Dimostrazione dell Ultimo Teorema di Fermat

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Dimostrazione dell Ultimo Teorema di Fermat"

Transcript

1 Dimostraioe dell Ultimo Teorema di Fermat (M. BONO - /04/00 rev. 05/01/04) Pierre de Fermat, el 1637, artedo dalla seguete equaioe: x + y (1) dove x, y, ed devoo aarteere tutti all isieme dei umeri iteri, euciò quello che sarebbe stato coosciuto come il suo ultimo teorema. Fermat affermò che l equaioe (1) ammette soluioi, ell ambito dei umeri iteri, soltato er uguale a. Quidi er u qualsiasi maggiore di la (1) o è soddisfatta. Tuttavia Fermat o diede essua dimostraioe dell euciato i quato scrisse di o avere sufficiete saio ai margii del libro su cui scrisse la (1). Negli ai e quidi ei secoli successivi arecchi matematici tetaroo di dimostrare la (1) co ariali risultati fichè el 1994 A. Wiles riuscì ell imresa ricorredo a sofisticati cocetti matematici che sicuramete Fermat o disoeva. Ritego ertato che ossa esistere u altra dimostraioe del teorema di Fermat costruita co matematica iù elemetare e el seguito teterò di forirla. La seguete dimostraioe del teorema di Fermat rocede logicamete er tre fasi secodo i valori che l esoete dell equaioe di Fermat uò assumere. Cosidero ifatti tre casi ossibili: 1. disari,. ari e otea del, 3. ari ma rodotto di u umero disari er u umero ari. Qualsiasi aartiee ad ua delle tre categorie idividuate e er ogua di queste categorie è ossibile dimostrare il teorema di Fermat. I realtà il teorema di Fermat è stato dimostrato classicamete er diversi valori di e mi are che rimaga da dimostrare il teorema soltato el caso i cui è u umero rimo. Comuque la mia dimostraioe teta di essere così geerale da comredere tutti i casi ossibili. Prima di rocedere alla dimostraioe dei tre casi è ecessario itrodurre alcui cocetti geerali e dimostrare il caso, ossia che esistoo trilette di umeri iteri che soddisfao la (1). La dimostraioe del caso forirà ache delle formule er geerare tutte le trilette di umeri soddisfaceti la relaioe itagorica (1). Poiché il caso 1 è la arte esseiale della mia dimostraioe, ritego utile siegare brevemete la logica su cui si basa: 1) la (1) si uò scrivere ache come: x y 0, ma ) x y ( x y ) + P( x, y, ) (P è u oliomio omogeeo di grado ). Se x y 0, la relaioe recedete diveta: 3) ( x + y ) P( x, y, ); a questo uto, mediate u oortuo cambiameto di variabili (chiameremo le uove variabili a, b, c ), si uò dimostrare che il oliomio P è semre esrimibile come rodotto di due fattori, uo dei quali è, a sua volta, il rodotto dei termii costitueti il triomio metre l altro è u oliomio omogeeo di grado 3; quidi la 3) diveta:

2 Dimostraioe Teorema Fermat Marco Boo 4) 3 P ( a, abc P ( a b. Quidi si dimostra che la 4) è imossibile e di coseguea la 3) o è mai soddisfatta, ossia deve essere semre diverso da 0. x y 1. GENERALITA 1.1 Moltelicità delle soluioi Se la triletta x 1, y 1, 1 è ua soluioe di (1) allora ache la triletta mx 1, m y 1, m 1 (m umero itero ositivo) è ua soluioe di (1). Ifatti la (1) diveta: mx + my m, (1.1) raccogliedo il fattore m, diveta: m ( x + y ) m (1.) e, dividedo etrambi i membri er m si ottiee x + y (1.3) che, er defiiioe, è ua soluioe di (1). 1. Le soluioi devoo essere tra loro rime I tre umeri x 1, y 1 e 1 soluioi di (1) devoo essere tra loro rimi. Ifatti suoedo che y 1 sia multilo di x 1, ossia y mx (m umero itero), la (1) diveta: x + m x (1.4) e quidi ( m + 1) x 1 1. (1.5) Ossia ache 1 deve essere u multilo di x 1 ; osto kx (k umero itero) la (1.5) diveta: ( m + ) x k x (1.6) e ertato deve essere m + 1 k (1.7) che è imossibile; quidi le evetuali soluioi dell equaioe di Fermat devoo essere formate da umeri tra loro rimi. 1.3 deve essere miore di x + y Ifatti se fosse uguale a x + y l -esima otea di diveterebbe: x + y +... > x + y. (1.8)

