Linguaggi del I ordine - semantica. Per dare significato ad una formula del I ordine bisogna specificare

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Linguaggi del I ordine - semantica. Per dare significato ad una formula del I ordine bisogna specificare"

Transcript

1 Linguaggi del I ordine - semantica Per dare significato ad una formula del I ordine bisogna specificare Un dominio Un interpretazione Un assegnamento 1

2 Linguaggi del I ordine - semantica (ctnd.1) Un modello per un linguaggio del I ordine L è una coppia M = (D,I) dove D è un insieme non vuoto chiamato dominio I è una mappa chiamata interpretazione, che associa Ad ogni simbolo funzionale 0-ario c F, un elemento c I D Ad ogni simbolo funzionale n-ario f F, una funzione n-aria f I : D n D Ad ogni simbolo relazionale n-ario P R, una relazione n-aria P I D n Un assegnamento in un modello M = (D,I) è una mappa A dall insieme delle variabili all insieme D 2

3 Linguaggi del I ordine - semantica (ctnd.2) Valutazione dei termini: Sia M = (D,I) ed A. Ad ogni termine t associamo un valore t I,A come segue Per un simbolo funzionale 0-ario c, c I,A = c I Per una variabile x, x I,A = x A Per un simbolo funzionale n-ario f, [f(t 1,...,t n )] I,A = f I (t I,A 1,...,t I,A n ) 3

4 Linguaggi del I ordine - semantica (ctnd.3) Valutazione delle formule: Sia M = (D,I) ed A. Ad ogni formula ϕ associamo un valore di verità ϕ I,A come segue Caso atomico, [P(t 1,...,t n )] I,A = t sse t I,A 1,...,t I,A n P I [ ϕ] I,A = ϕ I,A, [ϕ ψ] I,A = ϕ I,A ψ I,A [( x)ϕ] I,A = t sse ϕ I,B, per ogni x-variante di A, B [( x)ϕ] I,A = t sse ϕ I,B, per qualche x-variante di A, B 4

5 Soddisfacibilità di una formula del I ordine Una formula ϕ è soddisfacibile in M = (D,I) se esiste qualche assegnamento A tale che ϕ I,A = t Una formula ϕ è vera in M = (D,I) se per tutti gli assegnamenti A, ϕ I,A = t Una formula ϕ è soddisfacibile se esiste un qualche modello in cui è soddisfacibile Una formula ϕ è valida se è vera in tutti i modelli del suo linguaggio 5

6 Sostituzioni e assegnamenti Proprietà 1. Sia L = (F,R) un linguaggio del primo ordine, Φ una formula e t un termine chiuso in L, x una variabile in Var. Sia inoltre M = (D,I) un modello per L ed A : Var D un assegnamento per M tale che x A = t I. Allora Φ I,A = [Φ{x/t}] I,A = [Φ{x/t}] I,B per ogni B x-variante di A. Proprietà 2. Sia L = (F,R) un linguaggio del primo ordine, Φ una formula in L e σ una sostituzione che è libera per Φ. Inoltre sia M = (D,I) un modello per L ed A un assegnamento per M. Definiamo un assegnamento nuovo B ponendo, per ogni variabile v, v B = (vσ) I,A. Allora Φ I,B = (Φσ) I,A. 6

7 Domini e modelli di Herbrand Domini di Herbrand: costituiti dai termini chiusi del linguaggio. D = ClTerm(L) Modelli di Herbrand: D = ClTerm(L) per tutti i termini t ClTerm(L), t I = t Proprietà 1: Sia M = (D,I) un modello di Herbrand per il linguaggio L. a.per un termine t di L, non necessariamente chiuso, t I,A = (ta) I b.per una formula Φ di L, Φ I,A = (ΦA) I 7

8 Domini e modelli di Herbrand Proprietà 2: Sia Φ una formula di un linguaggio L, M = (D,I) un modello di Herbrand per L 1.( x)φ è vera in M d D Φ{x/d} è vera in M, 2.Un enunciato ( x)φ è vero in M d D Φ{x/d} è vera in M. 8

9 Notazione uniforme per le formule quantificate Chiamiamo le formule quantificate esistenzialmente δ-formule le formule quantificate universalmente γ-formule δ δ 0 ( x)ϕ(x) ϕ(x) ( x)ϕ(x) ϕ(x) γ γ 0 ( x)ϕ(x) ϕ(x) ( x)ϕ(x) ϕ(x) 9

10 Alcune proprietà delle formule quantificate Lemma Sia S un insieme di enunciati, siano γ e δ due enunciati. Allora valgono i seguenti fatti: Se S {γ} è soddisfacibile, allora S {γ,γ 0 (t)} è soddisfacibile, per ogni t ClTerm(L), Se S {δ} è soddisfacibile, allora S {δ,δ 0 (p)} è soddisfacibile, per qualche p costante nuova. 10

11 Principio di induzione strutturale La proprietà Q vale per ogni formula di un linguaggio L se Caso base: ogni formula atomica di L e la sua negazione godono della proprietà Q Passi di induzione: Se X gode della proprietà Q anche X gode della proprietà Q Se α 1 e α 2 godono della proprietà Q anche α gode della proprietà Q Se β 1 e β 2 godono della proprietà Q anche β gode della proprietà Q Se γ 0 (t) gode della proprietà Q per ogni termine t, allora γ gode della proprietà Q Se δ 0 (t) gode della proprietà Q per ogni termine t, allora δ gode della proprietà Q 11

12 Principio di ricorsione strutturale Esiste una ed una sola funzione f, definita sull insieme di formule di L tale che Caso base: f(x) = h at (X), f( X) = h at ( X), con h at : Atomic Atomic D Passi di induzione: f( X) = h (f(x)), h : D D f(α) = h α (f(α 1 ),f(α 2 )), h α : D D D f(β) = h β (f(β 1 ),f(β 2 )), h β : D D D f(γ) = h γ ({(t,f(γ 0 (t))) : t Terms L }), h γ : D Terms L D f(δ) = h δ ({(t,f(δ 0 (t))) : t Terms L }), h δ : D Terms L D 12

