PERCORSO 2 Poligoni e triangoli

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "PERCORSO 2 Poligoni e triangoli"

Transcript

1 PERCORSO 2 Poligoni e triangoli di Elena Ballarin Riferimento al testo base: A. Acquati, Mate.com, volume 1B, capitolo 4, pp Destinatari: scuola secondaria di primo grado, classe 1 a

2 In classe 1. Osserva e discuti prima insieme al tuo compagno di banco e poi con tutta la classe: che cosa puoi dire su queste immagini? Queste figure hanno delle caratteristiche comuni? Se sì, quali? In che cosa sono, invece, diverse? 2 Loescher Editore - Torino 2015

3 2a. Leggi il testo seguente e rispondi alle domande, sottolineando la risposta corretta. Si definisce poligono la parte di piano delimitata da una linea spezzata chiusa semplice. Tutti i segmenti della spezzata costituiscono i lati del poligono e gli estremi dei segmenti i suoi vertici. La somma delle lunghezze dei lati fornisce la lunghezza del contorno del poligono o perimetro: A AB, BC, AC lati del poligono C 1. Lo scopo di questo testo è a. misurare gli angoli di un poligono b. definire un poligono c. calcolare la lunghezza di un poligono 2. In questo testo una spezzata è a. il contorno di una figura b. un calcolo matematico c. la parte di una figura piana B A, B, C vertici del poligono AB+ BC+ AC = perimetro (2p) 3 PERCORSO 2. Poligoni e triangoli 2b. Leggi il testo seguente e rispondi alle domande, sottolineando la risposta corretta. Un poligono con tutti gli angoli convessi è detto poligono convesso. Verifica se anche quadrilateri e pentagoni sono sempre convessi, esercitando una pressione su uno o più vertici in modo da far acquisire ai poligoni forme diverse. Ti accorgerai che qualche volta puoi ottenere poligoni con uno o più angoli concavi (maggiori di 180 ). Un poligono con uno o più angoli concavi è detto poligono concavo. 1. Questa lettura ti spiega che un poligono a. ha sempre angoli di tipo diverso b. ha talvolta angoli di tipo differente c. ha spesso angoli dello stesso tipo 2. Per vedere se un poligono è convesso, bisogna a. esercitare una pressione sul perimetro b. trasformare un quadrilatero in pentagono c. verificare se gli angoli sono tutti dello stesso tipo

4 3a. Ora rileggi il primo testo e prova a dire con parole tue il contenuto al tuo compagno di banco; poi, scambiatevi le parti: il tuo compagno rilegge il secondo testo e racconta a te con parole sue quello che ha capito del testo. 4 3b. Quali sono le parole difficili che trovate nei testi? Riuscite insieme a trovare parole più semplici? Insieme al tuo compagno prova a disegnare un poligono e a mettere sulla figura tutte le definizioni che hai imparato dal testo. Poi l insegnante scriverà alla lavagna tutte le parole difficili e insieme cercherete di trovare il modo di dirle con parole vostre. Esaminiamo come sono fatti i verbi 4a. Osserva la frase «si definisce poligono la parte di piano». Si poteva dire la stessa cosa usando una forma verbale diversa? Se sì, prova a scrivere qui sotto un alternativa.

5 4b. Nella frase che trovi nel testo si usa, invece,... seguito dal verbo alla... persona singolare. La forma impersonale si usa quando si fa un affermazione scientifica di carattere universale. È importante usarla perché serve a comunicare a chi ti legge o a chi ti ascolta che stai dicendo o scrivendo qualcosa che è dimostrata scientificamente e non un tuo pensiero personale. 5 4c. Prova a parlare come uno scienziato e riscrivi all impersonale le battute seguenti. Io definisco triangolo un poligono con tre lati. Per misurare il lato di un poligono io uso un righello. PERCORSO 2. Poligoni e triangoli Per trovare l area di un quadrato io moltiplico la base per l altezza. Per trovare il nome di un poligono io conto il numero di lati.

6 4d. Ora osserva la frase «un poligono con tutti gli angoli convessi è detto convesso». Sottolinea il verbo e indica se la forma è: ATTIVA PASSIVA 4e. Ora prova a pensare se puoi dire la stessa cosa in modo diverso. Scrivi l alternativa qui sotto. 6 La forma passiva si usa per mettere in evidenza il soggetto. Lo stesso nome che nella frase attiva è oggetto, nella frase passiva diventa soggetto. Questa forma si usa qui per mettere in rilievo l argomento di cui si sta parlando. 4f. Un ultima riflessione sulla lingua della geometria. Leggi le righe seguenti. Ai poligoni vengono assegnati i nomi in base al numero dei lati (che è uguale a quello degli angoli). Nella tabella che segue riportiamo i nomi dei principali poligoni. NOME POLIGONO NUMERO LATI NUMERO ANGOLI triangolo 3 3 quadrilatero 4 4 pentagono 5 5 esagono 6 6 ottagono 8 8 decagono dodecagono All interno dei poligoni possono essere tracciati segmenti che uniscono due vertici non consecutivi, ovvero non appartenenti allo stesso lato. È chiaro che i nomi dei poligoni, come dice il testo, si basano sui numeri dei lati ma solo in alcuni casi l indicazione assomiglia alle parole italiane che descrivono i numeri: Tri-angolo ha un prefisso (una parola che viene messa prima di angolo ) che assomiglia alla parola italiana che indica il numero 3: ; Quadri-latero usa un prefisso che assomiglia all italiano 4: ; Otta-gono è formato da un prefisso che assomiglia alla parola italiana che esprime il numero 8:.

