SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO"

Transcript

1 INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO Ing. Cristian Secchi Tel

2 Tipi di Specifiche Nel progetto di un sistema di controllo, il progettista cerca di far sì che il sistema in retroazione complessivo abbia alcune caratteristiche statiche e/o dinamiche desiderate. Queste caratteristiche vengono usualmente assegnate come specifiche che il sistema deve soddisfare in condizioni statiche (o di regime) e durante i transitori. Tali specifiche possono essere definite sia nel dominio temporale che nel dominio frequenziale e riguardano in generale: precisione a regime: capacità di un sistema di seguire alcuni segnali di riferimento con il minimo errore. risposta nel transitorio: andamento per tempi finiti dell uscita del sistema in retroazione in risposta a tipici segnali in ingresso. stabilità relativa: rifacendosi ai diagrammi di Nyquist, è possibile valutare il grado di stabilità di un sistema osservando la distanza del diagramma polare dal punto critico +j0. Si possono quindi definire parametri che permettono di valutare la stabilità relativa di un sistema discreto, in modo analogo a quanto fatto per quelli continui (margini di stabilità); Cristian Secchi ITSC05 p.2/30

3 Tipi di specifiche sensitività parametrica: si desidera che le prestazioni del sistema non vengano alterate da variazioni dei parametri rispetto ai valori nominali. reiezione di disturbi: capacità del sistema controllato di ridurre al minimo l influenza sull uscita di eventuali disturbi che entrano nell anello di controllo, quali errori di misura, variazioni di carico, rumore sulle variabili acquisite, ecc.; azione di controllo: vincoli sull ampiezza massima della variabile manipolabile v(t). Cristian Secchi ITSC05 p.3/30

4 Errori a regime R(s) - E(s) C(s) D(s) G(s) Dato il sistema G(s) = K( + sq )( + sq 2 )...( + sq m ) s N ( + sp )( + sp 2 )...( + sp p ) si definisce tipo del sistema il numero N di poli di G(s) presenti nell origine. Il tipo indica il numero di integratori presenti nel sistema. Un sistema di tipo 0 non presenta integratori puri tra ingresso ed uscita, un sistema di tipo ne presenta uno... Nel caso discreto la definizione di tipo fa riferimento al numero di poli nel punto z =. Cristian Secchi ITSC05 p.4/30

5 Errori a regime Si consideri il seguente sistema di controllo digitale a retroazione unitaria: R(z) - E(z) HP(z) D(z) Hold P (s) C(z) La funzione di trasferimento discreta del ramo diretto è G(z) =D(z)HP (z) con (nel caso di ricostruttore di ordine 0) [ ] P (s) HP (z) =( z )Z s Cristian Secchi ITSC05 p.5/30

6 Errori a regime E(z) =R(z) G(z)E(z) E(z) = +G(z) R(z) Assumendo che il sistema stabile, é possibile calcolare l errore a regime mediante il teorema del valore finale: [ e reg = lim k e(k) = lim z ( z )E(z) ] = lim z [( z ) +G(z) R(z) ] = lim z [ z z ] +G(z) R(z) Cristian Secchi ITSC05 p.6/30

7 Errore di posizione Si consideri come riferimento un gradino di ampiezza r 0 : r 0 R(z) = z L errore a regime vale: [ e p = lim ( z ) z +G(z) ] r 0 z [ r 0 = lim z +G(z) Definendo la costante di posizione (o costante di guadagno) come k p = lim z G(z) () ] L errore a regime e p diventa e p = r 0 +k p (2) Per valori finiti di k p l errore a regime è sempre non nullo, mentre si ha e p =0 solo nel caso in cui k p =. La condizione k p = èverificata per sistemi di tipo, 2,... Cristian Secchi ITSC05 p.7/30

8 Errore di velocità Si consideri come riferimento un segnale a rampa: L errore a regime vale [ e v = lim ( z ) z R(z) = Tz r 0 ( z ) 2 +G(z) Definendo la costante di velocità come Tz ] r 0 ( z ) 2 k v = lim z ( z )G(z) T [ Tr 0 = lim z ( z )G(z) ] l errore a regime diventa e v = r 0 k v Cristian Secchi ITSC05 p.8/30

9 Errore di velocità Per valori finiti di k v l errore a regime per ingresso a rampa assume valori non nulli, mentre si ha e v =0solo per k v =. Questa condizione è verificata per sistemi di tipo 2,3,...,mentrenonloèpersistemi di tipo 0e.Sinotiinfine che per sistemi di tipo 0, si ha k v =0e quindi l errore diverge. Cristian Secchi ITSC05 p.9/30

10 Errore di accelerazione Si consideri come riferimento un segnale parabolico: R(z) = T 2 z ( + z )r 0 2( z ) 3 Applicando il teorema del valore finale, l errore a regime vale [ e a = lim ( z ) z +G(z) T 2 z ( + z )r 0 2( z ) 3 Definendo la costante di accelerazione come k a = lim z ( z ) 2 G(z) T 2 l errore a regime per ingresso a parabola vale e a = r 0 k a ] [ T 2 ] r 0 = lim z ( z ) 2 G(z) Cristian Secchi ITSC05 p. 0/30

11 Errore di accelerazione Per valori finiti di k a risulta e a 0, mentre e a =0solo per k a =, condizione verificata per sistemi di tipo 3, 4,... Persistemi di tipo 0esihak a =0e quindi l errore diverge. Per trovare l errore a regime nel caso di segnali canonici di grado superiore (cubici,...) si prosegue esattamente nello stesso modo. Cristian Secchi ITSC05 p. /30

12 Esempio: sistema di tipo 0 G(z) = z 0.5z con T =0.25 s. Le costanti di errore di posizione, velocità ed accelerazione si ottiene: k p = lim z G(z) = 2 k v = ( z )G(z) lim z T = 0 k a = ( z )G(z) lim z T 2 = 0 e quindi gli errori per ingresso a gradino, rampa e parabola sono rispettivamente (r 0 =): e p = +2 =0.333, e v = 0 =, e a = 0 = Cristian Secchi ITSC05 p. 2/30

