modificato da andynaz Cambiamenti di base Tecniche Informatiche di Base

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "modificato da andynaz Cambiamenti di base Tecniche Informatiche di Base"

Transcript

1 Cambiamenti di base Tecniche Informatiche di Base TIB 1

2 Il sistema posizionale decimale L idea del sistema posizionale: ogni cifra ha un peso Esempio: 132 = = Un numero generico N, in base 10, è rappresentato dalla sequenza di cifre: a n, a n-1, a n-2,..., a 0 a n cifra più significativa, a 0 cifra meno significativa a i {0, 1,..., 9} insieme delle cifre utilizzabili Notazione: N 10 =(a n a n-1 a n-2... a 0 ) 10 2

3 Rappresentazione in base p Nel sistema posizionale, un numero naturale N, composto da n cifre, in base p, si esprime come: N p = a n p n + a n 1 n 1 p a 1 p 1 + a 0 p 0 = n i= 0 a i p i Esempio (p=5): (412) 5 = Posso rappresentare i numeri nell intervallo discreto: [0, p m 1]. N in base p ha k=[ log p N ] 1 cifre 3

4 Conversione base dieci base p Si effettuano delle divisioni intere successive, fermandosi quando si ha quoziente pari a 0 e considerando i resti dall'ultimo al primo Esempio, =(???) 3 14 : 3 = 4 resto = 2 4 : 3 = 1 resto = 1 1 : 3 = 0 resto = 1 Dunque = (112) 3 4

5 Conversione base p base 10 Si sviluppa ogni cifra del numero con la giusta potenza di p. Esempio, (1110) 2 =(???) 10 (1110) 2 = ( ) 10 = ( ) 10 =

6 Conversione base p base r Il modo più semplice è effettuare due conversioni: base p base 10 Base 10 base r Esempio: (25) 7 = (???) 3 (25) 7 = ( ) 10 = = (201) 3 Ci sono in alcuni casi delle scorciatoie... 6

7 Binario, base ottale e base esadecimale 7

8 Base due (o base binaria) Base binaria o base due: (p=2) In m bit posso rappresentare i numeri nell intervallo discreto: [0, 2 m 1] Esempio: con m=8, rappresento numeri nell'intervallo [ , ], ovvero [0 10, ] 8

9 Base ottale (o base otto) p=8; a i {0, 1, 2, 3, 4, 5, 6, 7} Esempio: = ( ) 10 = Sapendo che 8 = 2 3 : conversione binario ottale Esempio: = (???) = ( ) 10 = 5 10 = = ( ) 10 = 7 10 = = ( ) 10 = 4 10 = 4 8 Quindi, = Sapendo che 8 = 2 3 : conversione ottale binario Esempio: = (???) = 1 10 = = 2 10 = = 6 10 = Quindi, =

10 Base esadecimale (o base sedici) p=16; a i {0, 1, 2,, 9, A, B, C, D, E, F} B al posto di 11 e F al posto di 15 Esempio: B7F 16 = ( ) 10 = Sapendo che 16=2 4 : Conversione binario esadecimale Esempio: = (???) = ( ) 10 = 1 10 = = ( ) 10 = 7 10 = = ( ) 10 = = D 16 Quindi, = 17D 16 Sapendo che 16=2 4 : Conversione esadecimale binario Esempio: A3 16 = (???) 2 A 16 = = = 3 10 = Quindi, A3 16 =

11 Codifiche 11

12 Codifiche Un calcolatore tratta solo informazioni binarie Per poter trattare vari tipi di numeri (interi senza segno, interi con segno, frazioni, etc...) ho bisogno di codifiche: permettono di associare ad ogni sequenza binaria un particolare valore danno delle regole per gestire e convertire queste stringe Ci sono codifiche anche per codici non numerici 12

13 Numeri naturali (numeri senza segno) 13

14 Numeri naturali Vengono semplicemente scritti in base 2!!! a i {0, 1} chiamati bit (binary digit) Una sequenza di otto bit è detta byte Ho in questo modo una corrispondenza biunivoca tra i numeri e la loro scrittura Num. intero, base 10 Num. intero, base due

15 Somma Le cifre sono 0 e 1 si usano le elementari regole dell'addizione il riporto può essere solo 1 Riporto precedente Somma Risultato Riporto

16 Overflow Con m bit posso rappresentare i numeri interi nell'intervallo [0, 2 m -1] non è un insieme chiuso rispetto alla somma Nel caso si abbiano un numero limitato di bit a disposizione, si può avere il caso particolare di carry (riporto) sulla cifra più significativa Esempio: calcoliamo 9+7 utilizzando 4 bit (1001) 2 + (0111) 2 = (10000) 2 4 bit non sono sufficienti a scrivere 16: overflow 16

17 Somma e carry Esempio: 1 riporto (5 10 ) 1001 = (9 10 ) (14 10 ) 111 riporti (15 10 ) 1010 = (10 10 ) carry (25 10 se uso 5 bit; 9 10 se considero 4 bit: errato). 17

18 Numeri interi (numeri con segno) 18

19 Modulo e segno Non posso memorizzare il segno, uso una codifica Uso il bit più a sinistra per memorizzare il segno: 1 significa numero negativo 0 numero positivo In m bit posso memorizzare i numeri nell'intervallo [-2 m-1 +1, 2 m-1-1] 19

20 Modulo e segno (problemi) Come posso fare la somma (con numeri di segno discorde o con numeri negativi)?? Ho due rappresentazioni dello 0 Esempio m=3: Num. intero, Num. intero, base due, base 10 modulo e segno ? 20

21 Complemento a due (CPL 2 ) Risolve i problemi della precedente rappresentazione In m bit posso rappresentare i numeri nell intervallo: Esempio (m=8): [ 2 m 1, 2 m 1 1] [ 128, +127], perché 2 7 = 128 e = +127 Tutti i numeri negativi cominciano con il bit più significativo posto a 1 Tutti i positivi e lo zero iniziano con il bit più signifatico posto a 0 21

22 Conversione decimale CPL 2 Se ho m bit e voglio scrivere N in CPL 2 se N [0,2 m 1 1] allora N viene convertito in binario senza segno utilizzando tutti i bit a disposizione se N [ 2 m 1, 1] 2, ovvero: allora viene effettuato il complemento a N viene scritto in binario senza segno, utilizzando tutti i bit a disposizione si complementano tutti i bit (si scambiano tra loro 0 e 1) si aggiunge 1 22

23 Complemento a due (CPL 2 ) Usando m bit: ( N) CPL2 = (2 m N 10 ) 2 Esempio (m=3) : ( N) CPL2 = (2 3 N 10 ) 2 Num. intero base Trasformazione 8 4 = = = = 7 nessuna nessuna nessuna nessuna Num. intero, base 2, CPL 2, m= = = = = = = = =