7 In altri due casi c è una lieve somiglianza tra il prefisso la parola dieci ; il prefisso e la parola dodici. e Invece i prefissi penta- e esa- non hanno niente in comune con cinque e sei. Questi prefissi vengono dal greco, come molte delle parole della geometria, perché furono i filosofi greci, molti secoli avanti Cristo, a studiare questa scienza e a scegliere i nomi. 4g. Geo-metria: la scienza che misura la terra. Misurare te lo suggerisce una parte della parola geometria, e precisamente ; la prima parte della parola invece rimanda a gea, la terra; Poli-gono: secondo te il prefisso significa molti o pochi? È chiaro, indica molti ; un poligono ha molti angoli, e infatti in greco gono significa angoli, come vedi anche nel poligono a 8 angoli, che si chiama. Nel libro di Matematica ti sei abituato a piccoli testi scritti in evidenza. Si definisce poligono la parte di piano delimitata da una linea spezzata chiusa semplice. Un poligono con tutti gli angoli convessi è detto poligono convesso. 7 PERCORSO 2. Poligoni e triangoli Imparare a leggere questi testi, come tutte le definizioni anche di scienze o geometria, è importante, perché non sono testi che trovi nella vita di ogni giorno. Queste definizioni sono: brevi fanno molti esempi richiedono attenzione a ogni parola sono facili da capire subito lunghe riducono gli esempi al minimo le singole parole non contano molto per capirle è bene guardare gli esempi 4h. Concludi questa tua riflessione scrivendo qui sotto quali caratteristiche hanno le definizioni e come vanno lette.

8 A casa 5a. Osserva queste immagini e prova a completare la tabella. NOME DELLA FIGURA NUMERO DI ANGOLI IPO DI ANGOLI 8 Puoi approfondire l argomento consultando questi siti: https://it.answers.yahoo.com 5b. Ora scegli un oggetto che hai a casa e che abbia la forma di un poligono. Prova a descriverlo qui sotto usando tutti i termini geometrici imparati.

Si definisce poligono la parte di piano delimitata da una spezzata semplice chiusa. D contorno

Si definisce poligono la parte di piano delimitata da una spezzata semplice chiusa. D contorno I POLIGONI Si definisce poligono la parte di piano delimitata da una spezzata semplice chiusa. E D contorno La linea spezzata chiusa che delimita il F C poligono si chiama contorno I punti A, B, C, D,

Dettagli

Un poligono può avere tre, quattro, cinque o più lati. Il vertice è il punto d incontro di due lati; i vertici si indicano

Un poligono può avere tre, quattro, cinque o più lati. Il vertice è il punto d incontro di due lati; i vertici si indicano Pagina 1 di 13 I poligoni I poligoni sono figure piane che hanno come contorno una linea spezzata chiusa formatada almeno tre segmenti consecutivi. Un poligono può avere tre, quattro, cinque o più lati.

Dettagli

I POLIGONI. DEFINIZIONE: un poligono è una parte limitata di piano definita da una linea chiusa, spezzata, non intrecciata.

I POLIGONI. DEFINIZIONE: un poligono è una parte limitata di piano definita da una linea chiusa, spezzata, non intrecciata. I POLIGONI COS È UN POLIGONO? DEFINIZIONE: un poligono è una parte limitata di piano definita da una linea chiusa, spezzata, non intrecciata. Un poligono è fatto di: - SEGMENTI detti LATI - ESTREMI DEI

Dettagli

I punti di inizio e di fine della spezzata prendono il nome di estremi della spezzata. lati

I punti di inizio e di fine della spezzata prendono il nome di estremi della spezzata. lati I Poligoni Spezzata C A cosa vi fa pensare una spezzata? Qualcosa che si rompe in tanti pezzi A me dà l idea di un spaghetto che si rompe Se noi rompiamo uno spaghetto e manteniamo uniti i vari pezzi per

Dettagli

FONDAMENTI DI GEOMETRIA

FONDAMENTI DI GEOMETRIA 1 FONDAMENTI DI GEOMETRIA (Fundamental geometrical concepts) La geometria [ghè (terra) metron (misura)] è una parte della matematica che studia lo spazio, la forma, l estensione, la trasformazione delle

Dettagli

Presenta: I Poligoni e loro proprietà

Presenta: I Poligoni e loro proprietà Presenta: I Poligoni e loro proprietà Scuola secondaria di I grado: classe prima Ricordiamo: ü Le figure geometriche fondamentali: rette, semirette, segmenti, angoli. ü Il concetto di lunghezza e di ampiezza

Dettagli

Gli angoli adiacenti agli angoli interni si dicono angoli esterni del poligono convesso.

Gli angoli adiacenti agli angoli interni si dicono angoli esterni del poligono convesso. Poligoni In geometria un poligono è una figura geometrica piana delimitata da una linea spezzata chiusa. I segmenti che compongono la spezzata chiusa si dicono lati del poligono e i punti in comune a due

Dettagli

Confrontare angoli Indica, colorando il quadratino, quali sono gli angoli retti tra quelli che vedi qui sotto.

Confrontare angoli Indica, colorando il quadratino, quali sono gli angoli retti tra quelli che vedi qui sotto. Confrontare angoli Indica, colorando il quadratino, quali sono gli angoli retti tra quelli che vedi qui sotto. R V T P S U Z Colora di verde le caselle corrispondenti agli angoli piatti e di rosso quelle

Dettagli

C = d x π (pi greco) 3,14. d = C : π (3,14) r = C : (π x 2)

C = d x π (pi greco) 3,14. d = C : π (3,14) r = C : (π x 2) circonferenza rettificata significa messa su una retta è un segmento che ha la stessa lunghezza della circonferenza formule: C = d x π (pi greco) 3,14 d = C : π (3,14) r = C : (π x 2) area del cerchio

Dettagli

CONOSCENZE 1. gli elementi e le caratteristiche

CONOSCENZE 1. gli elementi e le caratteristiche GEOMETRIA PREREQUISITI l conoscere le caratteristiche del sistema decimale l conoscere le proprietaá delle quattro operazioni e saper operare con esse l conoscere gli enti fondamentali della geometria

Dettagli

POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA

POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA Poligoni Inscritti ad una circonferenza: Un poligono è inscritto in una circonferenza se tutti i suoi vertici appartengono alla circonferenza e gli

Dettagli

TITOLO: LEGGERE I QUADRILATERI

TITOLO: LEGGERE I QUADRILATERI TITOLO: LEGGERE I QUADRILATERI Competenze di riferimento: Comprendere ed interpretare l informazione: comprendere messaggi verbali e non verbali di vario genere; individuare ed interpretare l informazione,

Dettagli

1) Quale delle due figure ha maggior perimetro? Quali delle due figure ha maggior superficie? cm 8

1) Quale delle due figure ha maggior perimetro? Quali delle due figure ha maggior superficie? cm 8 1) Quale delle due figure ha maggior perimetro? Quali delle due figure ha maggior superficie? cm 8 cm 8 cm 10 cm 10 2) I quadrati della figura hanno lunghezza 1 cm., qual è l area del rettangolo inclinato?