13 Esempio: sistema di tipo 0.2 Sistema di ordine 0 con ingresso a gradino Errore y Sistema di ordine 0 con ingresso a rampa 2 Errore y Sistema di ordine 0 con ingresso a parabola 4 Errore y s Cristian Secchi ITSC05 p. 3/30 s

14 Esempio: sistema di tipo G(z) = 0.3z 2.2z +0.2z 2 = 0.3z 2 ( z )( 0.2z ) con T =0.5 s. Le costanti di errore di posizione, velocità ed accelerazione sono: k p = lim z G(z) = k v = ( z )G(z) lim z T = 0.75 k a = ( z )G(z) lim z T 2 = 0 e quindi gli errori per ingresso a gradino, rampa e parabola sono rispettivamente (r 0 =): e p =0, e v =.333, e a = Cristian Secchi ITSC05 p. 4/30

15 Esempio: sistema di tipo.2 Sistema di ordine con ingresso a gradino 2 Errore y Sistema di ordine con ingresso a rampa 2 Errore y Sistema di ordine con ingresso a parabola 4 Errore 40 2 y s Cristian Secchi ITSC05 p. 5/30 s

16 Specifiche sul transitorio Il comportamento di un sistema dinamico stabile a partire da certe condizioni iniziali (tipicamente di quiete) in risposta a sollecitazioni esterne può essere distinto in una fase di evoluzione transitoria, di durata limitata, ed una fase a regime, che viene raggiunta in pratica per t sufficientemente grande. Le caratteristiche del transitorio sono di particolare interesse per il progetto del sistema di controllo. Solitamente, le specifiche che il sistema in retroazione deve soddisfare nel transitorio sono riferite alla risposta del sistema al segnale a gradino. Cristian Secchi ITSC05 p. 6/30

17 Specifiche sul transitorio Nel caso tempo-continuo, si definiscono le seguenti caratteristiche temporali della risposta a gradino: tempo di salita T s : tempo impiegato dall uscita per passare dal 0% al 90% (o anche dal 5% al 95%) del valore finale; tempo di assestamento T a : tempo oltre il quale l uscita si discosta meno del 5% rispetto al valore finale (si può considerare, con specifiche più restrittive, anche lo scostamento del 2%); tempo di ritardo T r : tempo richiesto perché l uscita raggiunga il 50% del valore finale; istante di massima sovraelongazione T m : istante di tempo in cui si ha la massima sovraelongazione; massimo sorpasso o massima sovraelongazione S: valore del massimo scostamento dell uscita rispetto al valore di regime c( ). Solitamente S è definito in valore percentuale rispetto al valore di regime: S = c(t m) c( ) 00 c( ) Cristian Secchi ITSC05 p. 7/30

18 Specifiche sul transitorio S 0.05 c(t) Ts Tr Tm Ta t Cristian Secchi ITSC05 p. 8/30

19 Specifiche sul transitorio per sistemi del 2 o ordine Queste grandezze sono quantificate in rapporto a sistemi del secondo ordine, e sono direttamente collegate alla posizione nel piano s della coppia di poli del sistema. Nel caso di sistemi di ordine superiore, nella quasi totalità dei casi di interesse pratico, è presente una coppia di poli dominanti, cioè di una coppia di poli a parte reale (negativa) in modulo molto minore della parte reale di altri poli eventualmente presenti nel sistema. In tal caso, le stesse formule valide per i sistemi del secondo ordine continuano ad essere adottate in modo approssimato. Cristian Secchi ITSC05 p. 9/30

20 Specifiche sul transitorio per sistemi del 2 o ordine Si consideri un sistema del secondo ordine: G(s) = ω 2 n s 2 +2δω n + ω 2 n dove δ è il coefficiente di smorzamento e ω n la pulsazione naturale del sistema. La posizione della coppia di poli nel piano s è data da: δω n jω jω n δ 2 ω n α 0 σ Cristian Secchi ITSC05 p. 20/30

21 Specifiche sul transitorio per sistemi del 2 o ordine tempo di salita (da 0% a 00%): T r = π α ω n δ 2 istante di massimo sorpasso: T m = π ω n δ 2 massimo sorpasso percentuale: tempo di assestamento S = 00 [c(t m ) ] = 00e δπ δ 2 T a = 3 δω n (al 5 %), oppure T a = 4 δω n (al 2 %) Cristian Secchi ITSC05 p. 2/30

22 Specifiche sul transitorio per sistemi del 2 o ordine La massima sovraelongazione percentuale dipende unicamente dal parametro δ. Data una specifica sulla sovraelongazione percentuale S% < S, è possibile trovare un δ = δ tale per cui S = 00e δπ δ 2 É possibile costruire sul piano s un luogo di punti a δ costante (δ = δ) entro cui devono stare i poli del sistema affinchè la specifica sulla massima sovraelongazione percentuale sia soddisfatta Cristian Secchi ITSC05 p. 22/30

23 Specifiche sul transitorio per sistemi del 2 o ordine Il tempo di assestamento dipende dal parametro δω n = σ = Re(p i ). Data una specifica sul tempo di assestamento T a < T, è possibile trovare un valore δω n = δ ω n tale per cui T = 3 δ ω n É possibile costruire sul piano s un luogo di punti a δω n costante (δω n = δ ω n ) a sinistra del quale evono stare i poli del sistema affinchè la specifica sul massimo tempo di assestamento sia soddisfatta. Cristian Secchi ITSC05 p. 23/30

24 Specifiche sul transitorio per sistemi del 2 o ordine Tutte queste specifiche hanno ovviamente la loro corrispondenza nel caso discreto. Le definizioni rimangono le stesse, anche considerando il fatto che solitamente il sistema controllato (da un controllore digitale) è un sistema continuo, la cui uscita è quindi qualitativamente simile a quella di un sistema del 2 o ordine. Considerando la Z-trasformata della funzione G(s), si possono fare alcune interessanti considerazioni sull andamento della risposta in funzione della posizione dei poli sul piano z, giungendo, come nel caso tempo-continuo, alla definizione di luoghi a δ costante e a δω n costante sul piano z. Cristian Secchi ITSC05 p. 24/30

