Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza. Lezione 12. Simmetrie discrete

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza. Lezione 12. Simmetrie discrete"

Transcript

1 Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza Lezione 12 Simmetrie discrete

2 Simmetrie discrete (Das-Ferbel cap. 11) Non tratteremo il tema generale del rapporto tra simmetrie e leggi di conservazione es. cap. 10 del Das-Ferbel trattato in dettaglio in altri corsi Ci concentriamo invece sul rapporto tra simmetrie e classificazione degli stati Simmetrie discrete: Parità P, Coniugazione di carica C possibili autovalori numeri quantici dei sistemi fermione-antifermione strumenti che utilizzeremmo per classificare in futuro nuove particelle Violazione delle simmetrie P e C nelle interazioni deboli Invarianza per inversione temporale T Applicazioni: legge del bilancio dettagliato e invarianza di crossing Cenni al teorema CPT 2

3 Simmetrie in meccanica quantistica L evoluzione temporale del valore di aspettazione di una variabile Q è data dal suo commutatore con l Hamiltoniana: d dt Q = 1 i! Q, H [ ] In particolare Q è una quantità conservata se e soltanto se: [ Q, H ] = 0 L applicazione di una trasformazione U, lascia invariata l Hamiltoniana se: UHU 1 = H UH = HU [ U, H ] = 0 In generale se una trasformazione infinitesima si può scrivere: U = exp( iεg ) G è una quantità conservata. 3

4 Simmetrie e autovalori Dalla relazione di commutazione segue che se ψ è autostato di H, anche Gψ lo è: H(Gψ) = (HG)ψ = (GH )ψ = E ψ Gψ Se ψ è unico, allora necessariamente deve anche essere autostato di G: Gψ = η G ψ Se un certo livello energetico ha n autostati degeneri, ψ 1, ψ 2,... ψ n, Il trasformato di un autostato deve potersi esprimere come sovrapposizione lineare degli altri: Gψ i = G m,i ψ m G m,i = ψ m G ψ i Diagonalizzando la matrice G m,i, si può creare una base di autostati sia di G che di H. Gli autovalori di G possono venire usati per classificare gli autostati di H Esempi: m=1, n Particella in potenziale a simmetria sferica: sono conservati L 2 e L x, L y, L z, (generatori delle rotazioni). Gli autovalori di H, E n,l dipendono da L 2, con degenerazione n=2l+1 Tipicamente si scelgono come base autofunzioni: che sono i 2l+1 autostati di L z con autovalore mħ ψ n,l,m = u (r) n,l Y l,m (θ,ϕ) r 4

5 Simmetrie discrete Oltre alle trasformazioni continue, in meccanica quantistica hanno particolare importanze le trasformazioni discrete: Parità P Inversione temporale T T t t Coniugazione di carica C r P r scambio di particelle con antiparticelle non ha un analogo classico Tutte hanno la proprietà: P 2 = T 2 = C 2 = 1 I possibili autovalori sono solo 1 e -1 5

6 Parità Grandezze vettoriali possono comportarsi diversamente per trasformazioni i parità: Vettori polari: cambiano segno per parità il vettore di coordinate cambia segno per definizione di trasformazione di parità; allo stesso modo la velocità ed il vettore di momento Vettori assiali: non cambiano segno per parità il momento angolare lo spin. Analogamente esistono: grandezze scalari: non cambiano segno per parità r 2, p 2 /2m, L 2, L S grandezze pseudoscalari: cambiano segno per parità p S 6

7 Parità e momento angolare Nel caso di una particella in un campo centrale: ψ n,l,m = u (r) n,l Y l,m (θ,ϕ) r Le funzioni Y lm (θ,φ) sono tali che: P u (r) n,l Y l,m (θ,ϕ) = u (r) n,l u Y l,m (π θ,ϕ + π ) = ( 1) l n,l (r) Y r r l,m (θ,ϕ) r In aggiunta possiamo assumere che una particella abbia una parità intrinseca, così come ha un momento angolare intrinseco. Per cui Pψ n,l,m = η ψ ( 1) l ψ n,l,m Nel caso di due particelle ed interazione a simmetria sferica, il problemà è esattamente analogo a quello di particella singola, a patto di prendere la massa ridotta: Pψ n,l,m = η 1 η 2 ( 1) l ψ n,l,m Una volta definita la parità di una particella si possono ricavare le altre parità relative a partire da questa. 7

8 Parità del campo elettromagnetico Il campo elettrico E è un vettore polare: Il campo magnetico B è un vettore assiale: P(B) = B Le equazioni di Maxwell sono invarianti per trasformazioni di parità: E = ρ ε 0 B = 0 E + B t = 0 B µ E 0ε 0 t = µ 0J Le interazioni elettromagnetiche conservano la parità. L interazione del campo elettromagnetico è di natura polare: Forza elettromagnetica: F = q( E + v B) Densità di quantità di moto (vettore di Poynting): Il fotone ha parità negativa. P(E) = E S = 1 µ 0 E B 8

9 Violazione della parità Abbiamo appena detta che le interazioni elettromagnetiche conservano la parità. È sperimentalmente osservato che questo vale anche per le interazioni forti. Non è così per le interazioni deboli L osservazione sperimentale si basa sulla misura del valore di aspettazione di un osservabile pseudoscalare S: S S Se P è una simmetria, il valore di aspettazione prima e dopo l applicazione della trasformazione deve coincidere: P S P S = S quindi se P è una simmetria: S = S = 0 9

10 Esperimento di Wu et al. Lo spin dei nuclei del 60 Co è allineato al campo magnetico esterno B. Critico raggiungere basse temperature (10-3 K): polarizzazione = tanh( B µ / kt ) Violazione di parità tramite osservazione di una correlazione on B degli elettroni emessi: rivelatore fotoni rivelatore elettroni B non dipende dal segno di B dipende dal segno di B ˆB ˆp e 0 rivelatore fotoni 60 Co β 60 Ni* γ 10

11 Elicità Una particolare variable pseudoscalare è l elicità: h = p S p S = ˆp Ŝ Per particelle di spin ½: h=+1, spin orientato nella direzione del moto h=-1, spin orientato in direzione opposta alla direzione del moto Il valor medio di h corrisponde ad una polarizzazione netta lungo la direzione del moto: ˆp Ŝ = N h=+1 N h= 1 N h=+1 + N h= 1 Misure di polarizzazione delle particelle partecipanti ad interazioni deboli mostrano: ˆp ν Ŝν = 1 ˆp e Ŝe = β ˆp ν Ŝν = +1 ˆp e + Ŝe + = +β conferma della violazione di P. Il fatto che i neutrini abbiano un elicità definita presenta una violazione massimale della parità: P(ν h= 1 ) = ν h=+1 P(ν h=+1 ) = ν h= 1 che non esistono. 11