3 Dimostraioe Teorema Fermat Marco Boo 3. IL CASO I questo caso si vuole dimostrare che esistoo delle trilette di umeri x 1, y 1 e 1 che soddisfao la (1) e si voglioo forire le formule co cui otteere queste trilette. La (1) el caso di diveta: x + y (.1) che si uò ache scrivere: y x (.) ma y ( + y)( y) ossia è il rodotto di due fattori che devoo essere dei quadrati er soddisfare il secodo membro della (.) (è ossibile che il secodo fattore, y, sia uguale a 1). Poiamo allora + y a e (.3 a) y b. (.3 b) Dalla (.) si ha x a ossia x a b. (.4) Risolvedo le (.3) si ottiee: a + b a b 1, y1 e, dalla (.4), x1 a b. (.5) Le (.5) ermettoo di otteere, al variare di a e di b, tutte le tere di umeri iteri che soddisfao la (.1). Affiché le equaioi (.5) foriscao dei umeri iteri è ecessario che a e b siao etrambi umeri ari o etrambi umeri disari (co a maggiore di b er la secoda delle.5). Ioltre, voledo cosiderare solamete soluioi o multile (uto 1.1 delle geeralità), è ecessario che a e b siao tra loro rimi. Ifatti se oiamo a k e calcoliamo x, y e dalle (.5), si ota che sia x che y che hao i comue il fattore b. Quidi occorre o cosiderare il caso i cui a e b soo etrambi umeri ari i quato avrebbero i comue il fattore. Vediamo ora la dimostraioe formale delle (.5); calcoliamo ertato i quadrati di x 1, y 1 e 1 : 4 4 a a b + b a + a b + b x1 a b, y1, e sommiamo quidi x 1 e y 1 : si osserva facilmete che il risultato è 1. Semre dalle defiiioi (.5) si ricava ioltre che: ( a+ b) ( a b) + x, 1 x (.6) e (.7 a) + y a, y b. (.7 b) (.3) Ioltre si dimostra i aedice che, semre iotiado a e b umeri disari, x 1 e 1 devoo essere umeri disari metre y 1 deve essere u umero ari.

4 Dimostraioe Teorema Fermat Marco Boo 4 Vediamo ora u esemio: oiamo a 7, b 3, dalle (.5) si ha allora x 1, y 0 e 9. Quidi x 441, y 400 e 841, ioltre + x 50 + y 49 7 e y 9 3. ( 7+ 3) ( 7 3), x 8, Utiliado lo stesso metodo di risoluioe si uò dimostrare che ache l equaioe x + y è risolubile aaliticamete e che valgoo formule simili alle (.5). I questo caso le formule risolutive divetao: x 1 a b, y a b a + b 1 e 1. Ache i questo caso si uò rocedere ad ua dimostraioe formale ed otteere delle equaioi aaloghe alle (.6). 3. IL CASO DISPARI Cosideriamo ora il caso i cui è u umero itero disari. La (1), ossia x + y, si uò ache scrivere: ma, x y 0 (3.1) x y ( x y) + P ( x, y, ) (3.) dove co P ( x, y, ) si itede u oliomio omogeeo di grado i x, y e metre il termie x y è egativo er la (1.8). Itroducedo le variabili ausiliarie a, b, c defiite come: a x + y, b y e c x (3.3) (a, b, c soo quidi tutti umeri iteri e ositivi), co le quali x, y, vegoo scritti come: + +, x +, y + e riscrivedo la (3.) co le uove variabili si ottiee: (e a + b + c x y ) (3.4) P ( a, a + b + c ( ) a + b c ( ) a b + c ( ) a + b + c ( ) (3.5) A questo uto, sviluado le otee mediate la formula dell -esima otea di u triomio: ( a ± b ± c )!,q,r 0 q q r r a ( ± 1) b ( ± 1) c! q! r! (3.6)