13 Insieme di Hintikka per la logica del I ordine Sia L un linguaggio del I ordine. Un insieme H di enunciati di L viene detto un insieme di Hintikka per la logica del I ordine se è un insieme di enunciati tale che: R(t 1,...,t n ), R(t 1,...,t n ) non stanno entrambi in H / H, / H Z H Z H α H α 1,α 2 H β H β 1 H oppure β 2 H γ H γ 0 (t) H per ogni t chiuso del linguaggio δ H δ 0 (t) H per qualche t chiuso del linguaggio 13

14 Lemma di Hintikka per la logica del I ordine Sia L un linguaggio della logica del I ordine, H un insieme di Hintikka su L, allora H è soddisfacibile. Per dimostrare questo teorema costruiamo un opportuno modello di Herbrand. Supporremo che l insieme dei termini chiusi del linguaggio, ClTerms L, sia non vuoto. 14

15 Proprietà di consistenza del primo ordine Sia C un insieme di insiemi di enunciati di L par. Diciamo che C è una proprietà di consistenza del primo ordine rispetto ad L se, per ogni S C R(t 1,...,t n ), R(t 1,...,t n ) non stanno entrambi in S / S, / S Z S S {Z} C α S S {α 1,α 2 } C β S S {β 1 } C oppure S {β 2 } C γ S S {γ 0 (t)} C per ogni t chiuso in L par δ S S {δ 0 (p)} C per qualche p in par 15

16 Teorema di esistenza di un modello per la logica del I ordine Se C è una proprietà di consistenza del I ordine rispetto ad L, S è un insieme di enunciati di L, ed S C, allora S è soddisfacibile; di fatto S è soddisfacibile in un modello di Herband di L par. Teorema di compattezza per la logica del I ordine Sia S un insieme di enunciati di L, sia S finitamente soddisfacibile. Allora S è soddisfacibile in un modello di Herbrand di L par. 16

17 Teorema di Löwenheim-Skolem Sia S un insieme di enunciati di L, S soddisfacibile, allora S è soddisfacibile in un modello numerabile. Teorema di Herbrand Sia S un insieme di enunciati di L. S è soddisfacibile se e solo se è soddisfacibile in un modello di Herbrand di L par. Lemma Sia X un enunciato di L. X è valido se e solo se è vero in ogni modello di Herbrand di L par. 17

18 Regole di espansione per tableaux al I ordine Z Z α α 1 α 2 β β 1 β 2 δ δ 0 (p) γ γ 0 (t) p è un parametro nuovo per il ramo t è un termine chiuso del linguaggio (include anche i parametri) 18

19 Metodo dei tableaux per il I ordine Tutte le definizioni date per i tableaux proposizionali (ramo soddisfacibile, tableau soddisfacibile, ramo chiuso, tableau chiuso) si ripetono in maniera analoga per la logica del I ordine. Come nel caso proposizionale non è richiesta la chiusura atomica. Tuttavia, di fatto, la chiusura viene eseguita a livello atomico. La procedura di dimostrazione dei tableaux al I ordine non è una procedura di decisione. La sorgente di difficoltà è la γ-regola. Possiamo introdurre il vincolo di strettezza per tutte le regole tranne per la γ (perchè farebbe perdere la completezza) 19

20 Regole di espansione per la risoluzione al I ordine Z Z α α 1 α 2 β β 1 β 2 δ δ 0 (p) γ γ 0 (t) p è un parametro nuovo per l espansione t è un termine chiuso del linguaggio (include anche i parametri) 20

21 Risoluzione (ground) al I ordine La regola di risoluzione (ground) al I ordine è uguale a quella proposizionale. Infatti, poiché non vi sono variabili, non viene usata l unificazione. Tutte le definizioni viste per il caso proposizionale (espansione mediante risoluzione, espansione chiusa, espansione soddisfacibile,...) valgono anche al I ordine. X è un teorema del sistema di risoluzione al I ordine ( fr X) se esiste un espansione chiusa per { X}. Tale espansione si dirà una dimostrazione di X. Indichiamo con {X : fr X} l insieme dei teoremi del sistema di risoluzione al I ordine. 21

22 Assiomi di un sistema di Hilbert per il I ordine 1.X (Y X) 2.(X (Y Z)) ((X Y) (X Z)) 3. X 4.X 5. X X 6.X ( X Y) 7.α α 1 8.α α 2 9.(β 1 X) ((β 2 X) (β X)) 10.γ γ 0 (t), per ogni t chiuso del linguaggio con i parametri 22

Albero semantico. Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni.

Albero semantico. Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni. Albero semantico Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni. A differenza dell albero sintattico (che analizza la formula da un punto di vista puramente

Dettagli

Logica dei predicati

Logica dei predicati IV Logica dei predicati 14. FORMULE PREDICATIVE E QUANTIFICATORI 14.1. Dalla segnatura alle formule predicative Il simbolo (x).ϕ(x) [per ogni x, ϕ(x) è vera] denota una proposizione definita, e non c è

Dettagli

x u v(p(x, fx) q(u, v)), e poi

x u v(p(x, fx) q(u, v)), e poi 0.1. Skolemizzazione. Ogni enunciato F (o insieme di enunciati Γ) è equisoddisfacibile ad un enunciato universale (o insieme di enunciati universali) in un linguaggio estensione del linguaggio di F (di

Dettagli

Si basano sul seguente Teorema: S = A sse S { A} è insoddisfacibile.

Si basano sul seguente Teorema: S = A sse S { A} è insoddisfacibile. Deduzione automatica La maggior parte dei metodi di deduzione automatica sono metodi di refutazione: anziché dimostrare direttamente che S A, si dimostra che S { A} è un insieme insoddisfacibile (cioè

Dettagli

Semantica dei programmi. La semantica dei programmi è la caratterizzazione matematica dei possibili comportamenti di un programma.

