Problemi sui test di ipotesi per la varianza

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Problemi sui test di ipotesi per la varianza"

Transcript

1 Problemi sui test di ipotesi per la variaza Problema V1 Cotrolli periodii sulla produzioe di odesatori hao permesso al ostruttore di defiire ua variabile asuale X (he assume valore pari alla apaità di iasu odesatore misurata i pf alla frequeza di 1 khz) he, storiamete, mostra ua deviazioe stadard 4. U ampioe di 35 elemeti mostra ua deviazioe aumetata: 3 e i si hiede se tale aumeto è aidetale (ampioe sfortuato ) oppure se è il sitomo di u difetto iterveuto el proesso produttivo. L esame viee odotto o ua fiduia del 98% H : 4 α % Per odurre il test si ostruise ua idoea variabile asuale osì defiita: ( ) 1 La variabile sopra defiita ha distribuzioe di tipo "hi quadro" o -1 gradi di libertà Per la forma della ipotesi priipale H : il test da odurre è di tipo uilaterale (rifiuto ella oda superiore) e, dato he 35, ella determiazioe del valore ritio si usa ua "hi quadro" o 34 gradi di libertà. Dalle tabelle si ottiee il valore ritio: 5,995 x e la regioe di rifiuto per la H è 5, 995 > x Dai dati otteuti misurado gli elemeti del ampioe si ottiee

2 3 1 4 ( ) x 34 53,15 > x Dato he il valore di del ampioe è ella regioe di rifiuto si è autorizzati a rifiutare l ipotesi priipale o la fiduia rihiesta: l aumeto della deviazioe stadard rilevato el ampioe o è u fatto aidetale, ma sistematio e provoato da u aumeto della dispersioe del prodotto. Problema V Cotrolli periodii sulla produzioe hao permesso ad u ostruttore di resistori di defiire ua variabile asuale X (he assume valore pari alla resisteza i otiua di iasu resistore misurata i Ω alla temperatura di 5 C) he, storiamete, mostra ua deviazioe stadard 3, : u uovo proesso produttivo, itrodotto di reete dal ostruttore, potrebbe aver ridotto la dispersioe del prodotto. Per verifiare se tale risultato è stato effettivamete otteuto si preparao 3 prototipi e o questi si ostituise u ampioe: la deviazioe stadard ampioaria orretta he viee alolata i base ai valori del ampioe preseta effettivamete u valore ridotto a,5 ma i si hiede se tale riduzioe sia stata aidetale oppure se è sistematia (solamete el seodo aso il uovo proesso è effettivamete utile). Il test viee odotto ella speraza he il uovo proesso produttivo sia utile pertato si seglie ome ipotesi priipale quella he la deviazioe stadard per l'itera popolazioe sia rimasta quella del proesso origiale. L esame viee odotto o ua fiduia del 95% H : 3 α 5% Per odurre il test si ostruise ua idoea variabile asuale osì defiita: ( ) 1 La variabile sopra defiita ha distribuzioe di tipo "hi quadro" o -1 gradi di libertà Per la forma della ipotesi priipale H : > il test da odurre è di tipo uilaterale (rifiuto ella oda iferiore) e, dato he 3, ella determiazioe del valore ritio si usa ua "hi quadro" o 9 gradi di libertà. Dalle tabelle si ottiee il valore ritio: 17,78 x

3 e la regioe di rifiuto per la H è < x 17, 78 Dai dati otteuti misurado gli elemeti del ampioe si ottiee s,5 1 ( ) 9,139 > x 3, Dato he o è possibile rifiutare l ipotesi H il beefiio del uovo proesso o è provato e si deve riteere he il buo valore mostrato dal ampioe possa essere dovuto ad u fatto aidetale. Problema V3 Nell'ambito di ua popolazioe (ifiita) di pile viee defiita ua variabile asuale X he assume, per iasu elemeto della popolazioe, valore uguale a quello della tesioe a vuoto prodotta dalla pila e misurata i volt. U ampioe di 15 pile mostra u valore s della variaza ampioaria orretta pari a: s,8 i vuole odurre u test o α 1% relativamete all ipotesi he la variaza relativa all'itera popolazioe sia di,9. Lo sopo del test può essere duplie: aso 1: aso : si può erare di poter affermare he la popolazioe da ui è stato estratto il ampioe ha ua variaza he supera il valore di,9 (questo è il puto di vista di u poteziale aquirete he vuole autelarsi otro l aquisto di u prodotto di sarsa uiformità) si può erare di poter affermare he la popolazioe da ui è stato estratto il ampioe ha ua variaza he o supera il valore di,9 (questo è il puto di vista di u veditore he vuole dimostrare ad u poteziale aquirete la buoa uiformità del prodotto he viee proposto per l aquisto )

4 Nei due asi l ipotesi priipale H deve essere formulata i modo diverso. aso 1: H :,9 α 1% aso : H :,9 α 1% La diversa formulazioe dell ipotesi priipale è motivata dalle segueti osiderazioi: se el aso 1. risulta possibile rifiutare H o fiduia pari a 1-α allora, dato he o è sosteibile he la variaza della X per tutta la popolazioe sia miore del valore ipotizzato, o la stessa fiduia si olude he la variaza della X per tutta la popolazioe è maggiore di vieversa, se el aso. risulta possibile rifiutare H o fiduia pari a 1-α allora, dato he o è sosteibile he la variaza della X per tutta la popolazioe sia maggiore del valore ipotizzato, o la stessa fiduia si olude he la variaza della X per tutta la popolazioe è miore di Voledo odurre il test o la variabile C modifiata si opera ome segue: Prelimiarmete si ostruise ua idoea variabile asuale osì defiita: C La variabile sopra defiita ha distribuzioe di tipo "C modifiata di hi quadro" o -1 gradi di libertà. aso 1. Per la forma della ipotesi priipale H : < il test da odurre è di tipo uilaterale (rifiuto ella oda superiore) e, dato he il ampioe è omposto da 15 pile ( 15), ella determiazioe del valore ritio si usa la " C " o 14 gradi di libertà. Dalle tabelle si ottiee il valore ritio: 1,5 e la regioe di rifiuto per la H è C 1, 5 > Dai dati del ampioe si alola il valore della variabile C modifiata:,8 C,9 <,9 Il valore della variabile C alolato i base ai dati del ampioe risulta estero alla regioe di rifiuto dell ipotesi priipale H he o può essere rifiutata. aso. Per la forma della ipotesi priipale H : > il test da odurre è di tipo uilaterale (rifiuto ella oda iferiore) e, dato he il ampioe è omposto da 15 pile ( 15), ella determiazioe del valore ritio si usa la " C " o 14 gradi di libertà.

