ciò è escritto nel lavoro i J.C. Aams citato nell'introuzione. Nel testo i E.T. Bell (bibl.5 si trova, alla pagina 6, il seguente passo: "Se i suoi premurosi amici lo avessero lasciato in pace, Newton avrebbe facilmente trovato il calcolo elle variazioni, uesto strumento i scoperta matematica e fisica superato solo al calcolo ifferenziale e integrale, invece i lasciarne il compito ai Bernoulli, a Eulero e a Lagrange. Nei suoi "Principia" ne aveva avuto un barlume uano aveva eterminato la forma ella superficie i rivoluzione capace i attraversare un fluio con la minima resistenza; c'erano in lui le ualità necessarie per isegnare le grani linee i tutto il metoo." Bibliografia. O. Bolza, Bibliotheca Mathematica Ser.,, (9.. E.T. Whitesie, "The mathematical papers of Isaac Newton", vol. IV, Cambrige Univ. Press (974.. S. Chanrasekhar, "Newton's PRINCIPIA for the common reaer", Clarenon Press, Oxfor ( I. Newton, "Principi matematici ella filosofia naturale", a cura i A. Pala, Utet (97, pp E.T. Bell, "I grani matematici", Sansoni, Firenze (977. 9

Meccanica Applicata Alle Macchine. Elementi di Meccanica Teorica ed Applicata

Meccanica Applicata Alle Macchine. Elementi di Meccanica Teorica ed Applicata Meccanica Applicata Alle Macchine (Ingegneria Energetica) Elementi i Meccanica Teorica e Applicata (Scienze per l Ingegneria) Università egli Stui i oma La Sapienza Una traccia egli argomenti el Corso

Dettagli

Nozioni elementari di calcolo differenziale e integrale

Nozioni elementari di calcolo differenziale e integrale Nozioni elementari i calcolo ifferenziale e integrale DIPARTIMENTO DI FISICA E INFN UNIVERSITÀ DEL SALENTO a.a. 013/014 L. Renna - Dipartimento i Fisica 1 Sommario 1 Funzioni... 3 Derivate... 4 3 Integrali...

Dettagli

Note su alcuni concetti di base dell elettromagnetismo

Note su alcuni concetti di base dell elettromagnetismo A Maffucci F Villone: Note su alcuni concetti i base ell elettromagnetismo ver - 09/003 DEFINIZIONE DI CARICA E DI CORRENTE ELETTRICA Università egli tui i Cassino Note su alcuni concetti i base ell elettromagnetismo

Dettagli

ε = ε = x TFA A048. Matematica applicata Incontro del 16 aprile 2014, ore 17-19

ε = ε = x TFA A048. Matematica applicata Incontro del 16 aprile 2014, ore 17-19 TFA A048. Matematica applicata Incontro el 16 aprile 014, ore 17-19 Appunti i iattica ella matematica applicata all economia e alla finanza. Funzioni (i una variabile) utilizzate nello stuio ell Economia

Dettagli

ESERCIZIO n.10. H 6cm d 2cm. d d d

ESERCIZIO n.10. H 6cm d 2cm. d d d Esercizi svolti i geometria elle aree Alibrani U., Fuschi P., Pisano A., Sofi A. ESERCZO n.1 Data la sezione riportata in Figura, eterminare: a) gli assi principali centrali i inerzia; b) l ellisse principale

Dettagli

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica Università egli Stui i Palermo Facoltà i Economia Dipartimento i Scienze Economice, Azienali e Statistice Appunti el corso i Matematica 08 - Derivate Anno Accaemico 2015/2016 M. Tumminello, V. Lacagnina,

Dettagli

OSCILLAZIONI TORSIONALI

OSCILLAZIONI TORSIONALI OSCILLAZIONI TORSIONALI Introuzione Come è noto, per un corpo i imensione estesa vincolato a ruotare attorno a un asse (volano), vale la seguente relazione tra l'accelerazione angolare e il momento ella

Dettagli

5 DERIVATA. 5.1 Continuità

5 DERIVATA. 5.1 Continuità 5 DERIVATA 5. Continuità Definizione 5. Sia < a < b < +, f : (a, b) R e c (a, b). Diciamo che f è continua in c se sono verificate le ue conizioni: (i) c esiste (ii) = f(c) c Si osservi che nella efinizione

Dettagli

SIA DATO UN SOLENOIDE RETTILINEO DI LUNGHEZZA d, RAGGIO R e COSTITUITO DA N SPIRE.

SIA DATO UN SOLENOIDE RETTILINEO DI LUNGHEZZA d, RAGGIO R e COSTITUITO DA N SPIRE. POBLEMA 11 SIA DATO UN SOLENOIDE ETTILINEO DI LUNGHEZZA, AGGIO e COSTITUITO DA N SPIE. A) DETEMINAE IL CAMPO MAGNETICO PODOTTO LUNGO L ASSE DEL SOLENOIDE. Un solenoie rettilineo è costituito a un filo

Dettagli

Curve in R n. Curve parametrizzate.