24 Conversione decimale CPL (esempi) 2 Esempio: 2 10 con m=8 bit: 2 10 = = Esempio: 5 10 con m=? bit: provo con m=2,3,4 e scopro che 5 2 (4 1), allora m=4; adesso codifico 5 con m=4 bit: 5 10 = =

25 Conversione CPL 2 decimale (1) Se il numero è positivo (bit più significativo posto a 0 ), lo converto usando la solita sommatoria Se il numero è negativo (bit più significativo posto a 1 ), allora: sottrago 1 complemento i bit Considero il numero risultante N 2 come un NATURALE (cioè come un numero senza segno, l eventuale 1 iniziale non indica più il segno) e lo converto con la solita sommatoria. Ottengo N 10 A questo punto, il numero decimale è N 10 25

26 Conversione CPL 2 decimale (2) Se il numero è positivo (bit più significativo posto a 0 ), lo converto usando la solita sommatoria Se il numero è negativo (bit più significativo posto a 1 ), allora: Calcolo il modulo del numero, ovvero applico ancora su di esso il CPL 2 Considero il numero risultante N 2 come un NATURALE (cioè come un numero senza segno, l eventuale 1 iniziale non indica più il segno) e lo converto con la solita sommatoria. Ottengo N 10 A questo punto, il numero decimale è N 10 26

27 Conversione CPL 2 decimale (esempio) Esempio: = (???) 10 Numero negativo Applichiamo CPL 2 e otteniamo: Consideriamolo un naturale e convertiamolo usando la solita sommatoria: = Allora = Esempio: = (???) 10 Numero positivo Convertiamolo usando la solita sommatoria: =

28 Somma e sottrazione in CPL 2 Somma: come per i naturali Sottrazione: N 1 N 2 = N 1 + ( N 2 ) CPL2 Carry: Il bit di carry non viene considerato! Overflow: Se, sommando due interi di m bit dotati di segno concorde, ottengo un risultato di segno discorde (sempre considerando m bit), allora si ha un overflow (il risultato non è codificabile su m bit) e l operazione è errata L overflow non può verificarsi se gli operandi sono di segno discorde. 28

29 Somma e sottrazione in CPL 2 (esempi 1) m=7 cioè da a (+5 10 ) = ( 8 10 ) ( 3 10 ) 1111 riporti (-5 10 ) = (+8 10 ) carry (butto via il carry) (+3 10 ). 29

30 Somma e sottrazione in CPL 2 (esempi 2) 1 riporti ( ) = ( 8 10 ) carry (butto via il carry) ( : sbagliato; dovrebbe essere ) Overflow: non è codificabile su 7 bit in CLP riporti ( ) = (+2 10 ) ( : è sbagliato; dovrebbe essere ) Overflow: non è codificabile su 7 bit in CPL 2. 30

31 I Flag Insieme di segnalatori, calcolati dopo ogni istruzione: Z (Zero). Vale 1 sse il risultato dell addizione è zero; 0 altrimenti N (Negative). Vale 1 sse il risultato dell addizione è negativo; 0 altrimenti C (Carry). Vale 1 sse l addizione ha prodotto un carry; 0 altrimenti V (overflow). Vale 1 sse l addizione ha prodotto un overflow; 0 altrimenti Per esempio, nell esercizio che aveva per risultato , avrei ottenuto: Z=0; N=1; C=0; V=1 I Flag sono usati da alcune istruzioni della macchina di Von Neumann 31

32 Conclusione Se si opera con numeri che si considerano naturali, si sta attenti al Flag di carry (C), se si opera con numeri che si considerano interi, si sta attenti al Flag di overflow (V) I Flag sono computati tutti, al termine di ogni istruzione (escluse le istruzioni di salto) Come fa a macchina di Von Neumann a sapere se sta operando su numeri naturali o interi? Semplicemente, NON LO SA! Le operazioni che la macchina esegue sono identiche in entrambi i casi, soltanto l interpretazione dei risultati cambia. 32

33 Numeri reali 33

34 Parte frazionaria di un numero Un numero reale x è la somma di [x] + {x} Rappresentiamo la parte frazionaria di un numero reale In base 2, un numero frazionario N (0<=N <1), composto da n cifre, si esprime come: N n i 2 = a a a n 2 = ai 2 i= n Date n cifre in base 2, posso rappresentare i numeri nell intervallo: [0 2, 0, ], ovvero [0, 1 2 n ] l errore di approssimazione è ε < ε max = 2 n 34

35 Conversione binario decimale Si espande semplicemente il numero, similimente alla codifica in binario dei numeri naturali Esempio: n= 3 ε max = 2 3 = 0,125 (0,101) 2 = ( ) 10 = (0,875) 10 35

36 Conversione decimale binario Per passare dalla base 10 alla base 2 si moltiplica di seguito la parte frazionaria per due e si considera la parte intera Termino quando: ho utilizzato tutti gli n bit a disposizione ottengo 1 A questo punto prendo le parti intere dalla prima all'ultima 36

37 Conversione decimale binario (esempio) Convertiamo (0,21) 10 avendo n=6: 0,21 2 = 0,42 parte intera = 0 parte fraz. = 0,42 0,42 2 = 0,84 parte intera = 0 parte fraz. = 0,84 0,84 2 = 1,68 parte intera = 1 parte fraz. = 0,68 0,68 2 = 1,36 parte intera = 1 parte fraz. = 0,36 0,36 2 = 0,72 parte intera = 0 parte fraz. = 0,72 0,72 2 = 1,44 parte intera = 1 parte fraz. = 0,44 Prendo le parti intere, dalla prima all ultima 0, , Riconvertendo: 0, = 0, ε=0,21 0,203125=0, ε < ε max = 2 6 =0,

38 Numeri fazionari (nota) Si noti che un numero frazionario decimale finito può avere uno sviluppo binario infinito periodico Esempio: (0,3) 10 = (0, ) 2 Non è però possibile il contrario!! 38

39 Virgola fissa Uso m bit e n bit per parte intera e frazionaria Esempio (m=8, n=6, tot. 14 bit): -123, = , , , Come scelgo m e n? R Precisione costante lungo : 0 R 39

40 Virgola mobile (floating point) Il numero è espresso come: r = m b n m e n sono in base p m: mantissa (numero frazionario con segno) b: base della notazione esponenziale (numero naturale) n: caratteristica (numero intero) Esempio (p=10, b=10): -331,6875 = 0, m = 0, n = 3 R Precisione variabile lungo. Per es. con 5 cifre per m: 13212,4323 = 0, = (ho perso 0,4323) 7, = 0, = 7,3453 (ho perso 0,000012) R 0 40

41 Virgola mobile (floating point) Mantissa (m): Codifico solo la parte a destra della virgola Codifico il segno Caratteristica (n): l 2 bit l 1 bit m con segno (l 1 bit) n (l 2 bit) 41