25 Specifiche sul transitorio per sistemi del 2 o ordine Nella figura a sinistra è evidenziata la regione entro la quale devono stare i poli di un sistema del secondo ordine per soddisfare le specifiche su tempo di assestamento, massima sovraelongazione percentuale e massimo ω n (legato alla massima banda passante). Nella figura a sinistra è evidenziata la regione corrispondente sul piano z. Cristian Secchi ITSC05 p. 25/30

26 Specifiche frequenziali Un modo alternativo per esprimere le specifiche dinamiche è quello tramite specifiche frequenziali, ossia legate ai parametri della funzione di risposta armonica. I tipici parametri considerati sono: margini di stabilità (di fase e ampiezza); picco di risonanza; banda della funzione di risposta armonica in anello chiuso. Tramite il prototipo del sistema di secondo ordine, possono sempre essere legati (in modo approssimato se il sistema è di ordine superiore) ai parametri della risposta temporale al gradino. Nel campo discreto i parametri considerati sono definiti in modo del tutto analogo. Cristian Secchi ITSC05 p. 26/30

27 Specifiche frequenziali MarginedifaseM F : detto φ l argomento di G(e jωt ) in corrispondenza della pulsazione ω 0 che fornisce G(e jω 0T ) =, il margine di fase M F èil complemento a π di φ, cioè M F = π φ Tipici valori di specifica sono 45 o 60 o. MarginediampiezzaM A : è l inverso del guadagno di anello alla pulsazione ω a cui corrisponde la fase π: M A = G(e jω T ) dove arg{g(e jω T )} = π. Valori usuali di specifica per questo parametro sono 4-6 (2-6 db). Cristian Secchi ITSC05 p. 27/30

28 Specifiche frequenziali Il margine di fase e il margine di ampiezza rappresentano il grado di stabilità del sistema, cioè quanto il sistema è lontano dall instabilità. Questo può essere formalmente dimostrato tramite il criterio di Nyquist. Imporre un certo valore di questi parametri significa imporre una certa robustezza al sistema. Questo è utile nel caso il sistema presenti incertezze oppure dinamiche non modellate. Cristian Secchi ITSC05 p. 28/30

29 Specifiche frequenziali Picco di risonanza G r : massimo valore che assume il modulo di G(e jωt ) al variare di ω. Esso è funzione del coefficiente di smorzamento secondo la relazione G r = 2δ δ 2 Espresso solitamente in decibel, ha valori tipici di 2-3 db G r (db) delta Cristian Secchi ITSC05 p. 29/30

30 Specifiche frequenziali Pulsazione di risonanza ω r : pulsazione alla quale si verifica il picco di risonanza ω r = ω n 2δ 2 Banda passante ω b : pulsazione alla quale il modulo della funzione di risposta armonica si riduce di 3 db rispetto al valore del modulo per ω =0. Cristian Secchi ITSC05 p. 30/30

31 INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO Ing. Cristian Secchi Tel

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 9- p. /3 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma.it Lucidi tratti dal libro C. Bonivento, C. Melchiorri,

Dettagli

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI FREQUENZIALE E PROGETTO

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Progetto di controllo e reti correttrici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 053 974839 E-mail: marcello.bonfe@unife.it pag. 1

Dettagli

CONTROLLO NEL DOMINIO DELLA FREQUENZA

CONTROLLO NEL DOMINIO DELLA FREQUENZA SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html CONTROLLO NEL DOMINIO DELLA FREQUENZA Ing. Luigi Biagiotti e-mail: luigi.biagiotti@unimore.it

Dettagli

Un sistema di controllo può essere progettato fissando le specifiche:

Un sistema di controllo può essere progettato fissando le specifiche: 3. Specifiche dei Sistemi Un sistema di controllo può essere progettato fissando le specifiche: nel dominio del tempo (tempo di salita, tempo di assestamento, sovraelongazione, ecc.); nel dominio della

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Controlli Automatici - A.A. 1/11 Ingegneria Gestionale 13 Settembre 11 - Esercizi Nome: Nr. Mat. Firma: Rispondere alle seguenti domande. a) Calcolare la trasformata di Laplace X(s) dei seguenti segnali

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento: robustezza e prestazioni Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it

Dettagli

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale CONTROLLO IN RETROAZIONE

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale CONTROLLO IN RETROAZIONE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale CONTROLLO IN RETROAZIONE Ing. Luigi Biagiotti Tel. 5 29334 / 5 29368 e-mail: lbiagiotti@deis.unibo.it http://www-lar.deis.unibo.it/~lbiagiotti

Dettagli

Differenziazione sistemi dinamici

Differenziazione sistemi dinamici Il controllo di sistemi ad avanzamento temporale si basa sulle tecniche di controllo in retroazione, ovvero, elabora le informazione sullo stato del processo (provenienti dai sensori) in modo sa inviare

Dettagli

Prestazioni dei sistemi in retroazione

Prestazioni dei sistemi in retroazione Prestazioni dei sistemi in retroazione (ver..2). Sensitività e sensitività complementare Sia dato il sistema in retroazione riportato in Fig... Vogliamo determinare quanto è sensibile il sistema in anello

Dettagli

Prova scritta di Controlli Automatici - Compito A

Prova scritta di Controlli Automatici - Compito A Prova scritta di Controlli Automatici - Compito A 21 Marzo 27 Domande a Risposta Multipla Per ognuna delle seguenti domande a risposta multipla, indicare quali sono le affermazioni vere. 1. Si consideri

Dettagli

Esercizi proposti di Fondamenti di Automatica - Parte 4

Esercizi proposti di Fondamenti di Automatica - Parte 4 Esercizi proposti di Fondamenti di Automatica - Parte 4 2 Aprile 26 Sia dato il sistema di controllo a controreazione di Fig. 1, in cui il processo ha funzione di trasferimento P (s) = 1 (1 +.1s)(1 +.1s).