12 Coniugazione di carica L operatore di coniugazione di carica C scambia particelle con le rispettive antiparticelle. Es.: C(e ) = e + C(e + ) = e Tutti i numeri quantici vengono invertiti Es.: Come per la Parità si ha che: n : numero barionico = +1, µ = 1.91µ N C(n) = n : numero barionico = 1, µ = +1.91µ N C 2 =1 autovalori possibili η C =±1 Solo gli stati completamente neutri possono essere autostati di C C del fotone: C inverte le cariche del sistema: tutti i campi E e B cambiano di segno. C(γ) = γ 12

13 Positronio Stato legato elettrone-positrone Equazione di Schrödinger identica a quella dell atomo di idrogeno unica differenza la massa ridotta: Ci sono quattro possibili configurazioni di spin Si combinano in: Parità: un tripletto con S=1, S z =+1,0,-1 un singoletto con S=0 scambio della posizione relativa delle particelle parità intrinseca µ = m e m e m e + m e = m e 2 η P = η e η e + ( 1) l η C = η P ( 1) S+1 Coniugazione di carica lo scambio di particelle corrisponde alla trasformazione di parità in aggiunta scambio anche degli spin: -1 per S=0, +1 per S=

14 Positronio Lo stato fondamentale ha l=0 Stato di singoletto: para-positronio 1 s 0 Stato di tripletto: orto-positronio 3 s 1 I due stati hanno la stessa parità anche se i livelli differiscono di ev non si può transire elettromagneticamente: emissione di un γ cambia parità η γ =-1 Ma opposta coniugazione di carica η P = η e η e + η C = η P ( 1) S+1 Il para-positronio decade in 125 ns in uno stato con 2γ: η C =+1 L orto-positronio decade in 140 µs in uno stato con 3γ: η C =-1 η P =η e+ η e- =-1: parità di fermione ed antifermione sono opposte Risultato, al pari di g=2, predetto dalla meccanica quantistica relativistica Verificato direttamente dallo studio della correlazione tra le polarizzazioni ε 1 e ε 2 dei fotoni uscenti dal decadimento del parapositronio, discrimando i casi: ψ(2γ) ε 1 ε 2 η 2γ = +1 ψ(2γ) ( ε 1 ε 2 ) k η 2γ = 1 Termine scalare Termine pseudo-scalare momento del fotone 14

15 Violazione della coniugazione di carica Nelle interazioni deboli viene anche violata C Sempre nel caso del neutrino: che non esiste. C(ν h= 1 ) = ν h= 1 Tuttavia funziona la trasformazione composta: CP(ν h= 1 ) = C(ν h=+1 ) = ν h=+1 CP risulta una simmetria più fondamentale di C e P separatamente vedremo che anch essa sarà violata dalle interazioni deboli, ma ad un livello molto minore. 15

16 Inversione temporale Classicamente l operatore di inversione temporale T: t -t La versione quantistica è tale che: Partendo dall equazione di Schrödinger: Facendone il coniugato: E poi l inversione t -t ψ * (r,-t) è solutione dell equazione di Schrödinger con la stessa energia di ψ(r,t) se THT -1 =H Sotto T cambiano segno v, p=mv, L=r p, S Es.: particella libera: Es.: momento angolare: Tψ ( r,t ) = ψ * ( r, t ) i i! i! ψ* ψ ( r,t ) t ( r,t ) t i! ψ* ( r, t ) t = Hψ ( r,t ) = Hψ * ( r,t ) = Hψ * ( r, t ) ψ(p) = e! (p r Et) ψ * (p) = e i! (p r Et) Tψ(p) = e! ( p r Et) = ψ( p) Y l,m (θ,ϕ) e imϕ T e imϕ = Y l, m (θ,ϕ) i 16

17 Principio del bilancio dettagliato Una conseguenza significativa dell invarianza temporale è l invarianza dell elemento di matrice: f U i = drψ * f ( r )U ( r )ψ i r ( ) nelle probabilità di transizione: T drψ f ( r )U ( r )ψ * i r P(i f ) = 2π! ( ) f U i = i U f 2 ρ ( E f ) P( f i) = 2π! i U f 2 ρ ( E i ) Se vale l invarianze per inversione temporale: f U i = i U f la differenza di probabilità è dovuta solamente ai termini di densità di stati. In una situazione di equilibrio: dn f dt = N i P(i f ) N f P( f i) = 0 N i N f = Principio del bilancio dettagliato. P( f i) P(i f ) = ρ(e i) ρ(e f ) 17

18 Invarianza di crossing Il principio del bilancio dettagliato viene spesso applicato insieme all invarianza di crossing: reazioni derivate spostando una particella da stato iniziale a stato finale (o viceversa) e trasformandola in antiparticella. Se A + B C + D ha elemento di matrice: M(p A, p B, p C, p D ) funzione dei momenti delle particelle. Allora: A B + C + D A + D B + C A + C B + D M(p A, p B, p C, p D ) M(p A, p B, p C, p D ) M(p A, p B, p C, p D ) B + C A + D M( p A, p B, p C, p D )... e tutte le altre permutazioni Il tasso delle reazioni è poi determinato dal termine di densità di stati. 18

19 Decadimento β inverso (anti)neutrini vengono prodotti dai decadimenti β ± Z A X Z 1A X ʹ + e + + ν Z A X Z+1A X ʹ + e + ν dove il Q-valore della reazione è Q=M(A,Z)-M(A,Z±1)-m e Masse nucleari! I processi di interazione si ottengono applicando: inversione temporale: crossing: Z 1 A X ʹ + ν A Z X + e Z+1 A X ʹ + ν A Z X + e + L elemento di matrice del decadimento β: f H W i = G F (!c) 3 drψ V A,Z+1 (r) * ( O X )ψ A,Z (r) = GF (!c ) 3 M V fi V si applica anche al decadimento β inverso dall espressione della larghezza di decadimento: f H W i Z 1 A 2 = Γ (!c)6 V 2 2π 3 (m e c 2 ) 5 f (Z,Q) X ʹ + e + + ν A Z X Z+1 A X ʹ + e + ν A Z X f Z,Q Γ=! τ = G 2 2 F M fi ( me c 2 ) 5 2π 3 ( ) = d Q/m e c 2 0! T e $ # & p! e " m e c 2 % m e c 1+ T $! e # & Q T $ e # & " m e c 2 %" m e c 2 % f ( Z,Q) 2 F ( Z,T e ) 19