5 Dalle tabelle si ottiee il valore ritio:,556 e la regioe di rifiuto per la H è C, 556 < Dai dati del ampioe si alola il valore della variabile C modifiata:,8 C,9 >,9 Il valore della variabile C alolato i base ai dati del ampioe risulta estero alla regioe di rifiuto dell ipotesi priipale H he o può essere rifiutata. Come si può failmete otare, il voler sosteere he la variaza della X per l'itera popolazioe è maggiore o miore dello stesso valore omporta due be diversi valori ritii per lo stimatore variaza ampioaria orretta. Nota: itediamo o valore ritio della variaza ampioaria orretta quel valore he rede il valore della variabile C alolato i base ai dati del ampioe uguale al suo valore ritio : s s Nel aso 1 la variaza ampioaria orretta ha u valore ritio s,135 metre el aso il suo valore ritio diviee s,5.

Costo manutenzione (euro)

Costo manutenzione (euro) Esercitazioe 05 maggio 016 ESERCIZIO 1 Ua società di servizi possiede u parco auto di diverse età. I dirigeti ritegoo che il costo degli iterveti di mautezioe per le auto più vecchie sia geeralmete più

Dettagli

Tecnica delle misurazioni applicate Esame del 4 dicembre 2007

Tecnica delle misurazioni applicate Esame del 4 dicembre 2007 Tecica delle misurazioi applicate Esame del 4 dicembre 7 Problema 1. Il propulsore Mod. WEC viee prodotto da ACME Ic. mediate u processo automatizzato: dati storici cofermao che la lavorazioe di ogi elemeto

Dettagli

Campionamento casuale da popolazione finita (caso senza reinserimento )

Campionamento casuale da popolazione finita (caso senza reinserimento ) Campioameto casuale da popolazioe fiita (caso seza reiserimeto ) Suppoiamo di avere ua popolazioe di idividui e di estrarre u campioe di uità (co < ) Suppoiamo di studiare il carattere X che assume i valori

Dettagli

Università di Napoli Federico II, DISES, A.a , CLEC, Corso di Statistica (L-Z) Lezione 22 La verifica delle ipotesi. Corso di Statistica (L-Z)

Università di Napoli Federico II, DISES, A.a , CLEC, Corso di Statistica (L-Z) Lezione 22 La verifica delle ipotesi. Corso di Statistica (L-Z) Uiversità di Napoli Federico II, DISES, A.a. 215-16, CLEC, Corso di Statistica (L-Z) Corso di laurea i Ecoomia e Commercio (CLEC) Ao accademico 215-16 Corso di Statistica (L-Z) Maria Mario Lezioe: 22 Argometo:

Dettagli

Politecnico di Milano - Anno Accademico Statistica Docente: Alessandra Guglielmi Esercitatore: Stefano Baraldo

Politecnico di Milano - Anno Accademico Statistica Docente: Alessandra Guglielmi Esercitatore: Stefano Baraldo Politecico di Milao - Ao Accademico 010-011 Statistica 086449 Docete: Alessadra Guglielmi Esercitatore: Stefao Baraldo Esercitazioe 8 14 Giugo 011 Esercizio 1. Sia X ua popolazioe distribuita secodo ua

Dettagli

Università degli Studi di Cassino, Anno accademico Corso di Statistica 2, Prof. M. Furno

Università degli Studi di Cassino, Anno accademico Corso di Statistica 2, Prof. M. Furno Uiversità degli Studi di Cassio, Ao accademico 004-005 Corso di Statistica, Prof.. uro Esercitazioe del 01/03/005 dott. Claudio Coversao Esercizio 1 Si cosideri il seguete campioe casuale semplice estratto

Dettagli

Stima della media di una variabile X definita su una popolazione finita

Stima della media di una variabile X definita su una popolazione finita Stima della media di ua variabile X defiita su ua popolazioe fiita otazioi: popolazioe, campioe e strati Popolazioe. umerosità popolazioe; Ω {ω,..., ω } popolazioe X variabile aleatoria defiita sulla popolazioe

Dettagli

Quesito 1. I seguenti dati si riferiscono ai tempi di reazione motori a uno stimolo luminoso, espressi in decimi di secondo, di un gruppo di piloti:

Quesito 1. I seguenti dati si riferiscono ai tempi di reazione motori a uno stimolo luminoso, espressi in decimi di secondo, di un gruppo di piloti: Quesito. I segueti dati si riferiscoo ai tempi di reazioe motori a uo stimolo lumioso, espressi i decimi di secodo, di u gruppo di piloti: 2, 6 3, 8 4, 8 5, 8 2, 6 4, 0 5, 0 7, 2 2, 6 4, 0 5, 0 7, 2 2,

Dettagli

Popolazione e Campione

Popolazione e Campione Popolazioe e Campioe POPOLAZIONE: Isieme di tutte le iformazioi sul feomeo oggetto di studio Viee descritta mediate ua variabile casuale X: X ~ f ( x; ϑ) θ = costate icogita Qual è il valore di θ? E verosimile

Dettagli

Anemia. Anemia - percentuali

Anemia. Anemia - percentuali 1 emia emoglobia 1-13 Data la distribuzioe dell emoglobia i u gruppo di pazieti maschi sottoposti a trattameto: - Circa u paziete su 3 era fortemete aemico (emogl. meo di 1) - La mediaa era fra 13 e 14

Dettagli

n=400 X= Km; s cor =9000 Km Livello di confidenza (1-α)=0,95 z(0,05)=1,96

n=400 X= Km; s cor =9000 Km Livello di confidenza (1-α)=0,95 z(0,05)=1,96 STATISTICA A K (60 ore Marco Riai mriai@uipr.it http://www.riai.it : stima della percorreza media delle vetture diesel di u certo modello al primo guasto 400 X34.000 Km; s cor 9000 Km Livello di cofideza