42 Virgola mobile (floating point) Quando la prima cifra a destra della virgola è diversa da zero, il numero in virgola mobile si dice normalizzato Es. 0, è normalizzato perché la prima cifra a destra della virgola è 3 La normalizzazione permette di avere, a parità di cifre usate per la mantissa, una maggiore precisione. Es. Uso l 1 =5 cifre per la mantissa: +45, , , Ho perso 0,0008 Ho perso 0,

43 Caratteri 43

44 Caratteri Codifica numerica ASCII (American Standard Code for Information Interchange) utilizza 7 bit (estesa a 8 bit) L ASCII codifica I caratteri alfanumerici (lettere maiuscole e minuscole e numeri), compreso lo spazio I simboli ecc) Alcuni caratteri di controllo (TAB, LINEFEED, RETURN, BELL, ecc). 44

45 Tabella ASCII (parziale) DEC CAR DEC CAR DEC CAR DEC CAR DEC CAR A 75 K 97 a 107 k B 67 C 68 D 69 E 70 F 71 G 72 H 73 I 74 J 76 L 77 M 78 N 79 O 80 P 81 Q 82 R 83 S 84 T 85 U 86 V 87 W 88 X 89 Y 90 Z 98 b 99 c 100 d 101 e 102 f 103 g 104 h 105 i 106 j 108 l 109 m 110 n 111 o 112 p 113 q 114 r 115 s 116 t 117 u 118 v 119 w 120 x 121 y 122 z 45

46 Tabella ASCII Anche le cifre numeriche sono codificate Le lettere sono in sequenza alfabetica Per passare dal minuscolo al maiuscolo: Codice maiuscolo = Codice minuscolo Alcuni caratteri sulla tastiera italiana: ALT-123= { oppure SHIFT-ALTGR-[ ALT-125= } oppure SHIFT-ALTGR-] ALT-126= ~ 46

47 Raissunto codifiche Ad una stringa binaria deve essere associato un significato: la codifica fa questo Esempio: la stringa può essere 106 in binario puro -42 in modulo con segno -22 in complemento a 2 j nel codice ASCII 47

La codifica binaria. Informatica B. Daniele Loiacono

La codifica binaria. Informatica B. Daniele Loiacono La codifica binaria Informatica B Introduzione Il calcolatore usa internamente una codifica binaria ( e ) per rappresentare: i dati da elaborare le istruzioni dei programmi eseguibili Fondamenti di codifica

Dettagli

La codifica binaria. Fondamenti di Informatica. Daniele Loiacono

La codifica binaria. Fondamenti di Informatica. Daniele Loiacono La codifica binaria Fondamenti di Informatica Introduzione q Il calcolatore usa internamente una codifica binaria (0 e 1) per rappresentare: i dati da elaborare (numeri, testi, immagini, suoni, ) le istruzioni

Dettagli

La codifica binaria. Informatica B. Daniele Loiacono

La codifica binaria. Informatica B. Daniele Loiacono La codifica binaria Informatica B Introduzione Il calcolatore usa internamente una codifica binaria (0 e 1) per rappresentare: i dati da elaborare (numeri, testi, immagini, suoni, ) le istruzioni dei programmi

Dettagli

Somma di numeri binari

Somma di numeri binari Fondamenti di Informatica: Codifica Binaria dell Informazione 1 Somma di numeri binari 0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 10 Esempio: 10011011 + 00101011 = 11000110 in base e una base Fondamenti di

Dettagli

Rappresentazione di dati: numerazione binaria. Appunti per la cl. 3 Di A cura del prof. Ing. Mario Catalano

Rappresentazione di dati: numerazione binaria. Appunti per la cl. 3 Di A cura del prof. Ing. Mario Catalano Rappresentazione di dati: numerazione binaria Appunti per la cl. 3 Di A cura del prof. Ing. Mario Catalano Rappresentazione binaria Tutta l informazione interna ad un computer è codificata con sequenze

Dettagli

Conversione di base. Conversione decimale binario. Si calcolano i resti delle divisioni per due

Conversione di base. Conversione decimale binario. Si calcolano i resti delle divisioni per due Conversione di base Dato N>0 intero convertirlo in base b dividiamo N per b, otteniamo un quoto Q 0 ed un resto R 0 dividiamo Q 0 per b, otteniamo un quoto Q 1 ed un resto R 1 ripetiamo finché Q n < b

Dettagli

I sistemi di numerazione. Informatica - Classe 3ª, Modulo 1

I sistemi di numerazione. Informatica - Classe 3ª, Modulo 1 I sistemi di numerazione Informatica - Classe 3ª, Modulo 1 1 La rappresentazione interna delle informazioni ELABORATORE = macchina binaria Informazione esterna Sequenza di bit Spett. Ditta Rossi Via Roma

Dettagli

Codifica binaria. Rappresentazioni medianti basi diverse

Codifica binaria. Rappresentazioni medianti basi diverse Codifica binaria Rappresentazione di numeri Notazione di tipo posizionale (come la notazione decimale). Ogni numero è rappresentato da una sequenza di simboli Il valore del numero dipende non solo dalla

Dettagli

Codifica. Rappresentazione di numeri in memoria

Codifica. Rappresentazione di numeri in memoria Codifica Rappresentazione di numeri in memoria Rappresentazione polinomiale dei numeri Un numero decimale si rappresenta in notazione polinomiale moltiplicando ciascuna cifra a sinistra della virgola per

Dettagli

Analogico vs. Digitale. LEZIONE II La codifica binaria. Analogico vs digitale. Analogico. Digitale

Analogico vs. Digitale. LEZIONE II La codifica binaria. Analogico vs digitale. Analogico. Digitale Analogico vs. Digitale LEZIONE II La codifica binaria Analogico Segnale che può assumere infiniti valori con continuità Digitale Segnale che può assumere solo valori discreti Analogico vs digitale Il computer

Dettagli

Codifica di informazioni numeriche

Codifica di informazioni numeriche Università di Roma La Sapienza Dipartimento di Informatica e Sistemistica Codifica di informazioni numeriche Fondamenti di Informatica - Ingegneria Elettronica Leonardo Querzoni querzoni@dis.uniroma1.it

Dettagli

Lezione 3. I numeri relativi

Lezione 3. I numeri relativi Lezione 3 L artimetcia binaria: i numeri relativi i numeri frazionari I numeri relativi Si possono rappresentare i numeri negativi in due modi con modulo e segno in complemento a 2 1 Modulo e segno Si

Dettagli

Rappresentazione di Numeri Reali. Rappresentazione in virgola fissa (fixed-point) Rappresentazione in virgola fissa (fixed-point)