Semantica dei programmi. La semantica dei programmi è la caratterizzazione matematica dei possibili comportamenti di un programma. Semantica dei programmi La semantica dei programmi è la caratterizzazione matematica dei possibili comportamenti di un programma. Semantica operazionale: associa ad ogni programma la sequenza delle sue

Dettagli

Linguaggi Elementari

Linguaggi Elementari Linguaggi Elementari Marzo 2007 In questi appunti verranno introdotte le conoscenze essenziali relative ai linguaggi del primo ordine e alla loro semantica. Verrà anche spiegato come preprocessare un problema

Dettagli

Linguaggi. Claudio Sacerdoti Coen 11/04/2011. 18: Semantica della logica del prim ordine. Universitá di Bologna

Linguaggi. Claudio Sacerdoti Coen 11/04/2011. 18: Semantica della logica del prim ordine. <sacerdot@cs.unibo.it> Universitá di Bologna Linguaggi 18: Semantica della logica del prim ordine Universitá di Bologna 11/04/2011 Outline Semantica della logica del prim ordine 1 Semantica della logica del prim ordine Semantica

Dettagli

Corso di teoria dei modelli

Corso di teoria dei modelli Corso di teoria dei modelli Alessandro Berarducci 22 Aprile 2010. Revised 5 Oct. 2010 Indice 1 Introduzione 2 2 Linguaggi del primo ordine 3 2.1 Linguaggi e strutture......................... 3 2.2 Morfismi................................

Dettagli

LOGICA DEI PREDICATI. Introduzione. Predicati e termini individuali. Termini individuali semplici e composti

LOGICA DEI PREDICATI. Introduzione. Predicati e termini individuali. Termini individuali semplici e composti Introduzione LOGICA DEI PREDICATI Corso di Intelligenza Artificiale A.A. 2009/2010 Prof. Ing. Fabio Roli La logica dei predicati, o logica del primo ordine (LPO) considera schemi proposizionali composti

Dettagli

Algebra e Geometria. Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2)

Algebra e Geometria. Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2) Algebra e Geometria Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2) Traccia delle lezioni che saranno svolte nell anno accademico 2012/13 I seguenti appunti

Dettagli

Appunti di Logica Matematica

Appunti di Logica Matematica Appunti di Logica Matematica Francesco Bottacin 1 Logica Proposizionale Una proposizione è un affermazione che esprime un valore di verità, cioè una affermazione che è VERA oppure FALSA. Ad esempio: 5

Dettagli

Esercitazioni per il corso di Logica Matematica

Esercitazioni per il corso di Logica Matematica Esercitazioni per il corso di Logica Matematica Luca Motto Ros 14 marzo 2005 Nota importante. Queste pagine contengono appunti personali dell esercitatore e sono messe a disposizione nel caso possano risultare

Dettagli

Sudoku: ancora un esercizio

Sudoku: ancora un esercizio Sudoku: ancora un esercizio Silvio Ranise LORIA & INRIA-Lorraine Nancy (France) 17 Gennaio 2007 Un esempio (sempre lo stesso) 5 3 7 6 1 9 5 9 8 6 8 6 3 4 8 3 1 7 2 6 6 2 8 4 1 9 5 8 7 9 Regole (sempre

Dettagli

(anno accademico 2008-09)

(anno accademico 2008-09) Calcolo relazionale Prof Alberto Belussi Prof. Alberto Belussi (anno accademico 2008-09) Calcolo relazionale E un linguaggio di interrogazione o e dichiarativo: at specifica le proprietà del risultato

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 16 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 16/10/2008 1 / 13 L introduzione dei numeri reali si può

Dettagli

Algebra di Boole ed Elementi di Logica

Algebra di Boole ed Elementi di Logica Algebra di Boole ed Elementi di Logica 53 Cenni all algebra di Boole L algebra di Boole (inventata da G. Boole, britannico, seconda metà 8), o algebra della logica, si basa su operazioni logiche Le operazioni

Dettagli

NORMALIZZAZIONE DI SCHEMI RELAZIONALI. Prof.ssa Rosalba Giugno

NORMALIZZAZIONE DI SCHEMI RELAZIONALI. Prof.ssa Rosalba Giugno NORMALIZZAZIONE DI SCHEMI RELAZIONALI Prof.ssa Rosalba Giugno PROBLEMA GENERALE La progettazione concettuale e logica produce uno schema relazionale che rappresenta la realta dei dati nella nostra applicazione.

Dettagli

Risoluzione. Eric Miotto Corretto dal prof. Silvio Valentini 15 giugno 2005

Risoluzione. Eric Miotto Corretto dal prof. Silvio Valentini 15 giugno 2005 Risoluzione Eric Miotto Corretto dal prof. Silvio Valentini 15 giugno 2005 1 Risoluzione Introdurremo ora un metodo per capire se un insieme di formule è soddisfacibile o meno. Lo vedremo prima per insiemi

Dettagli

ALGEBRA I: CARDINALITÀ DI INSIEMI

ALGEBRA I: CARDINALITÀ DI INSIEMI ALGEBRA I: CARDINALITÀ DI INSIEMI 1. CONFRONTO DI CARDINALITÀ E chiaro a tutti che esistono insiemi finiti cioè con un numero finito di elementi) ed insiemi infiniti. E anche chiaro che ogni insieme infinito

Dettagli

Logica del primo ordine

Logica del primo ordine Logica del primo ordine Sistema formale sviluppato in ambito matematico formalizzazione delle leggi del pensiero strette relazioni con studi filosofici In ambito Intelligenza Artificiale logica come linguaggio

Dettagli

Indecidibilità, indefinibilità e incompletezza. 1

Indecidibilità, indefinibilità e incompletezza. 1 Indecidibilità, indefinibilità e incompletezza. 1 Possiamo ora trattare unitariamente alcuni dei principali risultati negativi della logica: il teorema di Church sull'indecidibilità della logica, il teorema

Dettagli

2. Semantica proposizionale classica

2. Semantica proposizionale classica 20 1. LINGUAGGIO E SEMANTICA 2. Semantica proposizionale classica Ritorniamo un passo indietro all insieme dei connettivi proposizionali che abbiamo utilizzato nella definizione degli enunciati di L. L

Dettagli

Mathematical logic 1 st assessment Propositional Logic 23 October 2014

Mathematical logic 1 st assessment Propositional Logic 23 October 2014 Name ID. 1 Mathematical logic 1 st assessment Propositional Logic 23 October 2014 Instructions Rispondete in Italiano utilizzando una penna ad inchiostro (no matite) a meno che le domande non vi diano

Dettagli

f: AxB f(x)=y, f={ per ogni x in A esiste unica y in B f(x)=y} f={<1,2>, <2,3>, <3,3>} : {1,2,3} {1,2,3} f(1)=2, f(2)=3, f(3)=3

f: AxB f(x)=y, f={<x,y> per ogni x in A esiste unica y in B f(x)=y} f={<1,2>, <2,3>, <3,3>} : {1,2,3} {1,2,3} f(1)=2, f(2)=3, f(3)=3 Insieme delle parti di A : Funzione : insieme i cui elementi sono TUTTI i sottoinsiemi di A f: AxB f(x)=y, f={ per ogni x in A esiste unica y in B f(x)=y} f={, , } : {1,2,3} {1,2,3}