20 Decadimento β inverso Calcoliamo la sezione d urto del decadimento β inverso. L espressione per il tasso di transizione: λ = 2π! f H W i 2 ρ ( E f ) Il termine di densità di stati, se trascuriamo la piccola quantità di energia portata via dal nucleo: ρ(e f ) = dn de f = V 4π p 2 e (2π!) 3 dp e de f ( pc)d( pc)=ede V 4π p ee e de e (2π!) 3 c 2 de f dove: E e =E ν -Q-m e dalla condizione E e m e, abbiamo l energia di soglia del neutrino: E ν >Q+2m e Esercizio: dimostrare che la relazione relativistica corretta è: =1 Q + 2m E ν ( Q + 2m e ) 1+ e 2M(A, Z ±1) = V 4πβ E 2 e e (2π!c) 3 Tasso di transizione: λ = 2π! (!c) 6 2π 3! 2 V 4πβ e E e V 2 (m e c 2 ) 5 τ f (Z,Q) (2π!c) 3 = 2π 2 (!c) 3 V β e E e 2 (m e c 2 ) 5 τ f (Z,Q) Confrontando con la relazione per la sezione d urto: Fascio di una particella: dn/dt = λ Rapporto delle densità di stati. dn dt = I on T dσ =0 alla soglia Un (anti)neutrino percorre lo spessore d con velocità c: I 0 =c/d Un bersaglio nel volume V: n T =1/V σ = 2π 2 2 β e E e! (m e c 2 ) 5 f (Z,Q) τ (!c)2 20

21 Teorema CPT Abbiamo visto che C e P sono violate dalle interazioni deboli. tali simmetrie non sono simmetrie fondamentali della natura Si può invece dimostrare che: Una teoria quantistica: invariante per trasformazioni di Lorenz locale con Hamiltoniana hermitiana deve essere invariante rispetto al prodotto delle tre trasformazioni C, P, T Conseguenze della simmetria CPT: particelle ed antiparticelle devono avere la stessa massa particelle ed anti-particelle devono avere la stessa vita media totale Verifiche di tale simmetria si effettuano: nelle proprietà di particelle nella ricerca di violazioni all invarianza per trasformazioni di Lorentz arxiv:0801:0287 per una rassegna dello stato sperimentale 21

Simmetrie e leggi di conservazione

Simmetrie e leggi di conservazione Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza Lezione 5 Simmetrie e leggi di conservazione Simmetrie in meccanica classica Un sistema classico è descritto dal suo insieme di coordinate:

Dettagli

Lezione n. 19. L equazione. di Schrodinger L atomo. di idrogeno Orbitali atomici. 02/03/2008 Antonino Polimeno 1

Lezione n. 19. L equazione. di Schrodinger L atomo. di idrogeno Orbitali atomici. 02/03/2008 Antonino Polimeno 1 Chimica Fisica - Chimica e Tecnologia Farmaceutiche Lezione n. 19 L equazione di Schrodinger L atomo di idrogeno Orbitali atomici 02/03/2008 Antonino Polimeno 1 Dai modelli primitivi alla meccanica quantistica

Dettagli

Bosone. Particella a spin intero, che obbedisce alla statistica di Bose-Einstein, che è opposta a quella di Fermi-Dirac.

Bosone. Particella a spin intero, che obbedisce alla statistica di Bose-Einstein, che è opposta a quella di Fermi-Dirac. Particelle ed Interazioni fondamentali Fermione. Particella a spin semintero, che obbedisce alla statistica di Fermi-Dirac, cioè due fermioni con gli stessi numeri quantici non possono coesistere in uno

Dettagli

Lezioni di Meccanica Quantistica

Lezioni di Meccanica Quantistica Luigi E. Picasso Lezioni di Meccanica Quantistica seconda edizione Edizioni ETS www.edizioniets.com Copyright 2015 EDIZIONI ETS Piazza Carrara, 16-19, I-56126 Pisa info@edizioniets.com www.edizioniets.com

Dettagli

Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza. Lezione 10. Fusione nucleare

Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza. Lezione 10. Fusione nucleare Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza Lezione 10 Fusione nucleare Fusione nucleare (Das-Ferbel, cap. 5.3) Abbiamo già accennato alla fusione nucleare che costituisce la sorgente

Dettagli

introduzione alla fisica subnucleare

introduzione alla fisica subnucleare introduzione alla isica subnucleare AA 2006/07 Giovanni Busetto 1 la isica subnucleare oggi gli elementi del Modello Standard AA 2006/07 Giovanni Busetto 2 la isica subnucleare oggi 3 interazioni ondamentali

Dettagli

L atomo di idrogeno (1) H T = p2 1 2m 1. + p2 2 2m 2. + V ( r 1 r 2 ) (2) Definiamo le nuove variabili: 1. La massa totale M M = m 1 + m 2 (3)

L atomo di idrogeno (1) H T = p2 1 2m 1. + p2 2 2m 2. + V ( r 1 r 2 ) (2) Definiamo le nuove variabili: 1. La massa totale M M = m 1 + m 2 (3) L atomo di idrogeno Il problema dell atomo di idrogeno é un problema esattamente risolubili ed i suoi risultati possono essere estesi agli atomi idrogenoidi, in cui solo c é solo un elettrone sottoposto

Dettagli

La freccia del tempo nella fisica delle particelle elementari Alberto Lusiani

La freccia del tempo nella fisica delle particelle elementari Alberto Lusiani La freccia del tempo nella fisica delle particelle elementari Scuola Normale Superiore La fisica delle particelle spiega oggi quasi tutto Meccanica Quantistica Relativistica (Modello Standard) fenomeni

Dettagli

Esercitazioni di Meccanica Quantistica I

Esercitazioni di Meccanica Quantistica I Esercitazioni di Meccanica Quantistica I Sistema a due stati Consideriamo come esempio di sistema a due stati l ammoniaca. La struttura del composto è tetraedrico : alla sommità di una piramide con base

Dettagli

Atomi a più elettroni

Atomi a più elettroni Chapter 7 Atomi a più elettroni 7.1 Lo spin Gli esperimenti indicano che alle particelle si deve associare un momento angolare intrinseco, o spin, indipendentemente dalla loro natura (particelle elementari

Dettagli

Fisica Quantistica III Esercizi Natale 2009

Fisica Quantistica III Esercizi Natale 2009 Fisica Quantistica III Esercizi Natale 009 Philip G. Ratcliffe (philip.ratcliffe@uninsubria.it) Dipartimento di Fisica e Matematica Università degli Studi dell Insubria in Como via Valleggio 11, 100 Como

Dettagli

Misura del momento magnetico dell elettrone

Misura del momento magnetico dell elettrone FACOLTÀ Università degli Studi di Roma Tre DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea in Fisica Misura del momento magnetico dell elettrone Candidato: Andrea Sciandra Matricola 4480 Relatore:

Dettagli

Operatori C, P e T. Stati fisici. Osservabili (II) Osservabili. prof. Domenico Galli