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Risposte canoniche e sistemi elementari Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondamenti di Controlli Automatici - A.A. 7/8 4 Dicembre 7 - Esercizi Compito A Nr. Nome: Nr. Mat. Firma: a) Determinare la trasformata di Laplace X i (s) dei seguenti segnali temporali x i (t): x (t)

Dettagli

SINTESI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO

SINTESI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO SINTESI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO Requisiti e specifiche Approcci alla sintesi Esempi di progetto Principali reti stabilizzatrici Illustrazioni dal Testo di Riferimento per gentile concessione

Dettagli

Controllo di velocità angolare di un motore in CC

Controllo di velocità angolare di un motore in CC Controllo di velocità angolare di un motore in CC Descrizione generale Il processo è composto da un motore in corrente continua, un sistema di riduzione, una dinamo tachimetrica ed un sistema di visualizzazione.

Dettagli

Fondamenti di Automatica - I Parte Il progetto del controllore

Fondamenti di Automatica - I Parte Il progetto del controllore Fondamenti di Automatica - I Parte Il progetto del controllore Antonio Bicchi, Giordano Greco Università di Pisa 1 INDICE 2 Indice 1 Introduzione 3 2 Approssimazioni della f.d.t. in anello chiuso 5 3 Metodi

Dettagli

REGOLATORI STANDARD PID

REGOLATORI STANDARD PID SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html Regolatore Proporzionale, Integrale, Derivativo - PID Tre azioni di combinate

Dettagli

Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione

Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione 0.0. 3.2 Diagrammi di Bode Possibili rappresentazioni grafiche della funzione di risposta armonica F (ω) = G(jω) sono: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols. I Diagrammi

Dettagli

Prova scritta di Controlli Automatici

Prova scritta di Controlli Automatici Prova scritta di Controlli Automatici Corso di Laurea in Ingegneria Meccatronica, AA 2011 2012 10 Settembre 2012 Domande a Risposta Multipla Per ognuna delle seguenti domande a risposta multipla, indicare

Dettagli

OUT. Domande per Terza prova di Sistemi. Disegnare la struttura generale di un sistema di controllo. retroazionato. (schema a blocchi)

OUT. Domande per Terza prova di Sistemi. Disegnare la struttura generale di un sistema di controllo. retroazionato. (schema a blocchi) Domande per Terza prova di Sistemi Disegnare la struttura generale di un sistema di controllo retroazionato. (schema a blocchi) IN Amp. di Potenza Organo di Regolazione OUT ( ) Regolatore Attuatore Sistema

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica STRUMENTI MATEMATICI PER L ANALISI DEI SISTEMI DISCRETI Ing. Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

Capitolo 7 Analisi di Sistemi a Dati Campionati

Capitolo 7 Analisi di Sistemi a Dati Campionati Capitolo 7 Analisi di Sistemi a Dati Campionati Un sistema di controllo digitale è costituito da elementi a tempo continuo (il processo da controllare, l attuatore, il trasduttore analogico, il filtro

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento: stabilità, errore a regime e luogo delle radici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail:

Dettagli

Richiami: funzione di trasferimento e risposta al gradino

Richiami: funzione di trasferimento e risposta al gradino Richiami: funzione di trasferimento e risposta al gradino 1 Funzione di trasferimento La funzione di trasferimento di un sistema lineare è il rapporto di due polinomi della variabile complessa s. Essa

Dettagli

Diagrammi di Bode. delle

Diagrammi di Bode. delle .. 3.2 delle Diagrammi di Bode La funzione di risposta armonica F(ω) = G(jω) può essere rappresentata graficamente in tre modi diversi: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols.

Dettagli

FEDELTÀ DELLA RISPOSTA DEI SISTEMI DI CONTROLLO IN RETROAZIONE: ANALISI DELLA PRECISIONE IN REGIME PERMANENTE

FEDELTÀ DELLA RISPOSTA DEI SISTEMI DI CONTROLLO IN RETROAZIONE: ANALISI DELLA PRECISIONE IN REGIME PERMANENTE FEDELTÀ DELLA RISPOSTA DEI SISTEMI DI CONTROLLO IN RETROAZIONE: ANALISI DELLA PRECISIONE IN REGIME PERMANENTE Nello studio dei sistemi di controllo in retroazione spesso si richiede che l uscita segua

Dettagli

LA FUNZIONE DI TRASFERIMENTO

LA FUNZIONE DI TRASFERIMENTO LA FUNZIONE DI TRASFERIMENTO Può essere espressa sia nel dominio della s che nel dominio della j Definizione nel dominio della s. è riferita ai soli sistemi con un ingresso ed un uscita 2. ha per oggetto

Dettagli

REGOLATORI STANDARD PID

REGOLATORI STANDARD PID CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale REGOLATORI STANDARD PID Ing. Luigi Biagiotti Tel. 5 29334 / 5 29368 e-mail: lbiagiotti@deis.unibo.it http://www-lar.deis.unibo.it/~lbiagiotti

Dettagli

SPECIFICHE DI UN SISTEMA IN ANELLO CHIUSO

SPECIFICHE DI UN SISTEMA IN ANELLO CHIUSO SPECIFICHE DI UN SISTEMA IN ANELLO CHIUSO Consideriamo il classico esempio di compensazione in cascata riportato in figura, comprendente il plant o sistema controllato con funzione di trasferimento G P

Dettagli

A.S. 2008/2009 CLASSE 5BEA SISTEMI AUTOMATICI SINTESI DEL CORSO

A.S. 2008/2009 CLASSE 5BEA SISTEMI AUTOMATICI SINTESI DEL CORSO A.S. 2008/2009 CLASSE 5BEA SISTEMI AUTOMATICI SINTESI DEL CORSO Sono stati trattati gli elementi base per l'analisi e il dimensionamento dei sistemi di controllo nei processi continui. E' quindi importante:

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stabilità dei sistemi di controllo in retroazione Margini di stabilità Indicatori di robustezza della stabilità Margine di guadagno Margine di fase Stabilità regolare e marginale ed estensioni delle definizioni