Dettagli

2 Progetto e realizzazione di funzioni ricorsive

2 Progetto e realizzazione di funzioni ricorsive 2 Progetto e realizzazione di funzioni ricorsive Il procedimento costruttivo dato dal teorema di ricorsione suggerisce due fatti importanti. Una buona definizione ricorsiva deve essere tale da garantire

Dettagli

Rappresentazione della conoscenza. Lezione 11. Rappresentazione della Conoscenza Daniele Nardi, 2008Lezione 11 0

Rappresentazione della conoscenza. Lezione 11. Rappresentazione della Conoscenza Daniele Nardi, 2008Lezione 11 0 Rappresentazione della conoscenza Lezione 11 Rappresentazione della Conoscenza Daniele Nardi, 2008Lezione 11 0 Sommario Pianificazione Deduttiva nel calcolo delle situazioni (Reiter 3.3) Teoria del calcolo

Dettagli

Prodotto libero di gruppi

Prodotto libero di gruppi Prodotto libero di gruppi 24 aprile 2014 Siano (A 1, +) e (A 2, +) gruppi abeliani. Sul prodotto cartesiano A 1 A 2 definiamo l operazione (x 1, y 1 ) + (x 2, y 2 ) := (x 1 + x 2, y 1 + y 2 ). Provvisto

Dettagli

Appunti di LOGICA MATEMATICA (a.a.2009-2010; A.Ursini) Algebre di Boole. 1. Definizione e proprietá

Appunti di LOGICA MATEMATICA (a.a.2009-2010; A.Ursini) Algebre di Boole. 1. Definizione e proprietá Appunti di LOGICA MATEMATICA (a.a.2009-2010; A.Ursini) [# Aii [10 pagine]] Algebre di Boole Un algebra di Boole è una struttura 1. Definizione e proprietá B =< B,,, ν, 0, 1 > in cui B è un insieme non

Dettagli

Analisi e specifica dei requisiti

Analisi e specifica dei requisiti Capitolo 3 Analisi e specifica dei requisiti In questo capitolo presentiamo alcuni linguaggi e metodi usati nella fase di analisi e specifica dei requisiti. I requisiti descrivono ciò che l utente si aspetta

Dettagli

ESERCIZI SVOLTI. 1) Dimostrare che l insieme. non è ricorsivo. Soluzione: Definiamo l insieme

ESERCIZI SVOLTI. 1) Dimostrare che l insieme. non è ricorsivo. Soluzione: Definiamo l insieme ESERCIZI SVOLTI 1) Dimostrare che l insieme Allora notiamo che π non è vuoto perché la funzione ovunque divergente appartiene all insieme avendo per dominio l insieme. Inoltre π non coincide con l insieme

Dettagli

10. Insiemi non misurabili secondo Lebesgue.

10. Insiemi non misurabili secondo Lebesgue. 10. Insiemi non misurabili secondo Lebesgue. Lo scopo principale di questo capitolo è quello di far vedere che esistono sottoinsiemi di R h che non sono misurabili secondo Lebesgue. La costruzione di insiemi

Dettagli

Università degli Studi di Napoli Federico II. Facoltà di Scienze MM.FF.NN. Corso di Laurea in Informatica

Università degli Studi di Napoli Federico II. Facoltà di Scienze MM.FF.NN. Corso di Laurea in Informatica Università degli Studi di Napoli Federico II Facoltà di Scienze MM.FF.NN. Corso di Laurea in Informatica Anno Accademico 2009/2010 Appunti di Calcolabilità e Complessità Lezione 9: Introduzione alle logiche

Dettagli

LA KB delle logiche descrittive. Che tipo di ragionamenti? Problemi decisionali per DL. Sussunzione. Soddisfacilità di concetti (CS)

LA KB delle logiche descrittive. Che tipo di ragionamenti? Problemi decisionali per DL. Sussunzione. Soddisfacilità di concetti (CS) Ragionamento nelle logiche descrittive M. Simi, 2014-2015 LA KB delle logiche descrittive K = (T, A) T (T-BOX), componente terminologica A (A-BOX), componente asserzionale Una interpretazione I soddisfa

Dettagli

CAPITOLO 7 LOGICA CLASSICA DEI PREDICATI: SEMANTICA

CAPITOLO 7 LOGICA CLASSICA DEI PREDICATI: SEMANTICA CAPITOLO 7 LOGICA CLASSICA DEI PREDICATI: SEMANTICA 1. Verso la logica del primo ordine: funzioni proposizionali e quantificatori L analisi Booleana del linguaggio che ha condotto alla formalizzazione

Dettagli

Calcolo Relazionale Basi di dati e sistemi informativi 1. Calcolo Relazionale. Angelo Montanari

Calcolo Relazionale Basi di dati e sistemi informativi 1. Calcolo Relazionale. Angelo Montanari Calcolo Relazionale Basi di dati e sistemi informativi 1 Calcolo Relazionale Angelo Montanari Dipartimento di Matematica e Informatica Università di Udine Calcolo Relazionale Basi di dati e sistemi informativi

Dettagli

Algebra e Logica Matematica. Calcolo delle proposizioni Logica del primo ordine

Algebra e Logica Matematica. Calcolo delle proposizioni Logica del primo ordine Università di Bergamo Anno accademico 2006 2007 Ingegneria Informatica Foglio Algebra e Logica Matematica Calcolo delle proposizioni Logica del primo ordine Esercizio.. Costruire le tavole di verità per

Dettagli

Presentazione delle lezioni (I parte del corso di Statistica sociale) Corso di Matematica e Statistica 1 Logica, simboli, successioni

Presentazione delle lezioni (I parte del corso di Statistica sociale) Corso di Matematica e Statistica 1 Logica, simboli, successioni Pordenone Corso di Matematica e Statistica Logica, simboli, successioni Presentazione delle lezioni (I parte del corso di Statistica sociale) Lezione : Logica, simboli, successioni Lezione 2: Funzioni,

Dettagli

Corso di LOGICA II: indagini semantiche su modalità e quantificazione. Uno studio di logica della necessità e della possibilità

Corso di LOGICA II: indagini semantiche su modalità e quantificazione. Uno studio di logica della necessità e della possibilità Corso di LOGICA II: indagini semantiche su modalità e quantificazione. Uno studio di logica della necessità e della possibilità Luisa Bortolotti Trento, 30.04.04 Lezione 26 : IL SISTEMA K-G (3) 2. MODALITA

Dettagli

Dispense del corso di ALGEBRA 1 a.a. 2008 2009

Dispense del corso di ALGEBRA 1 a.a. 2008 2009 Dispense del corso di ALGEBRA 1 a.a. 2008 2009 2 Indice I INSIEMI E NUMERI 5 1 Insiemi e applicazioni 7 1.1 Insiemi..................................... 7 1.2 Operazioni tra insiemi.............................