Operatori C, P e T. Stati fisici. Osservabili (II) Osservabili. prof. Domenico Galli Stati fisici Operatori C, P e T prof. Domenico Galli Temi di Fisica delle Particelle Elementari al LHC Dottorato di ricerca in Fisica, Bologna Uno stato fisico è rappresentato da un vettore di stato (ket)

Dettagli

FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 2 (2015/16)

FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 2 (2015/16) FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 2 (2015/16) Scopo del corso Il corso si propone di completare le conoscenze dello studente nell ambito della meccanica quantistica non relativistica, applicata

Dettagli

FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 2 (2016/17)

FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 2 (2016/17) FISICA QUANTISTICA CON ESERCITAZIONI - MOD. 2 (2016/17) Scopo del corso Il corso si propone di completare le conoscenze dello studente nell ambito della meccanica quantistica non relativistica, applicata

Dettagli

Consideriamo un sistema composto da due particelle identiche. Due particelle sono identiche se hanno le stesse proprietà intrinseche (massa, carica,

Consideriamo un sistema composto da due particelle identiche. Due particelle sono identiche se hanno le stesse proprietà intrinseche (massa, carica, Consideriamo un sistema composto da due particelle identiche. Due particelle sono identiche se hanno le stesse proprietà intrinseche (massa, carica, spin, ). Esempi: due elettroni, due protoni, due neutroni,

Dettagli

LE INTERAZIONI DEBOLI E LA PARITA

LE INTERAZIONI DEBOLI E LA PARITA LE INTERAZIONI DEBOLI E LA PARITA 1 L intensita delle interazioni fondamentali Giunti a questo punto possiamo fare un confronto tra le intensita delle quattro interazioni fondamentali. Abbiamo gia visto

Dettagli

Si arrivò a dimostrare l esistenza di una forma elementare della materia (atomo) solo nel 1803 (John Dalton)

Si arrivò a dimostrare l esistenza di una forma elementare della materia (atomo) solo nel 1803 (John Dalton) Atomi 16 Si arrivò a dimostrare l esistenza di una forma elementare della materia (atomo) solo nel 1803 (John Dalton) 17 Teoria atomica di Dalton Si basa sui seguenti postulati: 1. La materia è formata

Dettagli

REGISTRO DELLE LEZIONI 2005/2006. Tipologia

REGISTRO DELLE LEZIONI 2005/2006. Tipologia Struttura formale della meccanica quantistica Rapprestazione matriciale Addì 03-10-2005 Addì 03-10-2005 15:00-16:00 Teorema della compatibilità Theorema dell'indeterminazione per operatori non commutanti

Dettagli

Radioattività. 1. Massa dei nuclei. 2. Decadimenti nucleari. 3. Legge del decadimento XVI - 0. A. Contin - Fisica Generale Avanzata

Radioattività. 1. Massa dei nuclei. 2. Decadimenti nucleari. 3. Legge del decadimento XVI - 0. A. Contin - Fisica Generale Avanzata Radioattività 1. Massa dei nuclei 2. Decadimenti nucleari 3. Legge del decadimento XVI - 0 Nucleoni Protoni e neutroni sono chiamati, indifferentemente, nucleoni. Il numero di protoni (e quindi di elettroni

Dettagli

GLI ORBITALI ATOMICI

GLI ORBITALI ATOMICI GLI ORBITALI ATOMICI Orbitali atomici e loro rappresentazione Le funzioni d onda Ψ n che derivano dalla risoluzione dell equazione d onda e descrivono il moto degli elettroni nell atomo si dicono orbitali

Dettagli

Capitolo 7: Simmetrie e Numeri Quantici

Capitolo 7: Simmetrie e Numeri Quantici Capitolo 7: Simmetrie e Numeri Quantici Corso di Fisica Nucleare e Subnucleare I Professor Carlo Dionisi A.A. 2004-2005 1 Simmetrie Invarianza Leggi di Conservazione 1) Principi di Invarianza e leggi di

Dettagli

Struttura fine dei livelli dell idrogeno

Struttura fine dei livelli dell idrogeno Struttura fine dei livelli dell idrogeno. Introduzione Consideriamo un atomo idrogenoide di massa m N e carica atomica Z. Dall equazione di Schrödinger si ottengono per gli stati legati i seguenti autovalori

Dettagli

Effetto Zeeman anomalo

Effetto Zeeman anomalo Effetto Zeeman anomalo Direzione del campo B esempio: : j=3/2 Direzione del campo B j=1+1/2 = 3/2 s m j =+3/2 m j =+1/2 l m j =-1/2 m j =-3/2 La separazione tra i livelli é diversa l e µ l antiparalleli

Dettagli

Dalla struttura fine delle transizioni atomiche allo spin dell elettrone

Dalla struttura fine delle transizioni atomiche allo spin dell elettrone Dalla struttura fine delle transizioni atomiche allo spin dell elettrone Evidenze sperimentali Struttura fine delle transizioni atomiche (doppietto( del sodio) Esperimento di Stern-Gerlach Effetto Zeeman

Dettagli

GLI ORBITALI ATOMICI

GLI ORBITALI ATOMICI GLI ORBITALI ATOMICI I numeri quantici Le funzioni d onda Ψ n, soluzioni dell equazione d onda, sono caratterizzate da certe combinazioni di numeri quantici: n, l, m l, m s n = numero quantico principale,

Dettagli

5.4 Larghezza naturale di una riga

5.4 Larghezza naturale di una riga 5.4 Larghezza naturale di una riga Un modello classico più soddisfacente del processo di emissione è il seguente. Si considera una carica elettrica puntiforme in moto armonico di pulsazione ω 0 ; la carica,

Dettagli

L ATOMO SECONDO LA MECCANICA ONDULATORIA IL DUALISMO ONDA-PARTICELLA. (Plank Einstein)

L ATOMO SECONDO LA MECCANICA ONDULATORIA IL DUALISMO ONDA-PARTICELLA. (Plank Einstein) L ATOMO SECONDO LA MECCANICA ONDULATORIA IL DUALISMO ONDA-PARTICELLA POSTULATO DI DE BROGLIÈ Se alla luce, che è un fenomeno ondulatorio, sono associate anche le caratteristiche corpuscolari della materia

Dettagli

Modello Standard e oltre. D. Babusci MasterClass 2007

Modello Standard e oltre. D. Babusci MasterClass 2007 Modello Standard e oltre D. Babusci MasterClass 2007 Fisica delle Particelle Elementari (FdP) Si interessa del comportamento fisico dei costituenti fondamentali del mondo, i.e. di oggetti al contempo molto

Dettagli

Derivata materiale (Lagrangiana) e locale (Euleriana)