Dettagli

IL TEOREMA DI PITAGORA

IL TEOREMA DI PITAGORA IN CLASSE IL TEOREMA DI PITAGORA Preparazione Per questi esercizi con GeoGebra dovrai utilizzare i seguenti pulsanti. Leggi sempre le procedure di esecuzione nella zona in alto a destra, accanto alla barra

Dettagli

03) Somma degli angoli interni di un poligono. 04) Somma degli angoli esterni di un poligono

03) Somma degli angoli interni di un poligono. 04) Somma degli angoli esterni di un poligono Unità idattica N 24 I poligoni 35 U.. N 24 I poligoni 01) efinizione di poligono 02) lcune proprietà dei poligoni 03) Somma degli angoli interni di un poligono 04) Somma degli angoli esterni di un poligono

Dettagli

A B C D E F G H I L M N O P Q R S T U V Z

A B C D E F G H I L M N O P Q R S T U V Z IL VOCABOLARIO GEOMETRICO A B C D E F G H I L M N O P Q R S T U V Z A A: è il simbolo dell area di una figura geometrica Altezza: è la misura verticale e il segmento che parte da un vertice e cade perpendicolarmente

Dettagli

Partiamo da un informazione comune a tutti gli alunni della scuola italiana: La somma degli angoli interni di un triangolo è 180.

Partiamo da un informazione comune a tutti gli alunni della scuola italiana: La somma degli angoli interni di un triangolo è 180. 1 Partiamo da un informazione comune a tutti gli alunni della scuola italiana: La somma degli angoli interni di un triangolo è 180. Come giustificare questo fatto? Con delle prove sperimentali, ad esempio.

Dettagli

Capitolo 6. I poligoni. (Ob. 4, 5, 6, 7, 9, 11, 12, 14, 15)

Capitolo 6. I poligoni. (Ob. 4, 5, 6, 7, 9, 11, 12, 14, 15) (Ob. 4, 5, 6, 7, 9, 11, 12, 14, 15) (vertici, lati, diagonali, convessità, angoli, perimetro) 6.2 I triangoli 6.3 I quadrilateri 6.4 I poligoni regolari 6.5 Le altezze 6.6 Le aree Un poligono è la parte

Dettagli

ANALISI A PRIORI DI UNA SITUAZIONE - PROBLEMA

ANALISI A PRIORI DI UNA SITUAZIONE - PROBLEMA ANALISI A PRIORI DI UNA SITUAZIONE - PROBLEMA

Dettagli

MATEMATICA: Compiti delle vacanze Estate 2015

MATEMATICA: Compiti delle vacanze Estate 2015 MATEMATICA: Compiti delle vacanze Estate 2015 Classe II a PRIMA PARTE Ecco una raccolta degli esercizi sugli argomenti svolti quest anno: risolvili sul tuo quaderno! Per algebra ho inserito anche una piccola

Dettagli

CIRCONFERENZA E CERCHIO

CIRCONFERENZA E CERCHIO CIRCONFERENZA E CERCHIO CERCHIO Perimetro (circonferenza) Area La circonferenza è circa 3 volte ( ) la lunghezza del diametro C= d oppure C=2 r A = r 2 Formule inverse d=c: r=c:(2 ) SETTORE CIRCOLARE È

Dettagli

PERCORSO. Colori in contrasto Colori in armonia. Riferimento al testo base: Destinatari: di Elena Ballarin

PERCORSO. Colori in contrasto Colori in armonia. Riferimento al testo base: Destinatari: di Elena Ballarin PERCORSO 2 Colori in Colori in armonia di Elena Ballarin Riferimento al testo base: E. Tornaghi, A colpo d occhio, volume A, pp. 90-91 Destinatari: Scuola secondaria di Primo grado In classe 1. Osserva

Dettagli

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 11

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 11 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 11 In questa lezione percorriamo gli argomenti della geometria che interessano la scuola primaria, in modo essenziale, o meglio ancora

Dettagli

LA GEOMETRIA DELLA TARTARUGA

LA GEOMETRIA DELLA TARTARUGA LA GEOMETRIA DELLA TARTARUGA CAPITOLO 4 Tracciare figure Iniziamo con una figura semplice: il QUADRATO. Certamente sai che un quadrato ha tutti i lati uguali e gli angoli uguali. Dopo aver avviato Logo

Dettagli

LINEE SEMPLICI INTRECCIATE. Colora di giallo le linee semplici, di verde quelle intrecciate.

LINEE SEMPLICI INTRECCIATE. Colora di giallo le linee semplici, di verde quelle intrecciate. LINEE SEMPLICI INTRECCIATE Colora di giallo le linee semplici, di verde quelle intrecciate. Disegna di rosa le linee semplici, di azzurro quelle intrecciate. LINEE APERTE CHIUSE Colora di giallo le linee

Dettagli

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 10

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 10 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 10 In questa lezione percorriamo gli argomenti della geometria che interessano la scuola primaria, in modo essenziale, o meglio ancora

Dettagli

POLIGONI REGOLARI. ( Libro : teoria pag ; esercizi pag ) Un poligono è detto regolare quando.