Curve in R n. Curve parametrizzate. Curve in R n Generalmente ci sono ue moi per escrivere una curva in R n, ovvero è possibile scrivere un equazione parametrica o un equazione cartesiana. Esempio: una retta in R 2 può essere escritta in

Dettagli

Lavoro ed energia cinetica

Lavoro ed energia cinetica INGEGNERIA GESTIONALE corso i Fisica Generale Prof. E. Puu LEZIONE DEL 7 8 OTTOBRE 2008 Lavoro e energia cinetica 1 Il lavoro Il lavoro W fatto su un oggetto a un agente che esercita su i esso una forza

Dettagli

Si considera un corpo solido a forma di parallelepipedo, di spessore d [m] e facce maggiori con superficie S [m 2 ], tale che sia T 1

Si considera un corpo solido a forma di parallelepipedo, di spessore d [m] e facce maggiori con superficie S [m 2 ], tale che sia T 1 I sistemi termici La resistenza termica Se ue corpi aventi temperature iverse vengono messi a contatto, si ha un passaggio i quantità i calore al corpo a temperatura maggiore verso quello a temperatura

Dettagli

Le coordinate del generico punto nei riferimenti fisso e mobile sono legate dalle relazioni: d dt. d dt

Le coordinate del generico punto nei riferimenti fisso e mobile sono legate dalle relazioni: d dt. d dt Questo programma calcola le espressioni elle circonferenze ei flessi, i stazionarietà, ei jerk normali nulli e ei jerk tangenziali nulli, basanosi sulle note formule i trasformazione tra sistemi i riferimento

Dettagli

Prova scritta di Elettricità e Magnetismo ed Elettromagnetismo A.A. 2006/ Settembre 2007 (Proff. F. Lacava, C. Mariani, F. Ricci, D.

Prova scritta di Elettricità e Magnetismo ed Elettromagnetismo A.A. 2006/ Settembre 2007 (Proff. F. Lacava, C. Mariani, F. Ricci, D. Prova scritta i Elettricità e Magnetismo e Elettromagnetismo A.A. 2006/2007 6 Settembre 2007 (Proff. F. Lacava, C. Mariani, F. Ricci, D. Trevese) Moalità - Prova scritta i Elettricità e Magnetismo: Esercizi

Dettagli

Equazioni della fisica matematica

Equazioni della fisica matematica Equazioni ella fisica matematica Equazione i conservazione ella massa in fluioinamica Questo principio ella fisica si può scrivere come ρ = ρv n, t ove è una generica porzione i spazio occupata al fluio,

Dettagli

è definito in tutto il dielettrico e dipende dalla sola carica libera

è definito in tutto il dielettrico e dipende dalla sola carica libera Dielettrici I. Un conensatore a facce piane e parallele, i superficie S e istanza fra le armature, h, viene parzialmente riempito con un ielettrico lineare omogeneo i costante ielettrica.e spessore s Il

Dettagli

Dispense di Fisica Matematica. Prof. Maura Ughi

Dispense di Fisica Matematica. Prof. Maura Ughi Dispense i Fisica Matematica Prof. Maura Ughi 13 febbraio 2005 Capitolo 1 Equazioni ella Dinamica 1.1 Introuzione, Principio i D Alembert Una grossa scorciatoia mentale valia in Meccanica Classica è il

Dettagli

QUADRILATERO DI AREA MASSIMA ASSEGNATI I LATI

QUADRILATERO DI AREA MASSIMA ASSEGNATI I LATI 1 QUADRILATERO DI AREA MASSIMA ASSEGNATI I LATI Margherita Moretti (3D P.N.I.) Viviana Scoca (3D P.N.I.) Simone Moretti (3H P.N.I.) Abstract Si affronta il problema ella eterminazione el quarilatero i

Dettagli

ELETTROMAGNETISMO PARTE II - POTENZIALE ELETTRICO

ELETTROMAGNETISMO PARTE II - POTENZIALE ELETTRICO ELETTROMAGNETISMO PARTE II - POTENZIALE ELETTRICO ESERCIZI SVOLTI DAL PROF. GIANLUIGI TRIVIA 1. Calcolo el potenziale ato il campo elettrico Exercise 1. La ifferenza i potenziale elettrico tra il terreno

Dettagli

La forza è detta forza di Lorentz. Nel Sistema Internazionale l unità di misura

La forza è detta forza di Lorentz. Nel Sistema Internazionale l unità di misura 13. Magnetismo 13.1 La forza i Lorentz. Il magnetismo è un fenomeno noto a molti secoli, ma fino all inizio ell ottocento la teoria trattava i calamite, aghi magnetici e elle loro interazioni con il magnetismo

Dettagli

10.4 Azionamento per motori sincroni IPM

10.4 Azionamento per motori sincroni IPM 10.4 Azionamento per motori sincroni PM motori sincroni a magneti sepolti hanno recentemente guaagnato crescente popolarità per una larga serie i applicazioni inustriali. Questo tipo i motore ha una costruzione

Dettagli

CLASSE 5^ A LICEO SCIENTIFICO 27 Aprile 2017 Integrali

CLASSE 5^ A LICEO SCIENTIFICO 27 Aprile 2017 Integrali CSSE 5^ ICEO SCIENTIFICO 7 prile 7 Integrali Problema Data la funzione, con, : etermina i coefficienti,, in moo che il punto ; sia un massimo relativo e la retta 36 sia asintoto obliquo; B esegui lo stuio

Dettagli

Una volgare introduzione alle EDO

Una volgare introduzione alle EDO Una volgare introuzione alle EDO Tiziano Penati 1 Primitive Abbiamo già incontrato un esempio semplice i equazioni ifferenziali orinarie (EDO): il calcolo i primitive. Vale la pena infatti i ricorare che