Dettagli

Esercitazioni del corso: ANALISI MULTIVARIATA

Esercitazioni del corso: ANALISI MULTIVARIATA A. A. 9 1 Esercitazioi del corso: ANALISI MULTIVARIATA Isabella Romeo: i.romeo@campus.uimib.it Sommario Esercitazioe 4: Verifica d Ipotesi Test Z e test T Test d Idipedeza Aalisi Multivariata a. a. 9-1

Dettagli

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni A Alcui cocetti di statistica: medie, variaze, covariaze e regressioi Esistoo svariati modi per presetare gradi quatità di dati. Ua possibilità è presetare la cosiddetta distribuzioe, raggruppare cioè

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioi di Statistica Itervalli di cofideza Prof. Livia De Giovai statistica@dis.uiroma1.it Esercizio 1 La fabbrica A produce matite colorate. Ua prova su 100 matite scelte a caso ha idicato u peso

Dettagli

Titolo della lezione. Dal campione alla popolazione: stima puntuale e per intervalli

Titolo della lezione. Dal campione alla popolazione: stima puntuale e per intervalli Titolo della lezioe Dal campioe alla popolazioe: stima putuale e per itervalli Itroduzioe Itrodurre il cocetto di itervallo di cofideza Stima di parametri per piccoli e gradi campioi Stimare la proporzioe

Dettagli

CAPITOLO 2 Semplici esperimenti comparativi

CAPITOLO 2 Semplici esperimenti comparativi Douglas C. Motgomer Progettazioe e aalisi degli esperimeti 006 McGraw-Hill CAPITOLO emplici esperimeti comparativi Metodi statistici e probabilistici per l igegeria Corso di Laurea i Igegeria Civile A.A.

Dettagli

6 Stima di media e varianza, e intervalli di confidenza

6 Stima di media e varianza, e intervalli di confidenza Si può mostrare che, per ogi fissato α, t,α z α, e t,α z α per + I pratica t,α e z α soo idistiguibili per 200. 6 Stima di media e variaza, e itervalli di cofideza Lo scopo esseziale della Statistica ifereziale

Dettagli

Il test parametrico si costruisce in tre passi:

Il test parametrico si costruisce in tre passi: R. Lombardo I. Cammiatiello Dipartimeto di Ecoomia Secoda Uiversità degli studi Napoli Facoltà di Ecoomia Ifereza Statistica La Verifica delle Ipotesi Obiettivo Verifica (test) di u ipotesi statistica

Dettagli

Quartili. Esempio Q 3 Q 1. Distribuzione unitaria degli affitti settimanali in euro pagati da 19 studenti U.S. A G I F B D L H E M C

Quartili. Esempio Q 3 Q 1. Distribuzione unitaria degli affitti settimanali in euro pagati da 19 studenti U.S. A G I F B D L H E M C Quartili Primo quartile Q 1 : modalità che ella graduatoria (crescete o decrescete) bipartisce il 50% delle osservazioi co modalità più piccole o al più uguali alla Me Terzo quartile Q 3 : modalità che

Dettagli

Stimatori, stima puntuale e intervalli di confidenza Statistica L-33 prof. Pellegrini

Stimatori, stima puntuale e intervalli di confidenza Statistica L-33 prof. Pellegrini Lezioe 3 Stimatori, stima putuale e itervalli di cofideza Statistica L-33 prof. Pellegrii Oggi studiamo le proprietà della stima che ricaviamo da u campioe. Si chiama teoria della stima. La stima statistica

Dettagli

Soluzioni. Se l interallo avesse livello di confidenza 99%, al posto di 1,96 avremmo

Soluzioni. Se l interallo avesse livello di confidenza 99%, al posto di 1,96 avremmo Esercizio 1 Soluzioi 1. Ricordiamo che l ampiezza di u itervallo di cofideza è fuzioe della umerosità campioaria edellivellodicofideza. Aparità di tutto il resto, l ampiezza dimiuisce al crescere di eaumetaal

Dettagli

Metodi statistici per l'analisi dei dati

Metodi statistici per l'analisi dei dati Metodi statistici per l aalisi dei dati due Motivazioi Obbiettivo: Cofrotare due diverse codizioi (ache defiiti ) per cui soo stati codotti gli esperimeti. Metodi tatistici per l Aalisi dei Dati due Esempio

Dettagli

Esame di Statistica A-Di Prof. M. Romanazzi

Esame di Statistica A-Di Prof. M. Romanazzi 1 Uiversità di Veezia Esame di Statistica A-Di Prof. M. Romaazzi 12 Maggio 2014 Cogome e Nome..................................... N. Matricola.......... Valutazioe Il puteggio massimo teorico di questa

Dettagli

Quartili. Esempio Q 3. Me Q 1. Distribuzione unitaria degli affitti settimanali in euro pagati da 19 studenti U.S. A G I F B D L H E M C

Quartili. Esempio Q 3. Me Q 1. Distribuzione unitaria degli affitti settimanali in euro pagati da 19 studenti U.S. A G I F B D L H E M C Quartili Primo quartile Q 1 : modalità che ella graduatoria (crescete o decrescete) bipartisce il 50% delle osservazioi co modalità più piccole o al più uguali alla Me Terzo quartile Q 3 : modalità che

Dettagli

UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA

UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA FACOLTÀ DI SOCIOLOGIA a. a. 9 Esame del -6- Statistica ESERCIZIO Relazioi tra Variabili (totale puti: ) Ad ua riuioe del circolo Amati dell acquario, i soci preseti

Dettagli

Esercitazioni di Statistica Dott. Danilo Alunni Fegatelli

Esercitazioni di Statistica Dott. Danilo Alunni Fegatelli Esercitazioi di Statistica Dott. Dailo Alui Fegatelli dailo.aluifegatelli@uiroma.it Esercizio. Su 0 idividui soo stati rilevati la variabile X (geere) e (umero di auto possedute) X F F M F M F F M F M

Dettagli

VERIFICA DI IPOTESI SULLA DIFFERENZA TRA DUE MEDIE. Psicometria 1 - Lezione 12 Lucidi presentati a lezione AA 2000/2001 dott.