Rappresentazione di Numeri Reali. Rappresentazione in virgola fissa (fixed-point) Rappresentazione in virgola fissa (fixed-point) Rappresentazione di Numeri Reali Un numero reale è una grandezza continua Può assumere infiniti valori In una rappresentazione di lunghezza limitata, deve di solito essere approssimato. Esistono due forme

Dettagli

Aritmetica dei Calcolatori Elettronici

Aritmetica dei Calcolatori Elettronici Aritmetica dei Calcolatori Elettronici Prof. Orazio Mirabella L informazione Analogica Segnale analogico: variabile continua assume un numero infinito di valori entro l intervallo di variazione intervallo

Dettagli

Rappresentazione e Codifica dell Informazione

Rappresentazione e Codifica dell Informazione Rappresentazione e Codifica dell Informazione Capitolo 1 Chianese, Moscato, Picariello, Alla scoperta dei fondamenti dell informatica un viaggio nel mondo dei BIT, Liguori editore. Sistema di numerazione

Dettagli

Sistemi di Numerazione Binaria

Sistemi di Numerazione Binaria Sistemi di Numerazione Binaria BIN.1 Numeri e numerali Numero: entità astratta Numerale : stringa di caratteri che rappresenta un numero in un dato sistema di numerazione Lo stesso numero è rappresentato

Dettagli

La "macchina" da calcolo

La macchina da calcolo La "macchina" da calcolo Abbiamo detto che gli algoritmi devono essere scritti in un linguaggio "comprensibile all'esecutore" Se il nostro esecutore è il "calcolatore", questo che linguaggio capisce? che

Dettagli

Aritmetica dei Calcolatori

Aritmetica dei Calcolatori Aritmetica dei Calcolatori Luca Abeni e Luigi Palopoli February 18, 2016 Informazione nei Computer Un computer è un insieme di circuiti elettronici......in ogni circuito, la corrente può passare o non

Dettagli

Rappresentazione dei Dati

Rappresentazione dei Dati Parte II I computer hanno una memoria finita. Quindi, l insieme dei numeri interi e reali che si possono rappresentare in un computer è necessariamente finito 2 Codifica Binaria Tutti i dati usati dagli

Dettagli

La codifica. dell informazione

La codifica. dell informazione 00010010101001110101010100010110101000011100010111 00010010101001110101010100010110101000011100010111 La codifica 00010010101001110101010100010110101000011100010111 dell informazione 00010010101001110101010100010110101000011100010111

Dettagli

Informatica. Informatica. Grandezze digitali. Grandezze analogiche

Informatica. Informatica. Grandezze digitali. Grandezze analogiche LEZIONI 2 e 3 Rappresentazione dell informazione 1 LEZIONI 2 e 3 Rappresentazione dell informazione 2 Informatica Informatica informatica informazione mezzi fisici logici LA RAPPRESENTAZIONE DELLE INFORMAZIONI

Dettagli

Sistema Numerico Decimale

Sistema Numerico Decimale Sistema Numerico Decimale 10 digits d = [0,1,2,3,4,5,6,7,8,9] 734 = 7 * 10 2 + 3 * 10 1 + 4 * 10 0 0.234 = 2 * 10-1 + 3 * 10-2 + 8 * 10-3 In generale un numero N con p digits(d) interi ed n digits frazionari

Dettagli

Sistemi di Elaborazione delle Informazioni

Sistemi di Elaborazione delle Informazioni Sistemi di Elaborazione delle Informazioni Rappresentazione dell Informazione 1 Il bit Si consideri un alfabeto di 2 simboli: 0, 1 Che tipo di informazione si può rappresentare con un bit? 2 Codifica binaria

Dettagli

Esercizi. Soluzioni degli esercizi. Soluzioni degli esercizi. Soluzioni degli esercizi

Esercizi. Soluzioni degli esercizi. Soluzioni degli esercizi. Soluzioni degli esercizi Esercizi Convertire in formato decimale i seguenti numeri binari: 11, 101011, 1100, 111111, 10101010 Convertire in formato decimale i seguenti numeri ottali: 12, 23, 345, 333, 560 Convertire in formato

Dettagli

Codice binario. Codice. Codifica - numeri naturali. Codifica - numeri naturali. Alfabeto binario: costituito da due simboli

Codice binario. Codice. Codifica - numeri naturali. Codifica - numeri naturali. Alfabeto binario: costituito da due simboli Codice La relazione che associa ad ogni successione ben formata di simboli di un alfabeto il dato corrispondente è detta codice. Un codice mette quindi in relazione le successioni di simboli con il significato

Dettagli

Sistemi di numerazione

Sistemi di numerazione Sistemi di numerazione Introduzione Un sistema di numerazione è un sistema utilizzato per esprimere i numeri e possibilmente alcune operazioni che si possono effettuare su di essi. Storicamente i sistemi

Dettagli

Fondamenti di Programmazione. Sistemi di rappresentazione

Fondamenti di Programmazione. Sistemi di rappresentazione Fondamenti di Programmazione Sistemi di rappresentazione Numeri e numerali Il numero cinque 5 V _ Π 五 Arabo Romano Maya Greco Cinese Il sistema decimale Sistemi posizionali 1 10 3 + 4 10 2 + 9 10 1 + 2

Dettagli

Algebra di Boole e porte logiche

Algebra di Boole e porte logiche Algebra di Boole e porte logiche Dott.ssa Isabella D'Alba Corso PENTEST MIND PROJECT 2016 Algebra di Boole e porte logiche (I parte) Algebra di Boole I Sistemi di Numerazione (Posizionali, Non posizionali)

Dettagli

Lezione 4. Sommario. L artimetica binaria: I numeri relativi e frazionari. I numeri relativi I numeri frazionari

Lezione 4. Sommario. L artimetica binaria: I numeri relativi e frazionari. I numeri relativi I numeri frazionari Lezione 4 L artimetica binaria: I numeri relativi e frazionari Sommario I numeri relativi I numeri frazionari I numeri in virgola fissa I numeri in virgola mobile 1 Cosa sono inumeri relativi? I numeri

Dettagli

Codifica dati e istruzioni. Lezione 9. Codifica dati e istruzioni. Codifica dati e istruzioni. Codifica binaria dell informazione

Codifica dati e istruzioni. Lezione 9. Codifica dati e istruzioni. Codifica dati e istruzioni. Codifica binaria dell informazione 24//22 Codifica dati e istruzioni Lezione 9 Codifica dell informazione Algoritmi = istruzioni + dati. Per scrivere un programma che descriva un algoritmo è necessario rappresentare istruzioni e dati utilizzando

Dettagli

I.4 Rappresentazione dell informazione

I.4 Rappresentazione dell informazione I.4 Rappresentazione dell informazione Università di Ferrara Dipartimento di Economia e Management Insegnamento di Informatica Ottobre 13, 2015 Argomenti Introduzione 1 Introduzione 2 3 L elaboratore Introduzione