POLIGONI REGOLARI. ( Libro : teoria pag ; esercizi pag ) Un poligono è detto regolare quando. POLIGONI REGOLARI. ( Libro : teoria pag. 54 61; esercizi pag. 120 128) Un poligono è detto regolare quando. Possiamo costruire un poligono regolare partendo o dalla circonferenza circoscritta al poligono

Dettagli

In un triangolo altezza mediana bisettrice asse Proprietà di angoli e lati di un triangolo

In un triangolo altezza mediana bisettrice asse Proprietà di angoli e lati di un triangolo In un triangolo si dice altezza relativa a un lato il segmento di perpendicolare al lato condotta dal vertice opposto. Si dice mediana relativa a un lato il segmento che unisce il punto medio del lato

Dettagli

CIRCONFERENZA E CERCHIO

CIRCONFERENZA E CERCHIO CIRCONFERENZA E CERCHIO Definizione di circonferenza La circonferenza è una linea chiusa i cui punti sono tutti equidistanti da un punto fisso detto CENTRO Definizione di cerchio Si definisce CERCHIO la

Dettagli

Le figure geometriche

Le figure geometriche La geometria In Egitto nel XIV secolo a.c. la geometria nasce per misurare la terra (geometria = misura della terra) perché il Nilo con le sue piene, cancellava spesso i limiti fra i campi. E dunque una

Dettagli

Classifichiamo i poligoni

Classifichiamo i poligoni Geometria La parola geometria significa misura (metria) della terra (geo). La geometria si occupa dello studio della misura e della forma degli oggetti disposti nello spazio. Le idee primitive (che vengono

Dettagli

GEOMETRIA CLASSE IV B A.S.

GEOMETRIA CLASSE IV B A.S. GEOMETRIA CLASSE IV B A.S. 2014/15 Insegnante: Stallone Raffaella RETTA, SEMIRETTA E SEGMANTO La retta è illimitata, non ha né inizio né fine. Si indica con una lettera minuscola. La semiretta è ciascuna

Dettagli

VERIFICA DI GEOMETRIA A

VERIFICA DI GEOMETRIA A VERIFICA DI GEOMETRIA A n1 classe IV F data nome e cognome Tre punti allineati A,B,C in modo che AB=2BC Disegna un fascio proprio di rette Due angoli consecutivi e complementari Un poligono convesso Disegna

Dettagli

I TRIANGOLI. Geogebra l Triangoli COSTRUZIONE DEL TRIANGOLO ISOSCELE

I TRIANGOLI. Geogebra l Triangoli COSTRUZIONE DEL TRIANGOLO ISOSCELE I TRIANGOLI COSTRUZIONE DEL TRIANGOLO ISOSCELE Come sai il triangolo isoscele ha due lati della stessa lunghezza. Costruiamo il triangolo isoscele a partire dal lato disuguale. 1. Apri il programma Geogebra

Dettagli

LE FRAZIONI. 1 Scrivi la frazione corrispondente alla parte colorata. cinque settimi. dieci quindicesimi. nove diciottesimi. dodici ventiquattresimi

LE FRAZIONI. 1 Scrivi la frazione corrispondente alla parte colorata. cinque settimi. dieci quindicesimi. nove diciottesimi. dodici ventiquattresimi LE FRAZIONI Scrivi la frazione corrispondente alla parte colorata. 3 7 9 Riscrivi la frazione in cifre e colora la parte indicata. cinque settimi dieci quindicesimi nove diciottesimi dodici ventesimi quattordici

Dettagli

Introduzione. Nome. per la geometria. per le frazioni

Introduzione. Nome. per la geometria. per le frazioni Introduzione Questo volume contiene una serie di esercizi per gli alunni della scuola elementare dalla classe terza in poi, che mirano a consolidare i concetti matematici di base di geometria e di algebra

Dettagli

Teorema di Pitagora. Triangoli con angoli di 45, 30 e 60. Eserciziario con soluzioni. - 1

Teorema di Pitagora. Triangoli con angoli di 45, 30 e 60. Eserciziario con soluzioni. - 1 Teorema di Pitagora. Triangoli con angoli di 45, 30 e 60. Eserciziario con soluzioni. - 1 Raccolta di problemi di geometra piana sul teorema di Pitagora applicato ai triangolo con angoli di 45, 30 e 60

Dettagli

I quadrilateri Punti notevoli di un triangolo

I quadrilateri Punti notevoli di un triangolo I quadrilateri Capitolo Quadrilateri 1 erifica per la classe prima COGME............................... ME............................. Quesiti 1.a ero o falso? 1. La somma degli angoli interni di un ottagono

Dettagli

Tassellazioni del piano

Tassellazioni del piano Tassellazioni del piano Livello scolare: 1 biennio Abilità interessate Individuare e riconoscere proprietà di figure del piano e dello spazio. Individuare proprietà invarianti per isometrie nel piano.

Dettagli

Equivalenza delle figure piane

Equivalenza delle figure piane Capitolo Equivalenza Poligoni equivalenti - erifica per la classe seconda Teoremi di Pitagora ed Euclide COGNOME............................... NOME............................. Classe....................................

Dettagli

Compiti per le vacanze estive 2016 II A-B MATEMATICA Borgofranco

Compiti per le vacanze estive 2016 II A-B MATEMATICA Borgofranco Compiti per le vacanze estive 06 II A-B MATEMATICA Borgofranco Svolgi i compiti sui quaderni di matematica e di geometria che già usi, un po per volta, non subito dopo il termine delle lezioni e neanche

Dettagli

Verifica n 3 test 1 di geometria: i poligoni. Cognome.. Nome

Verifica n 3 test 1 di geometria: i poligoni. Cognome.. Nome Verifica n 3 test 1 di geometria: i poligoni ognome.. Nome lasse..ata VLUTZIONE Ob 1.1 conosce termini, definizioni, regole, proprietà. positivo non positivo Ob. 2.1 osserva e descrive positivo non positivo

Dettagli

LE TRASFORMAZIONI GEOMETRICHE

LE TRASFORMAZIONI GEOMETRICHE LE TRASFORMAZIONI GEOMETRICHE LA SIMMETRIA ASSIALE Definizione: il simmetrico P di un punto P, rispetto alla simmetria assiale di asse r gode delle seguenti proprietà: P e P sono equidistanti da r e il

Dettagli

Costruzioni geometriche. (Teoria pag , esercizi )

Costruzioni geometriche. (Teoria pag , esercizi ) Costruzioni geometriche. (Teoria pag. 81-96, esercizi 141-153 ) 1) Costruzione con squadra e riga. a) Rette parallele. Ricorda: due rette sono parallele quando.... oppure quando hanno la stessa. Matematicamente

