IL METODO DEGLI STATI LIMITE Esempi di verifica

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "IL METODO DEGLI STATI LIMITE Esempi di verifica"

Transcript

1 Corso sulle Norme Tecniche per le costruzioni in zona sismica (Ordinanza PCM 374/003) POTENZA, 004 IL METODO DEGLI STATI LIMITE Esempi di verifica Dott. Ing.. Marco VONA DiSGG, Università di Basilicata

2 Caso studio Edificio per civile abitazione in zona non sismica Tre livelli Telai in una sola direzione, travi emergenti Copertura piana praticabile Elementi da progettare: trave di copertura, pilastro centrale del piano terra 5 m 5 m 5 m 1,4 m 3 m 5 m 5 m

3 Azioni agenti Valori caratteristici G k valore caratteristico delle azioni permanenti Q ik valore caratteristico delle azioni variabili (i = 1,, n) Valori di calcolo G d = γ g G k azioni permanenti Q id = γ q Q ik i = 1, azioni variabili (solaio di calpestio, carico neve) γ g = 1.4 (1.0 se il suo contributo aumenta la sicurezza) γ q = 1.5 (0 se il suo contributo aumenta la sicurezza) 3

4 Azioni agenti Combinazioni per le verifiche allo Stato Limite Ultimo F d = γ g G k + γ q Q 1k + Σ (i>1) γ q Ψ 0i Q ik G k Q 1k Q ik valore caratteristico delle azioni permanenti valore caratteristico dell azione variabile di base di ogni combinazione valore caratteristico delle altre azioni variabili Ψ 0i coefficienti di combinazione allo stato limite ultimo (sempre uguale a 0.7) Combinazioni per le verifiche allo Stato Limite di Esercizio Combinazioni rare: Combinazioni frequenti: Combinazioni quasi permanenti: F d = G k + Q 1k + Σ(i>1) Ψ 0i Q ik F d = G k + Ψ 1i Q 1k + Σ(i>1) Ψ i Q ik F d = G k + ΣΨ i Q ik 4

5 Combinazioni di carico Coefficienti di combinazione (D.M. 9/1/96 Parte Gen., pt. 7, prospetto 1) Ψ 1i Ψ i Carichi variabili per abitazioni per uffici, negozi e scuole per autorimesse Carichi da vento e neve Combinazioni di carico per il caso studio trattato Tensioni ammissibili Stato limite ultimo Solo carichi verticali G k + Q k 1.4 G k Q k Carichi verticali + neve G k + Q k + F vento,k 1.4 G k Q k (1.5 Q neve,k ) 1.4 G k (1.5 Q k ) Q neve,k 5

6 Analisi dei carichi agenti sulla trave di copertura Carichi unitari Peso proprio solaio: G k = 5.3 kn/m G d = γ G G k L s G d = = 34.9 kn/m Trave emergente 30 60: G k = 4.5 kn/m G d = 6.3 kn/m Carico accidentale per solaio di calpestio: Q k,s =.0 kn/m Q d,s = γ Q Q k,s L s Q d,s = = 14.1 kn/m Carico neve: Q k,n = 0.75 kn/m Q d,n = γ Q Q k L s Q d,n = = 5.3 kn/m Combinazioni per lo Stato Limite Ultimo q d0 = 1.4 G k Q k = 55.3 kn/m q d1 = 1.4 G k Q k (1.5 Q neve, k ) = 57.6 kn/m q d = 1.4 G k (1.5 Q k )+ 1.5 Q neve, k = 56.3 kn/m 6

7 RESISTENZE DI CALCOLO Le resistenze di calcolo si valutano mediante l espressione: f d = f γ k m Stato Limite Acciaio γ s Calcestruzzo γ c Ultimo di esercizio In particolare la resistenza di calcolo del calcestruzzo f cd risulta pari a: f cd = f ck / γ c = (R ck * 0.83) / γ c 7

8 Caratterizzazione dei materiali Resistenze di calcolo: f f cd ctk 0.85 f ck = γ c = Modulo elastico 0.7 fck = R ck R 3 ck E Calcestruzzo γ c = 1,6 3 c = 5700 (R ck ) f cd f ctk o o oo 3,5 oo Deformazioni limite o oo 3.5 o oo Per un calcestruzzo C0/5 (R ck = 5 N/mm ) f cd = 1.6 = 11 N/mm f ctk = 1.6 N/mm E c = 8500 N/mm 8

9 Caratterizzazione dei materiali Acciaio Resistenza di calcolo: f f γ s = yd = yk γ s f yd Modulo elastico E s = N/mm Deformazione al limite elastico ε yd = f yd E s ε sy 10 o oo Per un acciaio FeB 44 k f yk = 430 N/mm yd fyk 430 f yd o = = = N/mm εyd = = = 1. 8 / oo γs Es f. 9

10 Dimensionamento trave Si considerano le combinazioni di carico relative all azione di progetto agli S.L.U. q d1 I comb. G k = 5 kn/m q 1 = 57 kn/m II comb. q 1 = 57 kn/m G k = 5 kn/m III comb. q 1 = 57 kn/m q 1 = 57 kn/m A B C 5 m 5 m I massimi momenti per la III combinazione assumono i valori: M M Sd Sd = M B q1 l = 8 q B l 14 A A B = M A B = 180 knm = 100 knm 10

11 S.L.U. FLESSIONE E FORZA ASSIALE CONFIGURAZIONI DEFORMATE REGIONI DI ROTTURA d A s 1 0 ε cu =3,5%o B ε s d C d A s A 10%o ε s ε cu =%o E possibile descrivere le modalità di rottura della sezione in funzione della posizione dell asse neutro (distanza ). 11

12 S.L.U. FLESSIONE E FORZA ASSIALE ζ=/d Punti Campo ε c [%o] ε s [%o] da A A 1 Trazione con debole eccentricità ε s S A B 3 Pressoflessione e flessione con sfruttamento integrale dell'acciaio teso Pressoflessione e flessione con sfruttamento integrale dell'acciaio teso e del cls 0 3, ,59 5-3,5 10 ε syd 0,59 5 ε ysd 10%o σ 0f S B 4 Pressoflessione e flessione con sfruttamento incompleto dell'acciaio (acciaio inferiore teso) -3,5 0 5 ε syd 5 ε ysd 1 B 4a Pressoflessione e flessione con sfruttamento incompleto dell'acciaio (acciaio inferiore compresso) -3,5 5 δ δ 1 1+δ C 5 Compressione con debole eccentricità 5 5 δ 1+ δ 1+δ + 1

13 S.L.U. FLESSIONE E FORZA ASSIALE ζ=/d Punti Campo ε c [%o] ε s [%o] da A A 1 Trazione con debole eccentricità A Pressoflessione e flessione con sfruttamento integrale dell'acciaio teso 0 3, ,59 ε s ε cu f cd S C B 3 Pressoflessione e flessione con sfruttamento integrale dell'acciaio teso e del cls 5-3,5 10 ε syd 0,59 5 ε ysd 10%o f yd S B 4 Pressoflessione e flessione con sfruttamento incompleto dell'acciaio (acciaio inferiore teso) -3,5 0 5 ε syd 5 ε ysd 1 B 4a Pressoflessione e flessione con sfruttamento incompleto dell'acciaio (acciaio inferiore compresso) -3,5 5 δ δ 1 1+δ C 5 Compressione con debole eccentricità 5 5 δ 1+ δ 1+δ + 13

14 S.L.U. FLESSIONE E FORZA ASSIALE ζ=/d Punti Campo ε c [%o] ε s [%o] da A A 1 Trazione con debole eccentricità A B 3 Pressoflessione e flessione con sfruttamento integrale dell'acciaio teso Pressoflessione e flessione con sfruttamento integrale dell'acciaio teso e del cls 0 3, ,59 5-3,5 10 ε syd 0,59 5 ε ysd ε cu S C f cd B 4 Pressoflessione e flessione con sfruttamento incompleto dell'acciaio (acciaio inferiore teso) -3,5 0 5 ε syd 5 ε ysd 1 ε syd f yd S B 4a Pressoflessione e flessione con sfruttamento incompleto dell'acciaio (acciaio inferiore compresso) -3,5 5 δ δ 1 1+δ C 5 Compressione con debole eccentricità 5 5 δ 1+ δ 1+δ + 14

15 S.L.U. FLESSIONE E FORZA ASSIALE ζ=/d Punti Campo ε c [%o] ε s [%o] da A A 1 Trazione con debole eccentricità A Pressoflessione e flessione con sfruttamento integrale dell'acciaio teso 0 3, ,59 B 3 Pressoflessione e flessione con sfruttamento integrale dell'acciaio teso e del cls 5-3,5 10 ε syd 0,59 5 ε ysd ε cu f cd B 4 Pressoflessione e flessione con sfruttamento incompleto dell'acciaio (acciaio inferiore teso) -3,5 0 5 ε syd 5 ε ysd 1 S C B 4a Pressoflessione e flessione con sfruttamento incompleto dell'acciaio (acciaio inferiore compresso) -3,5 5 δ δ 1 1+δ ε syd C 5 Compressione con debole eccentricità 5 5 δ 1+ δ 1+δ + 15