Dettagli

1 EQUAZIONI DI MAXWELL

1 EQUAZIONI DI MAXWELL 1 EQUAZIONI DI MAXWELL Il campo elettromagnetico è un campo i forze. Può essere utile utilizzare una efinizione oparativa i campo: iciamo che in unazona ello spazio è presente un campo seèutile associare

Dettagli

Equazioni Differenziali alle Derivate Parziali del primo ordine semilineari

Equazioni Differenziali alle Derivate Parziali del primo ordine semilineari Equazioni Differenziali alle Derivate Parziali el primo orine semilineari Analisi Matematica III C. Lattanzio B. Rubino 1 Teoria Per equazione ifferenziale alle erivate parziali el primo orine semilineare

Dettagli

PRIMA PROVA INTERMEDIA DEL CORSO DI C A L C O L A T O R I E L E T T R O N I C I NUOVO ORDINAMENTO DIDATTICO 15 Aprile 2009

PRIMA PROVA INTERMEDIA DEL CORSO DI C A L C O L A T O R I E L E T T R O N I C I NUOVO ORDINAMENTO DIDATTICO 15 Aprile 2009 PRIMA PROVA INTERMEDIA DEL CORSO DI C A L C O L A T O R I E L E T T R O N I C I NUOVO ORDINAMENTO DIDATTICO 15 Aprile 2009 NOME: COGNOME: MATRICOLA: ESERCIZIO 1 (11 punti) Progettare una rete sequenziale

Dettagli

Nicola De Rosa, Liceo scientifico scuole italiane all estero Europa sessione ordinaria 2012, matematicamente.it

Nicola De Rosa, Liceo scientifico scuole italiane all estero Europa sessione ordinaria 2012, matematicamente.it Nicola De Rosa, Liceo scientifico scuole italiane all estero Europa sessione orinaria, matematicamente.it PROBLEMA La funzione f è efinita e erivabile sull intervallo chiuso 7, e è f. Il grafico i y f

Dettagli

SOLUZIONI DELLA PRIMA PROVA INTERMEDIA DEL CORSO DI. NUOVO ORDINAMENTO DIDATTICO 19 Aprile 2007

SOLUZIONI DELLA PRIMA PROVA INTERMEDIA DEL CORSO DI. NUOVO ORDINAMENTO DIDATTICO 19 Aprile 2007 SOLUZIONI DELLA PRIMA PROVA INTERMEDIA DEL CORSO DI NUOVO ORDINAMENTO DIDATTICO 9 Aprile 27 MOTIVARE IN MANIERA CHIARA LE SOLUZIONI PROPOSTE A CIASCUNO DEGLI ESERCIZI SVOLTI ESERCIZIO (0 punti) Progettare

Dettagli

1 Progettare e verificare la trave di colmo con sezione presunta di mm2, che viene appoggiata sui pilastri prolungati

1 Progettare e verificare la trave di colmo con sezione presunta di mm2, che viene appoggiata sui pilastri prolungati 4 Il legno 4. Elementi strutturali e strutture in legno ESERCIZI SVOLTI 4.. Coperture Progettare e verificare la trave i colmo con sezione presunta i 0 0 mm, che viene appoggiata sui pilastri prolungati

Dettagli

( ρ, θ + π ) sono le coordinate dello stesso punto. Pertanto un punto P può essere descritto come

( ρ, θ + π ) sono le coordinate dello stesso punto. Pertanto un punto P può essere descritto come Coordinate polari Il sistema delle coordinate cartesiane è uno dei possibili sistemi per individuare la posizione di un punto del piano, relativamente ad un punto fisso O, mediante una coppia ordinata

Dettagli

Le Derivate. Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri

Le Derivate. Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri Le Derivate Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato durante

Dettagli

Appello del 25 novembre 2003

Appello del 25 novembre 2003 ema esame el 5/11/00 COSUZIONE DI MCCINE NO Prof. Sergio Baragetti (llievi el Corso i Laurea in Ingegneria Meccanica) ppello el 5 novembre 00 Un motore elettrico asincrono trifase aziona una macchina operatrice

Dettagli

SOLUZIONI DELLA PRIMA PROVA INTERMEDIA DEL CORSO DI. NUOVO ORDINAMENTO DIDATTICO 11 Aprile 2006

SOLUZIONI DELLA PRIMA PROVA INTERMEDIA DEL CORSO DI. NUOVO ORDINAMENTO DIDATTICO 11 Aprile 2006 SOLUZIONI DELLA PRIMA PROVA INTERMEDIA DEL CORSO DI NUOVO ORDINAMENTO DIDATTICO Aprile 26 MOTIVARE IN MANIERA CHIARA LE SOLUZIONI PROPOSTE A CIASCUNO DEGLI ESERCIZI SVOLTI ESERCIZIO (8 punti) Progettare

Dettagli

INDICE CAPITOLO 6 CAPITOLO 6

INDICE CAPITOLO 6 CAPITOLO 6 NDCE CTOLO 6 6. Teoremi sulle reti 6.. Teorema el Massimo trasferimento i otenza ttiva... Caso impeenza interna el eneratore reale e carico reale... Caso impeenza interna el eneratore reattiva e carico