Dettagli

Sistemi di controllo industriali

Sistemi di controllo industriali Sistemi di controllo industriali Regolatori PID: funzionamento e taratura Modello, funzionamento e realizzazione pratica Metodi di taratura in anello chiuso Metodi di taratura in anello aperto Un esempio

Dettagli

Progetto di un sistema di controllo nel dominio della frequenza

Progetto di un sistema di controllo nel dominio della frequenza Contents Progetto di un sistema di controllo nel dominio della frequenza 3. Le specifiche del progetto nel dominio della frequenza......... 3.2 Sintesi del controllore........................... 6.3 Determinazione

Dettagli

PROGRAMMA SVOLTO fino al 22-06-2015 Fine del corso

PROGRAMMA SVOLTO fino al 22-06-2015 Fine del corso PROGRAMMA SVOLTO fino al 22-06-2015 Fine del corso Prof. Bruno Picasso LEZIONI: Introduzione al corso. Introduzione ai sistemi dinamici. I sistemi dinamici come sistemi di equazioni differenziali; variabili

Dettagli

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/ Catene di Misura Corso di Misure Elettriche http://sms.unipv.it/misure/ Piero Malcovati Dipartimento di Ingegneria Industriale e dell Informazione Università di Pavia piero.malcovati@unipv.it Piero Malcovati

Dettagli

Introduzione. Margine di ampiezza... 2 Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di Bode... 6

Introduzione. Margine di ampiezza... 2 Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di Bode... 6 ppunti di Controlli utomatici Capitolo 7 parte II Margini di stabilità Introduzione... Margine di ampiezza... Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di ode... 6 Introduzione

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Analisi armonica e metodi grafici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 053 974839 E-mail: marcello.bonfe@unife.it pag. Analisi

Dettagli

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE Ing. Federica

Dettagli

La trasformata Zeta. Marco Marcon

La trasformata Zeta. Marco Marcon La trasformata Zeta Marco Marcon ENS Trasformata zeta E l estensione nel caso discreto della trasformata di Laplace. Applicata all analisi dei sistemi LTI permette di scrivere in modo diretto la relazione

Dettagli

Proprieta` dei sistemi in retroazione

Proprieta` dei sistemi in retroazione Proprieta` dei sistemi in retroazione Specifiche di controllo: errore a regime in risposta a disturbi costanti errore di inseguimento a regime quando il segnale di riferimento e` di tipo polinomiale sensibilita`

Dettagli

Considerazioni sulle specifiche.

Considerazioni sulle specifiche. # SINTESI PER TENTATIVI IN ω PER GLI ASSERVIMENTI # Considerazioni sulle specifiche. Come accennato in precedenza, prima di avviare la prima fase della sintesi di un sistema di asservimento, e cioe la

Dettagli

REGOLATORI STANDARD PID

REGOLATORI STANDARD PID CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm REGOLATORI STANDARD PID Ing. Federica Grossi Tel. 059 2056333 e-mail: federica.grossi@unimore.it

Dettagli

MESSA IN SCALA DI ALGORITMI DIGITALI

MESSA IN SCALA DI ALGORITMI DIGITALI Ingegneria e Tecnologie dei Sistemi di Controllo Laurea Specialistica in Ingegneria Meccatronica MESSA IN SCALA DI ALGORITMI DIGITALI Cristian Secchi Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

Risposta temporale: esercizi

Risposta temporale: esercizi ...4 Risposta temporale: esercizi Esercizio. Calcolare la risposta al gradino del seguente sistema: G(s) X(s) = s (s+)(s+) Y(s) Per ottenere la risposta al gradino occorre antitrasformare la seguente funzione:

Dettagli

LUOGO DELLE RADICI. G(s) H(s) 1+KG(s)H(s)=0

LUOGO DELLE RADICI. G(s) H(s) 1+KG(s)H(s)=0 LUOGO DELLE RADICI Il progetto accurato di un sistema di controllo richiede la conoscenza dei poli del sistema in anello chiuso e dell influenza che su di essi hanno le variazioni dei più importanti parametri

Dettagli

CONTROLLO NEL DOMINIO DELLA FREQUENZA

CONTROLLO NEL DOMINIO DELLA FREQUENZA SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html Relazione tra specifiche e proprietà di L(s) Nell analisi dei sistemi in retroazione

Dettagli

Sistema dinamico a tempo continuo

Sistema dinamico a tempo continuo Sistema dinamico a tempo continuo Un sistema è un modello matematico di un fenomeno fisico: esso comprende le cause e gli effetti relativi al fenomeno, nonché la relazione matematica che li lega. X INGRESSO

Dettagli

Stabilità dei sistemi

Stabilità dei sistemi Stabilità dei sistemi + G(s) G(s) - H(s) Retroazionati Sistemi - Stabilità - Rielaborazione di Piero Scotto 1 Sommario In questa lezione si tratteranno: La funzione di trasferimento dei sistemi retroazionati

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

2.5 Stabilità dei sistemi dinamici 20. - funzioni di trasferimento, nella variabile di Laplace s, razionali fratte del tipo:

2.5 Stabilità dei sistemi dinamici 20. - funzioni di trasferimento, nella variabile di Laplace s, razionali fratte del tipo: .5 Stabilità dei sistemi dinamici 9 Risulta: 3 ( s(s + 4).5 Stabilità dei sistemi dinamici Si è visto come un sistema fisico può essere descritto tramite equazioni differenziali o attraverso una funzione

Dettagli

Politecnico di Bari Facoltà di Ingegneria

Politecnico di Bari Facoltà di Ingegneria Politecnico di Bari Facoltà di Ingegneria Dispensa per il Corso di Controlli Automatici I Uso del software di calcolo Matlab 4. per lo studio delle risposte nel tempo dei sistemi lineari tempoinvarianti

Dettagli

Una definizione di stabilità più completa di quella precedentemente introdotta fa riferimento ad una sollecitazione impulsiva.