16 S.L.U. FLESSIONE E FORZA ASSIALE ζ=/d Punti Campo ε c [%o] ε s [%o] da A A 1 Trazione con debole eccentricità A Pressoflessione e flessione con sfruttamento integrale dell'acciaio teso 0 3, ,59 B 3 Pressoflessione e flessione con sfruttamento integrale dell'acciaio teso e del cls 5-3,5 10 ε syd 0,59 5 ε ysd B 4 B 4a Pressoflessione e flessione con sfruttamento incompleto dell'acciaio (acciaio inferiore teso) Pressoflessione e flessione con sfruttamento incompleto dell'acciaio (acciaio inferiore compresso) -3,5 0-3,5 5 ε syd 5 ε ysd 5 δ δ δ ε cu S C S f cd C 5 Compressione con debole eccentricità 5 5 δ 1+ δ 1+δ + 16

17 S.L.U. FLESSIONE E FORZA ASSIALE ζ=/d Punti Campo ε c [%o] ε s [%o] da A A 1 Trazione con debole eccentricità A B 3 Pressoflessione e flessione con sfruttamento integrale dell'acciaio teso Pressoflessione e flessione con sfruttamento integrale dell'acciaio teso e del cls 0 3, ,59 5-3,5 10 ε syd 0,59 5 ε ysd B 4 Pressoflessione e flessione con sfruttamento incompleto dell'acciaio (acciaio inferiore teso) -3,5 0 5 ε syd 5 ε ysd 1 B 4a Pressoflessione e flessione con sfruttamento incompleto dell'acciaio (acciaio inferiore compresso) -3,5 5 δ δ 1 1+δ ε cu S C f cd C 5 Compressione con debole eccentricità 5 5 δ 1+ δ 1+δ + S 17

18 Progetto di una sezione inflessa a semplice armatura Stato limite ultimo Si utilizzano le equazioni disponibili per la soluzione del problema B Equazione di equilibrio alla traslazione lungo l asse della trave: Equazione di equilibrio alla rotazione intorno al baricentro geometrico della sezione In modo analogo al metodo delle T.A. si determina un parametro di dimensionamento r slu B ψ f A f = = ψ ξ 1 cd s ( 1 λ ξ ) yd N rd N rd = 0 H H b f cd ψ λ + A s f yd c = I valori di ψ, ξ e λ sono tabellati in funzione di (profondità dell asse neutro) d M = rd r slu d c M b f slu cd 18

19 Progetto di una sezione inflessa a semplice armatura Stato limite ultimo Progettiamo la sezione ponendoci al confine tre le regioni e 3 ROTTURA BILANCIATA 0, 0035, = d = d ξ = 0.59 B ε cu C f cd ψ = λ = d r slu =, d =, 31 = 556mm A M 0. 9 d slu s,slu = = f yd 9. 95cm 10%o f yd ε syd H = d + c H= 600 mm A s,slu = 5 φ 16 = cm S 19

20 Verifica della sezione inflessa con semplice armatura Stato limite ultimo Congruenza ε c = ε ' s c = d ε s Equazione di equilibrio alla traslazione lungo l asse della trave: B ψ f cd A σ s yd = N rd = 0 As σ yd = ψ b f cd Si procede per tentativi seguendo quattro passi: 1. I ipotesi sul campo di rottura della sezione. Definizione dei parametri necessari a calcolare 3. Verifica in modo iterativo se l ipotesi fatta su è soddisfacente 4. Se la 3 non è soddisfatta si riparte dal punto considerando il valore di ricavato al passo precedente 0

21 Verifica della sezione inflessa con semplice armatura Stato limite ultimo I TENTATIVO: si ipotizza che ricada nella regione 3 B =0,59d ε cu f cd C Valori relativi alla regione 3 ψ = λ = d Limiti della regione 3 per la sezione d = lim = f yd S c 10%o ε syd I = f yd f cd = cm NON RISPETTA LE LIMITAZIONI DELLA ZONA 3 1

22 Verifica della sezione inflessa con semplice armatura Stato limite ultimo II TENTATIVO: ricade nella regione B ε cu f cd C ψ e λ variabili in funzione della posizione di Dal I tentativo I =14. 04cm d c 10%o f yd S ξ = I = d ψ = λ = ε ψ λ 0,17 0,6745 0,3765 0,18 0,6963 0,3813 0,19 0,7158 0,3861 0, 0,7333 0,3909 0,1 0,749 0,3956 0, 0,7636 0,4001 0,3 0,7768 0, ,4 0,7889 0,4086 0,5 0,8000 0,415 II =14. 30cm I II Errore del 1,9%

23 Verifica della sezione inflessa con semplice armatura Stato limite ultimo III TENTATIVO: ricade nella regione B ε cu C f cd ψ e λ variabili in funzione della posizione di Dal II tentativo =14. 30cm d c 10%o f yd S = d ξ = 0.46 ψ = λ = 0.41 III =14. cm II III Errore < 1% 3

24 Verifica della sezione inflessa con semplice armatura Stato limite ultimo Determinazione del momento ultimo della sezione considerando i valori ottenuti dal III tentativo B ε cu f cd B = 30cm H = 60 cm C A s,slu = 5 φ 16 = cm d c 10%o f yd S =14, cm ψ = λ = 0.41 H H M rd = B fcd ψ λ + As f yd c = kncm kncm= M sd 4

25 S.L.U. per Taglio (elementi armati a taglio) L'esame dello Stato Limite Ultimo per taglio va effettuato tenendo conto che la rottura per taglio è in realtà una rottura combinata per flessione e taglio e spesso anche per sforzo normale e torsione, la cui esatta valutazione è particolarmente complessa. La trave è schematizzata con un traliccio costituito da: -bielle compresse inclinate di un angolo ϑ -bielle tese inclinate di un angolo α (armature trasversali) -corrente superiore compresso (calcestruzzo compresso delimitato dall asse neutro) -corrente inferiore teso (barre di acciaio longitudinali) corrente superiore compresso corrente inferiore teso biella compressa α θ A T V B z cot θ R C S α z/ z/ armatura trasversale z cot α z 5

26 S.L.U. per Taglio (elementi armati a taglio) 1) Verifica nel conglomerato V Sd V Rd = 0,30 fcd bw d (1 + cotα) ) Verifica nell armatura trasversale d anima V cd = 0.60 f b d δ ctd w V Sd V Rd 3 = Vcd + V wd V Asw = 0. 9 d f ywd ( + cot α ) senα s wd 1 3) Verifica dell armatura longitudinale L armatura longitudinale deve essere dimensionata per resistere ad un momento di calcolo M* Sd pari a: M* Sd = M Sd + V Sd a 1 a1 = 0.9 d (1 cotα) / ( 0. d) 6

27 Sollecitazioni di Taglio Combinazioni di carico relative all azione di progetto agli S.L.U. q d1 I comb. G k = 5 kn/m q 1 = 57 kn/m II comb. q 1 = 57 kn/m G k = 5 kn/m III comb. q 1 = 57 kn/m q 1 = 57 kn/m Il taglio massimo per la III combinazione assume il valore: A B C 5 m 5 m V Sd = 178kN

28 S.L.U. per Taglio: verifica del conglomerato Sezione a semplice armatura con staffe φ8 passo f cd = = 11 N/mm 1.6 fyk 430 f yd = = = N/mm γ s f ctk = 1.6 N/mm f ctd = 1. N/mm In presenza di sole staffe (α = 90 ): V Rd = fcd bw d = 565 kn 178 kn = VSd VRd = 565kN 8

29 S.L.U. per Taglio: verifica dell armatura trasversale Sezione a semplice armatura con staffe φ8 passo f cd = = 11 N/mm 1.6 fyk 430 f yd = = = N/mm γ s f ctk = 1.6 N/mm f ctd = 1. N/mm A sw = 1.00cm In assenza di sforzo normale e con l asse neutro che taglia la sezione δ =1 V cd A = fctd bw d δ = 14 kn sw Vwd = 0. 9 d f yd = 96 kn s 178 kn = V V 3 = V + V =1087 kn Sd Rd cd wd 9

30 S.L.E. (Controllo della fessurazione) 1.Stato limite di decompressione E lo stato per il quale la minima tensione di compressione raggiunge il valore nullo.stato limite di formazione delle fessure E lo stato per il quale la massima tensione di trazione raggiunge il valore caratteristico della resistenza a trazione del conglomerato 3.Stato limite di apertura delle lesioni E lo stato per il quale l apertura delle fessure è pari ad un valore nominale prefissato dalle norme. I valori nominali per la norma italiana sono: w = 0.1, 0., 0.4 La verifica di tale stato limite si effettua confrontando il momento di esercizio con il momento di prima fessurazione M F, (rottura per trazione del calcestruzzo al lembo teso della sezione). M F va calcolato in ipotesi di sezione interamente reagente, ossia portando in conto anche la resistenza a trazione del cls. 30

31 S.L.E. (Controllo della fessurazione) 5 m 5 m 5 m 5 m 5 m Ci si riferisce allo stato limite di esercizio, le combinazioni previste sono: Combinazioni rare: F d = G k + Q 1k + Σ(i>1) Ψ 0i Q ik = 41.3 kn/m Combinazioni frequenti: F d = G k Q k,s + 0 Q k,n = 34.1 kn/m F d = G k + 0. Q k,s + 0. Q in = 3.0 kn/m Combinazioni quasi permanenti: F d = G k + 0. Q k,s = 31.3 kn/m 31