5 Dimostraioe Teorema Fermat Marco Boo 5 co, q, r umeri iteri tali che + q + r (ell aedice si forirà la formula geerale dell esima otea di u oliomio), si osserva che il secodo membro della (3.5) si semlifica e si riduce a: q r 4!.! q! r!,q,r 1 Ifatti, sviluado le otee a secodo membro della (3.5) utiliado la (3.6), si ota che si ossoo otteere soltato 4 tii di termii: 1. moomi di grado,. biomi co u termie co esoete ari ed uo co esoete disari la cui somma è ari a, 3. triomi co due termii co esoete ari ed uo co esoete disari (la cui somma è ari a ) e 4. triomi co tutti i termii co esoete disari (la cui somma è ari a ). Ora, i coefficieti dei termii co gli stessi esoeti soo uguali (vedi 3.6) e, a causa dei segi dei termii a secodo membro, i termii dei rimi tre tii si elidoo a a, metre i termii dell ultimo tio risultao tutti co lo stesso sego, dado origie al fattore 4: ( a + b + c ) ( a + b c ) ( a b + c ) ( a + b + c ) q r 4! (3.7)! q! r!,q,r 1 Quidi il oliomio P ( a, della (3.5) diveta: P q r 4! ( a, (3.8), q, r 1! q! r! co, q, r umeri iteri disari tali che + q + r. La sommatoria deve essere estesa a tutte le ossibili trilette dei umeri, q ed r disari tali che la loro somma sia uguale ad, facedo variare i 3 idici da 1 a. Dal mometo che, a seguito delle semlificaioi, i tutti i termii della sommatoria soo semre reseti le variabili a, b, c (, q ed r soo semre tutti diversi da ero) è ossibile raccoglierle a fattor comue e ortarle fuori dalla sommatoria: P 3 q r 4! 3 ( a, abc abc P ( a, (3.9)! q! r!, q, r 0 Questa volta la sommatoria è estesa a tutte le ossibili trilette dei umeri, q ed r ari tali che la loro somma sia uguale ad 3. Questo fatto comorta che el caso 3 il oliomio si riduce al rodotto delle tre variabili ausiliarie er ua costate che, i questo caso, è uguale a 3. Se x y 0, la (3.) si riduce a: ( x + y ) P( x, y, ) (3.10) Trasformado la (3.10) i termii di a, b, c,si ottiee: q r a b c 4! ( ) qr!!! qr,, 1 (3.11)

6 Dimostraioe Teorema Fermat Marco Boo 6 moltilicado i due membri er e raccogliedo a fattor comue il termie abc del secodo membro, la (3.11) diveta: 3 q r 3 ( a b 4! abc abc P ( a, (3.1)! q! r!, q, r 0 Avedo fattoriato il secodo membro è ossibile scrivere la seguete uguagliaa: j k 3 ( a b ( a b abc P ( a, dove j + k. La (3.13) imlica che: (3.13) j ( a b abc (3.14) che, a sua volta, si uò fattoriare come segue: j1 j j3 ( a b ( a b ( a b abc (3.15) ( j 1 + j + j3 j ) Di coseguea le tre variabili ausiliarie o soo tra loro rime ma si ossoo esrimere come multili di b mi a, c sarà: ua di esse; ad esemio, se { } a α b; c βb (3.16) Cosideriamo ora le variabili riciali x, y, e iotiiamo che sia: y x + i e x + j (3.17) Esrimedo ora le variabili ausiliarie ei termii di x, y, mediate le (3.3) si ha: a x + x + i x + i b x + j x i j i c x + j x j e riscrivedo le (3.16) co le (3.18) otteiamo: a αb c βb x + i j β α ( j i) ( j i) (3.18) (3.19) La secoda delle (3.19) dà: β j i β 1 (3.0) che ha soluioi ei umeri iteri soltato er β, e determia: j i (3.1)

7 Dimostraioe Teorema Fermat Marco Boo 7 Sostituedo ora la (3.1) ella rima delle (3.19) si ottiee: α 1 x + i αi x i (3.) La (3.), sostituita ella rima delle (3.17), determia: α + 1 y i (3.3) metre, sostituita ella secoda delle (3.17), ricordado la (3.1) determia: α + 3 i (3.4) Ossia, il fatto di esrimere a e c come multili di b determia che x, y, risultao co il fattore comue i cotrariamete alla loro defiiioe (caitolo 1.). Quidi o è ossibile esrimere a e c come multili di b e di coseguea o è ossibile risolvere la (3.14) e la (3.1). I altri termii il secodo membro della (3.) x y ( x y) + P ( x, y, ) (3.) o si aulla mai ell ambito dei umeri iteri e la (3.1) o è soddisfatta come la (1). 4. IL CASO PARI E POTENZA DEL I questo caso deve essere della forma: ( >1) e quidi l equaioe (1) diveta: x + y, (4.1) che uò ache essere scritta come: y x. (4.) Il rimo membro dell equaioe (4.) uò essere scomosto i fattori: 1 1 y ( + y )... ( + y )( y ). (4.3) Aalogamete agli altri casi recedeti, questa scomosiioe i fattori imlica che: y a, + y b,... (4.4) + y i, y j. Tutte queste equaioi devoo essere cotemoraeamete soddisfatte.