Derivata materiale (Lagrangiana) e locale (Euleriana) ispense di Meccanica dei Fluidi 0 0 det 0 = [ (0 ) + ( ( ) ) + (0 0 ) ] = 0. Pertanto, v e µ sono indipendenti tra loro e costituiscono una nuova base. Con essi è possibile descrivere altre grandezze,

Dettagli

CORSO DI LAUREA IN OTTICA E OPTOMETRIA

CORSO DI LAUREA IN OTTICA E OPTOMETRIA CORSO DI LAUREA IN OTTICA E OPTOMETRIA Anno Accademico 007-008 CORSO di FISCA ED APPLICAZIONE DEI LASERS Questionario del Primo appello della Sessione Estiva NOME: COGNOME: MATRICOLA: VOTO: /30 COSTANTI

Dettagli

Introduzione. Elementi di Fisica delle Particelle Elementari. Diego Bettoni Anno Accademico

Introduzione. Elementi di Fisica delle Particelle Elementari. Diego Bettoni Anno Accademico Introduzione Elementi di Fisica delle Particelle Elementari Diego Bettoni Anno Accademico 006-007 Programma del corso 1. Introduzione.. Simmetrie discrete: P, C, T. 3. Isospin, stranezza, G-parità. 4.

Dettagli

L atomo di idrogeno. R. Dovesi, M. De La Pierre, C. Murace. Chimica Fisica II. Corso di Laurea in Chimica A.A. 2012/2013

L atomo di idrogeno. R. Dovesi, M. De La Pierre, C. Murace. Chimica Fisica II. Corso di Laurea in Chimica A.A. 2012/2013 L atomo di idrogeno R. Dovesi, M. De La Pierre, C. Murace Corso di Laurea in Chimica A.A. 2012/2013 Chimica Fisica II Modello per l atomo di idrogeno Modello: protone fisso nell origine ed elettrone in

Dettagli

Problemi per il corso di teoria delle interazioni fondamentali giugno 2005

Problemi per il corso di teoria delle interazioni fondamentali giugno 2005 Problemi per il corso di teoria delle interazioni fondamentali giugno 2005 Primo Modulo 1. Urto Bhabha Determinare la sezione d urto differenziale per l urto e + e e + e, nel limite di alta energia in

Dettagli

H = H 0 + V. { V ti t t f 0 altrove

H = H 0 + V. { V ti t t f 0 altrove Esercizio 1 (Regola d oro di Fermi Determinare la probabilità di transizione per unità di tempo da uno stato a ad uno stato b al primo ordine perturbativo di un sistema per cui si suppone di aver risolto

Dettagli

Teoria cinetica di un sistema di particelle

Teoria cinetica di un sistema di particelle Teoria cinetica di un sistema di particelle La meccanica dei fluidi modellati come sistemi continui, sviluppata dal XII e XIII secolo e in grado di descrivere fenomeni dinamici macroscopici con buona approssimazione

Dettagli

TEORIA DEI SISTEMI SISTEMI LINEARI

TEORIA DEI SISTEMI SISTEMI LINEARI TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI SISTEMI LINEARI Ing. Cristian Secchi Tel.

Dettagli

Lecture 18. Text: Motori Aeronautici Mar. 26, Mauro Valorani Università La Sapienza. Analisi dimensionale delle turbomacchine

Lecture 18. Text: Motori Aeronautici Mar. 26, Mauro Valorani Università La Sapienza. Analisi dimensionale delle turbomacchine Lecture 18 Analisi Text: Motori Aeronautici Mar. 26, 2015 Analisi Mauro Valorani Università La Sapienza 18.331 Agenda Analisi 1 Numero di giri e 18.332 Analisi L analisi e il confronto tra le turbomacchine

Dettagli

Interazione luce- atomo

Interazione luce- atomo Interazione luce- atomo Descrizione semiclassica L interazione predominante è quella tra il campo elettrico e le cariche ASSORBIMENTO: Elettrone e protone formano un dipolo che viene messo in oscillazione

Dettagli

INDICE 1. LA CRISI DELLA FISICA CLASSICA

INDICE 1. LA CRISI DELLA FISICA CLASSICA INDICE 1. LA CRISI DELLA FISICA CLASSICA 1.1 Modelli atomici... 1 1.2 Il problema delle dimensioni atomiche e del collasso per irraggiamento 4 1.3 Difficoltà connesse con i calori specifici... 7 1.4 L

Dettagli

Generalità delle onde elettromagnetiche

Generalità delle onde elettromagnetiche Generalità delle onde elettromagnetiche Ampiezza massima: E max (B max ) Lunghezza d onda: (m) E max (B max ) Periodo: (s) Frequenza: = 1 (s-1 ) Numero d onda: = 1 (m-1 ) = v Velocità della luce nel vuoto

Dettagli

Ma se dobbiamo trattare l elettrone come un onda occorre una funzione (che dobbiamo trovare) che ne descriva esaurientemente queste proprietà.

Ma se dobbiamo trattare l elettrone come un onda occorre una funzione (che dobbiamo trovare) che ne descriva esaurientemente queste proprietà. Ma se dobbiamo trattare l elettrone come un onda occorre una funzione (che dobbiamo trovare) che ne descriva esaurientemente queste proprietà. Nell atomo l energia associata ad un elettrone (trascurando

Dettagli

I 4 NUMERI QUANTICI. I numeri quantici consentono di definire forma, dimensioni ed energia degli orbitali.

I 4 NUMERI QUANTICI. I numeri quantici consentono di definire forma, dimensioni ed energia degli orbitali. I 4 NUMERI QUANTICI I numeri quantici consentono di definire forma, dimensioni ed energia degli orbitali. n, numero quantico principale, indica il livello energetico e le dimensioni degli orbitali. Può

Dettagli

Simmetrie in fisica classica. Sergio Giudici Dip. di Fisica, Università di Pisa

Simmetrie in fisica classica. Sergio Giudici Dip. di Fisica, Università di Pisa Simmetrie in fisica classica Sergio Giudici Dip. di Fisica, Università di Pisa Esempio 1 : La macchina di Atwood Dispositivo inventato nel 1784 dal Rev. George Atwood a scopo didattico per lo studio del

Dettagli

p e c = ev Å

p e c = ev Å Corso di Introduzione alla Fisica Quantistica (f) Soluzioni Esercizi: Giugno 006 * Quale la lunghezza d onda di de Broglie di un elettrone che ha energia cinetica E 1 = KeV e massa a riposo m 0 = 9.11

Dettagli

Struttura Elettronica degli Atomi Meccanica quantistica

Struttura Elettronica degli Atomi Meccanica quantistica Prof. A. Martinelli Struttura Elettronica degli Atomi Meccanica quantistica Dipartimento di Farmacia 1 Il comportamento ondulatorio della materia 2 1 Il comportamento ondulatorio della materia La diffrazione