32 S.L.E. (Stato limite di formazione delle fessure) La verifica dello stato limite di formazione delle fessure consiste nel controllare che il momento flettente agente risulti ovunque non maggiore del momento di fessurazione M F, ovvero, con riferimento alla sezione, che la tensione agente al lembo teso risulti ovunque non maggiore della resistenza caratteristica a trazione σ 0ct del calcestruzzo. Il valore medio della resistenza a trazione può essere assunto pari a: - trazione semplice: f ctm = 0.7 ((R ck ) ) 1/3 (N/mmq) - trazione per flessione: f cfm = 1. f ctm In entrambi i casi il valore caratteristico σ 0ct, corrispondente al frattile 5%, può assumersi pari a 0.7 volte il valore medio. 3

33 S.L.E. (Stato limite di formazione delle fessure) La sezione è costituita da tre materiali diversi: cls compresso, cls teso, acciaio Si omogeneizza rispetto al cls compresso introducendo: n = E f / E c =15 n = E ct / E c =0.5 B cls compresso Per il valore medio della resistenza a trazione si assume: - trazione semplice: f ctm = 0.7 ((R ck ) ) 1/3 (N/mm ) - trazione per flessione: f cfm = 1. f ctm d cls teso acciaio La posizione dell asse neutro si determina dall equazione di equilibrio alla traslazione (si ricava, in assenza di sforzo assiale, l annullamento all asse neutro il momento statico totale della sezione reagente S n ). S n = B n A s ( d ) n' B ( H ) = 0 33

34 S.L.E. (Stato limite di formazione delle fessure) Risolvendo l equazione di II grado rispetto ad e considerando la radice positiva: = ( 1 n' ) ( n A d + n' B H / ) n As + n' BH B s mm = B ( 1 n' ) ( n As + n' B H ) Il momento d inerzia della sezione omogeneizzata risulta: I ci b = 3 [ ( ) ] n' H + na ( h ) = mm c La tensione σ t al lembo teso della sezione vale : c Il momento di prima fessurazione si ottiene ponendo σ t = f ctm : s c σ t = n' M I ci ( H ) c M F fctm Ici = = knm M sle = 19 knm VERIFICA NON n' SODDISFATTA ( H ) c 34

35 S.L.E. (limitazione delle tensioni) Il calcolo delle tensioni nella sezione, per il calcestruzzo e l acciaio, viene condotto assumendo un comportamento elastico lineare con sezione parzializzata Il coefficiente di omogeneizzazione acciaio cls è assunto convenzionalmente pari a n = 15. Si impongono alle tensioni le seguenti limitazioni: Tensioni Massime Materiale Combinazione rara Combinazione quasi permanente Calcestruzzo compresso in ambiente aggressivo Calcestruzzo compresso in ambiente ordinario Acciaio teso 0.50 f ck 0.60 f ck 0.70 f yk 0.40 f ck 0.45 f ck f = 430 yk N/mm f = ck 0.75 N/mm 35

36 S.L.E. (limitazione delle tensioni) Combinazioni rare: F d = G k + Q 1k + Σ(i>1) Ψ 0i Q ik = 41.3 kn/m Combinazioni quasi permanenti: F d = G k + 0. Q k,s = 31.3 kn/m Sollecitazioni dovute alle combinazioni di carico: Appoggio [knm] Campata [knm] Combinazioni rare 19 7 Combinazioni quasi permanenti d c B f ck C fs = n ( H ) Ici f yk / n f c S M = B M ( H 3) 36

37 S.L.E. (limitazione delle tensioni) Impiegando i metodi e le espressioni della teoria elastica del c.a. si risolve il problema determinando la profondità dell asse neutro e il momento d inerzia I n A s BH = = 00mm B n As b 3 3 ci = c + nas c = 9 4 ( h ) mm Tensioni di esercizio sull appoggio (in ambiente aggressivo): Calcestruzzo Acciaio f c [N/mm ] αf ck [N/mm ] f s [N/mm ] αf yk [N/mm ] Combinazioni rare Combinazioni quasi permanenti

38 Progetto di sezioni presso - inflesse Valutazione dello sforzo normale Lo sforzo normale dei pilastri può essere individuato in maniera approssimata individuando l area d influenza che compete a ciascuno di essi 5 m 5 m 5 m 5 m 5 m Edificio a 3 piani Copertura piana Area solaio =.09 m Azione variabile principale: Azione variabile secondaria: solaio di calpestio carico neve 38

39 Progetto di sezioni presso - inflesse Valutazione dello sforzo normale Peso proprio pilastro: G k =6.75 kn G d = = 9.45 kn Peso proprio solaio: G k =5.3 kn/m G d = = kn Trave emergente 30 60: G k =4.5 kn/m G d = = 9.61 kn Carico solaio di calpestio: Q k =.0 kn/m Q d = = 66.7 kn Carico neve: Q k =0.75 kn/m Q d = = kn III livello I e II livello Totale N d = 80.8 kn N d = 69. kn N d = kn Area di calcestruzzo strettamente necessaria (Stato Limite Ultimo) A = Nd f / 1, = / 1. 5 = 791cm c,nec Sezione cd 39

40 Progetto di sezioni presso - inflesse Armatura nel pilastro Barre d armatura con diametro non minore di 1 mm. La quantità minima di armatura longitudinale totale A s,min è determinata con la seguente equazione: N d A s,min = f yd. f yd è la tensione di snervamento di calcolo dell armatura; N Sd è la forza di compressione assiale di calcolo; A c è l area della sezione trasversale del calcestruzzo. A c A s, min = = 3. 3 cm =. 7 cm A s,slu = 4 φ 14 = 6.15 cm 40

41 Domini M N allo Stato Limite Ultimo La frontiera del dominio di resistenza M-N è costituita dal luogo dei punti del piano N-M corrispondenti alle coppie di coordinate M (momento flettente) ed N (sforzo normale) che determinano la crisi della sezione Si costruisce il dominio di resistenza M-N della sezione utilizzando le equazioni di congruenza, di equilibrio alla traslazione e di equilibrio alla rotazione. Si considera la coppia M Sd ed N Sd (momento flettente e sforzo normale) che sollecita la sezione. Si riporta sul diagramma il punto di coordinate (N Sd, M Sd ) Si presentano due possibilità: (N Sd, M Sd ) punto INTERNO al dominio SEZIONE VERIFICATA (N Sd, M Sd ) punto ESTERNO al dominio SEZIONE NON VERIFICATA 41

42 Costruzione del dominio M N allo Stato Limite Ultimo M N B ε s S H d 10%o f yd S 4

43 Costruzione del dominio M N allo Stato Limite Ultimo M N B ε s ε cu f cd S C H d 10%o f yd S 43

44 Costruzione del dominio M N allo Stato Limite Ultimo M N B ε cu S C f cd H d ε syd f yd S 44

45 Costruzione del dominio M N allo Stato Limite Ultimo M N B ε cu f cd S C H d ε syd 45

46 Costruzione del dominio M N allo Stato Limite Ultimo M N B %o f cd S C H d =+ S 46

47 Utilizzo dei domini M N per progetto-verifica Le dimensioni della sezione sono note. Si stabilisce a priori il rapporto tra A s ed A s ; Si costruiscono i domini M-N per diverse quantità di armatura. Si riporta sul diagramma il punto di coordinate (N Sd, M Sd ) Si determina la quantità di armatura necessaria M A s =A s = φ 18 cm A s =A s = φ 16 cm A s =A s = φ 14 cm A s =A s = φ 1 cm A s =A s = φ 10 cm N 47

48 Confronto con il criterio delle Tensioni Ammissibili Limitazioni e difetti del Metodo delle Tensioni Ammissibili 1 Non si considerano stati di pericolo diversi con differenti livelli di sicurezza ma si considera sempre la peggiore condizione in assoluto con un conseguente maggiore onere economico Il metodo T.A. si basa sull ipotesi di materiali a comportamento elastico lineare ed isotropo non considerando invece il reale comportamento anelastico 3 Le incertezze vengono conglobate tutte in un solo coefficiente di sicurezza γ utilizzato per definire le tensioni ammissibili senza distinguere le incertezze legate a fattori diversi (carichi e azioni) quindi non possono essere introdotte informazioni di tipo probabilistico 48

49 Confronto con il criterio delle Tensioni Ammissibili 4 Si ipotizza una proporzionalità tensioni sollecitazioni forze fino alle condizioni ultime. Tale ipotesi non è valida nel campo anelastico 5 Poiché la verifica è condotta sulla base delle sole tensioni locali non è garantito il proporzionamento ottimale nei confronti della sicurezza a rottura Le strutture si scartano se superano localmente il limite elastico Maggiori costi e comportamento non ottimale Non esiste un criterio per superare il limite elastico Si opera a sfavore di sicurezza 49

GLI STATI LIMITE DI ESERCIZIO

GLI STATI LIMITE DI ESERCIZIO Corso sulle Norme Tecniche per le costruzioni in zona sismica (Ordinanza PCM 3274/2003, DGR Basilicata 2000/2003) POTENZA, 2004 GLI STATI LIMITE DI ESERCIZIO Prof. Ing. Angelo MASI DiSGG, Università di