Una definizione di stabilità più completa di quella precedentemente introdotta fa riferimento ad una sollecitazione impulsiva. 2. Stabilità Uno dei requisiti più importanti richiesti ad un sistema di controllo è la stabilità, ossia la capacita del. sistema di raggiungere un stato di equilibrio dopo la fase di regolazione. Per

Dettagli

La funzione di risposta armonica

La funzione di risposta armonica 0.0. 3.1 1 La funzione di risposta armonica Se ad un sistema lineare stazionario asintoticamente stabile si applica in ingresso un segnale sinusoidale x(t) = sen ωt di pulsazione ω: x(t) = sin ωt (s) =

Dettagli

Revisione dei concetti fondamentali dell analisi in frequenza

Revisione dei concetti fondamentali dell analisi in frequenza Revisione dei concetti fondamentali dell analisi in frequenza rgomenti: trasformazione in frequenza: significato e funzionamento; schemi di rappresentazione; trasformata discreta. 1 Rappresentazione dei

Dettagli

Metodi Frequenziali per il Progetto di Controllori MIMO: Controllori Decentralizzati

Metodi Frequenziali per il Progetto di Controllori MIMO: Controllori Decentralizzati Metodi Frequenziali per il Progetto di Controllori MIMO: Controllori Decentralizzati Ingegneria dell'automazione Corso di Sistemi di Controllo Multivariabile - Prof. F. Amato Versione 2.2 Ottobre 2012

Dettagli

13-1 SISTEMI A DATI CAMPIONATI: INTRODUZIONE. y(t) TMP. y k. Trasduttore. Schema di base di un sistema di controllo digitale

13-1 SISTEMI A DATI CAMPIONATI: INTRODUZIONE. y(t) TMP. y k. Trasduttore. Schema di base di un sistema di controllo digitale SISTEMI A DATI CAMPIONATI: INTRODUZIONE + e k u k u(t) r k C D/A P y k TMP A/D Trasduttore y(t) Schema di base di un sistema di controllo digitale A/D: convertitore analogico digitale C: controllore digitale

Dettagli

ISTITUTO D ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA

ISTITUTO D ISTRUZIONE SUPERIORE L. EINAUDI ALBA ISTITUTO D ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA CLASSE 5H Docenti: Raviola Giovanni Moreni Riccardo Disciplina: Sistemi elettronici automatici PROGETTAZIONE DIDATTICA ANNUALE COMPETENZE FINALI Al termine

Dettagli

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1)

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1) Transitori Analisi nel dominio del tempo Ricordiamo che si definisce transitorio il periodo di tempo che intercorre nel passaggio, di un sistema, da uno stato energetico ad un altro, non è comunque sempre

Dettagli

Consideriamo due polinomi

Consideriamo due polinomi Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al

Dettagli

Il luogo delle radici (ver. 1.0)

Il luogo delle radici (ver. 1.0) Il luogo delle radici (ver. 1.0) 1 Sia dato il sistema in retroazione riportato in Fig. 1.1. Il luogo delle radici è uno strumento mediante il quale è possibile valutare la posizione dei poli della funzione

Dettagli

CONTROLLORI STANDARD PID. Guido Vagliasindi Controlli Automatici A.A. 06/07 Controllori Standard PID

CONTROLLORI STANDARD PID. Guido Vagliasindi Controlli Automatici A.A. 06/07 Controllori Standard PID ONTROLLORI STANDARD PID Guido Vagliasindi ontrolli Automatici A.A. 6/7 ontrollori Standard PID MODELLO DEI REGOLATORI PID Tra le ragioni del vastissimo utilizzo dei regolatori PID nella pratica dell automazione

Dettagli

Differenziazione sistemi dinamici

Differenziazione sistemi dinamici Obiettivo: analisi e sintesi dei sistemi di controllo in retroazione in cui è presente un calcolatore digitale Il controllo digitale è ampiamente usato, grazie alla diffusione di microprocessori e microcalcolatori,

Dettagli

Funzioni di trasferimento. Lezione 14 2

Funzioni di trasferimento. Lezione 14 2 Lezione 14 1 Funzioni di trasferimento Lezione 14 2 Introduzione Lezione 14 3 Cosa c è nell Unità 4 In questa sezione si affronteranno: Introduzione Uso dei decibel e delle scale logaritmiche Diagrammi

Dettagli

Principali comandi MATLAB utili per il corso di Controlli Automatici

Principali comandi MATLAB utili per il corso di Controlli Automatici Principali comandi MATLAB utili per il corso di Controlli Automatici In questo documento sono raccolti i principali comandi Matlab utilizzati nel corso; per maggiore comodità, sono riportati facendo riferimento

Dettagli

Comportamento a regime dei sistemi di controllo in retroazione Appunti di Controlli Automatici

Comportamento a regime dei sistemi di controllo in retroazione Appunti di Controlli Automatici Comportamento a regime dei sistemi di controllo in retroazione Appunti di Controlli Automatici Versione 1.0 Ing. Alessandro Pisano SOMMARIO Introduzione 3 1. Stabilità a ciclo chiuso e teorema del valore

Dettagli

UNIT 8 Soluzione del problema di controllo con Modelli Poveri 3 - Sintesi per tentativi degli asservimenti nel dominio della variabile complessa

UNIT 8 Soluzione del problema di controllo con Modelli Poveri 3 - Sintesi per tentativi degli asservimenti nel dominio della variabile complessa UNIT 8 Soluzione del problema di controllo con Modelli Poveri 3 - Sintesi per tentativi degli asservimenti nel dominio della variabile complessa Corso di Controlli Automatici Prof. Tommaso Leo Indice UNIT

Dettagli

REGOLATORI STANDARD O PID

REGOLATORI STANDARD O PID REGOLATORI STANDARD O ID Consideriamo il classico esempio di compensazione in cascata riportato in figura, comprendente il plant o sistema controllato con funzione di trasferimento G (s), il regolatore

Dettagli

L idea alla base del PID èdi avere un architettura standard per il controllo di processo

L idea alla base del PID èdi avere un architettura standard per il controllo di processo CONTROLLORI PID PID L idea alla base del PID èdi avere un architettura standard per il controllo di processo Può essere applicato ai più svariati ambiti, dal controllo di una portata di fluido alla regolazione

Dettagli

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L.