Dettagli

In ricordo dei miei genitori

In ricordo dei miei genitori In ricordo dei miei genitori Daniele Mundici Logica: Metodo Breve B Daniele Mundici Dipartimento di Matematica U. Dini Università di Firenze UNITEXT La Matematica per il 3+2 ISSN print edition: 2038-5722

Dettagli

Corso di LOGICA II: indagini semantiche su modalità e quantificazione. Uno studio di logica della necessità e della possibilità

Corso di LOGICA II: indagini semantiche su modalità e quantificazione. Uno studio di logica della necessità e della possibilità Corso di LOGICA II: indagini semantiche su modalità e quantificazione. Uno studio di logica della necessità e della possibilità Luisa Bortolotti Trento, 16.04.04 Lezione 24 : IL SISTEMA K-G (1) CAPITOLO

Dettagli

Predicati e Quantificatori

Predicati e Quantificatori Predicati e Quantificatori Limitazioni della logica proposizionale! Logica proposizionale: il mondo è descritto attraverso proposizioni elementari e loro combinazioni logiche! I singoli oggetti cui si

Dettagli

Logica del primo ordine

Logica del primo ordine Università di Bergamo Facoltà di Ingegneria Intelligenza Artificiale Paolo Salvaneschi A7_4 V1.3 Logica del primo ordine Il contenuto del documento è liberamente utilizzabile dagli studenti, per studio

Dettagli

Il principio di induzione e i numeri naturali.

Il principio di induzione e i numeri naturali. Il principio di induzione e i numeri naturali. Il principio di induzione è un potente strumento di dimostrazione, al quale si ricorre ogni volta che si debba dimostrare una proprietà in un numero infinito

Dettagli

Informatica 3. Informatica 3. LEZIONE 10: Introduzione agli algoritmi e alle strutture dati. Lezione 10 - Modulo 1. Importanza delle strutture dati

Informatica 3. Informatica 3. LEZIONE 10: Introduzione agli algoritmi e alle strutture dati. Lezione 10 - Modulo 1. Importanza delle strutture dati Informatica 3 Informatica 3 LEZIONE 10: Introduzione agli algoritmi e alle strutture dati Modulo 1: Perchè studiare algoritmi e strutture dati Modulo 2: Definizioni di base Lezione 10 - Modulo 1 Perchè

Dettagli

Matematica Discreta. Gianfranco Niesi. Appunti per il corso di. C.S. in Informatica. Dipartimento di Matematica A.A. 2005-2006

Matematica Discreta. Gianfranco Niesi. Appunti per il corso di. C.S. in Informatica. Dipartimento di Matematica A.A. 2005-2006 Appunti per il corso di Matematica Discreta C.S. in Informatica UNIVERSITÀ DI GENOVA A.A. 2005-2006 Gianfranco Niesi Dipartimento di Matematica URL: http://www.dima.unige.it/ niesi 4 ottobre 2005 2 Indice

Dettagli

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria federico.lastaria@polimi.it

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria federico.lastaria@polimi.it Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@poi.it Primi teoremi di caclolo differenziale Ottobre 2010. Indice 1 Funzioni derivabili su un intervallo 1 1.1

Dettagli

CAPITOLO 3 TRASFORMARE FORMULE E DEDURRE DA TEORIE.

CAPITOLO 3 TRASFORMARE FORMULE E DEDURRE DA TEORIE. pag. 1 Capitolo 3 CAPITOLO 3 TRASFORMARE FORMULE E DEDURRE DA TEORIE. 1. Sistemi di trasformazione. La nozione di relazione binaria che abbiamo già esaminato nel capitolo precedente è anche alla base della

Dettagli

OGNI SPAZIO VETTORIALE HA BASE

OGNI SPAZIO VETTORIALE HA BASE 1 Mimmo Arezzo OGNI SPAZIO VETTORIALE HA BASE CONVERSAZIONE CON ALCUNI STUDENTI DI FISICA 19 DICEMBRE 2006 2 1 Preliminari Definizione 1.0.1 Un ordinamento parziale (o una relazione d ordine parziale)

Dettagli

19. Inclusioni tra spazi L p.

19. Inclusioni tra spazi L p. 19. Inclusioni tra spazi L p. Nel n. 15.1 abbiamo provato (Teorema 15.1.1) che, se la misura µ è finita, allora tra i corispondenti spazi L p (µ) si hanno le seguenti inclusioni: ( ) p, r ]0, + [ : p

Dettagli

I FONDAMENTI DELLA MATEMATICA

I FONDAMENTI DELLA MATEMATICA I FONDAMENTI DELLA MATEMATICA Concettina Gaccetta 1 Sunto: La scoperta delle geometrie non euclidee ha dimostrato la possibilità di formulare più teorie ugualmente coerenti, riferite agli stessi enti matematici.