Dettagli

Circonferenza e cerchio

Circonferenza e cerchio Circonferenza e cerchio è il luogo dei punti che hanno dal centro una distanza assegnata. La figura costituita da tutti i punti di una circonferenza e dai suoi punti interni si chiama Prendi uno spago,

Dettagli

01. Se il raggio di un cerchio dimezza, la sua area diventa: a) 1/3 b) 1/4 c) 3/2 d) 1/5

01. Se il raggio di un cerchio dimezza, la sua area diventa: a) 1/3 b) 1/4 c) 3/2 d) 1/5 GEOMETRIA 01. Se il raggio di un cerchio dimezza, la sua area diventa: 1/ b) 1/4 c) / d) 1/5 0. Quanto misura il lato di un quadrato la cui area è equivalente a quella di un triangolo che ha la base di

Dettagli

intersezione di due oggetti semicirconferenza - per due punti circonferenza - per tre punti retta - per due punti

intersezione di due oggetti semicirconferenza - per due punti circonferenza - per tre punti retta - per due punti IN CLASSE IL CERCHIO E Preparazione Per questi esercizi con GeoGebra dovrai utilizzare i seguenti pulsanti. Leggi sempre le procedure di esecuzione nella zona in alto a destra, accanto alla barra degli

Dettagli

POLIGONI NEL PIANO CARTESIANO (1)

POLIGONI NEL PIANO CARTESIANO (1) POLIGONI NEL PIANO CARTESIANO (1) Ora che sai come si trova la distanza tra due punti sul piano cartesiano e sai anche determinare le coordinate dei punti medi di un segmento,imparerai ad applicare queste

Dettagli

La misura della lunghezza della poligonale si chiama perimetro del poligono. Due poligoni che hanno lo stesso perimetro si chiamano isoperimetrici.

La misura della lunghezza della poligonale si chiama perimetro del poligono. Due poligoni che hanno lo stesso perimetro si chiamano isoperimetrici. Perimetro La misura della lunghezza della poligonale si chiama perimetro del poligono. Quindi è la somma delle lunghezze dei lati. Due poligoni che hanno lo stesso perimetro si chiamano isoperimetrici.

Dettagli

POTENZIAMENTO VISUO-SPAZIALE

POTENZIAMENTO VISUO-SPAZIALE POTENZIAMENTO VISUO-SPAZIALE Spunti ricavati dalla bozza (fornita da Marta) per potenziare le carenze visuo-spaziali di alunni di seconda media Docente Gisella Maculan Obiettivo : Con questa sezione si

Dettagli

SCUOLA SECONDARIA DI SECONDO GRADO. Contenuti Attività Metodo Strumenti Durata (in ore)

SCUOLA SECONDARIA DI SECONDO GRADO. Contenuti Attività Metodo Strumenti Durata (in ore) SCUOLA SECONDARIA DI SECONDO GRADO Obiettivi di apprendimento Contenuti Attività Metodo Strumenti Durata (in ore) Valutazione degli obiettivi di apprendimento Valutazione della competenza Conoscere i poligoni

Dettagli

1B GEOMETRIA. Gli elementi fondamentali della geometria. Esercizi supplementari di verifica

1B GEOMETRIA. Gli elementi fondamentali della geometria. Esercizi supplementari di verifica Gli elementi fondamentali della geometria Esercizi supplementari di verifica Esercizio 1 a) V F Si dice linea retta una qualsiasi linea che non ha né un inizio né una fine. b) V F Il punto è una figura

Dettagli

Assumendo 1 u = 1 cm, calcola il perimetro e l area del quadrilatero ABCD.

Assumendo 1 u = 1 cm, calcola il perimetro e l area del quadrilatero ABCD. Esercizio 1a Disegna un piano cartesiano ortogonale ed in esso inserisci i punti che seguono, poi uniscili nell ordine dato: Secondo te che tipo di quadrilatero hai ottenuto? Perché? Quali sono le sue

Dettagli

Progetto Matematica in Rete - Geometria euclidea - Introduzione GEOMETRIA EUCLIDEA. Introduzione. geo (terra) e metron (misura)

Progetto Matematica in Rete - Geometria euclidea - Introduzione GEOMETRIA EUCLIDEA. Introduzione. geo (terra) e metron (misura) GEOMETRIA EUCLIDEA La parola geometria deriva dalle parole greche geo (terra) e metron (misura) ed è nata per risolvere problemi di misurazione dei terreni al tempo degli antichi Egizi nel VI secolo a.c.

Dettagli

SCUOLA SECONDARIA DI PRIMO GRADO Salvemini - La Pira A.S QUANDO I SENSI CI INGANNANO MA LA GEOMETRIA NO!

SCUOLA SECONDARIA DI PRIMO GRADO Salvemini - La Pira A.S QUANDO I SENSI CI INGANNANO MA LA GEOMETRIA NO! SCUOLA SECONDARIA DI PRIMO GRADO Salvemini - La Pira A.S. 2007-2008 QUANDO I SENSI CI INGANNANO MA LA GEOMETRIA NO! 1 CLASSE IG Insegnante Marta Del Rosso FASE 1: Lezione introduttiva sui concetti di perpendicolarità

Dettagli

Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre

Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre Geometria euclidea Alessio del Vigna Lunedì 15 settembre La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione

Dettagli

LAVORO ESTIVO di MATEMATICA Classi Terze Scientifico Moderno N.B. DA CONSEGNARE ALLA PRIMA LEZIONE DI MATEMATICA DI SETTEMBRE

LAVORO ESTIVO di MATEMATICA Classi Terze Scientifico Moderno N.B. DA CONSEGNARE ALLA PRIMA LEZIONE DI MATEMATICA DI SETTEMBRE LAVORO ETIVO di MATEMATICA Classi Terze cientifico Moderno N.B. A CONEGNARE ALLA PRIMA LEZIONE I MATEMATICA I ETTEMBRE PROBLEMI I ALGEBRA APPLICATA ALLA GEOMETRIA ) In un cerchio di raggio r si determini

Dettagli

Test di autovalutazione

Test di autovalutazione Test di autovalutazione Test 0 10 0 30 0 0 0 70 80 90 100 n Il mio punteggio, in centesimi, è n Rispondi a ogni quesito segnando una sola delle alternative. n onfronta le tue risposte con le soluzioni.