Dettagli

STRUTTURE IN CEMENTO ARMATO - V

STRUTTURE IN CEMENTO ARMATO - V Sussidi didattici per il corso di COSTRUZIONI EDILI Prof. Ing. Francesco Zanghì STRUTTURE IN CEMENTO ARMATO - V AGGIORNAMENTO 22/09/2012 DOMINIO DI RESISTENZA Prendiamo in considerazione la trave rettangolare

Dettagli

Dalle tensioni ammissibili agli stati limite

Dalle tensioni ammissibili agli stati limite Dalle tensioni ammissibili agli stati limite Flessione composta Spoleto, 21 maggio 2004 Aurelio Ghersi Verifica di sezioni soggette flessione composta 1 Verifica tensioni ammissibili h d c n A s x σ c

Dettagli

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì FONDAZIONI - III AGGIORNAMENTO 12/12/2014

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì FONDAZIONI - III AGGIORNAMENTO 12/12/2014 Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI Prof. Ing. Francesco Zanghì FONDAZIONI - III AGGIORNAMENTO 12/12/2014 Progetto strutturale di una trave rovescia Alle travi di fondazioni

Dettagli

Dalle tensioni ammissibili agli stati limite

Dalle tensioni ammissibili agli stati limite Dalle tensioni ammissibili agli stati limite Flessione composta Spoleto, 21 maggio 2004 Aurelio Ghersi Verifica di sezioni soggette flessione composta Verifica tensioni ammissibili c A s σ c max σ s /

Dettagli

NORMATIVA DI RIFERIMENTO La normativa cui viene fatto riferimento nelle fasi di calcolo e progettazione è la seguente:

NORMATIVA DI RIFERIMENTO La normativa cui viene fatto riferimento nelle fasi di calcolo e progettazione è la seguente: Sono illustrati con la presente i risultati dei calcoli che riguardano il progetto della scala in c.a da realizzarsi nel rifugio Cima Bossola in località Marciana NORMATIVA DI RIFERIMENTO La normativa

Dettagli

6 Lezione. STATI LIMITE: Esempi di progetto/verifica

6 Lezione. STATI LIMITE: Esempi di progetto/verifica 6 Lezione STATI LIMITE: Eempi di progetto/veriica SLU Applicazioni Progetto della ezione in c.a. PROBLEMA N. 1 40 Determinare: 1) Il valore dell armatura bilanciata. ) Il momento ultimo a leione emplice

Dettagli

Calcolo di edificio con struttura prefabbricata situato in zona sismica di I categoria.

Calcolo di edificio con struttura prefabbricata situato in zona sismica di I categoria. Politecnico di Torino Calcolo di edificio con struttura prefabbricata situato in zona sismica di I categoria. III parte Pag. 1 Le componenti dell azione sismica devono essere considerate come agenti simultaneamente,

Dettagli

Documento #: Doc_a8_(9_b).doc

Documento #: Doc_a8_(9_b).doc 10.10.8 Esempi di progetti e verifiche di generiche sezioni inflesse o presso-tensoinflesse in conglomerato armato (rettangolari piene, circolari piene e circolari cave) Si riportano, di seguito, alcuni

Dettagli

Flessione orizzontale

Flessione orizzontale Flessione orizzontale Presso-flessione fuori piano Presso-flessione fuori piano Funzione dei rinforzi FRP nel piano trasmissione di sforzi di trazione all interno di singoli elementi strutturali o tra

Dettagli

CALCOLO DEL NUOVO PONTE

CALCOLO DEL NUOVO PONTE CALCOLO DEL NUOVO PONTE CARATTERISTICHE DEI MATERIALI I materiali utilizzati sono: - Calcestruzzo Rck450 = 2500 Kg/m 3 Resistenza di esercizio a flessione: f cd = 0,44*45 = 19,8 N/mm 2 = 198 Kg/cm 2 -

Dettagli

10 CALCOLO AGLI STATI LIMITE DELLE STRUTTURE IN C.A.

10 CALCOLO AGLI STATI LIMITE DELLE STRUTTURE IN C.A. 10 CALCOLO AGLI STATI LIMITE DELLE STRUTTURE IN C.A. Il capitolo fa riferimento alla versione definitiva dell'eurocodice 2, parte 1.1, UNI EN 1992-1-1, recepito e reso applicabile in Italia dal DM del

Dettagli

Istituto Tecnico per Geometri Corso di Costruzioni Edili

Istituto Tecnico per Geometri Corso di Costruzioni Edili Istituto Tecnico per Geometri Corso di Costruzioni Edili Prof. Giacomo Sacco LEZIONI SUL CEMENTO ARMATO Sforzo normale, Flessione e taglio CONCETTI FONDAMENTALI Il calcestruzzo ha una bassa resistenza

Dettagli

Certificazione di produzione di codice di calcolo Programma CAP3

Certificazione di produzione di codice di calcolo Programma CAP3 1 Certificazione di produzione di codice di calcolo Programma CAP3 1) CARATTERISTICHE DEL CODICE Titolo programma : CAP3 - Travi precompresse ad armatura pretesa, Metodo agli stati limite. Autore : ing.

Dettagli

ESERCIZI SVOLTI. 2 Il calcestruzzo armato 2.4 La flessione composta

ESERCIZI SVOLTI. 2 Il calcestruzzo armato 2.4 La flessione composta ESERCIZI SVOLTI Costruire la frontiera del dominio di resistenza della sezione rettangolare di mm con armatura simmetrica A s,tot + 6, copriferro mm, impiegando calcestruzzo classe C /. Resistenza di calcolo

Dettagli

NORMATIVE DI RIFERIMENTO

NORMATIVE DI RIFERIMENTO INDICE 1. PREMESSA 3 2. NORMATIVE DI RIFERIMENTO 4 3. CARATTERISTICHE DEI MATERIALI 5 4. DESCRIZIONE DEGLI INTERVENTI 6 4.1 Sopraelevazione del fondo vasca della Piscina 6 4.2 Vasca di Compensazione 8

Dettagli

VERIFICA OPERE IN C.A. CORPO "A"

VERIFICA OPERE IN C.A. CORPO A VERIFICA OPERE IN C.A. CORPO "A" 1 VERIFICA PIASTRA FONDALE...3 VERIFICA RESTANTI OPERE IN C.A...9 VERIFICHE SLE...11 2 VERIFICA PIASTRA FONDALE Verifica a flessione Stati limiti La piastra fondale presenta

Dettagli

MECCANISMI RESISTENTI IN ELEMENTI NON ARMATI A TAGLIO

MECCANISMI RESISTENTI IN ELEMENTI NON ARMATI A TAGLIO MECCANISMI RESISTENTI IN ELEMENTI NON ARMATI A TAGLIO MECCANISMO RESISTENTE A PETTINE Un elemento di calcestruzzo tra due fessure consecutive si può schematizzare come una mensola incastrata nel corrente

Dettagli

SOMMARIO 1. VERIFICA DELLA PASSERELLA DI ACCESSO AL TEATRO - DESCRIZIONE DELL OPERA - NORMATIVA DI RIFERIMENTO - MATERIALI ADOTTATI

SOMMARIO 1. VERIFICA DELLA PASSERELLA DI ACCESSO AL TEATRO - DESCRIZIONE DELL OPERA - NORMATIVA DI RIFERIMENTO - MATERIALI ADOTTATI SOMMARIO 1. VERIFICA DELLA PASSERELLA DI ACCESSO AL TEATRO - DESCRIZIONE DELL OPERA - NORMATIVA DI RIFERIMENTO - MATERIALI ADOTTATI 1.1 DIMENSIONAMENTO E VERIFICA DEGLI ELEMENTI STRUTTURALI travi secondarie

Dettagli

PROGRAMMA DETTAGLIATO CORSO INTEGRATO DI TECNICA DELLE COSTRUZIONI: COSTRUZIONI IN CEMENTO ARMATO E ACCIAIO

PROGRAMMA DETTAGLIATO CORSO INTEGRATO DI TECNICA DELLE COSTRUZIONI: COSTRUZIONI IN CEMENTO ARMATO E ACCIAIO PROGRAMMA DETTAGLIATO CORSO INTEGRATO DI TECNICA DELLE COSTRUZIONI: COSTRUZIONI IN CEMENTO ARMATO E ACCIAIO 1 LEZIONE COSTRUZIONI IN CEMENTO ARMATO ARGOMENTI 1. Introduzione Presentazione del corso 2.

Dettagli

SOLETTA SU LAMIERA GRECATA

SOLETTA SU LAMIERA GRECATA SOLETTA SU LAMIERA GRECATA (Revisione 3-01-006) Fig. 1 I solai composti in acciaio-calcestruzzo sono costituiti da una lamiera grecata di acciaio su cui viene eseguito un getto di calcestruzzo normale

Dettagli

Nel cemento armato si valorizzano le qualità dei due materiali: calcestruzzo e acciaio, che presentano le seguenti caratteristiche

Nel cemento armato si valorizzano le qualità dei due materiali: calcestruzzo e acciaio, che presentano le seguenti caratteristiche CEMENTO ARMATO METODO AGLI STATI LIMITE Il calcestruzzo cementizio, o cemento armato come normalmente viene definito in modo improprio, è un materiale artificiale eterogeneo costituito da conglomerato

Dettagli

Carichi unitari. Dimensionamento delle sezioni e verifica di massima. Dimensionamento travi a spessore. Altri carichi unitari. Esempio.