Dettagli

Calcolatori: Rappresentazione dei Dati e Aritmetica binaria

Calcolatori: Rappresentazione dei Dati e Aritmetica binaria Calcolatori: Rappresentazione dei Dati e Aritmetica binaria 1 Codifica dell Informazione Ad un calcolatore le informazioni sono fornite, ad esempio tramite tastiera, come sequenze di caratteri alfanumerici

Dettagli

Fondamenti di Informatica - 1. Prof. B.Buttarazzi A.A. 2011/2012

Fondamenti di Informatica - 1. Prof. B.Buttarazzi A.A. 2011/2012 Fondamenti di Informatica - 1 Prof. B.Buttarazzi A.A. 2011/2012 I numeri reali Sommario Conversione dei numeri reali da base 10 a base B Rappresentazione dei numeri reali Virgola fissa Virgola mobile (mantissa

Dettagli

Numeri reali. Notazione scientifica (decimale) Floating Point. Normalizzazione. Esempi. Aritmetica del calcolatore (virgola mobile)

Numeri reali. Notazione scientifica (decimale) Floating Point. Normalizzazione. Esempi. Aritmetica del calcolatore (virgola mobile) Numeri reali Aritmetica del calcolatore (virgola mobile) Capitolo 9 1 Numeri con frazioni Posso essere rappresentati anche in binario Es.: 1001.1010 = 2 4 + 2 0 +2-1 + 2-3 =9.625 Quante cifre dopo la virgola?

Dettagli

Fondamenti di Informatica - 1. Prof. B.Buttarazzi A.A. 2011/2012

Fondamenti di Informatica - 1. Prof. B.Buttarazzi A.A. 2011/2012 Fondamenti di Informatica - 1 Prof. B.Buttarazzi A.A. 2011/2012 Sommario Rappresentazione dei numeri naturali (N) Rappresentazione dei numeri interi (Z) Modulo e segno In complemento a 2 Operazioni aritmetiche

Dettagli

LA CODIFICA DELL INFORMAZIONE. Introduzione ai sistemi informatici D. Sciuto, G. Buonanno, L. Mari, McGraw-Hill Cap.2

LA CODIFICA DELL INFORMAZIONE. Introduzione ai sistemi informatici D. Sciuto, G. Buonanno, L. Mari, McGraw-Hill Cap.2 LA CODIFICA DELL INFORMAZIONE Introduzione ai sistemi informatici D. Sciuto, G. Buonanno, L. Mari, McGraw-Hill Cap.2 Codifica dati e istruzioni Per scrivere un programma è necessario rappresentare istruzioni

Dettagli

Lezione 2. Rappresentazione dell informazione

Lezione 2. Rappresentazione dell informazione Architetture dei calcolatori e delle reti Lezione 2 Rappresentazione dell informazione A. Borghese, F. Pedersini Dip. Scienze dell Informazione (DSI) Università degli Studi di Milano L 2 1/30 Alcune unità

Dettagli

Rappresentazione dell Informazione

Rappresentazione dell Informazione Rappresentazione dell Informazione Rappresentazione delle informazioni in codice binario Caratteri Naturali e Reali positivi Interi Razionali Rappresentazione del testo Una stringa di bit per ogni simbolo

Dettagli

Corso di Architettura degli Elaboratori

Corso di Architettura degli Elaboratori Corso di Architettura degli Elaboratori Codifica dell'informazione: Numeri Binari (lucidi originali della Prof.ssa Zacchi e del Prof. Balossino, rivisti dal Prof. Baldoni) 1 Codifica dell'informazione?

Dettagli

Fondamenti di Programmazione. Sistemi di rappresentazione

Fondamenti di Programmazione. Sistemi di rappresentazione Fondamenti di Programmazione Sistemi di rappresentazione Numeri e numerali Il numero cinque 5 V _ Π 五 Arabo Romano Maya Greco Cinese Sistemi posizionali 1 10 3 + 4 10 2 + 9 10 1 + 2 10 0 Sistemi posizionali

Dettagli

CONVERSIONE BINARIO DECIMALE NB: Convertire in decimale il numero binario N = N =

CONVERSIONE BINARIO DECIMALE NB: Convertire in decimale il numero binario N = N = NOTAZIONE BINARIA, OTTALE, ESADECIMALE CODIFICA DI NUMERI INTERI RELATIVI 1 CONVERSIONE BINARIO DECIMALE Convertire in decimale il numero binario N = 101011.1011 2 N = 1 2 5 + 0 2 4 + 1 2 3 + 0 2 2 + 1

Dettagli

Abilità Informatiche e Telematiche

Abilità Informatiche e Telematiche Abilità Informatiche e Telematiche (Laurea Triennale + Laurea Magistrale) Marco Pedicini mailto:marco.pedicini@uniroma3.it Corso di Laurea Magistrale in Informazione, Editoria e Giornalismo, Università

Dettagli

Rappresentazione dei dati in memoria

Rappresentazione dei dati in memoria Rappresentazione dei dati in memoria La memoria Una memoria deve essere un insieme di oggetti a più stati. Questi oggetti devono essere tali che: le dimensioni siano limitate il tempo necessario per registrare

Dettagli

Programma del corso. Rappresentazione delle Informazioni. Introduzione agli algoritmi. Architettura del calcolatore

Programma del corso. Rappresentazione delle Informazioni. Introduzione agli algoritmi. Architettura del calcolatore Programma del corso Introduzione agli algoritmi Rappresentazione delle Informazioni Architettura del calcolatore Reti di Calcolatori (Reti Locali, Internet) Elementi di Programmazione Rappresentazione

Dettagli

Argomenti trattati. Informazione Codifica Tipo di un dato Rappresentazione dei numeri Rappresentazione dei caratteri e di altre informazioni

Argomenti trattati. Informazione Codifica Tipo di un dato Rappresentazione dei numeri Rappresentazione dei caratteri e di altre informazioni Argomenti trattati Informazione Codifica Tipo di un dato Rappresentazione dei numeri Rappresentazione dei caratteri e di altre informazioni Informazione mi dai il numero di Andrea? 0817651831 Il numero

Dettagli

Rappresentazione della informazione

Rappresentazione della informazione INFORMATICA B Ingegneria Elettrica Rappresentazione della informazione Problema della rappresentazione Come vengono gestite le informazioni in un calcolatore? Numeri interi Numeri con la virgola Caratteri

Dettagli

Il Modello di von Neumann (2) Prevede 3 entità logiche:

Il Modello di von Neumann (2) Prevede 3 entità logiche: Introduzione all Architettura degli Elaboratori Sommario Macchina di von Neumann Esecuzione dei programmi Rappresentazione dei dati Dati numerici Dati alfabetici 1 2 Il Modello di von Neumann (1) L architettura