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L. Parte 3 Aggiornamento: Settembre 2010 Parte 3, 1 Trasformata di Laplace e Funzione di trasferimento Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: lmarconi@deis.unibo.it URL:

Dettagli

MATLAB Analisi di Sistemi LTI

MATLAB Analisi di Sistemi LTI Esercitazione 1/30 MATLAB Analisi di Sistemi LTI Vincenzo LIPPIELLO PRISMA Lab Dipartimento di Informatica e Sistemistica Università di Napoli Federico II vincenzo.lippiello@unina.it www.prisma.unina.it

Dettagli

Analisi dei sistemi di controllo a segnali campionati

Analisi dei sistemi di controllo a segnali campionati Analisi dei sistemi di controllo a segnali campionati Sistemi di controllo (già analizzati) Tempo continuo (trasformata di Laplace / analisi in frequenza) C(s) controllore analogico impianto attuatori

Dettagli

INTRODUZIONE AL CONTROLLO OTTIMO

INTRODUZIONE AL CONTROLLO OTTIMO INTRODUZIONE AL CONTROLLO OTTIMO Teoria dei Sistemi Ingegneria Elettronica, Informatica e TLC Prof. Roberto Zanasi, Dott. Giovanni Azzone DII - Università di Modena e Reggio Emilia AUTOLAB: Laboratorio

Dettagli

CONTROLLO SCALARE V/Hz DEL MOTORE ASINCRONO. Prof. Silvio Stasi Dott. Ing. Nadia Salvatore Dott. Ing. Michele Debenedictis

CONTROLLO SCALARE V/Hz DEL MOTORE ASINCRONO. Prof. Silvio Stasi Dott. Ing. Nadia Salvatore Dott. Ing. Michele Debenedictis CONTROLLO SCALARE V/Hz DEL MOTORE ASINCRONO SCHEMA DELL AZIONAMENTO A CATENA APERTA AZIONAMENTO L azionamento a catena aperta comprende il motore asincrono e il relativo convertitore statico che riceve

Dettagli

Controllo del moto e robotica industriale

Controllo del moto e robotica industriale Controllo del moto e robotica industriale (Prof. Rocco) Appello del 27 Febbraio 2008 Cognome:... Nome:... Matricola:... Firma:... Avvertenze: Il presente fascicolo si compone di 8 pagine (compresa la copertina).

Dettagli

Margine di fase e margine di guadagno

Margine di fase e margine di guadagno Margine di fase e margine di guadagno Prendiamo in considerazione sistemi per i uali la funzione ad anello aperto, L(s), sia stabile e non presenti dunue, poli a parte reale positiva. In tal caso il criterio

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 2009-2010 p. 1/27 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma1.it Lucidi tratti dal libro C. Bonivento,

Dettagli

Corso Tecnologie dei Sistemi di Controllo. Tecniche di taratura di un PID

Corso Tecnologie dei Sistemi di Controllo. Tecniche di taratura di un PID Corso Tecniche di taratura di un PID Ing. Valerio Scordamaglia Università Mediterranea di Reggio Calabria, Loc. Feo di Vito, 89060, RC, Italia D.I.M.E.T. : Dipartimento di Informatica, Matematica, Elettronica

Dettagli

Dalle misure eseguite con un segnale sinusoidale su di un impianto si è verificato che esso:

Dalle misure eseguite con un segnale sinusoidale su di un impianto si è verificato che esso: Tema di: SISTEMI ELETTRONICI AUTOMATICI Testo valevole per i corsi di ordinamento e per i corsi di progetto "SIRIO" - Indirizzo Elettronica e Telecomunicazioni Il candidato scelga e sviluppi una tra le

Dettagli

Principi di Automazione e Controllo

Principi di Automazione e Controllo Principi di Automazione e Controllo Ing. Fabio Piedimonte Corso IFTS per Tecnico Superiore di Produzione Ver 1.0 Indice 1 Introduzione al problema dell automazione 4 1.1 I processi..................................

Dettagli

Criteri di stabilità (ver. 1.2)

Criteri di stabilità (ver. 1.2) Criteri di stabilità (ver. 1.2) 1 1.1 Il concetto di stabilità Il concetto di stabilità è piuttosto generale e può essere definito in diversi contesti. Per i problemi di interesse nell area dei controlli

Dettagli

Elettronica delle Telecomunicazioni Esercizi cap 2: Circuiti con Ampl. Oper. 2.1 Analisi di amplificatore AC con Amplificatore Operazionale reale

Elettronica delle Telecomunicazioni Esercizi cap 2: Circuiti con Ampl. Oper. 2.1 Analisi di amplificatore AC con Amplificatore Operazionale reale 2. Analisi di amplificatore AC con Amplificatore Operazionale reale Un amplificatore è realizzato con un LM74, con Ad = 00 db, polo di Ad a 0 Hz. La controreazione determina un guadagno ideale pari a 00.

Dettagli

Diagrammi polari, di Nyquist e di Nichols

Diagrammi polari, di Nyquist e di Nichols Diagrammi polari, di Nyquist e di Nichols Definizione (1/2) Il diagramma di Nichols (DdNic) di una fdt consiste nella rappresentazione grafica di G(s) s= jω = G(jω) = M( ω)e jϕ( ω), per ω (, ) sul piano

Dettagli

Controlli Automatici prof. M. Indri Sistemi di controllo digitali

Controlli Automatici prof. M. Indri Sistemi di controllo digitali Controlli Automatici prof. M. Indri Sistemi di controllo digitali Schema di controllo base r(t) + e(t) {e k } {u k } u(t) Campionatore (A/D) Controllore digitale Ricostruttore (D/A) Sistema (tempo cont.)