Dettagli

Elettricità e Fisica Moderna

Elettricità e Fisica Moderna Esercizi di fisica per Medicina C.Patrignani, Univ. Genova (rev: 9 Ottobre 2003) 1 Elettricità e Fisica Moderna 1) Una candela emette una potenza di circa 1 W ad una lunghezza d onda media di 5500 Å a)

Dettagli

Enrico Silva - diritti riservati - Non è permessa, fra l altro, l inclusione anche parziale in altre opere senza il consenso scritto dell autore

Enrico Silva - diritti riservati - Non è permessa, fra l altro, l inclusione anche parziale in altre opere senza il consenso scritto dell autore Particelle della presente identiche. opera. Principio di Pauli. 1 Particelle identiche: sommario Finora: proprietà di particella singola. Volendo ottenere il comportamento di più particelle, è necessario

Dettagli

L energia assorbita dall atomo durante l urto iniziale è la stessa del fotone che sarebbe emesso nel passaggio inverso, e quindi vale: m

L energia assorbita dall atomo durante l urto iniziale è la stessa del fotone che sarebbe emesso nel passaggio inverso, e quindi vale: m QUESITI 1 Quesito Nell esperimento di Rutherford, una sottile lamina d oro fu bombardata con particelle alfa (positive) emesse da una sorgente radioattiva. Secondo il modello atomico di Thompson le particelle

Dettagli

ATOMO. Legge della conservazione della massa Legge delle proporzioni definite Dalton

ATOMO. Legge della conservazione della massa Legge delle proporzioni definite Dalton Democrito IV secolo A.C. ATOMO Lavoisier Proust Legge della conservazione della massa Legge delle proporzioni definite Dalton (808) Teoria atomica Gay-Lussac volumi di gas reagiscono secondo rapporti interi

Dettagli

Appello di Meccanica Quantistica I

Appello di Meccanica Quantistica I Appello di Meccanica Quantistica I Facoltà di Scienze M.F.N. Università degli Studi di Pisa gennaio 007 (A.A. 06/07) Tempo a disposizione: 3 ore. Problemi e per il recupero Compitino I; problemi e 3 per

Dettagli

Soluzioni IV anno Fis prima prova

Soluzioni IV anno Fis prima prova Soluzioni IV anno Fis prima prova ) All interno dello strato a < x < a, la densità di corrente è data da J x < a) = c 4 π rot B = c 4 π, B o a, ) ; analogamente, all esterno dello strato x > a) la densità

Dettagli

Il Modello Standard delle particelle

Il Modello Standard delle particelle Il Modello Standard delle particelle Vittorio Del Duca INFN LNF Stages Estivi 12 giugno 2012 Elementi La materia è fatta di elementi con definite proprietà chimiche Atomi Ciascun elemento ha come mattone

Dettagli

Particelle e Interazioni Fondamentali

Particelle e Interazioni Fondamentali Sylvie Braibant Giorgio Giacomelli Maurizio Spurio Particelle e Interazioni Fondamentali Il mondo delle particelle Febbraio 2009 Springer Prefazione Questo libro intende fornire le conoscenze teoriche

Dettagli

FISICA APPLICATA 2 DIPOLI ELETTRICI E MAGNETICI

FISICA APPLICATA 2 DIPOLI ELETTRICI E MAGNETICI FISICA APPLICATA 2 DIPOLI ELETTRICI E MAGNETICI DOWNLOAD Il pdf di questa lezione (ele2.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/tsrm/ 26/11/2012 DIPOLO ELETTRICO La configurazione costituita

Dettagli

Dipolo Elettrico: due cariche (puntiformi) +q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo

Dipolo Elettrico: due cariche (puntiformi) +q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo Il Dipolo Elettrico Dipolo Elettrico: due cariche (puntiformi) q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo qa che va da qq a q Dato un punto P molto distante

Dettagli

Introduzione alle particelle elementari

Introduzione alle particelle elementari Introduzione alle particelle elementari Christian Ferrari Liceo di Locarno Sommario 1 Introduzione Quadro generale e dimensioni del mondo microscopico Atomi, nuclei e nuove particelle Le particelle elementari

Dettagli

Interazioni fondamentali (origine. delle forze) Elettromagnetica : lungo raggio lega elettroni e protoni per. per formare i nuclei. molecole,, etc.

Interazioni fondamentali (origine. delle forze) Elettromagnetica : lungo raggio lega elettroni e protoni per. per formare i nuclei. molecole,, etc. Interazioni fondamentali (origine delle forze) orte : corto raggio ~10-14 m lega i protoni ed i neutroni per formare i nuclei Elettromagnetica : lungo raggio lega elettroni e protoni per formare atomi,

Dettagli

Elettronica II L equazione di Schrödinger p. 2

Elettronica II L equazione di Schrödinger p. 2 Elettronica II L equazione di Schrödinger Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/ liberali

Dettagli

Meccanica. 1. Vettori. Domenico Galli. Dipartimento di Fisica e Astronomia

Meccanica. 1. Vettori.  Domenico Galli. Dipartimento di Fisica e Astronomia Meccanica 1. Vettori http://campus.cib.unibo.it/2421/ Domenico Galli Dipartimento di Fisica e Astronomia 3 febbraio 2017 Traccia 1. Grandezze Fisiche 2. Vettori 3. Calcolo Vettoriale 4. Somma e Differenza

Dettagli

15/04/2014. Serway, Jewett Principi di Fisica IV Ed. Capitolo 8. Generalizziamo, considerando due particelle interagenti.

15/04/2014. Serway, Jewett Principi di Fisica IV Ed. Capitolo 8. Generalizziamo, considerando due particelle interagenti. Serway, Jewett Principi di Fisica IV Ed. Capitolo 8 Esempio arciere su una superficie ghiacciata che scocca la freccia: l arciere (60 kg) esercita una forza sulla freccia 0.5 kg (che parte in avanti con

Dettagli

Se la funzione è analiticamente invertibile, estratto q, si può ricavare x = x(q).