Dettagli

= R. 4πε 0. R contiene valori costanti che descrivono caratteristiche fisiche(il dielettrico ε

= R. 4πε 0. R contiene valori costanti che descrivono caratteristiche fisiche(il dielettrico ε I conensatori. onsieriamo il potenziale per un conensatore sferico: Possiamo scrivere Il fattore Q π R Q π R π R contiene valori costanti che escrivono caratteristiche fisiche(il ielettrico ) e geometriche

Dettagli

Matematica Prima prova parziale

Matematica Prima prova parziale Matematica Prima prova parziale Università di Verona - Laurea in Biotecnologie A.I. - A.A. 007/08 lunedì 9 novembre 007 Tema A () Disegnare i seguenti sottoinsiemi di R; dire se sono sup./inf. itati; calcolarne

Dettagli

1 ANTENNE IN TRASMISSIONE SU PIANO DI MASSA

1 ANTENNE IN TRASMISSIONE SU PIANO DI MASSA 1 ANTENNE IN TRASMISSIONE SU PIANO DI MASSA Per una serie i applicazioni legate allo stuio elle antenne interessa valutare come si moifica il comportamento i una antenna in presenza el suolo. Per frequenze

Dettagli

ESPERIENZE DI DIFFRAZIONE CON IL LASER

ESPERIENZE DI DIFFRAZIONE CON IL LASER ESPERIENZE DI DIFFRAZIONE CON IL LASER PERCORSO DIDATTICO CORSO DI PERFEZIONAMENTO PERCORSI DIDATTICI DI FISICA E MATEMATICA II DIPARTIMENTO DI FISICA UNIVERSITÀ DEGLI STUDI DI SIENA Σιλϖια Χασινι A.A.

Dettagli

LA FORZA DI COULOMB. = 0.01 C si trova nel punto con ascissa (A) m (B) m (C) m (D) m (E) m

LA FORZA DI COULOMB. = 0.01 C si trova nel punto con ascissa (A) m (B) m (C) m (D) m (E) m L FORZ DI OULOM.. Date le ue cariche fisse ella figura ove = 0. e = 0.5 la posizione i euilibrio lungo l'asse i una terza carica mobile 3 = 0.0 si trova nel punto con ascissa ().7 m () 0.387 m () 0.500

Dettagli

L'equazione di continuità

L'equazione di continuità L'equazione i continuità Una prima imostrazione. Consieriamo il volume occupato a una istribuzione i cariche ρ (t, x). È possibile esprimere la proprietà i conservazione ella carica nel seguente moo t

Dettagli

ESERCIZI SVOLTI DI FLUIDODINAMICA Parte 3: Equazione di Bernoulli Versione 1.0

ESERCIZI SVOLTI DI FLUIDODINAMICA Parte 3: Equazione di Bernoulli Versione 1.0 Moulo i Elementi i Fluioinamica Corso i Laurea in Ingegneria ei Materiali/Meccanica AA 00/005 Ing Paola CINNELLA ESERCIZI SVOLTI I FLUIOINAMICA Parte 3: Equazione i Bernoulli Versione 10 Esercizio 1 Si

Dettagli

IL TRASPORTO DEGLI INQUINANTI

IL TRASPORTO DEGLI INQUINANTI La iffusione molecolare La ispersione avviene principalmente in irezione longituinale rispetto al flusso meio, e le variazioni i velocità non spiegano l aumento l i ampiezza in irezione normale al moto

Dettagli

Esercizi S A 2.0 S B. =0.2; Metodo B: S B ii)

Esercizi S A 2.0 S B. =0.2; Metodo B: S B ii) Si usano ue metoi ifferenti per misurare il carico i rottura i un filo i acciaio e si fanno 0 misure per ognuno ei metoi. I risultati, espressi in tonnellate, sono i seguenti: Metoo :..5.7..6.5.6.4.6.9

Dettagli

PRIMA PROVA INTERMEDIA DEL MODULO DI. CORSO DI LAUREA IN INGEGNERIA ELETTRICA ED ELETTRONICA, INGEGNERIA BIOMEDICA 23 Aprile 2014

PRIMA PROVA INTERMEDIA DEL MODULO DI. CORSO DI LAUREA IN INGEGNERIA ELETTRICA ED ELETTRONICA, INGEGNERIA BIOMEDICA 23 Aprile 2014 PRIMA PROVA INTERMEDIA DEL MODULO DI CORSO DI LAUREA IN INGEGNERIA ELETTRICA ED ELETTRONICA, INGEGNERIA BIOMEDICA 23 Aprile 24 NOME: COGNOME: MATRICOLA: CFU: ESERCIZIO (7 punti) (a) (5 punti) Si progetti

Dettagli

Le derivate parziali

Le derivate parziali Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire

Dettagli

DERIVATE DIREZIONALI ITERATE

DERIVATE DIREZIONALI ITERATE Analisi Matematica II, Anno Accaemico 206-207. Ingegneria Eile e Architettura Vincenzo M. Tortorelli FOGLIO DI TEORIA n. 0 SVILUPPI DI TAYLOR DERIVATE DIREZIONALI ITERATE Se v R è non nullo è efinito l

Dettagli

metodi numerici metodi grafo-numerici metodi grafici metodi meccanici

metodi numerici metodi grafo-numerici metodi grafici metodi meccanici La superficie agraria i un terreno è quella efinita alla proiezione ella superficie fisica el terreno sul piano orizzontale i riferimento. La misura ella superficie i un appezzamento è sempre iniretta.