VERIFICA DI IPOTESI SULLA DIFFERENZA TRA DUE MEDIE. Psicometria 1 - Lezione 12 Lucidi presentati a lezione AA 2000/2001 dott. VERIFICA DI IPOTESI SULLA DIFFERENZA TRA DUE MEDIE Psicometria - Lezioe Lucidi presetati a lezioe AA 000/00 dott. Corrado Caudek Il caso più comue di disego sperimetale è quello i cui i soggetti vegoo

Dettagli

STUDIO DEL LANCIO DI 3 DADI

STUDIO DEL LANCIO DI 3 DADI Leoardo Latella STUDIO DEL LANCIO DI 3 DADI Il calcolo delle probabilità studia gli eveti casuali probabili, cioè quegli eveti che possoo o o possoo verificarsi e che dipedoo uicamete dal caso. Tale studio

Dettagli

Metodi statistici per l analisi dei dati

Metodi statistici per l analisi dei dati Metodi statistici per l aalisi dei dati due ttameti Motivazioi ttameti Obbiettivo: Cofrotare due diverse codizioi (ache defiiti ttameti) per cui soo stati codotti gli esperimeti. due ttameti Esempio itroduttivo

Dettagli

RENDIMENTO DEI TRASFORMATORI

RENDIMENTO DEI TRASFORMATORI RENDIMENTO DEI TRASFORMATORI Il redimeto di u trasformatore è defiito come rapporto tra poteza resa e poteza assorbita: poteza resa redimeto poteza assorbita poteza resa poteza resa perdite Sebbee il redimeto

Dettagli

Intervalli di Fiducia

Intervalli di Fiducia di Fiducia Itroduzioe per la media Caso variaza ota per la media Caso variaza o ota per i coefficieti di regressioe per la risposta media i per i coefficieti i di regressioe multilieare - Media aritmetica

Dettagli

CONCETTI BASE DI STATISTICA

CONCETTI BASE DI STATISTICA CONCETTI BASE DI STATISTICA DEFINIZIONI Probabilità U umero reale compreso tra 0 e, associato a u eveto casuale. Esso può essere correlato co la frequeza relativa o col grado di credibilità co cui u eveto

Dettagli

Lezione n 19-20. Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Prof. Cerulli Dott. Carrabs

Lezione n 19-20. Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Prof. Cerulli Dott. Carrabs Lezioi di Riera Operativa Corso di Laurea i Iformatia Uiversità di Salero Lezioe 9- - Problema del trasporto Prof. Cerulli Dott. Carrabs Problema del Flusso a osto Miimo FORMULAZIONE mi ( i, ) A o violi

Dettagli

Statistica. Esercitazione 12. Alfonso Iodice D Enza Università degli studi di Cassino. Statistica. A. Iodice

Statistica. Esercitazione 12. Alfonso Iodice D Enza Università degli studi di Cassino. Statistica. A. Iodice Esercitazioe 12 Alfoso Iodice D Eza iodicede@uicas.it Uiversità degli studi di Cassio () 1 / 15 Outlie 1 () 2 / 15 Outlie 1 2 () 2 / 15 Outlie 1 2 3 () 2 / 15 Outlie 1 2 3 4 () 2 / 15 Outlie 1 2 3 4 5

Dettagli

Verifiche alle Tensioni Ammissibili. Determinazione del carico utile (o ammissibile) a flessione in una trave continua su tre appoggi.

Verifiche alle Tensioni Ammissibili. Determinazione del carico utile (o ammissibile) a flessione in una trave continua su tre appoggi. Coro di Teia delle Cotruzioi Eerizi Bozza del 7/10/005 Verifihe alle Teioi Ammiibili Determiazioe del ario utile (o ammiibile) a fleioe i ua trave otiua u tre appoggi. a ura di Ezo artielli Coro di Teia

Dettagli

Confronto di due misure Campioni indipendenti

Confronto di due misure Campioni indipendenti Statistica7 /11/015 Cofroto di due misure Campioi idipedeti o meglio.. rispodere al quesito Due serie di misure soo state estratte dalla stessa popolazioe (popolazioe comue o idetica) o soo state estratte

Dettagli

PREMESSA. = η valore medio della popolazione = σ deviazione standard della popolazione. Descrizione parametrica di una popolazione

PREMESSA. = η valore medio della popolazione = σ deviazione standard della popolazione. Descrizione parametrica di una popolazione PREMESSA Descrizioe parametrica di ua popolazioe Sappiamo che u famiglia parametrica di fuzioi desità di probabilità è defiita da uo o più parametri Θ = {θ, θ,., θ }. Ad esempio, la d.d.p. di tipo espoeziale

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI NOTE DALLE LEZIONI DI TATITICA MEDICA ED EERCIZI I METODI PER IL CONFRONTO DI MEDIE (Campioi idipedeti) IL PROBLEMA oo stati rilevati i dati relativi alla frequeza cardiaca (misurata i battiti al miuto)

Dettagli

Inferenza statistica. Popolazione. Camp. Statistiche campionarie basate sulle osservazioni del campione. Estrazione casuale. Parametro e statistica

Inferenza statistica. Popolazione. Camp. Statistiche campionarie basate sulle osservazioni del campione. Estrazione casuale. Parametro e statistica 6/0/0 Corso di Statistica per l impresa Prof. A. D Agostio Ifereza statistica Per fare ifereza statistica si utilizzao le iformazioi raccolte su u campioe per cooscere parametri icogiti della popolazioe

Dettagli

PRINCIPIO DI FUNZIONAMENTO

PRINCIPIO DI FUNZIONAMENTO TRSFORMTORE 1 PRINCIPIO DI FUNZIONMENTO i 1 i La figura mostra lo shema di priipio di u trasformatore moofase: v 1 1 v ttoro ad u uleo di materiale ferromagetio soo avvolti due avvolgimeti omposti rispettivamete

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 3 Prova scritta del 6//3 Esercizio Suppoiamo che ua variabile aleatoria Y abbia la seguete desita : { hx e 3/x, x > f Y (y) =, x, co h opportua costate positiva.