Dettagli

6 Cenni sulla dinamica dei motori in corrente continua

6 Cenni sulla dinamica dei motori in corrente continua 6 Cenni sulla dinamica dei motori in corrente continua L insieme di equazioni riportato di seguito, costituisce un modello matematico per il motore in corrente continua (CC) che può essere rappresentato

Dettagli

Banda passante dei sistemi retroazionati

Banda passante dei sistemi retroazionati .. 3.6 Banda passante dei sistemi retroazionati Consideriamo un sistema retroazionato con retroazione unitaria: R(s) C(s) X(s) G(s) Y(s) Il guadagno di anello del sistema G a (s) e la funzione di trasferimento

Dettagli

L ERRORE A REGIME NELLE CATENE DI REGOLAZIONE E CONTROLLO

L ERRORE A REGIME NELLE CATENE DI REGOLAZIONE E CONTROLLO L ERRORE A REGIME NELLE CATENE DI REGOLAZIONE E CONTROLLO Per errore a regime si intende quello rilevato dopo un intervallo sufficientemente lungo dal verificarsi di variazioni del riferimento o da eventuali

Dettagli

Controllori PID, metodi di taratura e problemi d implementazione

Controllori PID, metodi di taratura e problemi d implementazione Controllori PID, metodi di taratura e problemi d implementazione Prof. Luigi Glielmo Università del Sannio L. Glielmo 1 / 23 Contenuto della presentazione Controllori PID Metodi di taratura in anello aperto

Dettagli

Analisi di risposte di sistemi dinamici in MATLAB

Analisi di risposte di sistemi dinamici in MATLAB Laboratorio di Fondamenti di Automatica Seconda esercitazione Analisi di risposte di sistemi dinamici in MATLAB 2005 Alberto Leva, Marco Lovera, Maria Prandini Premessa Scopo di quest'esercitazione di

Dettagli

Capitolo. La funzione di trasferimento. 2.1 Funzione di trasferimento di un sistema. 2.2 L-trasformazione dei componenti R - L - C

Capitolo. La funzione di trasferimento. 2.1 Funzione di trasferimento di un sistema. 2.2 L-trasformazione dei componenti R - L - C Capitolo La funzione di trasferimento. Funzione di trasferimento di un sistema.. L-trasformazione dei componenti R - L - C. Determinazione delle f.d.t. di circuiti elettrici..3 Risposta al gradino . Funzione

Dettagli

Le misure di energia elettrica

Le misure di energia elettrica Le misure di energia elettrica Ing. Marco Laracca Dipartimento di Ingegneria Elettrica e dell Informazione Università degli Studi di Cassino e del Lazio Meridionale Misure di energia elettrica La misura

Dettagli

FONDAMENTI DI AUTOMATICA / CONTROLLI AUTOMATICI

FONDAMENTI DI AUTOMATICA / CONTROLLI AUTOMATICI FONDAMENTI DI AUTOMATICA / CONTROLLI AUTOMATICI Guida alla soluzione degli esercizi d esame Dott. Ing. Marcello Bonfè Esercizi sulla scomposizione di modelli nello spazio degli stati: Gli esercizi nei

Dettagli

FONDAMENTI DI AUTOMATICA. Michele Basso, Luigi Chisci e Paola Falugi

FONDAMENTI DI AUTOMATICA. Michele Basso, Luigi Chisci e Paola Falugi FONDAMENTI DI AUTOMATICA Michele Basso, Luigi Chisci e Paola Falugi 22 novembre 26 2 Indice 1 Analisi in frequenza di sistemi LTI 5 1.1 Introduzione............................. 5 1.2 Analisi armonica..........................

Dettagli

Modellazione e Analisi di Reti Elettriche

Modellazione e Analisi di Reti Elettriche Modellazione e Analisi di eti Elettriche Modellazione e Analisi di eti Elettriche Davide Giglio Introduzione alle eti Elettriche e reti elettriche costituite da resistori, condensatori e induttori (bipoli),

Dettagli

Laboratorio di Fondamenti di Automatica Ingegneria Elettrica Sessione 2/3. Danilo Caporale [caporale@elet.polimi.it]

Laboratorio di Fondamenti di Automatica Ingegneria Elettrica Sessione 2/3. Danilo Caporale [caporale@elet.polimi.it] Laboratorio di Fondamenti di Automatica Ingegneria Elettrica Sessione 2/3 Danilo Caporale [caporale@elet.polimi.it] Outline 2 Funzione di trasferimento e risposta in frequenza Diagrammi di Bode e teorema

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi, y sistemi dimetrici: unità di misura diverse sui due assi (spesso

Dettagli

Analisi e confronto dei metodi di sintesi in s e nel dominio della frequenza

Analisi e confronto dei metodi di sintesi in s e nel dominio della frequenza Scuola Politecnica e delle Scienze di Base Corso di Laurea in Ingegneria Informatica Elaborato finale in Controlli Automatici Analisi e confronto dei metodi di sintesi in s e nel dominio della frequenza

Dettagli

Segnali e Sistemi. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro

Segnali e Sistemi. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro Segnali e Sistemi Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici Gianni Borghesan e Giovanni Marro Indice Introduzione 2. Notazione............................. 2 2 Classificazione

Dettagli

MATERIA : SISTEMI ELETTRICI AUTOMATICI INS. TEORICO: PROF. CIVITAREALE ALBERTO

MATERIA : SISTEMI ELETTRICI AUTOMATICI INS. TEORICO: PROF. CIVITAREALE ALBERTO PIANO DI LAVORO CLASSE 5 ES A.S. 2014-2015 MATERIA : SISTEMI ELETTRICI AUTOMATICI INS. TEORICO: PROF. CIVITAREALE ALBERTO INS. TECNICO-PRATICO: PROF. BARONI MAURIZIO MODULO 1: ALGEBRA DEGLI SCHEMI A BLOCCHI

Dettagli

CONTROLLO IN RETROAZIONE

CONTROLLO IN RETROAZIONE CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm CONTROLLO IN RETROAZIONE Ing. Federica Grossi Tel. 59 256333 e-mail: federica.grossi@unimore.it

Dettagli