Dettagli

LA PARABOLA. Parabola con asse di simmetria coincidente con l asse y e passante per l origine. Equazione canonica Vertice V ( 0,0) Fuoco

LA PARABOLA. Parabola con asse di simmetria coincidente con l asse y e passante per l origine. Equazione canonica Vertice V ( 0,0) Fuoco LA PARABOLA La parabola è il luogo geometrico dei punti del piano equidistanti da un punto fisso F detto fuoco e da una retta fissa detta direttrice. Parabola con asse di simmetria coincidente con l asse

Dettagli

S.Barbarino - Esercizi svolti di Campi Elettromagnetici. Esercizi svolti di Campi elettromagnetici - Anno 2012

S.Barbarino - Esercizi svolti di Campi Elettromagnetici. Esercizi svolti di Campi elettromagnetici - Anno 2012 S.Barbarino - Esercizi svolti i Campi Elettromagnetici Esercizi svolti i Campi elettromagnetici - Anno 2012 12-1) Esercizio n. 1 el 4/7/2012 Un ona elettromagnetica piana, viaggiante in aria e i frequenza

Dettagli

Esercizi su Derivate parziali, differenziabilità e piani tangenti

Esercizi su Derivate parziali, differenziabilità e piani tangenti Esercizi su Derivate parziali, ifferenziabilità e piani tangenti 1. Per le funzioni che seguono, eterminare il graiente ella funzione ata nel punto inicato e l equazione el piano tangente al grafico ella

Dettagli

Analisi Matematica II (Prof. Paolo Marcellini)

Analisi Matematica II (Prof. Paolo Marcellini) Analisi Matematica II Prof. Paolo Marcellini) Università degli Studi di Firenze Corso di laurea in Matematica Esercitazione del 5//14 Michela Eleuteri 1 eleuteri@math.unifi.it web.math.unifi.it/users/eleuteri

Dettagli

Unità Didattica N 9 : La parabola

Unità Didattica N 9 : La parabola 0 Matematica Liceo \ Unità Didattica N 9 La parabola Unità Didattica N 9 : La parabola ) La parabola ad asse verticale ) La parabola ad asse orizzontale 5) Intersezione di una parabola con una retta 6)

Dettagli

DINAMICA. F i + Φ i = R est. + R int. + R est.+ 0 R int., m i a i = m i

DINAMICA. F i + Φ i = R est. + R int. + R est.+ 0 R int., m i a i = m i DINAMICA Principi ella inamica e equazioni carinali Principio 1 (ella inamica o Principio Inerzia) Esiste un osservatore, chiamato inerziale o Galileiano, rispetto al quale un punto materiale isolato (

Dettagli

LA DERIVATA DI UNA FUNZIONE. Prof Giovanni Ianne

LA DERIVATA DI UNA FUNZIONE. Prof Giovanni Ianne LA ERIVATA I UNA FUNZIONE Pro. Giovanni Ianne /22 Come si determina la retta tangente a una curva in un punto P? Per una circonerenza, la tangente è la retta che interseca la curva solo in P. IL PROBLEMA

Dettagli

Università degli studi di Brescia Facoltà di Ingegneria Corso di Topografia A Nuovo Ordinamento. La livellazione trigonometrica

Università degli studi di Brescia Facoltà di Ingegneria Corso di Topografia A Nuovo Ordinamento. La livellazione trigonometrica Università egli stui i rescia Facoltà i Ingegneria Corso i Topografia Nuovo Orinamento La livellazione trigonometrica 1 Misura ei islivelli: livellazione trigonometrica Dislivello tra i punti e : Differenza

Dettagli

Univ i e v r e si s t i à à deg e li i Stud u i i di i Fi F r i en e ze S i t m i a m de d ll l lene n rg r i g a i d i d

Univ i e v r e si s t i à à deg e li i Stud u i i di i Fi F r i en e ze S i t m i a m de d ll l lene n rg r i g a i d i d Università egli Stui i Firenze Dipartimento i Meccanica e Tecnologie Inustriali Stima ell energia i eformazione: Metoo el Triangolo applicato all urto auto-moto Aprile 0 Metoo i ampbell (rash 3) Normalizzano

Dettagli

Quella della formula (1) è una definizione operativa di L, ovvero fornisce un modo del tutto generale per calcolare L dal rapporto F IHB I L

Quella della formula (1) è una definizione operativa di L, ovvero fornisce un modo del tutto generale per calcolare L dal rapporto F IHB I L AUTOINDUTTANZA 1. INTRODUZIONE L auto inuttanza L è la granezza fisica che lega la corrente I che scorre in un ato circuito con il flusso el campo i inuzione magnetica B(I), quest ultimo generato proprio

Dettagli

ESERCITAZIONE 3: Produzione e costi

ESERCITAZIONE 3: Produzione e costi MICROECONOMIA CEA A.A. 00-00 ESERCITAZIONE : Produzione e costi Esercizio (non svolto in aula ma utile): Rendimenti di scala Determinare i rendimenti di scala delle seguenti funzioni di produzione: a)