Dettagli

INFERENZA o STATISTICA INFERENTE

INFERENZA o STATISTICA INFERENTE INFERENZA o STATISTICA INFERENTE Le iformazioi sui parametri della popolazioe si possoo otteere sia mediate ua rilevazioe totale (o rilevazioe cesuaria) sia mediate ua rilevazioe parziale (o rilevazioe

Dettagli

Esame di Statistica A-Di Prof. M. Romanazzi

Esame di Statistica A-Di Prof. M. Romanazzi 1 Uiversità di Veezia Esame di tatistica A-Di Prof. M. Romaazzi 27 Geaio 2015 ogome e Nome..................................... N. Matricola.......... Valutazioe l puteggio massimo teorico di questa prova

Dettagli

TEST STATISTICI. indica l ipotesi che il parametro della distribuzione di una variabile assume il valore 0

TEST STATISTICI. indica l ipotesi che il parametro della distribuzione di una variabile assume il valore 0 TEST STATISTICI I dati campioari possoo essere utilizzati per verificare se ua certa ipotesi su ua caratteristica della popolazioe può essere riteuta verosimile o meo. Co il termie ipotesi statistica si

Dettagli

ESERCIZI DI INFERENZA STATISTICA E STUDIO DELLE ASSOCIAZIONI

ESERCIZI DI INFERENZA STATISTICA E STUDIO DELLE ASSOCIAZIONI ESERCIZI DI INFERENZA STATISTICA E STUDIO DELLE ASSOCIAZIONI ES 1 I u collettivo di 40 pazieti osservati, la media dei globuli biachi era pari a.9 ( 1000/ml 3 ) e la variaza era pari a 0.336. Forire ua

Dettagli

CAPITOLO SESTO - STATISTICA INDUTTIVA. moneta buona; ha solo una probabilità molto bassa di verificarsi:

CAPITOLO SESTO - STATISTICA INDUTTIVA. moneta buona; ha solo una probabilità molto bassa di verificarsi: CAPITOLO SESTO - STATISTICA INDUTTIVA 1. Verifica di u ipotesi: u caso particolare Nell euciato di umerosi esempi ed esercizi proposti ei capitoli precedeti si è fatto riferimeto a moete o dadi o truccati,

Dettagli

Domande di teoria. Chiorri, C. (2014). Fondamenti di psicometria - Risposte e soluzioni Capitolo 3

Domande di teoria. Chiorri, C. (2014). Fondamenti di psicometria - Risposte e soluzioni Capitolo 3 Chiorri, C. (0). Fodameti di psicometria - Risposte e soluzioi Capitolo Domade di teoria. Per le caratteristiche geerali vedi paragrafo. p. 79. Per le procedure di calcolo vedi per la moda pp. 79-8, per

Dettagli

Esercitazioni di Statistica Dott.ssa Cristina Mollica cristina.mollica@uniroma1.it

Esercitazioni di Statistica Dott.ssa Cristina Mollica cristina.mollica@uniroma1.it Esercitazioi di Statistica Dott.ssa Cristia Mollica cristia.mollica@uiroma1.it Cocetrazioe Esercizio 1. Nell'ultima settimaa ua baca ha erogato i segueti importi (i migliaia di euro) per prestiti a imprese:

Dettagli

Titolo della lezione. Campionamento e Distribuzioni Campionarie

Titolo della lezione. Campionamento e Distribuzioni Campionarie Titolo della lezioe Campioameto e Distribuzioi Campioarie Itroduzioe Itrodurre le idagii campioarie Aalizzare il le teciche di costruzioe dei campioi e di rilevazioe Sviluppare il cocetto di distribuzioe

Dettagli

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15 Corso di Laurea Magistrale i Igegeria Iformatica A.A. 014/15 Complemeti di Probabilità e Statistica Prova scritta del del 3-0-15 Puteggi: 1. 3+3+4;. +3 ; 3. 1.5 5 ; 4. 1 + 1 + 1 + 1 + 3.5. Totale = 30.

Dettagli

q V C dipende solo dalla geometria dei piatti e ci dice quanta carica serve ad un dato condensatore per portarlo ad una DV fissata.

q V C dipende solo dalla geometria dei piatti e ci dice quanta carica serve ad un dato condensatore per portarlo ad una DV fissata. I codesatori codesatore è u dispositivo i grado di immagazziare eergia, sottoforma di eergia poteziale, i u campo elettrico Ogi volta che abbiamo a che fare co due coduttori di forma arbitraria detti piatti

Dettagli

Strumenti di indagine per la valutazione psicologica

Strumenti di indagine per la valutazione psicologica Strumeti di idagie per la valutazioe psicologica 1.2 - Richiami di statistica descrittiva Davide Massidda davide.massidda@gmail.com Descrivere i dati Dovedo scegliere u esame opzioale, uo studete ha itezioe

Dettagli

1.6 Serie di potenze - Esercizi risolti

1.6 Serie di potenze - Esercizi risolti 6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo

Dettagli

Tavole di Contingenza Connessione

Tavole di Contingenza Connessione Tavole di Cotigeza Coessioe Ua tavola di cotigeza per due geerici feomei X e Y è ua rappresetazioe simbolica di ua tabella a doppia etrata y 1 y y j y k x 1 11 1 1j 1k 1 x 1 j k x i i1 i ik i x h h1 h

Dettagli

Matematica e Statistica: Modulo di Statistica - Prof. Federico Di Palma - Appello del 12 Febbraio

Matematica e Statistica: Modulo di Statistica - Prof. Federico Di Palma - Appello del 12 Febbraio Matematica e Statistica: Modulo di Statistica - Prof. Federico Di Palma - Appello del 1 Febbraio 014 - Esercizio 1) I ua ricerca si è iteressati a verificare le dimesioi i micrometri di u graulocita eutrofilo.