Dettagli

r.berardi COSTRUZIONI GEOMETRICHE schede operative

r.berardi COSTRUZIONI GEOMETRICHE schede operative r.berardi COSTRUZIONI GEOMETRICHE schede operative Costruzioni geometriche di base: Schede operative Asse di un segmento Pag. 1 endecagono Pag. 24 Bisettrice di un angolo Pag.. 2 dodecagono Pag. 25 Perpendicolare

Dettagli

Scuola Secondaria di 1 Grado Via MAFFUCCI-PAVONI Via Maffucci 60 Milano PROGETTO STRANIERI GEOMETRIA 2 CERCHIO SIMMETRIA GEOMETRIA SOLIDA

Scuola Secondaria di 1 Grado Via MAFFUCCI-PAVONI Via Maffucci 60 Milano PROGETTO STRANIERI GEOMETRIA 2 CERCHIO SIMMETRIA GEOMETRIA SOLIDA Scuola Secondaria di 1 Grado Via MAFFUCCI-PAVONI Via Maffucci 60 Milano PROGETTO STRANIERI GEOMETRIA CERCHIO SIMMETRIA GEOMETRIA SOLIDA A cura di Maurizio Cesca PROGETTO STRANIERI SMS Maffucci-Pavoni -

Dettagli

Geometria euclidea. Alessio del Vigna

Geometria euclidea. Alessio del Vigna Geometria euclidea Alessio del Vigna La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione sono il punto,

Dettagli

Proposta di esercitazione per le vacanze Geometria ed aritmetica. Ricordo che a settembre verrà effettuata la verifica sul ripasso.

Proposta di esercitazione per le vacanze Geometria ed aritmetica. Ricordo che a settembre verrà effettuata la verifica sul ripasso. Proposta di esercitazione per le vacanze Geometria ed aritmetica Ricordo che a settembre verrà effettuata la verifica sul ripasso. 1) Un prisma retto, alto 7 cm, ha per base un triangolo isoscele;

Dettagli

Istruzioni. Ecco gli argomenti che ti chiediamo di ripassare:

Istruzioni. Ecco gli argomenti che ti chiediamo di ripassare: Matematica La matematica rappresenta una delle materie di base dei vari indirizzi del nostro Istituto e, anche se non sarà approfondita come in un liceo scientifico, prevede comunque lo studio di tutte

Dettagli

Il rapporto fra la lunghezza di una circonferenza qualsiasi e la lunghezza del suo diametro è costante. in conclusione:

Il rapporto fra la lunghezza di una circonferenza qualsiasi e la lunghezza del suo diametro è costante. in conclusione: La circonferenza è una linea curva e misurarla, per esempio, con il righello è un procedimento impossibile. ome fare allora? Vediamo di trovare un procedimento adeguato. 1. Procuriamoci un oggetto il cui

Dettagli

Agnese De Rito, Rosemma Cairo, Egidia Fusani Dell associazione Matematica in Gioco. Poligoni stellati

Agnese De Rito, Rosemma Cairo, Egidia Fusani Dell associazione Matematica in Gioco. Poligoni stellati Agnese De Rito, Rosemma Cairo, Egidia Fusani Dell associazione Matematica in Gioco Poligoni stellati I poligoni regolari che abbiamo incontrato finora sono tutti poligoni convessi; esistono anche dei particolari

Dettagli

ESAME DI STATO. SIMULAZIONE PROVA NAZIONALE Scuola Secondaria di I grado Classe Terza. Prova 2. Anno Scolastico Classe:... Data:...

ESAME DI STATO. SIMULAZIONE PROVA NAZIONALE Scuola Secondaria di I grado Classe Terza. Prova 2. Anno Scolastico Classe:... Data:... Prova Nazionale di Matematica: Simulazioni - a cura di M. Zarattini Prova 2 ESAME DI STATO Anno Scolastico 20. - 20. SIMULAZIONE PROVA NAZIONALE Scuola Secondaria di I grado Classe Terza Classe:... Data:...

Dettagli

CONOSCENZE 1. le proprietaá dei poligoni inscritti. 2. le proprietaá dei quadrilateri inscritti e circoscritti 3. le proprietaá dei poligoni regolari

CONOSCENZE 1. le proprietaá dei poligoni inscritti. 2. le proprietaá dei quadrilateri inscritti e circoscritti 3. le proprietaá dei poligoni regolari GEOMETRIA I POLIGONI INSCRITTI E CIRCOSCRITTI PREREQUISITI l l l l conoscere le proprietaá delle quattro operazioni e operare con esse conoscere gli enti fondamentali della geometria e le loro proprietaá

Dettagli

Fonte: I testi sono tratti dal sito di Ornella Crétaz ***

Fonte: I testi sono tratti dal sito di Ornella Crétaz  *** Fonte: I testi sono tratti dal sito di Ornella Crétaz www.intaglionline.it *** In questa parte del corso vengono descritti i procedimenti per tracciare correttamente figure geometriche elementari che possono

Dettagli

I vertici e i lati di ogni poligono vengono detti rispettivamente vertici e spigoli del poliedro.

I vertici e i lati di ogni poligono vengono detti rispettivamente vertici e spigoli del poliedro. 1 I poliedri diagonale DEFINIZIONE. Un poliedro è la parte di spazio delimitata da poligoni posti su piani diversi in modo tale che ogni lato sia comune a due di essi. I poligoni che delimitano il poliedro

Dettagli

Morfologia e sintassi

Morfologia e sintassi Morfologia e sintassi Organizzando la biblioteca in seconda Agli alunni sono stati consegnati piccoli gruppi di libri affinché ne leggano il titolo e individuino la prima lettera del titolo, per poter

Dettagli

Proiezioni_ortogonali Loris_Resente[1].ppt

Proiezioni_ortogonali Loris_Resente[1].ppt Introduzione allo studio della tecnologia e sviluppo del linguaggio grafico A cura degli alunni della classe 1^M Docenti:Emanuela Menzaghi Giampiero Biello Gli esercizi impostati con la classe hanno l'obiettivo

Dettagli

Poligoni Un poligono è la parte di piano delimitata da una linea spezzata, semplice e chiusa.