Dettagli

ESERCITAZIONE 4: Monopolio e concorrenza perfetta

ESERCITAZIONE 4: Monopolio e concorrenza perfetta MIROEONOMIA LEA A.A. 003-00 ESERITAZIONE : Monopolio e concorrenza perfetta Esercizio : Monopolio (da una prova del 7//0) Un monopolista massimizza il suo profitto producendo la uantità Q*=. La curva di

Dettagli

rapporto tra l'incremento della funzione e l' incremento corrispondente della

rapporto tra l'incremento della funzione e l' incremento corrispondente della DERIVATA Sia y f() una funzione reale definita in un intorno di. Si consideri un incremento (positivo o negativo) di : h; la funzione passerà allora dal valore f( ) a quello di f( +h), subendo così un

Dettagli

CORSO DI FISICA TECNICA 2 AA 2013/14 ILLUMINOTECNICA. Lezione n 2: Grandezze fotometriche fondamentali 2. Ing. Oreste Boccia

CORSO DI FISICA TECNICA 2 AA 2013/14 ILLUMINOTECNICA. Lezione n 2: Grandezze fotometriche fondamentali 2. Ing. Oreste Boccia CORO D FCA TECNCA AA 13/14 LLUMNOTECNCA Lezione n : Granezze fotometriche fonamentali ng. Oreste Boccia 1 LLUMNAMENTO Effetto prootto al flusso luminoso sulla superficie illuminata Granezza puntuale: varia

Dettagli

Nome: Cognome: Matricola:

Nome: Cognome: Matricola: Esercizio 1: Una particella ++ si trova in uiete a una istanza = 100 µm a un piano metallico verticale mantenuto a potenziale nullo. i. Calcolare le componenti el campo E in un generico punto P el semispazio

Dettagli

Problema ( ) = 0,!

Problema ( ) = 0,! Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente

Dettagli

Esercizi sulle superfici - aprile 2009

Esercizi sulle superfici - aprile 2009 Esercizi sulle superfici - aprile 009 Ingegneria meccanica 008/009 Esercizio 1. Scrivere l equazione della superficie ottenuta ruotando la retta s : x = y, y =z attorno alla retta r : x = y, x =3z. Soluzione:

Dettagli

Derivata di una funzione

Derivata di una funzione Derivata di una funzione Prof. E. Modica http://www.galois.it erasmo@galois.it Il problema delle tangenti Quando si effettua lo studio delle coniche viene risolta una serie di esercizi che richiedono la

Dettagli

6. Applicazione di curve di probabilità pluviometrica in ambito di verifica.

6. Applicazione di curve di probabilità pluviometrica in ambito di verifica. 6. Applicazione i curve i probabilità pluviometrica in ambito i verifica. Viene qui riportato un esempio i applicazione i curve i probabilità pluviometrica per la eterminazione el perioo i ritorno i un

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

Soluzione. a) Per la bilinearità e la simmetria del prodotto scalare, b) Si sfruttano la bilinearità e la simmetria del prodotto scalare.

Soluzione. a) Per la bilinearità e la simmetria del prodotto scalare, b) Si sfruttano la bilinearità e la simmetria del prodotto scalare. Esercizi svolti 4 Problemi guida 117 IL PRODOTTO SCALARE Problema 41 a) Dimostra che (v + w) (v w) = v 2 w 2 b) Dimostra che v w = 1 4 [ v + w 2 v w 2 ] Soluzione a) Per la bilinearità e la simmetria del

Dettagli

Studio del comportamento. Esercitazione 02

Studio del comportamento. Esercitazione 02 DINAMICA DELLE MACCHINE E DEGLI IMPIANTI ELETTRICI: Stuio el comportamento inamico i i un elettromagnete t Esercitazione Moellizzazione i un sistema i inuttori Sistema i inuttori: i è un multiporta Legame

Dettagli

Corso di Analisi Matematica. Polinomi e serie di Taylor

Corso di Analisi Matematica. Polinomi e serie di Taylor a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica Polinomi e serie di Taylor Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli

Dettagli

[ RITORNA ALLE DOMANDE] 2) Definisci la parabola come luogo geometrico. 1) Che cos è una conica?

[ RITORNA ALLE DOMANDE] 2) Definisci la parabola come luogo geometrico. 1) Che cos è una conica? Matematica 1) Che cos è una conica? 2) Definisci la parabola come luogo geometrico. 3) Qual è l equazione di una parabola con asse di simmetria parallelo all asse delle y? 4) Qual è l equazione di una

Dettagli

CALCOLO IMMEDIATO DEI GIUNTI DI BASE DI PILASTRI DI LEGNO

CALCOLO IMMEDIATO DEI GIUNTI DI BASE DI PILASTRI DI LEGNO Giuseppe Stagnitto Erica Barzoni CALCOLO IMMEDIATO DEI GIUNTI DI BASE DI PILASTRI DI LEGNO Utilizzo i iagramma aimensionale universale 1. Ipotesi el calcolo. Calcolo analitico iretto. Esempi i calcolo

Dettagli

Massimizzazione del profitto Appunti - Bozza

Massimizzazione del profitto Appunti - Bozza Massimizzazione del profitto Appunti - Bozza Indice 1 Premessa 1 2 Massimizzazione del profitto 1 2.1 Introduzione............................ 1 2.2 Il costo............................... 2 2.3 Il ricavo..............................