Dettagli

Esercizi di Calcolo delle Probabilità e Statistica Matematica

Esercizi di Calcolo delle Probabilità e Statistica Matematica Esercizi di Calcolo delle Probabilità e Statistica Matematica Lucio Demeio Dipartimeto di Igegeria Idustriale e Scieze Matematiche Uiversità Politecica delle Marche 1. Esercizio (31 marzo 2012. 1). Al

Dettagli

Prof.ssa Paola Vicard

Prof.ssa Paola Vicard Statistica Computazioale Questa ota cosiste per la maggior parte ella traduzioe (co alcue modifiche e itegrazioi) da Descriptive statistics di J. Shalliker e C. Ricketts, 000, Uiversity of Plymouth Questa

Dettagli

Un problema! La letteratura riporta che i pazienti affetti da cancro. = mesi

Un problema! La letteratura riporta che i pazienti affetti da cancro. = mesi CONFRONTO TRA DUE MEDIE U problema! La letteratura riporta che i pazieti affetti da cacro hao ua sopravviveza media di 38.3 mesi e deviazioe stadard di 43.3 mesi: µ 38.3mesi σ 43.3mesi (la distribuzioe

Dettagli

Soluzione Dai dati di energia libera standard di formazione si può ricavare il G per la reazione:

Soluzione Dai dati di energia libera standard di formazione si può ricavare il G per la reazione: La metilammia, reagisce co acqua allo stato gassoso portado alla formazioe di alcool metilico e ammoiaca secodo la reazioe: (g) + H (g) H(g) + (g). Soo oti i segueti dati a 5 C G f (kj mol -1 ) (g).16

Dettagli

STATISTICA 1 parte 2/2 STATISTICA INFERENZIALE

STATISTICA 1 parte 2/2 STATISTICA INFERENZIALE STATISTICA parte / U test statistico è ua regola di decisioe Effettuare u test statistico sigifica verificare IPOTESI sui parametri. STATISTICA INFERENZIALE STIMA PUNTUALE STIMA PER INTERVALLI TEST PARAMETRICI

Dettagli

Caratteristica I-V. di una resistenza

Caratteristica I-V. di una resistenza UNESTA DEGL STUD D TENTO SCUOLA D SPECALZZAZONE ALL NSEGNAMENTO SECONDAO NDZZO SCENTFCO MATEMATCO FSCO NFOMATCO classe A049 matematica e fisica elazioe di laboratorio Caratteristica - di ua resisteza Dott.

Dettagli

1 + 1 ) n ] n. < e nα 1 n

1 + 1 ) n ] n. < e nα 1 n Esercizi preparati e i parte svolti martedì 0.. Calcolare al variare di α > 0 Soluzioe: + ) α Per α il ite è e; se α osserviamo che da + /) < e segue che α + ) α [ + ) ] α < e α Per α > le successioi e

Dettagli

Calcolo delle Probabilità 2012/13 Foglio di esercizi 3

Calcolo delle Probabilità 2012/13 Foglio di esercizi 3 Calcolo delle Probabilità 01/13 Foglio di esercizi 3 Probabilità codizioale e idipedeza. Esercizio 1. Sia B u eveto fissato di uo spazio di probabilità (Ω, A, P), co P(B) > 0. Si mostri che P( B) è l uica

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 4 VARIABILI QUANTITATIVE (Trasformazioni lineari Indici di covarianza e correlazione)

STATISTICA DESCRITTIVA - SCHEDA N. 4 VARIABILI QUANTITATIVE (Trasformazioni lineari Indici di covarianza e correlazione) STATISTICA DESCRITTIVA - SCHEDA N. 4 VARIABILI QUANTITATIVE (Trasformazioi lieari Idici di covariaza e correlazioe) ) Trasformazioi lieari di variabili statistiche I varie situazioi si operao trasformazioi

Dettagli

ESERCIZI DI STATISTICA DESCRITTIVA ALCUNI TRATTI DA PROVE D ESAME DA REALIZZARE ANCHE CON L AUSILIO DI UN FOGLIO DI CALCOLO. Angela Donatiello 1

ESERCIZI DI STATISTICA DESCRITTIVA ALCUNI TRATTI DA PROVE D ESAME DA REALIZZARE ANCHE CON L AUSILIO DI UN FOGLIO DI CALCOLO. Angela Donatiello 1 ESERCIZI DI STATISTICA DESCRITTIVA ALCUNI TRATTI DA PROVE D ESAME DA REALIZZARE ANCHE CON L AUSILIO DI UN FOGLIO DI CALCOLO Agela Doatiello 1 Esercizio. E stato tabulato il peso di ua certa popolazioe

Dettagli

LEGGE DEI GRANDI NUMERI

LEGGE DEI GRANDI NUMERI LEGGE DEI GRANDI NUMERI E. DI NARDO 1. Legge empirica del caso e il teorema di Beroulli I diverse occasioi, abbiamo mezioato che la ozioe ituitiva di probabilità si basa sulla seguete assuzioe: se i sperimetazioi

Dettagli

STATISTICA A K (63 ore)

STATISTICA A K (63 ore) STATISTICA A K (63 ore) Marco Riai mriai@uipr.it http://www.riai.it : stima della percorreza media delle vetture diesel di u certo modello al primo guasto =400 X =34.000 Km; s cor =9000 Km Calcolare l

Dettagli

LA VERIFICA DELLE IPOTESI SUI PARAMETRI

LA VERIFICA DELLE IPOTESI SUI PARAMETRI LA VERIFICA DELLE IPOTESI SUI PARAMETRI E u problema di ifereza per molti aspetti collegato a quello della stima. Rispode ad u esigeza di carattere pratico che spesso si preseta i molti campi dell attività

Dettagli

Misure di tendenza centrale e di dispersione in MINITAB

Misure di tendenza centrale e di dispersione in MINITAB Misure di tedeza cetrale e di dispersioe i MINITAB 55 Misure di tedeza cetrale e di dispersioe i MINITAB 3. Itroduzioe A questo puto è opportuo focalizzare l attezioe su alcue fuzioi di MINITAB che risultao

Dettagli

Cenni di topologia di R

Cenni di topologia di R Cei di topologia di R. Sottoisiemi dei umeri reali Studieremo le proprietà dei sottoisiemi dei umeri reali, R, che hao ad esempio la forma: = (, ) (,) 6 8 = [,] { ;6;8} { } = (, ) (,) [, + ) Defiizioe:

Dettagli

Docenti: Dott. Franco Mazzenga, Dott.ssa. Ernestina Cianca a.a

Docenti: Dott. Franco Mazzenga, Dott.ssa. Ernestina Cianca a.a Caale IO: defiizioi Doceti: Dott Fraco azzega, Dottssa Erestia Ciaca aa 00-0 odulo di odulo Tecice di Avazate Iformazioe di Trasmissioe e Codifica aa aa 00-0 007-08 Caale IO: defiizioi t,,( atee i trasmissioe

Dettagli

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DI UN GRUPPO DI OSSERVAZIONI O DI ESPERIMENTI, SI PERVIENE A CERTE CONCLUSIONI, LA CUI VALIDITA PER UN COLLETTIVO Più AMPIO E ESPRESSA

Dettagli

Argomenti trattati: Capitolo 12 libro di testo. Statistica - Metodologie per le scienze economiche e sociali A. Di Ciaccio, S.