Dettagli

Programma del corso. Rappresentazione delle Informazioni. Introduzione agli algoritmi. Architettura del calcolatore. Elementi di Programmazione

Programma del corso. Rappresentazione delle Informazioni. Introduzione agli algoritmi. Architettura del calcolatore. Elementi di Programmazione Programma del corso Introduzione agli algoritmi Rappresentazione delle Informazioni Architettura del calcolatore Elementi di Programmazione Rappresentazione dell informazione Varie rappresentazioni sono

Dettagli

3) Rappresentazione dei dati in memoria. Lab.Calc. AA2006/07

3) Rappresentazione dei dati in memoria. Lab.Calc. AA2006/07 3) Rappresentazione dei dati in memoria Lab.Calc. AA26/7 La memoria Una memoria deve essere un insieme di oggetti a più stati. Questi oggetti devono essere tali che: le dimensioni siano limitate il tempo

Dettagli

La codifica. dell informazione

La codifica. dell informazione La codifica dell informazione (continua) Codifica dei numeri Il codice ASCII consente di codificare le cifre decimali da 0 a 9 fornendo in questo modo un metodo per la rappresentazione dei numeri Il numero

Dettagli

Esercitazione del 2/3/2010- Numeri binari e conversione

Esercitazione del 2/3/2010- Numeri binari e conversione Esercitazione del 2/3/2010- Numeri binari e conversione 1. Conversione binario decimale a. 1101 2? 10 1 1 2 Base 2 La posizione della cifra all interno del numero indica il peso della cifra stessa, cioè

Dettagli

Laboratorio del 21/10/2010- Numeri binari e conversione

Laboratorio del 21/10/2010- Numeri binari e conversione Laboratorio del 21/10/2010- Numeri binari e conversione 1. Conversione binario decimale a. 1101 2? 10 1 1 2 Base 2 La posizione della cifra all interno del numero indica il peso della cifra stessa, cioè

Dettagli

Calcolatori Elettronici Parte II: Sistemi di Numerazione Binaria. Prof. Riccardo Torlone Università di Roma Tre

Calcolatori Elettronici Parte II: Sistemi di Numerazione Binaria. Prof. Riccardo Torlone Università di Roma Tre Calcolatori Elettronici Parte II: Sistemi di Numerazione Binaria Prof. Riccardo Torlone Università di Roma Tre Unità di misura Attenzione però, se stiamo parlando di memoria: 1Byte = 8 bit 1K (KiB: KibiByte)

Dettagli

Informatica di Base - 6 c.f.u.

Informatica di Base - 6 c.f.u. Università degli Studi di Palermo Dipartimento di Ingegneria Informatica Informatica di Base - 6 c.f.u. Anno Accademico 27/28 Docente: ing. Salvatore Sorce Rappresentazione delle informazioni Sistemi di

Dettagli

Codifica dei Numeri. Informatica ICA (LC) 12 Novembre 2015 Giacomo Boracchi

Codifica dei Numeri. Informatica ICA (LC) 12 Novembre 2015 Giacomo Boracchi Codifica dei Numeri Informatica ICA (LC) 12 Novembre 2015 Giacomo Boracchi giacomo.boracchi@polimi.it Rappresentazione dei Numeri Codifica dei Numeri in Base 10 Le cifre che abbiamo a disposizione sono

Dettagli

Rappresentazione dell informazione

Rappresentazione dell informazione Rappresentazione dell informazione Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@di.unimi.it Università degli Studi di Milano Riferimenti al testo: Paragrafi 2.4, 2.9, 3.1,

Dettagli

Lezione 2. La conoscenza del mondo

Lezione 2. La conoscenza del mondo Lezione 2 Analogico/Digitale Il sistema binario L aritmetica binaria La conoscenza del mondo Per poter parlare (ed elaborare) degli oggetti (nella visione scientifica) si deve poter assegnare a questi

Dettagli

Rappresentazione dell informazione

Rappresentazione dell informazione Architettura dei Calcolatori Rappresentazione dell informazione Ing. dell Automazione A.A. 2011/12 Gabriele Cecchetti Rappresentazione dell informazione Sommario: Numerazione posizionale Conversione tra

Dettagli

Esercitazione del 09/03/ Soluzioni

Esercitazione del 09/03/ Soluzioni Esercitazione del 09/03/2006 - Soluzioni. Conversione binario decimale ( Rappresentazione dell Informazione Conversione in e da un numero binario, slide 0) a. 0 2? 0 2 Base 2 Si cominciano a contare le

Dettagli

Corso di Laurea Ingegneria Civile Fondamenti di Informatica

Corso di Laurea Ingegneria Civile Fondamenti di Informatica Corso di Laurea Ingegneria Civile Fondamenti di Informatica Dispensa 03 La rappresentazione dell informazione Marzo 2010 La rappresentazione dell informazione 1 Prerequisiti Architettura calcolatore Sistema

Dettagli

Rappresentazione di numeri relativi (interi con segno) Rappresentazione di numeri interi relativi (con N bit) Segno e Valore Assoluto

Rappresentazione di numeri relativi (interi con segno) Rappresentazione di numeri interi relativi (con N bit) Segno e Valore Assoluto Rappresentazione di numeri relativi (interi con segno) E possibile estendere in modo naturale la rappresentazione dei numeri naturali ai numeri relativi. I numeri relativi sono numeri naturali preceduti

Dettagli

Un ripasso di aritmetica: Conversione dalla base 10 alla base 2

Un ripasso di aritmetica: Conversione dalla base 10 alla base 2 Un ripasso di aritmetica: Conversione dalla base 10 alla base 2 Dato un numero N rappresentato in base dieci, la sua rappresentazione in base due sarà del tipo: c m c m-1... c 1 c 0 (le c i sono cifre

Dettagli

LA TRASMISSIONE DELLE INFORMAZIONI SECONDA PARTE 1

LA TRASMISSIONE DELLE INFORMAZIONI SECONDA PARTE 1 LA TRASMISSIONE DELLE INFORMAZIONI SECONDA PARTE 1 La rappresentazione dei numeri con la virgola 1 Conversione da decimale in altre basi di numeri con virgola 2 La moltiplicazione in binario 9 Divisione

Dettagli

Calcolo numerico e programmazione Rappresentazione dei numeri

Calcolo numerico e programmazione Rappresentazione dei numeri Calcolo numerico e programmazione Rappresentazione dei numeri Tullio Facchinetti 16 marzo 2012 13:26 http://robot.unipv.it/toolleeo Evoluzione storica la rappresentazione

Dettagli

Lo schema seguente presenta le principali informazioni che devono essere rappresentate mediante codici binari.