Dettagli

Campi conservativi ed energia potenziale

Campi conservativi ed energia potenziale Campi conservativi ed energia potenziale Definizione di campo conservativo Come abbiamo visto, la formula L= AB fornisce il lavoro compiuto dalla forza del campo nello spostamento di un corpo materiale

Dettagli

Studio di una funzione razionale fratta (autore Carlo Elce)

Studio di una funzione razionale fratta (autore Carlo Elce) Stuio i funzioni Carlo Elce 1 Stuio i una funzione razionale fratta (autore Carlo Elce) Per rappresentare graficamente una funzione reale i una variabile reale bisogna seguire i seguenti passi: Passo 1)

Dettagli

Coppia differenziale con BJT e carico passivo

Coppia differenziale con BJT e carico passivo oppia ifferenziale con BJ e carico passivo tensione ifferenziale e i moo comune: v v v B1 B v M v + v B1 B risposta al segnale i moo comune G. Martines 1 oppia ifferenziale con BJ e carico passivo Saturazione

Dettagli

PROVA SCRITTA DEL MODULO DI. NUOVO E VECCHIO ORDINAMENTO DIDATTICO (5-7 CFU) 19 febbraio 2015 NOME: COGNOME: MATRICOLA:

PROVA SCRITTA DEL MODULO DI. NUOVO E VECCHIO ORDINAMENTO DIDATTICO (5-7 CFU) 19 febbraio 2015 NOME: COGNOME: MATRICOLA: PROVA SCRITTA DEL MODULO DI NUOVO E VECCHIO ORDINAMENTO DIDATTICO (5-7 CFU) 9 febbraio 205 NOME: COGNOME: MATRICOLA: ESERCIZIO (5-6 CFU: 0 punti; 7 CFU: 8 punti) Progettare una rete sequenziale che presenti

Dettagli

Istituzioni di Matematiche Modulo B (SG)

Istituzioni di Matematiche Modulo B (SG) Istituzioni di Matematiche Modulo B (SG) II foglio di esercizi ESERCIZIO 1. Per ciascuna funzione f(, ) calcolare le derivate parziali f (, ) e f (, ) e determinare il relativo dominio di definizione.

Dettagli

Nome..Cognome. classe 5D 9 Febbraio VERIFICA di FISICA

Nome..Cognome. classe 5D 9 Febbraio VERIFICA di FISICA ome..cognome. classe 5D 9 Febbraio 9 VIFIC i FIIC Domana n. (punti: ) Dai la efinizione i capacità i un conensatore e ricava l espressione ella capacità i un conensatore piano i area e istanza tra le armature

Dettagli

Breve formulario di matematica

Breve formulario di matematica Luciano Battaia a 2 = a ; lim sin = 1, se 0; sin(α + β) = sin α cos β + cos α sin β; f() = e 2 f () = 2e 2 ; sin d = cos + k; 1,2 = b± ; a m a n = 2a a n+m ; log a 2 = ; = a 2 + b + c; 2 + 2 = r 2 ; e

Dettagli

Spazi vettoriali euclidei.

Spazi vettoriali euclidei. Spazi vettoriali euclidei Prodotto scalare, lunghezza e ortogonalità in R n Consideriamo lo spazio vettoriale R n = { =,,, n R}, n con la somma fra vettori e il prodotto di un vettore per uno scalare definiti

Dettagli

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 76-93

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 76-93 Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 76-93 5. Funzioni continue Soluzione dell Esercizio 76. Osserviamo che possiamo scrivere p() = n (a n + u()) e q() = m (b m + v()) con lim

Dettagli

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA Sia dato un sistema con vincoli lisci, bilaterali e FISSI. Ricaviamo, dall equazione simbolica della dinamica, il teorema

Dettagli

MOTIVARE IN MANIERA CHIARA LE SOLUZIONI PROPOSTE A CIASCUNO DEGLI ESERCIZI SVOLTI

MOTIVARE IN MANIERA CHIARA LE SOLUZIONI PROPOSTE A CIASCUNO DEGLI ESERCIZI SVOLTI SOLUZIONI DELLA PROVA SCRITTA DEL CORSO DI NUOVO ORDINAMENTO DIDATTICO 4 Ottobre 2 MOTIVARE IN MANIERA CHIARA LE SOLUZIONI PROPOSTE A CIASCUNO DEGLI ESERCIZI SVOLTI ESERCIZIO (9 punti) Progettare una rete

Dettagli

Geometria analitica del piano pag 32 Adolfo Scimone

Geometria analitica del piano pag 32 Adolfo Scimone Geometria analitica del piano pag 32 Adolfo Scimone CAMBIAMENTI DI SISTEMA DI RIFERIMENTO Consideriamo il piano cartesiano R 2 con un sistema di riferimento (O,U). Se introduciamo in R 2 un secondo sistema

Dettagli

0/0 1/0 1/0 0/0 0/1 1/0 1/0

0/0 1/0 1/0 0/0 0/1 1/0 1/0 SOLUZIONI DELLA PROVA SCRITTA DEL CORSO DI C A L C O L A T O R I E L E T T R O N I C I NUOVO E VECCHIO ORDINAMENTO DIDATTICO Gennaio 2008 MOTIVARE IN MANIERA CHIARA LE SOLUZIONI PROPOSTE A CIASCUNO DEGLI