Argomenti trattati: Capitolo 12 libro di testo. Statistica - Metodologie per le scienze economiche e sociali A. Di Ciaccio, S. 1 GLI INTERVALLI DI CONFIDENZA Argometi trattati: Stima per itervallo Aalogie tra la stima putuale e per itervallo Itervallo di cofideza per la media Itervallo di cofideza per la proporzioe Itervallo di

Dettagli

Università degli Studi di Napoli Parthenope. Facoltà di Scienze Motorie a.a. 2011/2012. Statistica. Lezione V

Università degli Studi di Napoli Parthenope. Facoltà di Scienze Motorie a.a. 2011/2012. Statistica. Lezione V Uiverità degli Studi di Napoli Partheope Facoltà di Scieze Motorie a.a. 0/0 Statitica Lezioe V E-mail: paolo.mazzocchi@uipartheope.it Webite: www.tatmat.uipartheope.it DISTRIBUZIONE DOPPIA di frequeze

Dettagli

Esame di Probabilità e Statistica del 9 luglio 2007 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova).

Esame di Probabilità e Statistica del 9 luglio 2007 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Esame di Probabilità e Statistica del 9 luglio 27 Corso di Laurea Trieale i Matematica, Uiversità degli Studi di Padova). Cogome Nome Matricola Es. 1 Es. 2 Es. 3 Es. 4 Somma Voto fiale Attezioe: si cosegao

Dettagli

Distribuzioni doppie

Distribuzioni doppie Distibuzioi doppie Quado vegoo osideate ogiutamete due oloe di ua matie di dati si ha ua distibuzioe doppia disaggegata (o uitaia). Si tatta dell eleazioe delle modalità di due aattei ( X e Y ) ossevate

Dettagli

CAPITOLO UNDICESIMO VARIABILI CASUALI 1. INTRODUZIONE

CAPITOLO UNDICESIMO VARIABILI CASUALI 1. INTRODUZIONE CAPITOLO UNDICESIMO VARIABILI CASUALI SOMMARIO:. Itroduzioe. -. Variabili casuali discrete. - 3. La variabile casuale di Beroulli. - 4. La variabile casuale biomiale. -. La variabile casuale di Poisso.

Dettagli

Servizio Tecnico Applicativo Piazza della Repubblica, 1. e-mail: ebardazzi@datacolor.com Tel. 800 15 33 77 Fax: 800 02 39 22

Servizio Tecnico Applicativo Piazza della Repubblica, 1. e-mail: ebardazzi@datacolor.com Tel. 800 15 33 77 Fax: 800 02 39 22 I metodi di valutazioe del Biaco I biachi soo geeralmete caratterizzati dal possedere alti valori di Lumiosità e u basso valore di Croma, e per questo motivo occupao u volume relativamete piccolo dello

Dettagli

Proprietà asintotiche stimatori OLS e statistiche collegate

Proprietà asintotiche stimatori OLS e statistiche collegate Proprietà asitotiche stimatori OLS e statistiche collegate Eduardo Rossi 2 2 Uiversità di Pavia (Italy) Maggio 2014 Rossi Proprietà asitotiche Ecoometria - 2014 1 / 30 Sommario Risultati prelimiari Distribuzioe

Dettagli

APPENDICE. A.1 Derivate notevoli. dy m df. sin x. 1 dx. dx 1 f x. f x. y f x. y x. dx dx. df x. dx n x. dy m. cos f x. cos x. sin f x.

APPENDICE. A.1 Derivate notevoli. dy m df. sin x. 1 dx. dx 1 f x. f x. y f x. y x. dx dx. df x. dx n x. dy m. cos f x. cos x. sin f x. APPENDICE A. Derivate otevoli k d d d d d m m m d si cos cos si ta d cos cot d si arcsi arccos m d d d d d d si cos d m d m d d d si d d d cos d d cos d d ta cot arcta d arccot d log a l d d arcsi arccos

Dettagli

Diagramma polare e logaritmico

Diagramma polare e logaritmico Diagramma polare e aritmico ariatori discotiui del moto di taglio Dalla relazioe π D c si ota che la velocità di taglio dipede, oltre che dal umero di giri del madrio, ache dal diametro dell elemeto rotate

Dettagli

Formulazione di Problemi Decisionali come Problemi di Programmazione Lineare

Formulazione di Problemi Decisionali come Problemi di Programmazione Lineare Formulazioe di Problemi Decisioali come Problemi di Programmazioe Lieare Cosideriamo i segueti problemi decisioali ed esamiiamo come possoo essere formulati come problemi di PL: Il problema del trasporto

Dettagli

Esercitazioni di Biostatistica. In collaborazione con la Dott.ssa Antonella Zambon

Esercitazioni di Biostatistica. In collaborazione con la Dott.ssa Antonella Zambon Esercitazioi di Biostatistica I collaborazioe co la Dott.ssa Atoella Zambo ESERCIZIO Nome Geere Età (ai compiuti) Livello istruzioe Distaza (km) Atoio M 8.0 Claudio M 7. Lucia F.0 Aa F 6. Marco M Giuseppe

Dettagli

Intervalli di confidenza

Intervalli di confidenza Itervalli di cofideza Fracesco Lagoa Itroduzioe Questa dispesa riassume schematicamete i pricipali risultati discussi a lezioe sulla costruzioe di itervalli di cofideza. Itervalli di cofideza per la media