Dettagli

Fondamenti dei linguaggi di programmazione

Fondamenti dei linguaggi di programmazione Fondamenti dei linguaggi di programmazione Aniello Murano Università degli Studi di Napoli Federico II 1 Riassunto delle lezioni precedenti Prima Lezione: Introduzione e motivazioni del corso; Sintassi

Dettagli

6.6 Il calcolo relazionale su tuple

6.6 Il calcolo relazionale su tuple Capitolo 6 Approfondimento Web 1 6.6 Il calcolo relazionale su tuple In questo paragrafo e nel successivo descriviamo un altro linguaggio di interrogazione formale per il modello relazionale chiamato calcolo

Dettagli

Il primo teorema di incompletezza di Gödel

Il primo teorema di incompletezza di Gödel Il primo teorema di incompletezza di Gödel Stefano Nasini Dept. of Statistics and Operations Research Universitat Politécnica de Catalunya 1. Introduzione Questo documento vuole essere una spiegazione

Dettagli

FOCUS GROUP. Trento, 06.02.2004 e 13.02.2004

FOCUS GROUP. Trento, 06.02.2004 e 13.02.2004 FOCUS GROUP Trento, 06.02.2004 e 13.02.2004 Progetto Divulgazione della logica come base per la comprensione dell informatica Documentazione C19.2004 Luisa Bortolotti perché un focus group? perché da tempo

Dettagli

Interpretazione astratta

Interpretazione astratta Interpretazione astratta By Giulia Costantini (819048) e Giuseppe Maggiore (819050) Contents Interpretazione astratta... 2 Idea generale... 2 Esempio di semantica... 2 Semantica concreta... 2 Semantica

Dettagli

APPUNTI DEL CORSO DI ANALISI MATEMATICA 1

APPUNTI DEL CORSO DI ANALISI MATEMATICA 1 APPUNTI DEL CORSO DI ANALISI MATEMATICA 1 Gino Tironi Stesura provvisoria del 24 settembre, 2007. ii Indice 1 Insiemi e logica 1 1.1 Preliminari......................................... 1 1.2 Cenni di

Dettagli

b) Costruire direttamente le relazioni e poi correggere quelle che presentano anomalie

b) Costruire direttamente le relazioni e poi correggere quelle che presentano anomalie TEORIA RELAZIONALE: INTRODUZIONE 1 Tre metodi per produrre uno schema relazionale: a) Partire da un buon schema a oggetti e tradurlo b) Costruire direttamente le relazioni e poi correggere quelle che presentano

Dettagli

La Logica Proposizionale. (Algebra di Boole)

La Logica Proposizionale. (Algebra di Boole) 1 ISTITUTO DI ISTRUZIONE SUPERIORE ANGIOY La Logica Proposizionale (Algebra di Boole) Prof. G. Ciaschetti 1. Cenni storici Sin dagli antichi greci, la logica è intesa come lo studio del logos, che in greco

Dettagli

Fondamenti dell Informatica: Linguaggi Formali, Calcolabilità e Complessità

Fondamenti dell Informatica: Linguaggi Formali, Calcolabilità e Complessità Dispense per il corso di Dicembre 2001 Giugno 2014 Fondamenti dell Informatica: Linguaggi Formali, Calcolabilità e Complessità Agostino Dovier Dipartimento di Matematica ed Informatica Università degli

Dettagli

LOGICA PER LA PROGRAMMAZIONE. Franco Turini turini@di.unipi.it

LOGICA PER LA PROGRAMMAZIONE. Franco Turini turini@di.unipi.it LOGICA PER LA PROGRAMMAZIONE Franco Turini turini@di.unipi.it IPSE DIXIT Si consideri la frase: in un dato campione di pazienti, chi ha fatto uso di droghe pesanti ha utilizzato anche droghe leggere. Quali

Dettagli

I metodi formali nel processo di sviluppo del software

I metodi formali nel processo di sviluppo del software I metodi formali nel processo di sviluppo del software I metodi formali consentono di creare una specifica più completa, uniforme e non ambigua di quelle prodotte usando i metodi convenzionali ed orientati

Dettagli

Appendice A. Il sistema assiomatico di Zermelo per la teoria degli insiemi

Appendice A. Il sistema assiomatico di Zermelo per la teoria degli insiemi Appendice A Il sistema assiomatico di Zermelo per la teoria degli insiemi Ernest Zermelo (1871-1953) rilevò che la presenza delle antinomie poteva essere collegata ad un insufficiente definizione del concetto

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Equazioni differenziali ordinarie Denis Nardin January 2, 2010 1 Equazioni differenziali In questa sezione considereremo le proprietà delle soluzioni del problema di Cauchy. Da adesso in poi (PC) indicherà

Dettagli

Nel seguito, senza ulteriormente specificarlo, A indicherà un anello commutativo con identità.

Nel seguito, senza ulteriormente specificarlo, A indicherà un anello commutativo con identità. 1 ANELLI Definizione 1.1. Sia A un insieme su cui sono definite due operazioni +,. (A, +, ) si dice Anello se (A, +) è un gruppo abeliano è associativa valgono le leggi distributive, cioè se a, b, c A

Dettagli

4. Operazioni binarie, gruppi e campi.

4. Operazioni binarie, gruppi e campi. 1 4. Operazioni binarie, gruppi e campi. 4.1 Definizione. Diremo - operazione binaria ovunque definita in A B a valori in C ogni funzione f : A B C - operazione binaria ovunque definita in A a valori in

Dettagli

Che cosa abbiamo fatto fin ora. Perché? Agente basato su conoscenza. Introduzione alla rappresentazione della conoscenza

Che cosa abbiamo fatto fin ora. Perché? Agente basato su conoscenza. Introduzione alla rappresentazione della conoscenza Che cosa abbiamo fatto fin ora Introduzione alla rappresentazione della conoscenza ovvero Come costruire agenti basati su conoscenza e dotati di capacità di ragionamento Maria Simi, 2014/2015 Abbiamo trattato:

Dettagli

Componenti di un sistema KNOWLEDGE-BASED

Componenti di un sistema KNOWLEDGE-BASED Componenti di un sistema KNOWLEDGE-BASED DYNAMIC DATABASE PROBLEM FORMALIZATION CONTROL STRATEGY IL DATABASE DESCRIVE LA SITUAZIONE CORRENTE NELLA DETERMINAZIONE DELLA SOLUZIONE AL PROBLEMA. LA FORMALIZZAZIONE

Dettagli

ALGEBRA 2 CAMPI E TEORIA DI GALOIS

ALGEBRA 2 CAMPI E TEORIA DI GALOIS ALGEBRA 2 CAMPI E TEORIA DI GALOIS ALESSANDRO D ANDREA INDICE 1. Richiami sugli anelli 1 1.1. Anelli, sottoanelli, ideali 1 1.2. Omomorfismi di anelli ed anelli quoziente 2 1.3. Ideali primi e massimali.