Poligoni Un poligono è la parte di piano delimitata da una linea spezzata, semplice e chiusa. Poligoni Un poligono è la parte di piano delimitata da una linea spezzata, semplice e chiusa. Lato Vertice Angolo interno Angolo esterno I lati del poligono sono segmenti che costituiscono la linea spezzata.

Dettagli

METODO DEI SEGMENTINI (Prof. Daniele Baldissin)

METODO DEI SEGMENTINI (Prof. Daniele Baldissin) METODO DEI SEGMENTINI (Prof. Daniele Baldissin) Il metodo dei segmentini costituisce una procedura di soluzione di particolari problemi che si incontrano spesso in geometria e nella vita di tutti i giorni.

Dettagli

Gli enti geometrici fondamentali

Gli enti geometrici fondamentali capitolo 1 Gli enti geometrici fondamentali 1. Introduzione 1 2. La geometria euclidea come sistema ipotetico-deduttivo 2 Teoremi e dimostrazioni, 3 3. Postulati di appartenenza 4 4. Postulati di ordinamento

Dettagli

Prof. Simone Schiavon - Il calcolo letterale non è una novità che si studia in terza -

Prof. Simone Schiavon - Il calcolo letterale non è una novità che si studia in terza - SCHEDA 1 Il calcolo letterale ci permette di scoprire la vera essenza della matematica, infatti riecheggia spesso nelle aule durante i corsi di matematica la frase: Ottimo matematico, pessimo calcolatore..,

Dettagli

Area dei poligoni. Def: due superfici piane si dicono equivalenti se hanno la stessa AREA.

Area dei poligoni. Def: due superfici piane si dicono equivalenti se hanno la stessa AREA. Area dei poligoni AREA DEI POLIGONI 1 Def: si dice area di una superficie piana la parte delimitata di piano che essa occupa. Def: due superfici piane si dicono equivalenti se hanno la stessa AREA. Proprietà:

Dettagli

Le figure che abbiamo ottenuto prendono il nome di spezzate o poligonali. Una spezzata può essere: H S T U

Le figure che abbiamo ottenuto prendono il nome di spezzate o poligonali. Una spezzata può essere: H S T U Prendiamo in considerazione le figure geometriche nel piano, cioè le figure piane, intendendo con questo termine un qualsiasi insieme di punti appartenenti a uno stesso piano. Disegniamo più segmenti consecutivi:

Dettagli

La piramide. BM 3 teoria pag ; esercizi 52 71, pag

La piramide. BM 3 teoria pag ; esercizi 52 71, pag La piramide. BM teoria pag. 4-49; esercizi 52 71, pag.120-127 Ricorda: I poliedri: sono solidi ottenuti accostando dei poligoni in modo da racchiudere parti di spazio limitate, essi si dividono in prismi

Dettagli

ARROTONDANDO FIGURE CON TRIANGOLI EQUILATERI

ARROTONDANDO FIGURE CON TRIANGOLI EQUILATERI ARROTONDANDO Cosa succede ad accostare figure identiche una all altra? Le figure ottenute che proprietà presentano? Posso trovare un qualche tipo di legge generale? Per rispondere a questa ed altre domande

Dettagli

POLIGONI E NON POLIGONI: elementi caratteristici, proprietà e relazioni.

POLIGONI E NON POLIGONI: elementi caratteristici, proprietà e relazioni. POLIGONI E NON POLIGONI: elementi caratteristici, proprietà e relazioni. Il problema dell altezza. Clara Colombo Bozzolo, Carla Alberti,, Patrizia Dova Nucleo di Ricerca in Didattica della Matematica Direttore

Dettagli

Anno 2. Poligoni inscritti e circoscritti: proprietà e teoremi sui poligoni principali

Anno 2. Poligoni inscritti e circoscritti: proprietà e teoremi sui poligoni principali Anno 2 Poligoni inscritti e circoscritti: proprietà e teoremi sui poligoni principali 1 Introduzione In questa lezione tratteremo i poligoni inscritti e circoscritti a una circonferenza, descrivendone

Dettagli

LA CIRCONFERENZA e IL CERCHIO

LA CIRCONFERENZA e IL CERCHIO LA CIRCONFERENZA e IL CERCHIO La circonferenza è un poligono regolare con un numero infinito di lati Bisogna fare innanzitutto una distinzione: la circonferenza è la misura del perimetro; C (se sono più

Dettagli

Circonferenze e cerchi

Circonferenze e cerchi Alunno/a... Geometria Classe... Sez.... Data... Circonferenze e cerchi 1 Definisci la circonferenza: 2 Definisci il settore circolare: 3 Definisci la figura che nel disegno è colorata in grigio: 4 Osserva

Dettagli

POLIGONI REGOLARI. ( Libro : teoria pag ; esercizi pag )

POLIGONI REGOLARI. ( Libro : teoria pag ; esercizi pag ) POLIGONI REGOLARI. ( Libro : teoria pag. 52 61; esercizi pag. 120 128) Un poligono è detto regolare quando Possiamo costruire un poligono regolare partendo o dalla circonferenza circoscritta al poligono

Dettagli

Applicazioni dell algebra alla geometria

Applicazioni dell algebra alla geometria Risoluzione guidata Problema. Il triangolo isoscele ABC ha l angolo al vertice Ĉ che misura 120 e la base AB lunga 24 cm. Da un punto P sul lato AC si tracci la parallela al lato CB che incontra AB in

Dettagli

Lavoro individuale: leggi attentamente il testo e completa il testo che trovi al termine del stesso. (10 )

Lavoro individuale: leggi attentamente il testo e completa il testo che trovi al termine del stesso. (10 ) Testo 1: Lavoro individuale: leggi attentamente il testo e completa il testo che trovi al termine del stesso. (10 ) Lavoro di gruppo T1: discuti assieme ai tuoi compagni il significato di quanto hai letto

Dettagli

I PENTAMINI.