Se la funzione è analiticamente invertibile, estratto q, si può ricavare x = x(q). La tecnica Monte Carlo Il metodo Monte Carlo è basato sulla scelta di eventi fisici con una probabilità di accadimento nota a priori. sia p(x) la distribuzione di probabilità con la quale si manifesta

Dettagli

Misura del coefficiente di assorbimento di vari materiali in funzione dell'energia del fascio dei fotoni incidenti

Misura del coefficiente di assorbimento di vari materiali in funzione dell'energia del fascio dei fotoni incidenti materiali in funzione dell'energia del fascio dei fotoni Esperto Qualificato LNF - INFN Interazioni delle particelle indirettamente ionizzanti con la materia Le particelle indirettamente ionizzanti, principalmente

Dettagli

8.1 Problema della diffusione in meccanica quantistica

8.1 Problema della diffusione in meccanica quantistica 8.1 Problema della diffusione in meccanica quantistica Prima di procedere oltre nello studio dell interazione puntuale, in questo paragrafo vogliamo dare un breve cenno alle nozioni di base della teoria

Dettagli

Spettro elettromagnetico

Spettro elettromagnetico Spettro elettromagnetico Sorgenti Finestre Tipo Oggetti rilevabili Raggi γ ev Raggi X Lunghezza d onda E hc = hν = = λ 12. 39 λ( A o ) Visibile Infrarosso icro onde Onde-radio Dimensione degli oggetti

Dettagli

Il principio di indeterminazione di Heisenberg

Il principio di indeterminazione di Heisenberg Il principio di indeterminazione di Heisenberg Il prodotto degli errori nella determinazione contemporanea della quantità di moto (q = mv) e della posizione di un corpo in movimento è almeno uguale a h

Dettagli

Compitino 1 di Meccanica Quantistica I

Compitino 1 di Meccanica Quantistica I Compitino di Meccanica Quantistica I Facoltà di Scienze, M.F.N., Università degli Studi di Pisa, 5 dicembre 00 (A.A. 0/) (Tempo a disposizione: 3 ore ) Problema. Un sistema a due stati è caratterizzato

Dettagli

Il Metodo Scientifico

Il Metodo Scientifico Unita Naturali Il Metodo Scientifico La Fisica si occupa di descrivere ed interpretare i fenomeni naturali usando il metodo scientifico. Passi del metodo scientifico: Schematizzazione: modello semplificato

Dettagli

Risonanza magnetica nucleare

Risonanza magnetica nucleare Risonanza magnetica nucleare Università di Firenze Corso di Tecnologie Biomediche Lezione del 31 ottobre 2003 Leonardo Bocchi Principi fisici Premessa Modello classico Visualizzazione semplificata Equazione

Dettagli

Sm, T 1/ 2. Il decadimento alfa

Sm, T 1/ 2. Il decadimento alfa Il decadimento alfa L emissione di particelle α da parte di vari radionuclidi rappresenta una delle prime scoperte della fisica moderna: nel 1908 utherford dimostrò che tale radiazione è costituita da

Dettagli

Indice. Elettrostatica in presenza di dielettrici Costante dielettrica Interpretazione microscopica 119. capitolo. capitolo.

Indice. Elettrostatica in presenza di dielettrici Costante dielettrica Interpretazione microscopica 119. capitolo. capitolo. Indice Elettrostatica nel vuoto. Campo elettrico e potenziale 1 1. Azioni elettriche 1 2. Carica elettrica e legge di Coulomb 5 3. Campo elettrico 8 4. Campo elettrostatico generato da sistemi di cariche

Dettagli

Formazione delle bande di energia. Fisica Dispositivi Elettronici CdL Informatica A.A. 2003/4

Formazione delle bande di energia. Fisica Dispositivi Elettronici CdL Informatica A.A. 2003/4 Formazione delle bande di energia Calcolo formale: Equazione di Schröedinger L equazione di Schröedinger è una relazione matematica che descrive il comportamento ondulatorio di una particella (elettrone)

Dettagli

Capitolo 8 La struttura dell atomo

Capitolo 8 La struttura dell atomo Capitolo 8 La struttura dell atomo 1. La doppia natura della luce 2. La «luce» degli atomi 3. L atomo di Bohr 4. La doppia natura dell elettrone 5. L elettrone e la meccanica quantistica 6. L equazione

Dettagli

Campo magnetico terrestre (III) Corso di Elementi di Geofisica. Gaetano Festa

Campo magnetico terrestre (III) Corso di Elementi di Geofisica. Gaetano Festa Campo magnetico terrestre (III) Corso di Elementi di Geofisica Gaetano Festa Energia dei modi Contributo profondo Contributo superficiale Rappresentazione HF Magnetismo della materia Gli elettroni, protoni

Dettagli

Fisica atomica. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

Fisica atomica. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico Fisica atomica Nel 1905 Einstein sostiene che la luce viaggia in pacchetti di energia, chiamati fotoni Ogni fotone ha energia proporzionale alla propria frequenza E = hν: h = 6.626 10 34 J s è chiamata

Dettagli

Elettronica II La giunzione p-n: calcolo della relazione tensione-corrente p. 2

Elettronica II La giunzione p-n: calcolo della relazione tensione-corrente p. 2 Elettronica II La giunzione p-n: calcolo della relazione tensione-corrente Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it

Dettagli

Il semiconduttore è irradiato con fotoni a λ=620 nm, che vengono assorbiti in un processo a due particelle (elettroni e fotoni).

Il semiconduttore è irradiato con fotoni a λ=620 nm, che vengono assorbiti in un processo a due particelle (elettroni e fotoni). Fotogenerazione -1 Si consideri un semiconduttore con banda di valenza (BV) e banda di conduzione (BC) date da E v =-A k 2 E c =E g +B k 2 Con A =10-19 ev m 2, B=5, Eg=1 ev. Il semiconduttore è irradiato

Dettagli

MISURA DI SEN 2 (θ ) W DALL INTERAZIONE. Valentina Zambrano

MISURA DI SEN 2 (θ ) W DALL INTERAZIONE. Valentina Zambrano MISURA DI SEN DA INTERAZIONE N. Valentina Zambrano Correnti Cariche e Correnti Neutre CC: cambia lo stato di carica del vertice d interazione. e u e NC: non cambia lo stato di carica del vertice d interazione.

Dettagli

Conservazione della carica elettrica

Conservazione della carica elettrica Elettrostatica La forza elettromagnetica è una delle interazioni fondamentali dell universo L elettrostatica studia le interazioni fra le cariche elettriche non in movimento Da esperimenti di elettrizzazione

Dettagli

LE PARTICELLE ELEMENTARI

LE PARTICELLE ELEMENTARI LE PARTICELLE ELEMENTARI (UN RAPIDO EXCURSUS) Gianpaolo Bellini Is-tuto Nazionale di Fisica Nucleare Dipar-mento di Fisica dell Università Milano E. RUTHERFORD BOHR Ν. Βοhr Forze ele)romagne.che 2 CONCETTO

Dettagli

La teoria atomica moderna: il modello planetario L ELETTRONE SI MUOVE LUNGO UN ORBITA INTORNO AL NUCLEO