Dettagli

CINEMATICA DEL PUNTO MATERIALE: MOTO DEL PROIETTILE, MOTO CURVILINEO E MOTI RELATIVI PROF. FRANCESCO DE PALMA

CINEMATICA DEL PUNTO MATERIALE: MOTO DEL PROIETTILE, MOTO CURVILINEO E MOTI RELATIVI PROF. FRANCESCO DE PALMA CINEMATICA DEL PUNTO MATERIALE: MOTO DEL PROIETTILE, MOTO CURVILINEO E MOTI RELATIVI PROF. FRANCESCO DE PALMA Sommario INTRODUZIONE... 3 MOTO DEL PROIETTILE... 3 MOTO CIRCOLARE UNIFORME... 5 MODULO DELL

Dettagli

(x B x A, y B y A ) = (4, 2) ha modulo

(x B x A, y B y A ) = (4, 2) ha modulo GEOMETRIA PIANA 1. Esercizi Esercizio 1. Dati i punti A(0, 4), e B(4, ) trovarne la distanza e trovare poi i punti C allineati con A e con B che verificano: (1) AC = CB (punto medio del segmento AB); ()

Dettagli

1.1 Coordinate sulla retta e nel piano; rette nel piano

1.1 Coordinate sulla retta e nel piano; rette nel piano 1 Sistemi lineari 11 Coordinate sulla retta e nel piano; rette nel piano Coordinate sulla retta Scelti su una retta un primo punto O (origine) ed un diverso secondo punto U (unita ), l identificazione

Dettagli

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D. Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A. 2006-07 - 1 Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.Trevese) Modalità: - Prova scritta di Elettricità e Magnetismo:

Dettagli

Fisica II. 14 Esercitazioni

Fisica II. 14 Esercitazioni Esercizi svolti Esercizio 141 La lunghezza 'ona in aria ella luce gialla el soio è λ 0 = 589nm eterminare: a) la sua frequenza f; b) la sua lunghezza 'ona λ in un vetro il cui inice i rifrazione è n =

Dettagli

Geometria analitica I supplementi sulle rette. (M.S. Bernabei & H. Thaler)

Geometria analitica I supplementi sulle rette. (M.S. Bernabei & H. Thaler) Geometria analitica I supplementi sulle rette (M.S. Bernabei & H. Thaler) Siano dati un vettore v = li + mj = (l, m) non nullo e un punto P 0 = x 0, y 0. Cerchiamo la retta r che passa per il punto P 0

Dettagli

Lezione 5 I mercati finanziari: il ruolo delle banche

Lezione 5 I mercati finanziari: il ruolo delle banche Lezione 5 I mercati finanziari: il ruolo elle banche Macroeconomia C. Petraglia Unibas 2012/13 1 Intermeiari finanziari Intermeiari finanziari : istituzioni che ricevono foni e li usano per accorare prestiti

Dettagli

Sorgenti del campo magnetico. Forze tra correnti

Sorgenti del campo magnetico. Forze tra correnti Campo magnetico pag 31 A. Scimone Sogenti el campo magnetico. Foze ta coenti Un campo magnetico può essee pootto a una coente elettica. Espeienze i questo tipo fuono effettuate nella pima ventina i anni

Dettagli

Prodotto scalare. Piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Prodotto scalare. Piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it Prodotto scalare in R n. Piani nello spazio. 19 Dicembre 2016 Indice 1 Prodotto scalare nello spazio 2

Dettagli

Geometria analitica del piano II (M.S. Bernabei & H. Thaler)

Geometria analitica del piano II (M.S. Bernabei & H. Thaler) Geometria analitica del piano II (M.S. Bernabei & H. Thaler) Equazione della retta in forma esplicita Sia data una retta r ax + by + c = 0 con b 0. Svolgendo questa equazione per y otteniamo e ponendo

Dettagli

Test di autovalutazione

Test di autovalutazione Test i autovalutazione Marco Mougno Corso i laurea in Ingegneria per l Ambiente, le Risorse e il Territorio Facoltà i Ingegneria, Università i Firenze Via S. Marta 3, 5139 Firenze, Italia email: marco.mougno@unifi.it

Dettagli

2. APPUNTI SUI FASCI DI CIRCONFERENZE (raccolti dal prof. G. Traversi)

2. APPUNTI SUI FASCI DI CIRCONFERENZE (raccolti dal prof. G. Traversi) 2. APPUNTI SUI FASCI DI CIRCONFERENZE (raccolti dal prof. G. Traversi) La circonferenza è la curva di 2^ grado che viene individuata univocamente da tre punti non allineati e possiede la seguente proprietà:

Dettagli

CINEMATICA DEL CORPO RIGIDO

CINEMATICA DEL CORPO RIGIDO CINEMATICA DEL CORPO RIGIDO 5 Premettiamo una Definizione: si chiama atto i moto i un sistema materiale in un ato istante t, l insieme elle velocità i tutti i punti el sistema all istante t. E errato parlare

Dettagli

CLASSIFICAZIONE DELLE SUPERFICI TOPOLOGICHE

CLASSIFICAZIONE DELLE SUPERFICI TOPOLOGICHE CLASSIFICAZIONE DELLE SUPERFICI TOPOLOGICHE E. Sernesi 1 Poligoni etichettati Denoteremo con il simbolo P 2n, o semplicemente con P, un poligono compatto e convesso i R 2, a 2n lati, n 2. Consiereremo

Dettagli