I PENTAMINI. I PENTAMINI giovanna.mora@scuola.alto-adige.it TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA PRIMARIA Riconosce, descrive, denomina, rappresenta, costruisce e classifica figure del

Dettagli

CONCETTI DI GEOMETRIA

CONCETTI DI GEOMETRIA LA GEOMETRIA EUCLIDEA SI BASA SU TRE CONCETTI INTUITIVI: IL PUNTO, LA RETTA, IL PIANO IL PUNTO E' UN ENTE GEOMETRICO PRIVO DI DIMENSIONI. LA RETTA E' UN INSIEME DI PUNTI ALLINEATI. IL PIANO E' UN INSIEME

Dettagli

3 Omotetie del piano. 4 Omotetie del piano. Fondamenti e didattica della matematica B. Geometria delle similitudini. k = 3.

3 Omotetie del piano. 4 Omotetie del piano. Fondamenti e didattica della matematica B. Geometria delle similitudini. k = 3. 1 2 Fondamenti e didattica della matematica B 5 marzo 2007 Geometria delle similitudini Marina Bertolini (marina.bertolini@mat.unimi.it) Dipartimento di Matematica F.Enriques Università degli Studi di

Dettagli

VERIFICA DI MATEMATICA 11 febbraio 2016 classe 2 a D. Nome...Cognome... ARITMETICA

VERIFICA DI MATEMATICA 11 febbraio 2016 classe 2 a D. Nome...Cognome... ARITMETICA VERIFICA DI MATEMATICA 11 febbraio 016 classe a D Nome...Cognome... ARITMETICA 1. Scrivi l enunciato delle proprietà fondamentale, dell invertire e del permutare. Applicale alla seguente proporzione, dimostrando

Dettagli

CAP.2:IPOLIGONIINSCRITTIECIRCOSCRITTI

CAP.2:IPOLIGONIINSCRITTIECIRCOSCRITTI GEOMETRIA 1 - AREA 4 CAP.2:IPOLIGONIINSCRITTIECIRCOSCRITTI LE CARATTERISTICHE DELLA CIRCONFERENZA E DEL CERCHIO richiami della teoria n Un poligono inscritto in una circonferenza ha tutti i suoi vertici

Dettagli

Corso di Matematica - Geometria. Geometria - 0. Ing. L. Balogh

Corso di Matematica - Geometria. Geometria - 0. Ing. L. Balogh Geometria - 0 Triangoli qualunque somma degli angoli interni, calcolo del perimetro e dell area Oggetti Vertici Lati Angoli Altezza Raggio Simbolo A, B, C a, b, c,, h S, r Perimetro = + + Somma angoli

Dettagli

4 Bibliografia. 3 Geometria. Fondamenti e didattica della matematica - Geometria. Contenuti del corso

4 Bibliografia. 3 Geometria. Fondamenti e didattica della matematica - Geometria. Contenuti del corso 1 Fondamenti e didattica della matematica - Geometria 1 febbraio 007 Contenuti del corso Fondamenti e didattica della matematica - Geometria p. 1 Fondamenti e didattica della matematica - Geometria p.

Dettagli

Le proprietà dei poligoni regolari. La similitudine tra figure piane. Il contenuto delle schede della sezione C e della scheda D1.

Le proprietà dei poligoni regolari. La similitudine tra figure piane. Il contenuto delle schede della sezione C e della scheda D1. D3 Le piramidi Che cosa imparerai Che cosa devi sapere Imparerai a costruire vari tipi di piramidi e ne scoprirai un importante proprietà. Le proprietà dei poligoni regolari. La similitudine tra figure

Dettagli

Confronto fra angoli La dimensione dell angolo è l ampiezza in base all ampiezza gli angoli si dicono:

Confronto fra angoli La dimensione dell angolo è l ampiezza in base all ampiezza gli angoli si dicono: Confronto fra angoli La dimensione dell angolo è l ampiezza in base all ampiezza gli angoli si dicono: congruenti (uguali) maggiore minore la somma di due angoli la ottieni portandoli ad essere consecutivi

Dettagli

similitudine_seconda.notebook April 05, 2017 La similitudine set

similitudine_seconda.notebook April 05, 2017 La similitudine set La similitudine set 22 18.31 1 Cosa mi fa venire in mente la parola simile? Ricorda la discussione in classe e riguarda i tuoi appunti set 22 18.32 2 Si deduce che due figure simili si somigliano ma non

Dettagli

PERCORSO 3 L Europa conquista il mondo,

PERCORSO 3 L Europa conquista il mondo, PERCORSO 3 L Europa conquista il mondo, 1880-1910 di Elena Ballarin Riferimento al testo base: C. Cartiglia, Il tempo e il racconto, volume 3, unità 1, capitolo 4 pp. 46-55 Destinatari: Scuola secondaria

Dettagli

2 di quello dela circonferenza data. Scrivere le

2 di quello dela circonferenza data. Scrivere le PROBLEMA. Raccolta di problemi sulla circonferenza Scritta l equazione della circonferenza con centro in ( ) C e passante per l origine O, si conducano per O la retta a di equazione + y indicando con A

Dettagli

DALLA NOSTRA ALTEZZA ALL ALTEZZA DELLE FIGURE. Classe quarta o quinta

DALLA NOSTRA ALTEZZA ALL ALTEZZA DELLE FIGURE. Classe quarta o quinta DALLA NOSTRA ALTEZZA ALL ALTEZZA DELLE FIGURE Classe quarta o quinta Anna Dallai, Antonio Moro, 2013 OGGI MISURIAMO LA NOSTRA ALTEZZA Mettiamoci al muro dritti con i piedi uniti e attaccati alla parete

Dettagli

Giocando intorno a Pitagora

Giocando intorno a Pitagora 12 SEMINARIO NAZIONALE SUL CURRICOLO VERTICALE per una educazione alla cittadinanza Giocando intorno a Pitagora Roma, lì 23 Maggio 2017 BUGLIA GIOVANNI LUIGI Contesto Scuola secondaria di primo grado Classe

Dettagli