Carichi unitari. Dimensionamento delle sezioni e verifica di massima. Dimensionamento travi a spessore. Altri carichi unitari. Esempio. Carichi unitari delle sezioni e verifica di massima Una volta definito lo spessore, si possono calcolare i carichi unitari (k/m ) Solaio del piano tipo Solaio di copertura Solaio torrino scala Sbalzo piano

Dettagli

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì FONDAZIONI - II

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì FONDAZIONI - II Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI Prof. Ing. Francesco Zanghì FONDAZIONI - II AGGIORNAMENTO 12/12/2014 Fondazioni dirette e indirette Le strutture di fondazione trasmettono

Dettagli

Verifica agli stati limite: la sollecitazione di taglio

Verifica agli stati limite: la sollecitazione di taglio DIPARTIMENTO DI INGEGNERIA MECCANICA E STRUTTURALE FACOLTÀ DI INGEGNERIA UNIERSITÀ DEGLI STUDI DI TRENTO CORSO DI AGGIORNAMENTO PER GEOMETRI SU PROBLEMATICHE STRUTTURALI erifica agli stati limite: la sollecitazione

Dettagli

LE STRUTTURE IN CEMENTO ARMATO: Progetto dei pilastri

LE STRUTTURE IN CEMENTO ARMATO: Progetto dei pilastri prof. Renato Giannini LE STRUTTURE IN CEMENTO ARMATO: Progetto dei pilastri (arch. Lorena Sguerri) Prescrizioni di normativa per le armature dei pilastri La normativa (D.M. 09/01/96, par.5.3.4) fornisce

Dettagli

Progettazione di edifici in cemento armato in zona sismica Esempi pratici

Progettazione di edifici in cemento armato in zona sismica Esempi pratici Progettazione di edifici in cemento armato in zona sismica Esempi pratici Esempio di calcolo Individuazione dei telai oggetto di studio Telaio T1 Pilastrata P1 Telaio T2 Materiali usati Esempio di calcolo

Dettagli

INDICE 1 DESCRIZIONE DELL OPERA... 3 2 NORMATIVA DI RIFERIMENTO... 4 3 MATERIALI... 7 4 TRAVE IN C.A. - ANALISI DEI CARICHI... 8

INDICE 1 DESCRIZIONE DELL OPERA... 3 2 NORMATIVA DI RIFERIMENTO... 4 3 MATERIALI... 7 4 TRAVE IN C.A. - ANALISI DEI CARICHI... 8 2/6 INDICE 1 DESCRIZIONE DELL OPERA... 3 2 NORMATIVA DI RIFERIMENTO... 4 3 MATERIALI... 7 4 TRAVE IN C.A. - ANALISI DEI CARICHI... 8 5 CALCOLO DELLE SOLLECITAZIONI TRAVE... 9 6 CALCOLO DELLE SOLLECITAZIONI

Dettagli

PROVA DI RECUPERO 11/09/2001

PROVA DI RECUPERO 11/09/2001 Esercizio n Cemento Armato PROVA DI RECUPERO 11/09/001 Si consideri il portale in cemento armato indicato in figura costituito da una trave di base b t 30 cm e altezza h t 60 cm, e da due pilastri identici

Dettagli

Verifica di una struttura esistente

Verifica di una struttura esistente Il metodo agli Stati Limite per la verifica delle strutture in c.a. Giovanni A. Plizzari Università di Bergamo Paolo Riva Università di Brescia Corso Pandini Bergamo, 14-15 Novembre, 2003 Verifica di una

Dettagli

Leonardo Principato Trosso

Leonardo Principato Trosso Leonardo Principato Trosso Software per il calcolo con i metodi delle tensioni ammissibili e agli stati limite ai sensi del D.M. 14 gennaio 2008 * Solai in cemento armato, ferro, legno e a piastra * Sbalzi

Dettagli

(7) Nel calcolo della resistenza di un collegamento ad attrito il coefficiente di attrito µ dipende: (punti 3)

(7) Nel calcolo della resistenza di un collegamento ad attrito il coefficiente di attrito µ dipende: (punti 3) Domande su: taglio, flessione composta e collegamenti. Indica se ciascuna delle seguenti affermazioni è vera o falsa (per ciascuna domanda punti 2) (1) L adozione di un gioco foro-bullone elevato semplifica

Dettagli

ESEMPIO 1: PROGETTAZIONE SISMICA DI STRUTTURA IN C.A. SECONDO ORDINANZA 3431 (3 maggio 2005) ED EUROCODICE 8 (dicembre 2003)

ESEMPIO 1: PROGETTAZIONE SISMICA DI STRUTTURA IN C.A. SECONDO ORDINANZA 3431 (3 maggio 2005) ED EUROCODICE 8 (dicembre 2003) ESEPIO 1: PROGETTAZIONE SISICA DI STRUTTURA IN C.A. SECONDO ORDINANZA 3431 (3 maggio 2005) ED EUROCODICE 8 (dicembre 2003) EDIFICIO RESIDENZIALE IN C.A. NUCLEO SCALE, TELAI PERIETRALI SISORESISTENTI FONDAZIONE

Dettagli

SETTI O PARETI IN C.A.

SETTI O PARETI IN C.A. SETTI O PARETI IN C.A. Parete Pareti accoppiate SETTI O PARETI IN C.A. Na 20% Fh i i h i Na/M tot >=0.2 SETTI O PARETI IN C.A. IL FATTORE DI STRUTTURA VERIFICHE SETTI O PARETI IN C.A. SOLLECITAZIONI -FLESSIONE

Dettagli

Progettazione di strutture in c.a. SLU per taglio nelle travi

Progettazione di strutture in c.a. SLU per taglio nelle travi Progettazione di strutture in c.a. SLU per taglio nelle travi Travi 4.1.6.1.1-NTC Armatura trasversale minima 1. sezione complessiva delle staffe non inferiore ad A st = 1,5 b mm 2 /m essendo b lo spessore

Dettagli

PROGETTO E VERIFICA DI UN SOLAIO MISTO IN C.A.

PROGETTO E VERIFICA DI UN SOLAIO MISTO IN C.A. UNIVERSITA DEGLI STUDI DELLA BASILICATA Corso di TECNICA DELLE COSTRUZIONI PROGETTO E VERIFICA DI UN SOLAIO MISTO IN C.A. Docente: Collaboratori: Prof. Ing.. Angelo MASI Ing. Giuseppe SANTARSIERO Ing.

Dettagli

STRUTTURE MISTE ACCIAIO-CLS Lezione 2

STRUTTURE MISTE ACCIAIO-CLS Lezione 2 STRUTTURE MISTE ACCIAIO-CLS Lezione 2 I SISTEMI DI CONNESSIONE Tipologie di connettori Calcolo della sollecitazione nei connettori Connettori a totale ripristino di resistenza Connettori a parziale ripristino

Dettagli

CONSOLIDAMENTO PONTE E DIFESA SPONDA DESTRA TORRENTE STANAVAZZO. NORMATIVA UTILIZZATA: D.M. 14/01/2008 Norme Tecniche per le costruzioni

CONSOLIDAMENTO PONTE E DIFESA SPONDA DESTRA TORRENTE STANAVAZZO. NORMATIVA UTILIZZATA: D.M. 14/01/2008 Norme Tecniche per le costruzioni GENERALITA COMUNE DI PREDOSA Provincia di Alessandria CONSOLIDAMENTO PONTE E DIFESA SPONDA DESTRA TORRENTE STANAVAZZO ZONA SISMICA: Zona 3 ai sensi dell OPCM 3274/2003 NORMATIVA UTILIZZATA: D.M. 14/01/2008

Dettagli

Modelli di dimensionamento

Modelli di dimensionamento Introduzione alla Norma SIA 266 Modelli di dimensionamento Franco Prada Studio d ing. Giani e Prada Lugano Testo di: Joseph Schwartz HTA Luzern Documentazione a pagina 19 Norma SIA 266 - Costruzioni di

Dettagli

Università degli studi di Cagliari. Corso di aggiornamento. Unità 4 PIASTRE IN C.A. E INSTABILITÀ

Università degli studi di Cagliari. Corso di aggiornamento. Unità 4 PIASTRE IN C.A. E INSTABILITÀ Università degli studi di Cagliari Dipartimento di Ingegneria Strutturale Corso di aggiornamento Unità 4 PIASTRE IN C.A. E INSTABILITÀ RELATORE: Ing. Igino MURA imura@unica.it 25-26 Giugno 2010 - Instabilità:

Dettagli

Generalità e note di teoria

Generalità e note di teoria Capitolo 1 Generalità e note di teoria In questo capitolo sono riportate alcune note delle teorie utilizzate, riguardanti: Verifiche di resistenza. Dati del problema e convenzioni. Ipotesi fondamentali.