Lo schema seguente presenta le principali informazioni che devono essere rappresentate mediante codici binari. Rappresentaziione delllle iinformaziionii allll iinterno dii un ellaboratore I calcolatori digitali sono sistemi in grado di elaborare e archiviare nelle loro memorie esclusivamente grandezze binarie.

Dettagli

Rappresentazione di numeri reali. Architetture dei Calcolatori (Lettere. Perché la rappresentazione in virgola mobile

Rappresentazione di numeri reali. Architetture dei Calcolatori (Lettere. Perché la rappresentazione in virgola mobile Rappresentazione di numeri reali Architetture dei Calcolatori (Lettere A-I) Rappresentazione in Virgola Mobile Prof. Francesco Lo Presti Con un numero finito di cifre è possibile rappresentare solo un

Dettagli

Decimale, binaria,esadecimale

Decimale, binaria,esadecimale Decimale, binaria,esadecimale Introduzione Tutti i sistemi di numerazione sono posizionali nel senso che le cifre assumono un determinato valore a seconda della posizione occupata all interno del numero

Dettagli

Conversione binario-decimale. Interi unsigned in base 2. Esercitazioni su rappresentazione. dei numeri e aritmetica

Conversione binario-decimale. Interi unsigned in base 2. Esercitazioni su rappresentazione. dei numeri e aritmetica Esercitazioni su rappresentazione dei numeri e aritmetica Salvatore Orlando & Marta Simeoni Interi unsigned in base 2 I seguenti numeri naturali sono rappresentabili usando il numero di bit specificato?

Dettagli

Utilizzata per rappresentare numeri frazionari nella. numero =(mantissa) 2 esponente. Il formato piu utilizzato e quello IEEE P754, rappresentato

Utilizzata per rappresentare numeri frazionari nella. numero =(mantissa) 2 esponente. Il formato piu utilizzato e quello IEEE P754, rappresentato Rappresentazione in oating-point Utilizzata per rappresentare numeri frazionari nella notazione esponenziale: numero =(mantissa) 2 esponente Il formato piu utilizzato e quello IEEE P754, rappresentato

Dettagli

04 Aritmetica del calcolatore

04 Aritmetica del calcolatore Aritmetica del calcolatore Numeri a precisione finita - con un numero finito di cifre - non godono della proprietà di chiusura - le violazioni creano due situazioni distinte: - overflow - underflow Pagina

Dettagli

Introduzione. Elementi di Informatica. Sistemi di Numerazione Addizionali. Sistemi di Numerazione. Sistemi di Numerazione Romano

Introduzione. Elementi di Informatica. Sistemi di Numerazione Addizionali. Sistemi di Numerazione. Sistemi di Numerazione Romano Università degli Studi di Udine Facoltà di Ingegneria CORSO DI LAUREA IN SCIENZE dell ARCHITETTURA Elementi di Informatica Informazione e Codifica D. Gubiani Nei sistemi informatici le informazioni vengono

Dettagli

Laboratorio di Informatica

Laboratorio di Informatica per chimica industriale e chimica applicata e ambientale ESERCITAZIONE 2 Uso dell accessorio calcolatrice e conversione di numeri 1 Uso dell accessorio calcolatrice per Passaggi fra basi diverse Aritmetica

Dettagli

Rappresentazione numeri relativi e reali

Rappresentazione numeri relativi e reali Rappresentazione numeri relativi e reali Lezione 2 Rappresentazione numeri relativi Rappresentazione numeri reali Rappresentazione in Modulo e Segno Rappresentare separatamente il segno (mediante un bit

Dettagli

La codifica digitale

La codifica digitale La codifica digitale Codifica digitale Il computer e il sistema binario Il computer elabora esclusivamente numeri. Ogni immagine, ogni suono, ogni informazione per essere compresa e rielaborata dal calcolatore

Dettagli

Soluzioni Esercizi su rappresentazione binaria dell informazione

Soluzioni Esercizi su rappresentazione binaria dell informazione Soluzioni Esercizi su rappresentazione binaria dell informazione Mauro Bianco 1 Numeri naturali Esercizi: 1. Si calcoli 323 4 + 102 4. Partendo da destra a sinistra 2 4 + 3 4 5 10 4 + 1 10 11 4. La cifra

Dettagli

I SISTEMI DI NUMERAZIONE Sistema di Numerazione

I SISTEMI DI NUMERAZIONE Sistema di Numerazione I SISTEMI DI NUMERAZIONE Sistema di Numerazione Un sistema di numerazione è un insieme di simboli e regole, atti a dar luogo ad una codifica numerica, cioè a produrre un insieme di simboli diversi tra

Dettagli

Rappresentazioni numeriche

Rappresentazioni numeriche Rappresentazioni numeriche Un numero è dotato di un valore una rappresentazione La rappresentazione di un numero è il sistema che utilizziamo per indicarne il valore. Normalmente è una sequenza (stringa)

Dettagli

Aritmetica dei Calcolatori

Aritmetica dei Calcolatori Aritmetica dei Calcolatori Nicu Sebe March 14, 2016 Informatica Nicu Sebe 1 / 34 Operazioni su Bit Bit Scienza della rappresentazione e dell elaborazione dell informazione Abbiamo visto come i computer

Dettagli

Esame di Informatica. Facoltà di Scienze Motorie LE UNITA DI MISURA (1/4) LE UNITA DI MISURA (3/4) LE UNITA DI MISURA (2/4) Lezione 2

Esame di Informatica. Facoltà di Scienze Motorie LE UNITA DI MISURA (1/4) LE UNITA DI MISURA (3/4) LE UNITA DI MISURA (2/4) Lezione 2 LE UNITA DI MISURA (1/4) Facoltà di Scienze Motorie Esame di Informatica A.A. 2010/11 Lezione 2 La più piccola unità di misura usata in informatica è il bit (Binary digit), cioè numero binario. Due stati:

Dettagli

Fondamenti di Informatica - 1. Esercizi A.A. 2011/2012

Fondamenti di Informatica - 1. Esercizi A.A. 2011/2012 Fondamenti di Informatica - 1 Esercizi A.A. 2011/2012 Esercizio Esercizio Esercizio Esercizio Esercizio Dato ilnumero 11000000111100000000000000000000 rappresentato secondo lo standard floating point IEEE

Dettagli

Codifica binaria dell informazione

Codifica binaria dell informazione Codifica binaria dell informazione Marco D. Santambrogio marco.santambrogio@polimi.it Ver. aggiornata al 13 Agosto 2014 Un obiettivo per domarli tutti 2 Obiettivi Rappresentazione dell informazione Da

Dettagli

Introduzione e Nozioni di Base. Prof. Thomas Casali

Introduzione e Nozioni di Base. Prof. Thomas Casali Università degli studi di Bologna Facoltà di Economia Sede di Forlì Introduzione e Nozioni di Base Corso di Laurea in Economia di Internet Prof. Thomas Casali thomas@casali.biz La rappresentazione digitale

Dettagli

Appunti del corso di Sistemi - Conversioni numeriche anno scolastico 2007/2008

Appunti del corso di Sistemi - Conversioni numeriche anno scolastico 2007/2008 I sistemi numerici Il sistema Decimale è costituito da 10 simboli. I dieci simboli che tutti conosciamo sono lo zero (0), l uno (1), il due (2), ecc. ecc., indicati come l insieme Dec={0,1,2,3,4,5,6,7,8,9}.