Dettagli

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale 4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale Spazi Metrici Ricordiamo che uno spazio metrico è una coppia (X, d) dove X è un insieme e d : X X [0, + [ è una funzione, detta metrica,

Dettagli

Logica predicativa del prim ordine

Logica predicativa del prim ordine Logica predicativa del prim ordine Eugenio G. Omodeo Anno accademico 2007/ 08 Contents 1 Linguaggi per la logica predicativa del prim ordine 5 1.1 Sintassi di un linguaggio predicativo........................

Dettagli

Energia potenziale L. P. Maggio 2007. 1. Campo di forze

Energia potenziale L. P. Maggio 2007. 1. Campo di forze Energia potenziale L. P. Maggio 2007 1. Campo di forze Consideriamo un punto materiale di massa m che si muove in una certa regione dello spazio. Si dice che esso è soggetto a un campo di forze, se ad

Dettagli

Il Modello Relazionale

Il Modello Relazionale Il Modello Relazionale Il modello relazionale 1 Il modello relazionale Proposto da E. F. Codd nel 1970 per favorire l indipendenza dei dati e reso disponibile come modello logico in DBMS reali nel 1981

Dettagli

SPAZI METRICI. Uno spazio metrico X con metrica d si indica con il simbolo (X, d). METRICI 1

SPAZI METRICI. Uno spazio metrico X con metrica d si indica con il simbolo (X, d). METRICI 1 SPAZI METRICI Nel piano R 2 o nello spazio R 3 la distanza fra due punti è la lunghezza, o norma euclidea, del vettore differenza di questi due punti. Se p = (x, y, z) è un vettore in coordinate ortonormali,

Dettagli

PIANO DI LAVORO A.S. 2013/14. Liceo SCIENTIFICO GOBETTI OMEGNA

PIANO DI LAVORO A.S. 2013/14. Liceo SCIENTIFICO GOBETTI OMEGNA PIANO DI LAVORO A.S. 2013/14 Liceo SCIENTIFICO GOBETTI OMEGNA Professoressa LILIANA PIZZI Disciplina MATEMATICA Classe PRIMA sezione B Data: 12 Ottobre 2013 A. LIVELLI DI PARTENZA TEST E/O GRIGLIE DI OSSERVAZIONE

Dettagli

Rappresentazione della conoscenza. ha poco potere espressivo in quanto ha un ontologia limitata: il mondo consiste di fatti, es.

Rappresentazione della conoscenza. ha poco potere espressivo in quanto ha un ontologia limitata: il mondo consiste di fatti, es. Scaletta argomenti: Rappresentazione della conoscenza Logica del primo ordine Logiche non-monotone Reti semantiche Frame e script Regole di produzione Logica del Primo Ordine - Logica proposizionale ha

Dettagli

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Andrea Bobbio Anno Accademico 2000-2001 Algebra Booleana 2 Calcolatore come rete logica Il calcolatore può essere visto come una rete logica

Dettagli

Idee guida. Finite State Machine (1) Un automa a stati finiti è definito da una 5- pla: FSM = , dove: Finite State Machine (2)

Idee guida. Finite State Machine (1) Un automa a stati finiti è definito da una 5- pla: FSM = <Q,,, q0, F>, dove: Finite State Machine (2) Idee guida ASM = FSM con stati generalizzati Le ASM rappresentano la forma matematica di Macchine Astratte che estendono la nozione di Finite State Machine Ground Model (descrizioni formali) Raffinamenti

Dettagli

Due dimostrazioni alternative nella teoria di Ramsey

Due dimostrazioni alternative nella teoria di Ramsey Due dimostrazioni alternative nella teoria di Ramsey 28 Marzo 2007 Introduzione Teoria di Ramsey: sezione della matematica a metà tra la combinatoria e la teoria degli insiemi. La questione tipica è quella

Dettagli

Corso di Laurea in Matematica. Dispense del corso di ALGEBRA I

Corso di Laurea in Matematica. Dispense del corso di ALGEBRA I Corso di Laurea in Matematica Dispense del corso di ALGEBRA I a.a. 2012 2013 2 Cos è l anima?. Al negativo è facile da definire: per l appunto ciò che si affretta a rintanarsi quando sente parlare di serie

Dettagli

Dispense del corso di ALGEBRA 1 a.a. 2007 2008. Parte 1: NOZIONI DI BASE

Dispense del corso di ALGEBRA 1 a.a. 2007 2008. Parte 1: NOZIONI DI BASE Dispense del corso di ALGEBRA 1 a.a. 2007 2008 Parte 1: NOZIONI DI BASE 1 Indice 1 Nozioni introduttive 3 1.1 Insiemi..................................... 3 1.2 Operazioni tra insiemi.............................

Dettagli

Algebra booleana. Si dice enunciato una proposizione che può essere soltanto vera o falsa.

Algebra booleana. Si dice enunciato una proposizione che può essere soltanto vera o falsa. Algebra booleana Nel lavoro di programmazione capita spesso di dover ricorrere ai principi della logica degli enunciati e occorre conoscere i concetti di base dell algebra delle proposizioni. L algebra

Dettagli

Data Base Relazionali

Data Base Relazionali Data Base Relazionali Modello Relazionale dei dati Basi di Dati Relazionali 1 Progettazione di DB METODOLOGIA DI PROGETTO IN TRE FASI Descrizione formalizzata e completa della realtà di interesse REALTA'

Dettagli

Universita' degli Studi di Udine UNA PROPOSTA PER L'INTRODUZIONE DI CAPACITA' DI META-RAPPRESENTAZIONE IN UN LINGUAGGIO DI PROGRAMMAZIONE LOGICA

Universita' degli Studi di Udine UNA PROPOSTA PER L'INTRODUZIONE DI CAPACITA' DI META-RAPPRESENTAZIONE IN UN LINGUAGGIO DI PROGRAMMAZIONE LOGICA Universita' degli Studi di Udine FACOLTA' DI SCIENZE MATEMATICHE FISICHE E NATURALI UNA PROPOSTA PER L'INTRODUZIONE DI CAPACITA' DI META-RAPPRESENTAZIONE IN UN LINGUAGGIO DI PROGRAMMAZIONE LOGICA Relatore:

Dettagli

Calcolo dei Sequenti Predicativo: Note ed Esercizi

Calcolo dei Sequenti Predicativo: Note ed Esercizi Calcolo dei Sequenti Predicativo: Note ed Esercizi mace@dsi.unive.it 15 novembre 2007 1 Logica predicativa: sintassi La logica proposizionale è piuttosto limitata. La logica predicativa estende quella

Dettagli

CONCETTO DI LIMITE DI UNA FUNZIONE REALE

CONCETTO DI LIMITE DI UNA FUNZIONE REALE CONCETTO DI LIMITE DI UNA FUNZIONE REALE Il limite di una funzione è uno dei concetti fondamentali dell'analisi matematica. Tramite questo concetto viene formalizzata la nozione di funzione continua e

Dettagli

LOGICA MATEMATICA E CONCETTUALIZZAZIONE

LOGICA MATEMATICA E CONCETTUALIZZAZIONE STEFANO FERILLI Monografia su LOGICA MATEMATICA E CONCETTUALIZZAZIONE Università degli Studi di Bari Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Informatica Corso di Ingegneria

Dettagli

Il problema della fattorizzazione nei domini di Dedekind

Il problema della fattorizzazione nei domini di Dedekind Il problema della fattorizzazione nei domini di Dedekind Stefania Gabelli Dipartimento di Matematica, Università degli Studi Roma Tre Note per i corsi di Algebra Commutativa a.a. 2010/2011 1 Indice 1 Preliminari

Dettagli

È fatta male? Perché? Come si può correggere?

È fatta male? Perché? Come si può correggere? UNA TABELLA N Inv Stanza Resp Oggetto Produttore Descrizione 1012 256 Ghelli Mac Mini Apple Personal Comp 1015 312 Albano Dell XPS M1330 Dell Notebook 2 GHZ 1034 256 Ghelli Dell XPS M1330 Dell Notebook

Dettagli

Studio e realizzazione in Java di domini e regole per la risoluzione di vincoli su interi e insiemi di interi

Studio e realizzazione in Java di domini e regole per la risoluzione di vincoli su interi e insiemi di interi UNIVERSITÀ DEGLI STUDI DI PARMA FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE e NATURALI Corso di Laurea Specialistica in Informatica Tesi di Laurea Specialistica Studio e realizzazione in Java di domini e regole

Dettagli

Fondamenti di Teoria delle Basi di Dati

Fondamenti di Teoria delle Basi di Dati Fondamenti di Teoria delle Basi di Dati Riccardo Torlone Parte 6: Potenza espressiva del calcolo Calcolo su domini, discussione Pregi: dichiaratività Difetti: "verbosità": tante variabili! espressioni

Dettagli

Categorie e oggetti. Il Web semantico. Ontologie di dominio. Le motivazioni del web semantico. Web semantico e logiche descrittive

Categorie e oggetti. Il Web semantico. Ontologie di dominio. Le motivazioni del web semantico. Web semantico e logiche descrittive Categorie e oggetti Web semantico e logiche descrittive M. Simi, 2014-2015 Cap 2 del "Description Logic Handbook" Lezioni di U.Straccia Molti dei ragionamenti che si fanno sono sulle categorie piuttosto

Dettagli

MODULI INIETTIVI. Definizione: Un inclusione di A-moduli ι : M N si dice estensione essenziale di M se per ogni sottomodulo non nullo P N, P ι(m) 0.

MODULI INIETTIVI. Definizione: Un inclusione di A-moduli ι : M N si dice estensione essenziale di M se per ogni sottomodulo non nullo P N, P ι(m) 0. MODULI INIETTIVI Definizione: Un inclusione di A-moduli ι : M N si dice estensione essenziale di M se per ogni sottomodulo non nullo P N, P ι(m) 0. Esempio: Supponiamo che A sia un dominio e chiamiamo

Dettagli

Laurea Triennale in Informatica (F004) a.a. 2011/12. Insegnamenti complementari

Laurea Triennale in Informatica (F004) a.a. 2011/12. Insegnamenti complementari Laurea Triennale in Informatica (F004) a.a. 2011/12 Insegnamenti complementari Attivazioni e programmi Gli insegnamenti complementari del corso di laurea sono di norma erogati ad anni alterni. L effettiva

Dettagli

Metodi formali per la verifica dell affidabilità di sistemi software (e hardware) (Peled, Software Reliability Methods, cap. 1) Importanza della

Metodi formali per la verifica dell affidabilità di sistemi software (e hardware) (Peled, Software Reliability Methods, cap. 1) Importanza della Metodi formali per la verifica dell affidabilità di sistemi software (e hardware) (Peled, Software Reliability Methods, cap. 1) Importanza della verifica di sistemi (safety-critical, commercially critical,

Dettagli

Rappresentazione della Conoscenza. Lezione 2. Rappresentazione della Conoscenza Daniele Nardi, 2008Lezione 2 0

Rappresentazione della Conoscenza. Lezione 2. Rappresentazione della Conoscenza Daniele Nardi, 2008Lezione 2 0 Rappresentazione della Conoscenza Lezione 2 Rappresentazione della Conoscenza Daniele Nardi, 2008Lezione 2 0 Logica come linguaggio di rappresentazione della conoscenza Sommario richiami sintassi e semantica

Dettagli

Prodotto elemento per elemento, NON righe per colonne Unione: M R S

Prodotto elemento per elemento, NON righe per colonne Unione: M R S Relazioni binarie Una relazione binaria può essere rappresentata con un grafo o con una matrice di incidenza. Date due relazioni R, S A 1 A 2, la matrice di incidenza a seguito di varie operazioni si può

Dettagli

Esistenza di funzioni continue non differenziabili in alcun punto

Esistenza di funzioni continue non differenziabili in alcun punto UNIVERSITÀ DEGLI STUDI DI CAGLIARI FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI CORSO DI LAUREA IN MATEMATICA Esistenza di funzioni continue non differenziabili in alcun punto Relatore Prof. Andrea

Dettagli

CAPITOLO 8 GENERARE I TEOREMI DI TEORIE SEMPLICI

CAPITOLO 8 GENERARE I TEOREMI DI TEORIE SEMPLICI pag. 128 Cap. 8 : GENERARE I TEOREMI DI TEORIE SEMPLICI G. Gerla CAPITOLO 8 indice GENERARE I TEOREMI DI TEORIE SEMPLICI 1. Come costruire un sistema inferenziale corretto Sia T una teoria, cioè un qualunque

Dettagli