Dettagli

Progettazione di strutture in c.a. Solaio in latero - cemento. Maurizio Orlando Dipartimento di Ingegneria Civile e Ambientale, Firenze

Progettazione di strutture in c.a. Solaio in latero - cemento. Maurizio Orlando Dipartimento di Ingegneria Civile e Ambientale, Firenze Progettazione di strutture in c.a. Solaio in latero - cemento Solaio in latero-cemento A B C C4.1.9.1.2 Limiti dimensionali Le varie parti del solaio devono rispettare i seguenti limiti dimensionali: a)

Dettagli

DIMENSIONAMENTO DI UN PILASTRO

DIMENSIONAMENTO DI UN PILASTRO DIMENSIONAMENTO DI UN PILASTRO Si dimensioni un pilastro nelle tre diverse tecnologie: legno, acciaio e cemento armato. Osservando una generica pianta di carpenteria, il pilastro centrale sarà quello maggiormente

Dettagli

Corso di aggiornamento professionale alle NORME TECNICHE PER LE COSTRUZIONI MODULO 3. Relatore: Ing. Federico Carboni

Corso di aggiornamento professionale alle NORME TECNICHE PER LE COSTRUZIONI MODULO 3. Relatore: Ing. Federico Carboni NORME TECNICHE PER LE COSTRUZIONI MODULO 3 -COSTRUZIONI DICALCESTRUZZO- Relatore: Ing. Federico Carboni Dottore di Ricerca in Strutture e Infrastrutture presso l Università Politecnicadelle Marche Collegio

Dettagli

PROVA DI AMMISSIONE ALLA LAUREA MAGISTRALE IN INGEGNERIA CIVILE A.A. 2011/2012

PROVA DI AMMISSIONE ALLA LAUREA MAGISTRALE IN INGEGNERIA CIVILE A.A. 2011/2012 Cognome e nome PROVA DI AMMISSIONE ALLA LAUREA MAGISTRALE IN INGEGNERIA CIVILE A.A. 2011/2012 Si ricorda al candidato di rispondere alle domande di Idraulica, Scienza delle costruzioni e Tecnica delle

Dettagli

16.3 Stato limite di fessurazione. 16.3.1 Generalità

16.3 Stato limite di fessurazione. 16.3.1 Generalità 16.3 Stato limite di fessurazione 16.3.1 Generalità Nel capitolo precedente si è accennato al fatto che le verifiche di resistenza delle sezioni in calcestruzzo armato si effettuano considerando il calcestruzzo

Dettagli

Disposizioni costruttive per edifici in c.a.

Disposizioni costruttive per edifici in c.a. ORDINE DEGLI INGEGNERI DELLA PROVINCIA DI BERGAMO Corso di aggiornamento professionale Dott. Ing. Giulio Pandini IX Corso Università degli Studi di Bergamo - Facoltà di Ingegneria Dalmine 28 novembre 2003

Dettagli

Lezione. Progetto di Strutture

Lezione. Progetto di Strutture Lezione Progetto di Strutture Impostazione della carpenteria Impostazione della carpenteria Definizione dell orditura dei solai e della posizione di travi e pilastri ( La struttura deve essere in grado

Dettagli

Il c.a.p. nelle nuove Norme Tecniche

Il c.a.p. nelle nuove Norme Tecniche Il c.a.p. nelle nuove Norme Tecniche plizzari@ing.unibs.it Università di Brescia Corso di Tecnica delle Costruzioni Verifica di una struttura esistente Corso Tecnica delle Costruzioni 2/71 Comportamento

Dettagli

Capitolo 4 CALCOLO DELLE SEZIONI

Capitolo 4 CALCOLO DELLE SEZIONI Capitolo 4B - Stati limite ultimi 51 Capitolo 4 CALCOLO DELLE SEZIONI 4.1 Trazione Il comportamento sotto carico crescente di un pezzo di acciaio è ricavabile dalla prova a trazione effettuata con apposite

Dettagli

Vulnerabilità Sismica ed Adeguamento di Costruzioni Esistenti in Calcestruzzo Armato

Vulnerabilità Sismica ed Adeguamento di Costruzioni Esistenti in Calcestruzzo Armato Corso di aggiornamento professionale Vulnerabilità Sismica ed Adeguamento di Costruzioni Esistenti in Calcestruzzo Armato 7 maggio 7 giugno 013 Aula Magna Seminario Vescovile Via Puccini, 36 - Pistoia

Dettagli

Sforzo normale e flessione

Sforzo normale e flessione Capitolo 4 Sforzo normale e flessione La condizione di sollecitazione più generale che produce tensioni normali è la combinazione di sforzo normale e flessione. La flessione semplice, esaminata nel capitolo

Dettagli

RELAZIONE TECNICA DI CALCOLO DELLE STRUTTURE E VERIFICA ALLE AZIONI SISMICHE SECONDO D.M. 96 e O.P.C.M. 3274

RELAZIONE TECNICA DI CALCOLO DELLE STRUTTURE E VERIFICA ALLE AZIONI SISMICHE SECONDO D.M. 96 e O.P.C.M. 3274 UNIVERSITA DEGLI STUDI DI PADOVA FACOLTA DI INGEGNERIA CORSO DI LAUREA SPECIALISTICA IN INGEGNERIA EDILE CORSO DI TECNICA DELLE COSTRUZIONI 3 PROF. MODENA ING. PIPINATO COSTRUZIONE EX NOVO DI UN CONDOMINIO

Dettagli

STRUTTURE IN CEMENTO ARMATO - IIII

STRUTTURE IN CEMENTO ARMATO - IIII Sussidi didattici per il corso di COSTRUZIONI EDILI Prof. Ing. Francesco Zanghì STRUTTURE IN CEMENTO ARMATO - IIII AGGIORNAMENTO 29/04/2012 FLESSIONE SEMPLICE RETTA: Progetto allo SLU Progettare la sezione

Dettagli

UNIVERSITÀ DEGLI STUDI DI ROMA TOR VERGATA

UNIVERSITÀ DEGLI STUDI DI ROMA TOR VERGATA Facoltà di Ingegneria Corso di Laurea in Ingegneria Civile Solaio Dott. Ing. Simone Beccarini Email: sbeccarini@hotmail.it INDICE: Il solaio: generalità Tipologie di solai Il solaio latero-cementizio:

Dettagli

Testo Unico NORME TECNICHE PER LE COSTRUZIONI. Parte 2

Testo Unico NORME TECNICHE PER LE COSTRUZIONI. Parte 2 Testo Unico NORME TECNICHE PER LE COSTRUZIONI Parte 2 5. NORME SULLE COSTRUZIONI Le norme disciplinano la progettazione, l esecuzione ed il collaudo delle costruzioni nei diversi materiali relativamente

Dettagli

5.1 Il metodo semiprobabilistico per gli stati limite ultimi

5.1 Il metodo semiprobabilistico per gli stati limite ultimi Geostru Software www.geostru.com geostru@geostru.com CAPITOLO 5 METODO DEGLI STATI LIMITE ULTIMI 5.1 Il metodo semiprobabilistico per gli stati limite ultimi Le brevi note che seguono riguardano i principali

Dettagli

Solai misti: esempio di calcolo di un solaio a quattro campate.

Solai misti: esempio di calcolo di un solaio a quattro campate. Solai misti: esempio di calcolo di un solaio a quattro campate. Si consideri un solaio a quattro campate di luce: l 1 =4,50 m l 2 =5,20 m l 3 =5,20 m l 4 =4,50 m. L altezza del solaio è legata alla limitazione

Dettagli

DATI GENERALI ED OPZIONI DI CALCOLO

DATI GENERALI ED OPZIONI DI CALCOLO INDICE 1. INTRODUZIONE pag.. DATI GENERALI ED OPZIONI DI CALCOLO pag. 3. EFFETTI DELLE AZIONI pag. 4 4. VERIFICHE AGLI SLU PER CARICHI VERTICALI pag. 5 5. VERIFICHE AGLI SLU PER CARICHI TRASVERSALI pag.

Dettagli

SCALA CON GRADINI PORTANTI E TRAVE A GINOCCHIO

SCALA CON GRADINI PORTANTI E TRAVE A GINOCCHIO prof. Gianmarco de Felice, arch. Lorena Sguerri SCALA CON GRADINI PORTANTI E TRAVE A GINOCCHIO Tipologie correnti di scale Progetto di gradini portanti Progetto della trave a ginocchio Esecutivi: piante,

Dettagli

Costruzioni composte acciaio-calcestruzzo

Costruzioni composte acciaio-calcestruzzo Norme Tecniche per le Costruzioni D.M. 16 gennaio 2008 Costruzioni composte acciaio-calcestruzzo 4.3.1 Valutazione della sicurezza Definizione: Le strutture composte sono costituite da parti realizzate

Dettagli

La nuova normativa sismica. Edifici in cemento armato

La nuova normativa sismica. Edifici in cemento armato La nuova normativa sismica Ordinanza 3274 del 20 marzo 2003 e 3431 del 3 maggio 2005 Edifici in cemento armato Prof. Ing. Gennaro Magliulo Conglomerato: Caratteristiche dei materiali Rbk > = 25 Mpa (250

Dettagli

Progetto agli stati limite di un edificio con struttura mista, muratura e c.a.