La teoria atomica moderna: il modello planetario L ELETTRONE SI MUOVE LUNGO UN ORBITA INTORNO AL NUCLEO La teoria atomica moderna: il modello planetario L ELETTRONE SI MUOVE LUNGO UN ORBITA INTORNO AL NUCLEO La luce La LUCE è una forma di energia detta radiazione elettromagnetica che si propaga nello spazio

Dettagli

3. Struttura dell atomo

3. Struttura dell atomo Di cosa parleremo L organizzazione interna delle particelle che costituiscono gli atomi è stata oggetto di studio per lungo tempo e le ipotesi sulla struttura atomica si sono evolute nel tempo in base

Dettagli

Sistemi dinamici-parte 2 Parentesi di Poisson e trasformazioni canoniche

Sistemi dinamici-parte 2 Parentesi di Poisson e trasformazioni canoniche Sistemi dinamici-parte 2 Parentesi di e trasformazioni AM Cherubini 11 Maggio 2007 1 / 25 Analogamente a quanto fatto per i sistemi lagrangiani occorre definire, insieme alla struttura del sistema, anche

Dettagli

Test 1 - Teoria dei Campi 2010

Test 1 - Teoria dei Campi 2010 Test - Teoria dei Campi 200 Discutere il path-integral della QCD in gauge assiale (nell Euclideo) n µ A a µ = 0, a =,..., 8, () dove n µ e un vettore assegnato. Derivare: - regole di Feynman; - identitaà

Dettagli

Simmetrie e invarianze nel mondo dei costituenti elementari

Simmetrie e invarianze nel mondo dei costituenti elementari Simmetrie e invarianze nel mondo dei costituenti elementari Alessandro De Angelis Univ. di Udine, INFN Trieste e IST Lisboa 1000 anni di scienza e tecnica in Italia Pordenone, marzo 2001 2 E possibile

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA

UNIVERSITÀ DEGLI STUDI DI PAVIA UNIVERSITÀ DEGLI STUDI DI PAVIA Ê ÁËÌÊÇ ÄÄ Ä ÁÇÆÁ ¹ Ë Ê ÁÌ ÁÇÆÁ ¹ Ë ÅÁÆ ÊÁ del Prof. Giacomo D Ariano Insegnamento di modulo Meccanica Quantistica Modulo A impartito presso la Università degli Studi di

Dettagli

Particelle Subatomiche

Particelle Subatomiche GLI ATOMI Particelle Subatomiche ELEMENTI I diversi atomi sono caratterizzati da un diverso numero di protoni e neutroni; il numero di elettroni è sempre uguale al numero dei protoni (negli atomi neutri)

Dettagli

Indice 1 Spazi a dimensione finita... 1 1.1 Primi esempi di strutture vettoriali... 1 1.2 Spazi vettoriali (a dimensione finita)...... 3 1.3 Matrici come trasformazioni lineari...... 5 1.4 Cambiamenti

Dettagli

Lo spin dell elettrone

Lo spin dell elettrone Lo spin dell elettrone Abbiamo visto che un elettrone che ruota intorno al nucleo possiede un momento angolare orbitale, con il quale è associato anche un momento magnetico. Ci sono evidenze sperimentali

Dettagli

Per ognuno di questi effetti si definisce una sezione d urto microscopica σ ph, σ C, σ pp.

Per ognuno di questi effetti si definisce una sezione d urto microscopica σ ph, σ C, σ pp. Interazione dei fotoni con la materia I fotoni interagiscono con la materia attraverso tre effetti : fotoelettrico (ph); compton (C); produzione di coppie (pp). Per ognuno di questi effetti si definisce

Dettagli

Istituzioni di Fisica Nucleare e Subnucleare. Lezione n. 26

Istituzioni di Fisica Nucleare e Subnucleare. Lezione n. 26 Istituzioni di Fisica Nucleare e Subnucleare prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 6 19.1.014 anno accademico 014-015 Fisica e Tecnologia: Antimateria e PET Positron Emission

Dettagli

Quadro di Riferimento della II prova di Fisica dell esame di Stato per i Licei Scientifici

Quadro di Riferimento della II prova di Fisica dell esame di Stato per i Licei Scientifici Quadro di Riferimento della II prova di Fisica dell esame di Stato per i Licei Scientifici Il presente documento individua le conoscenze, abilità e competenze che lo studente dovrà aver acquisito al termine

Dettagli

Unità didattica 10. Decima unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 10. Decima unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 10 Radioattività... 2 L atomo... 3 Emissione di raggi x... 4 Decadimenti nucleari. 6 Il decadimento alfa.... 7 Il decadimento beta... 8 Il decadimento gamma...... 9 Interazione dei fotoni

Dettagli

Misura del rapporto carica massa dell elettrone

Misura del rapporto carica massa dell elettrone Relazione di: Pietro Ghiglio, Tommaso Lorenzon Laboratorio di fisica del Liceo Scientifico L. da Vinci - Gallarate Misura del rapporto carica massa dell elettrone Lezioni di maggio 2015 Lo scopo dell esperienza

Dettagli

Come superare le critiche al modello di Bohr? 1 1

Come superare le critiche al modello di Bohr? 1 1 Comportamento corpuscolare degli elettroni Parecchi dati sperimentali avevano già evidenziato come gli elettroni fossero delle particelle cariche negativamente Come superare le critiche al modello di Bohr?

Dettagli

Campi Elettrici e Magnetici. ELETTROSTATICA Cariche Elettriche e Forze Elettriche

Campi Elettrici e Magnetici. ELETTROSTATICA Cariche Elettriche e Forze Elettriche Campi Elettrici e Magnetici ELETTROSTATICA Cariche Elettriche e Forze Elettriche Esperienza ==> Forza tra cariche SI INTRODUCE UNA NUOVA GRANDEZZA FONDAMENTALE: LA CARICA ELETTRICA UNITÀ DI MISURA NEL

Dettagli

Complementi di Fisica 1: Riassunto delle puntate precedenti

Complementi di Fisica 1: Riassunto delle puntate precedenti Complementi di Fisica 1: Riassunto delle puntate precedenti Principi di Meccanica Quantistica L equazione di Schroedinger applicata allo studio dell Atomo di H Complementi di Fisica 1: LA LEZIONE DI OGGI

Dettagli

LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA

LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA Se un magnete è posto vicino ad un circuito conduttore chiuso, nel circuito si manifesta una f.e.m. quando il magnete è messo in movimento. Tale

Dettagli

ESERCIZI W X Y Z. Numero di massa Neutroni nel nucleo Soluzione

ESERCIZI W X Y Z. Numero di massa Neutroni nel nucleo Soluzione ESERCIZI 1) La massa di un elettrone, rispetto a quella di un protone, è: a. uguale b. 1850 volte più piccola c. 100 volte più piccola d. 18,5 volte più piccola 2) I raggi catodici sono: a. radiazioni

Dettagli