Dettagli

FONDAMENTI DI INFORMATICA I Prof. Negri

FONDAMENTI DI INFORMATICA I Prof. Negri FONDAMENTI DI INFORMATICA I Prof. Negri RAPPRESENTAZIONE DELLE INFORMAZIONI NEI SISTEMI DIGITALI Considerazione sulla codifica dell informazione Siamo abituati a considerare la disponibilità di un numero

Dettagli

Numeri binari Conversioni numeriche: decimali-binario Operazioni algebriche con numeri binari Russo ing. Saverio

Numeri binari Conversioni numeriche: decimali-binario Operazioni algebriche con numeri binari Russo ing. Saverio Numeri binari Conversioni numeriche: decimali-binario Operazioni algebriche con numeri binari Russo ing. Saverio Arch. Elab. - S. Orlando 1 Il trionfo dello ZERO Il trionfo dello ZERO C era una volta un

Dettagli

Calcolo numerico e programmazione Rappresentazione dei numeri

Calcolo numerico e programmazione Rappresentazione dei numeri Calcolo numerico e programmazione Rappresentazione dei numeri Tullio Facchinetti 16 marzo 2012 10:54 http://robot.unipv.it/toolleeo Rappresentazione dei numeri nei calcolatori

Dettagli

2. Codifica dell informazione

2. Codifica dell informazione 2. Codifica dell informazione Codifica Una codifica è una regola per associare in modo univoco i valori di un dato da codificare con sequenze di simboli. La corrispondenza definita dalla codifica è arbitraria,

Dettagli

APPUNTI DI INFORMATICA

APPUNTI DI INFORMATICA APPUNTI DI INFORMATICA Per il biennio di liceo scientifico scienze applicate Sommario Il calcolo binario... 2 Numerazione Decimale... 2 Numerazione Binaria... 2 Conversione Binario -> Decimale... 2 Conversione

Dettagli

Rappresentazione dei numeri reali in un calcolatore

Rappresentazione dei numeri reali in un calcolatore Corso di Calcolatori Elettronici I A.A. 2010-2011 Rappresentazione dei numeri reali in un calcolatore Lezione 3 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Rappresentazione di numeri

Dettagli

12BHD - Informatica - soluzioni Appendice B del quaderno di testo - v. 1.05

12BHD - Informatica - soluzioni Appendice B del quaderno di testo - v. 1.05 Esercizio 1 Effettuare i seguenti cambiamenti di codifica su numeri naturali: 123 10 = x 2 [ 1111011 2 ] 011101 2 = x 10 [ 29 10 ] 23 10 = x 5 [ 43 5 ] 123 5 = x 10 [ 38 10 ] 123 10 = x H [ 7B 16 ] A1

Dettagli

Sperimentazioni di Fisica I mod. A Lezione 3

Sperimentazioni di Fisica I mod. A Lezione 3 Sperimentazioni di Fisica I mod. A Lezione 3 Alberto Garfagnini Marco Mazzocco Cinzia Sada La Rappresentazione dei Numeri Lezione III: Numeri Reali 1. Rappresentazione e Cambiamento di Base Dipartimento

Dettagli

La rappresentazione dei dati

La rappresentazione dei dati La rappresentazione dei dati Base binaria E la base minima che include cifre diverse si devono conoscere le tabelline dello 0 dell 1 in elettronica si realizzano bene dispositivi bistabili There are only

Dettagli

Enrica Reggiani 31/10/2010 NUMERI E CODICI

Enrica Reggiani 31/10/2010 NUMERI E CODICI NUMERI E CODICI SISTEMI DI NUMERAZIONE Sistema posizionale e forma polinomiale del numero ll sistema decimale è quello più congeniale all uomo; il sistema binario è alla base della rappresentazione dei

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione dei numeri relativi

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione dei numeri relativi Codice BCD Prima di passare alla rappresentazione dei numeri relativi in binario vediamo un tipo di codifica che ha una certa rilevanza in alcune applicazioni: il codice BCD (Binary Coded Decimal). È un

Dettagli

Architettura degli Elaboratori I Esercitazione 1 - Rappresentazione dei numeri

Architettura degli Elaboratori I Esercitazione 1 - Rappresentazione dei numeri Architettura degli Elaboratori I Esercitazione 1 - Rappresentazione dei numeri 1 Da base 2 a base 10 I seguenti esercizi richiedono di convertire in base 10 la medesima stringa binaria codificata rispettivamente

Dettagli

Informatica Generale 1 - Esercitazioni Flowgraph, algebra di Boole e calcolo binario

Informatica Generale 1 - Esercitazioni Flowgraph, algebra di Boole e calcolo binario Informatica Generale 1 - Esercitazioni Flowgraph, algebra di Boole e calcolo binario Daniele Pighin pighin@fbk.eu FBK Via Sommarive, 18 I-38050 Trento, Italy February 27, 2008 Outline 1 Algebra di Boole

Dettagli

La codifica dei caratteri di un testo

La codifica dei caratteri di un testo La codifica dei caratteri di un testo L obiettivo è quello di comunicare con il calcolatore usando il nostro linguaggio. Dobbiamo rappresentare le lettere dell alfabeto L insieme di simboli comunemente

Dettagli

Modulo e segno Complemento a 1 (CA1) Complemento a 2 (CA2)

Modulo e segno Complemento a 1 (CA1) Complemento a 2 (CA2) Codifica dei numeri interi con segno in base 2: Ci siamo occupati fino ad adesso di come il computer (base 2) rappresenta i numeri interi Occupiamoci ora di rappresentare i numeri interi col segno: Per

Dettagli

Tecnologie per il web e lo sviluppo multimediale. Rappresentazione delle informazioni

Tecnologie per il web e lo sviluppo multimediale. Rappresentazione delle informazioni Tecnologie per il web e lo sviluppo multimediale Rappresentazione delle informazioni Luca Pulina Corso di Laurea in Scienze della Comunicazione Università degli Studi di Sassari A.A. 2015/2016 Luca Pulina

Dettagli

Numeri Frazionari. Numeri Frazionari

Numeri Frazionari. Numeri Frazionari Numeri Frazionari Conversione da decimale a binario: si convertono separatamente parte intera e parte frazionaria per la parte intera si segue la procedura di conversione già vista; per la parte frazionaria

Dettagli