Progetto agli stati limite di un edificio con struttura mista, muratura e c.a. Progetto agli stati limite di un edificio con struttura mista, muratura e c.a. 1 Caso studio Si vogliono eseguire degli interventi di ristrutturazione di un edificio esistente adibito a civile abitazione

Dettagli

Combinazione dei carichi

Combinazione dei carichi Combinazione dei carichi Un passo fondamentale del progetto di un opera civile è sicuramente l analisi delle forze agenti su essa che sono necessarie per l individuazione delle corrette sollecitazioni

Dettagli

Parte I: Basi del progetto

Parte I: Basi del progetto XV XVII Introduzione Prefazione Parte I: Basi del progetto 3 CAP. 1 - LA CONCEZIONE STRUTTURALE 3 1.1 Carattere di una costruzione 5 1.2 La forma tecnica della costruzione in calcestruzzo armato 11 1.3

Dettagli

Le unioni. modulo D L acciaio. Unioni con chiodi

Le unioni. modulo D L acciaio. Unioni con chiodi 1 Le unioni Le unioni hanno la funzione di collegare i vari elementi strutturali per formare la struttura, oppure, se questa è di grandi dimensioni, di realizzare in officina i componenti principali che

Dettagli

SOMMARIO 1. PREMESSA 1 2. CARATTERISTICHE MECCANICHE DEI MATERIALI 1 3. FONDAZIONI 2 4. NORMATIVA DI RIFERIMENTO 5 5. IPOTESI DI CARICO 6 6.

SOMMARIO 1. PREMESSA 1 2. CARATTERISTICHE MECCANICHE DEI MATERIALI 1 3. FONDAZIONI 2 4. NORMATIVA DI RIFERIMENTO 5 5. IPOTESI DI CARICO 6 6. SOMMARIO 1. PREMESSA 1 2. CARATTERISTICHE MECCANICHE DEI MATERIALI 1 3. FONDAZIONI 2 4. NORMATIVA DI RIFERIMENTO 5 5. IPOTESI DI CARICO 6 6. TIPOLOGIA DI PRODUZIONE 6 7. MODALITA DI POSA IN OPERA 7 8.

Dettagli

ELEMENTI IN ACCIAIO MONO-SIMMETRICI CON ANIMA IRRIGIDITA. Domenico Leone

ELEMENTI IN ACCIAIO MONO-SIMMETRICI CON ANIMA IRRIGIDITA. Domenico Leone ELEMENTI IN ACCIAIO MONO-SIMMETRICI CON ANIMA IRRIGIDITA Domenico Leone ELEMENTI IN ACCIAIO MONO-SIMMETRICI CON ANIMA IRRIGIDITA Domenico Leone Il prof. Domenico Leone vanta un esperienza più che trentennale

Dettagli

Formule per la verifica ed il progetto del rinforzo in FRP di pilastri rettangolari soggetti a pressoflessione deviata

Formule per la verifica ed il progetto del rinforzo in FRP di pilastri rettangolari soggetti a pressoflessione deviata Formule per la verifica ed il progetto del rinforzo in FRP di pilastri rettangolari soggetti a pressoflessione deviata Giorgio Monti, Silvia Alessandri Università di Roma La Sapienza Contenuti Approccio

Dettagli

7. PROGETTO DELLE STRUTTURE DI FONDAZIONE 7.1.COLONNA - GIUNTO DI BASE

7. PROGETTO DELLE STRUTTURE DI FONDAZIONE 7.1.COLONNA - GIUNTO DI BASE 7. PROGETTO DELLE STRUTTURE DI FONDAZIONE Come per l analisi del comportamento longitudinale della struttura anche in questo caso è necessario analizzare il percorso di tensione. Esso si basa su tre passi

Dettagli

ANALISI STRUTTURALE DELLA TRAVE PORTA-PARANCO IN ACCIAIO (sala C LNGS - INFN)

ANALISI STRUTTURALE DELLA TRAVE PORTA-PARANCO IN ACCIAIO (sala C LNGS - INFN) ANALISI STRUTTURALE DELLA TRAE PORTA-PARANCO IN ACCIAIO (sala C LNGS - INFN) SALA C SALA A SALA B Ing. FRANCESCO POTENZA Ing. UBERTO DI SABATINO 1 1. PREESSA La presente relazione illustra i risultati

Dettagli

SOMMARIO 7.2 MURI A2... 26 7.3 MURI A3... 31 7.4 MURI A4... 35 7.5 MURI A5... 39

SOMMARIO 7.2 MURI A2... 26 7.3 MURI A3... 31 7.4 MURI A4... 35 7.5 MURI A5... 39 SOMMARIO 1 INTRODUZIONE... 4 2 NORMATIVA DI RIFERIMENTO... 5 3 CARATTERISTICHE DEI MATERIALI... 6 3.1 CALCESTRUZZO C32/40 PER MURI E CIABATTE DI FONDAZIONE IN C.A.... 6 3.2 ACCIAIO PER CEMENTO ARMATO (B450C)...

Dettagli

Dimensionamento delle strutture

Dimensionamento delle strutture Dimensionamento delle strutture Prof. Fabio Fossati Department of Mechanics Politecnico di Milano Lo stato di tensione o di sforzo Allo scopo di caratterizzare in maniera puntuale la distribuzione delle

Dettagli

ESEMPIO DI PROGETTAZIONE DI UN EDIFICIO INTELAIATO IN C.A. IN CLASSE DI DUTTILITA B

ESEMPIO DI PROGETTAZIONE DI UN EDIFICIO INTELAIATO IN C.A. IN CLASSE DI DUTTILITA B Ordinanza del Presidente del Consiglio dei Ministri n n 3274 del 20 marzo 2003 Primi elementi in materia di criteri generali per la classificazione ione sismica del territorio nazionale e di normative

Dettagli

GENERALITÀ La presente relazione sulle fondazioni riguarda il progetto Riqualificazione della scuola media C. Colombo in Taranto.

GENERALITÀ La presente relazione sulle fondazioni riguarda il progetto Riqualificazione della scuola media C. Colombo in Taranto. GENERALITÀ La presente relazione sulle fondazioni riguarda il progetto Riqualificazione della scuola media C. Colombo in Taranto. Il progetto prevede: la realizzazione di un nuovo intervento strutturale:

Dettagli

CORSO DI AGGIORNAMENTO PER GEOMETRI SU PROBLEMATICHE STRUTTURALI

CORSO DI AGGIORNAMENTO PER GEOMETRI SU PROBLEMATICHE STRUTTURALI CORSO DI AGGIORNAMENTO PER GEOMETRI SU PROBLEMATICHE STRUTTURALI 1 Gennaio - Febbraio 2005 PROGETTO DI UN EDIFICIO IN MURATURA CON ALCUNI ELEMENTI PORTANTI IN C.A. PER CIVILE ABITAZIONE Ingg.. Alessio

Dettagli

EDIFICI IN MURATURA ORDINARIA, ARMATA O MISTA

EDIFICI IN MURATURA ORDINARIA, ARMATA O MISTA Edifici in muratura portante 2 1 Cosa è ANDILWall? ANDILWall è un software di analisi strutturale che utilizza il motore di calcolo SAM II, sviluppato presso l Università degli Studi di Pavia e presso

Dettagli

ARGOMENTI DI TECNICA DELLE COSTRUZIONI INDICE

ARGOMENTI DI TECNICA DELLE COSTRUZIONI INDICE Giuseppe Stagnitto Erica Barzoni ARGOMENTI DI TECNICA DELLE COSTRUZIONI Applicazioni ed approfondimenti del Corso di FONDAMENTI DI TECNICA DELLE COSTRUZIONI Appunti a cura degli studenti INDICE I - RICHIAMI

Dettagli

Allegato S-0 - Relazione di calcolo

Allegato S-0 - Relazione di calcolo Allegato S-0 - Relazione di calcolo 1. PREMESSA 1.1 Descrizione delle opere Il nuovo progetto prevede la demolizione del precedente fabbricato, la realizzazione di quattro nuovi blocchi, comprendenti ciascuno

Dettagli

MILANOSPORT S.P.A. CENTRO SPORTIVO SAINI Viale Corelli, 136 20134 Milano. piscina 50 m NUOVA DISTRIBUZIONE IDRAULICA PROGETTO ESECUTIVO

MILANOSPORT S.P.A. CENTRO SPORTIVO SAINI Viale Corelli, 136 20134 Milano. piscina 50 m NUOVA DISTRIBUZIONE IDRAULICA PROGETTO ESECUTIVO MILANOSPORT S.P.A. CENTRO SPORTIVO SAINI Viale Corelli, 136 20134 Milano piscina 50 m NUOVA DISTRIBUZIONE IDRAULICA PROGETTO ESECUTIVO DIRETTORE TECNICO ARCH. STEFANO PEDULLA R4M engineering ELABORATO

Dettagli

BOZZA. Materiale muratura e verifiche per carichi verticali. Luca Salvatori. Dipartimento di Ingegneria Civile e Ambientale. Università di Firenze

BOZZA. Materiale muratura e verifiche per carichi verticali. Luca Salvatori. Dipartimento di Ingegneria Civile e Ambientale. Università di Firenze BOZZA Materiale muratura e verifiche per carichi verticali Luca Salvatori Dipartimento di Ingegneria Civile e Ambientale Università di Firenze Materiale Muratura 1 Il materiale muratura Materiale complesso

Dettagli

idomini MANUALE UTENTE

idomini MANUALE UTENTE idomini MANUALE UTENTE Introduzione al software per la determinazione dei domini di resistenza di sezioni in cemento armato e cemento armato rinforzato con FRP. COPYRIGHT idomini e tutta la relativa documentazione