Dettagli

Diottro sferico. Capitolo 2

Diottro sferico. Capitolo 2 Capitolo 2 Diottro sferico Si idica co il termie diottro sferico ua calotta sferica che separa due mezzi co idice di rifrazioe diverso. La cogiugete il cetro di curvatura C della calotta co il vertice

Dettagli

Laboratorio di Elettronica

Laboratorio di Elettronica Uiversità degli Studi di Ferrara Corso di Laurea i Igegeria Elettroica Laboratorio di Elettroica Relazioe di Laboratorio di Tari Gamberii Corso di Laboratorio di Elettroica (Vecchio Ordiameto) Ao Accademico

Dettagli

converge in probabilità alla v.a. X e si scrive: converge in media quadratica alla v.a. X e si scrive: m n

converge in probabilità alla v.a. X e si scrive: converge in media quadratica alla v.a. X e si scrive: m n 98 Covergeza i probabilità Si dice che la successioe X coverge i probabilità alla v.a. X e si scrive: se, per qualsiasi ε > 0, si ha: X p X oppure plim X = X limp( X X < ε)= Covergeza i media quadratica

Dettagli

Evento unione, evento intersezione ed eventi mutuamente esclusivi

Evento unione, evento intersezione ed eventi mutuamente esclusivi INCETEZZA DI MISUA Misurazioe come esperimeto aleatorio. I risultati di ua misurazioe soo, i geere, dei valori aleatori, el seso che o si può prevedere, prima di effettuare l esperimeto, quale di essi

Dettagli

LE MISURE DI VARIABILITÀ DI CARATTERI QUANTITATIVI

LE MISURE DI VARIABILITÀ DI CARATTERI QUANTITATIVI Apputi di Statistica Sociale Uiversità ore di Ea LE MISURE DI VARIABILITÀ DI CARATTERI QUATITATIVI La variabilità di u isieme di osservazioi attiee all attitudie delle variabili studiate ad assumere modalità

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea i Ecoomia e Fiaza Statistica 1 A.A. 2015/2016 (8 CFU, corrispodeti a 48 ore di lezioe frotale e 24 ore di esercitazioe) Prof. Luigi Augugliaro 1 / 21 Misura della dipedeza di u carattere

Dettagli

C a p i t o l o s e t t i m o. Trasmissione del calore per radiazione

C a p i t o l o s e t t i m o. Trasmissione del calore per radiazione C a p i t o l o s e t t i m o Trasmissioe del calore per radiazioe Problema. Si cosideri u corpo ero i uo spazio o assorbete le radiazioi elettromagetiche; se il corpo viee mateuto alla temperatura di

Dettagli

PROBLEMI DI INFERENZA SU PERCENTUALI

PROBLEMI DI INFERENZA SU PERCENTUALI ROBLEMI DI INFERENZA SU ERCENTUALI STIMA UNTUALE Il roblema della stima di ua ercetuale si oe allorchè si vuole cooscere, sulla base di osservazioi camioarie, la frazioe π di ua oolazioe N che ossiede

Dettagli

Le successioni: intro

Le successioni: intro Le successioi: itro Si cosideri la seguete sequeza di umeri:,, 2, 3, 5, 8, 3, 2, 34, 55, 89, 44, 233, detti di Fiboacci. Essa rappreseta il umero di coppie di coigli preseti ei primi 2 mesi i u allevameto!

Dettagli

Statistica (Prof. Capitanio) Alcuni esercizi tratti da prove scritte d esame

Statistica (Prof. Capitanio) Alcuni esercizi tratti da prove scritte d esame Statistica (Prof. Capitaio) Alcui esercizi tratti da prove scritte d esame Esercizio 1 Il tempo (i miuti) che Paolo impiega, i auto, per arrivare i ufficio, può essere modellato co ua variabile casuale

Dettagli

COMPLEMENTI ALLE SERIE

COMPLEMENTI ALLE SERIE COMPLEMENTI ALLE SERIE. Serie a termii i sego efiitivamete ostate Per ompletezza rihiamo il riterio el rapporto e ella raie, seza imostrarli... Teorema (Criterio el rapporto). Sia a ua suessioe a termii

Dettagli

Teoremi limite classici

Teoremi limite classici Capitolo 4 Teoremi limite classici I Teoremi limite classici, la Legge dei Gradi Numeri e il Teorema Limite Cetrale, costituiscoo il ucleo del Calcolo delle Probabilità, per la loro portata sia teorica

Dettagli

ALLEGATO 2: METODOLOGIA DISEGNO DI CAMPIONAMENTO

ALLEGATO 2: METODOLOGIA DISEGNO DI CAMPIONAMENTO IREPA OLU REGIOE PUGLIA AEORATO AGRICOLTURA, ACQUACOLTURA, ALIMETAZIOE, CACCIA E PECA PROGETTO ITEMA IFORMATIVO COGIUTURALE - P.O.R. PUGLIA 000-006 FOP Asse IV Misura 4.3 D BEEFICIARIO AOCIAZIOE ARMATORI

Dettagli

Probabilità 1, laurea triennale in Matematica II prova scritta sessione estiva a.a. 2008/09

Probabilità 1, laurea triennale in Matematica II prova scritta sessione estiva a.a. 2008/09 Probabilità, laurea trieale i Matematica II prova scritta sessioe estiva a.a. 8/9. U ura cotiee dadi di cui la metà soo equilibrati, metre gli altri soo stati maipolati i modo che, per ciascuo di essi,

Dettagli

Cosa vogliamo imparare?

Cosa vogliamo imparare? Cosa vogliamo imparare? risolvere i modo approssimato equazioi del tipo f()=0 che o solo risolubili i maiera esatta ed elemetare tramite formule risolutive. Esempio: log( ) 1= 0 Iterpretazioe grafica Come

Dettagli

LA INTERPOLAZIONE Appartamenti venduti nel 2006 da un agenzia immobiliare di Treviso.

LA INTERPOLAZIONE Appartamenti venduti nel 2006 da un agenzia immobiliare di Treviso. LA INTERPOLAZIONE Appartameti veduti el 006 da u agezia immobiliare di Treviso. superficie (mq) prezzo (k ) segue 10 160 45 70 80 95 85 110 64 98 106 140 10 170 50 80 100 150 90 15 115 165 140 165 98 145

Dettagli