Dettagli

REALIZZAZIONE DI OPERE IN CEMENTO ARMATO CON TUBI IN GFRP TIPO ROCKWORM

REALIZZAZIONE DI OPERE IN CEMENTO ARMATO CON TUBI IN GFRP TIPO ROCKWORM REALIZZAZIONE DI OPERE IN CEMENTO ARMATO CON TUBI IN GFRP TIPO ROCKWORM 1 1. Premessa La presente relazione ha per oggetto lo studio delle strutture in cemento armato in cui il rinforzo interno, anzichè

Dettagli

4 COSTRUZIONI CIVILI E INDUSTRIALI

4 COSTRUZIONI CIVILI E INDUSTRIALI 4 COSTRUZIONI CIVILI E INDUSTRIALI 4.1 COSTRUZIONI DI CALCESTRUZZO Formano oggetto delle presenti norme le strutture di: - calcestruzzo armato normale (cemento armato) - calcestruzzo armato precompresso

Dettagli

INDICE 1. INTRODUZIONE... 2 2. NORMATIVA... 8 3. MATERIALI... 8 4. DEFINIZIONE DEI CARICHI... 9 5. CRITERI DI VERIFICA... 9

INDICE 1. INTRODUZIONE... 2 2. NORMATIVA... 8 3. MATERIALI... 8 4. DEFINIZIONE DEI CARICHI... 9 5. CRITERI DI VERIFICA... 9 R4M engineering INDICE 1. INTRODUZIONE... 2 1.1. CHIUSURA DEL FORO SCALA A CHIOCCIOLA ESISTENTE... 4 1.2. CHIUSURA CAVEDI IMPIANTISTICI ESISTENTI... 5 1.3. AMPLIAMENTO DELLA VASCA... 6 1.4. ORDITURA PORTANTE

Dettagli

LAVORI DI ADEGUAMENTO NORMATIVO E DI EFFICIENZA ENERGETICA PROGETTO ESECUTIVO. Sez III Art. 33 DPR 5 Ottobre 2010 N. 207 e s.m.i.

LAVORI DI ADEGUAMENTO NORMATIVO E DI EFFICIENZA ENERGETICA PROGETTO ESECUTIVO. Sez III Art. 33 DPR 5 Ottobre 2010 N. 207 e s.m.i. Ingegnere BIAGIO D AMATO E03b Via I.Lodato, 9 84025 Eboli (SA) tel 339.2183301 fax 0828.330614 biagiodamato@tiscali.it LAVORI DI ADEGUAMENTO NORMATIVO E DI EFFICIENZA ENERGETICA Liceo Scientifico Statale

Dettagli

INDICE. 1. Premesse pag. 2. 2. Regime normativo pag. 3

INDICE. 1. Premesse pag. 2. 2. Regime normativo pag. 3 INDICE 1. Premesse pag. 2 2. Regime normativo pag. 3 3. Plinto di fondazione torre faro pag. 4 3.1 Sollecitazione massime di calcolo pag. 4 3.2 Determinazione massimi sforzi sui pali pag. 4 3.3 Dimensionamento

Dettagli

1 RELAZIONE TECNICA GENERALE... 1 1.1 PREMESSA... 1 1.2 NORMATIVA TECNICA DI RIFERIMENTO... 1

1 RELAZIONE TECNICA GENERALE... 1 1.1 PREMESSA... 1 1.2 NORMATIVA TECNICA DI RIFERIMENTO... 1 Sommario 1 RELAZIONE TECNICA GENERALE.... 1 1.1 PREMESSA.... 1 1.2 NORMATIVA TECNICA DI RIFERIMENTO.... 1 1.3 VITA NOMINALE, CLASSE D USO, PERIODO DI RIFERIMENTO.... 1 1.4 METODO DI VERIFICA.... 1 2 RELAZIONE

Dettagli

Edifici antisismici in calcestruzzo armato. Aurelio Ghersi

Edifici antisismici in calcestruzzo armato. Aurelio Ghersi Incontro di aggiornamento Edifici antisismici in calcestruzzo armato Aspetti strutturali e geotecnici secondo le NTC08 1 Esame visivo della struttura Orizzonte Hotel, Acireale 16-17 dicembre 2010 Aurelio

Dettagli

Indice. L impostazione del calcolo strutturale, 1. Il cemento armato: metodo alle tensioni ammissibili, 21. modulo A. modulo B1

Indice. L impostazione del calcolo strutturale, 1. Il cemento armato: metodo alle tensioni ammissibili, 21. modulo A. modulo B1 III Indice modulo A L impostazione del calcolo strutturale, 1 Unità 1. Le basi del progetto e i metodi di calcolo, 2 1. La modellazione, 3 2. Le azioni sulle costruzioni, 4 Periodo di ritorno, 4 Vita nominale

Dettagli

6. Analisi statica lineare: esempio di calcolo

6. Analisi statica lineare: esempio di calcolo 6. Analisi statica lineare: esempio di calcolo Si supponga di volere determinare lo schema di carico per il calcolo all SLV delle sollecitazioni in direzione del telaio riportato nella Pfigura 1, con ordinata

Dettagli

Esempio guida n. 1: Progettazione di un telaio tridimensionale in c.a. (modellazione in 3 minuti)

Esempio guida n. 1: Progettazione di un telaio tridimensionale in c.a. (modellazione in 3 minuti) Esempio guida n. 1: Progettazione di un telaio tridimensionale in c.a. (modellazione in 3 minuti) In questa semplice esercitazione di progettazione viene eseguito il calcolo completo di una struttura in

Dettagli

Lezione. Tecnica delle Costruzioni

Lezione. Tecnica delle Costruzioni Lezione Tecnica delle Costruzioni 1 Flessione composta tensoflessione Risposta della sezione Campo elastico σ + A I Risposta della sezione Al limite elastico el, Per calcolare el, : σ A + el, I f f + el,

Dettagli

RELAZIONE STRUTTURALE

RELAZIONE STRUTTURALE RELAZIONE STRUTTURALE DESCRIZIONE DELL OPERA. Si prevede di realizzare una passerella pedonale in acciaio per l accesso secondario alla grotta. La struttura è costituita da due travi parallele in acciaio

Dettagli

Prog. 6309 Progetto Esecutivo - Razionalizzazione della rete fognaria del Comune di Asti Relazione di calcolo opere civili Lotto I Pagina 2 di 107

Prog. 6309 Progetto Esecutivo - Razionalizzazione della rete fognaria del Comune di Asti Relazione di calcolo opere civili Lotto I Pagina 2 di 107 ASTI Servizi Pubblici S.p.A. RAZIONALIZZAZIONE DELLA RETE FOGNARIA DEL COMUNE DI ASTI - - - - - - - - - - - - - - Realizzazione di sifone in Via Antico Ippodromo e intervento all impianto di depurazione

Dettagli

Consolidamento di edifici esistenti in cemento armato. 2S.I. s.r.l.

Consolidamento di edifici esistenti in cemento armato. 2S.I. s.r.l. Consolidamento di edifici esistenti in cemento armato 2S.I. s.r.l. www.2si.it Ing. Marco Pizzolato Ing. Gennj Venturini 201310 Introduzione Una volta modellato un edificio esistente è possibile assegnare

Dettagli

Impostazione e controllo del progetto di edifici antisismici in cemento armato secondo le indicazioni delle Norme Tecniche per le Costruzioni 2008

Impostazione e controllo del progetto di edifici antisismici in cemento armato secondo le indicazioni delle Norme Tecniche per le Costruzioni 2008 Corso di aggiornamento Impostazione e controllo del progetto di edifici antisismici in cemento armato secondo le indicazioni delle Norme Tecniche per le Costruzioni 2008 Aula Oliveri, Facoltà di Ingegneria

Dettagli

Via Giacobbi 5, 40134 Bologna Tel. 051/61.41.772 P.IVA 01900471200. Comune di Cremona. Cavalcavia di Cremona RELAZIONE TECNICA

Via Giacobbi 5, 40134 Bologna Tel. 051/61.41.772 P.IVA 01900471200. Comune di Cremona. Cavalcavia di Cremona RELAZIONE TECNICA Comune di Cremona Cavalcavia di Cremona RELAZIONE TECNICA Analisi e consolidamento statico Progettista strutturale: Bologna, Settembre 2007 1 Descrizione del ponte Il ponte oggetto della valutazione sismica

Dettagli

Progettazione di strutture in c.a. Armature minime di travi e pilastri

Progettazione di strutture in c.a. Armature minime di travi e pilastri Progettazione di strutture in c.a. Armature minime di travi e pilastri Travi 4.1.6.1.1 Armatura delle travi armatura minima A s,req > A s,min = 0,26 b t d f ctm / f yk > 0,0013 b t d Negli appoggi di estremità

Dettagli

PROVA SCRITTA DI TECNICA DELLE COSTRUZIONI DEL 05/12/2011 Esercizio n 1

PROVA SCRITTA DI TECNICA DELLE COSTRUZIONI DEL 05/12/2011 Esercizio n 1 PROVA SCRITTA DI TECNICA DELLE COSTRUZIONI DEL 05/1/011 Esercizio n 1 Sia data una sezione di c.a. avente dimensioni 40 x 60 cm. I materiali impiegati sono: a) calcestruzzo Rck=0 N/, b) acciaio tipo B450C.

Dettagli