8 Dimostraioe Teorema Fermat Marco Boo 8 Sulle rime equaioi o si uò dire ulla, tuttavia le ultime due mediate le sostituioi i j 1 J divetao: + y I (4.5 a) y J (4.5 b) I e 1 che soo della forma (.1) e ertato risolvibili. Alicado le (.5) si ottiee: a ab, y a b a s + t s t b, yb (4.6 a) (4.6 b) ovviamete, i due valori di e di y devoo essere uguali, quidi: y: a b s t (4.7 a) : s + t ab. (4.7 b) Dalla (4.7 a), risolvedola er s si ottiee: s a b + t (4.8) che, sostituita ella (4.7 b) ermette di otteere t : a b ab t, (4.9) ricordado le (4.6 a) la (4.9) è equivalete a t y. (4.10) t è u umero ositivo, codiioe che è Ma l eguagliaa (4.10) imoe che y sia maggiore di oiché i cotrasto co quella esressa ell equaioe (4.5 b) che er gli stessi motivi imoe che sia maggiore di y. Pertato l uico valore ossibile er y e è lo 0 che è ua soluioe baale della (1) se lo si assega ache a x. Quidi oiché o soo soddisfatte le ultime due equaioi delle (4.4), o è soddisfatta eure la (4.1). I questo modo è dimostrato ache il caso ari e otea del. 5. IL CASO PARI MA PRODOTTO DI UN NUMERO DISPARI I questo caso uò essere scritto ella forma ( m)( + 1 ) e l equaioe di Fermat si uò scrivere come: ( m)( + 1) ( m)( + 1) ( m)( + 1) x + y. (5.1) Pertato defiedo X x ( m), Y y ( m) e Z ( m), la (5.1) si uò riscrivere come: ( + 1) ( + 1) ( + 1) X + Y Z (5.) che è della stessa forma della (3.1) e ertato già dimostrata.

9 Dimostraioe Teorema Fermat Marco Boo 9 APPENDICE Dimostraioe che x y +, co x e y disari, è u umero disari. Se x ed y soo umeri disari devoo essere della forma: x ( + 1 ), y ( m+ 1 ) (a.1) ertato i loro quadrati divetao: x e y 4m + 4m+ 1 (a.) e la somma dei quadrati: x + y 4( m + + m+ ) +. (a.3) Se calcoliamo ora x y + si ottiee: x + y 4( m + + m+ ) + ( m + + m + ) + 1 (a.4) che è u umero disari. Calcoli aaloghi dimostrao che la semidifferea dei quadrati di due umeri disari è semre u umero ari. Questa dimostraioe vale ache er qualsiasi altra otea maggiore di. Ifie si riorta la formula er il calcolo delle otee -esime di oliomi: q q r r t t a ( ± 1) b ( ± 1) c ( ± 1) g ( a ± b ± c ±... ± g)! (a.5), q,,, t 0! q! t! co, q,,, t umeri iteri tali che + q t. Ad esemio, el caso di ua quita otea di u oliomio di 4 termii: 5, gli idici, q, r ed s ed i coefficieti dei vari termii devoo assumere i segueti valori: q r s!/!q!r!s! q r s!/!q!r!s! q r s!/!q!r!s! q r s!/!q!r!s!

1.6 Serie di potenze - Esercizi risolti

1.6 Serie di potenze - Esercizi risolti 6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo

Dettagli

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4 Quarto Compito di Aalisi Matematica Corso di laurea i Iformatica, corso B 5 Luglio 016 Soluzioi Esercizio 1 Determiare tutti i umeri complessi z tali che z = 3 4 i. Soluzioe. Scrivedo z = a + bi, si ottiee

Dettagli

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c)

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c) SERIE NUMERICHE Esercizi risolti. Calcolare la somma delle segueti serie telescopiche: a) b). Verificare utilizzado la codizioe ecessaria per la covergeza) che le segueti serie o covergoo: a) c) ) log

Dettagli

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n.

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n. SERIE DI POTENZE Esercizi risolti Esercizio x 2 + 2)2. Esercizio 2 + x 3 + 2 3. Esercizio 3 dove a è u umero reale positivo. Esercizio 4 x a, 2x ) 3 +. Esercizio 5 x! = x + x 2 + x 6 + x 24 + x 20 +....

Dettagli

Algoritmi e Strutture Dati (Elementi)

Algoritmi e Strutture Dati (Elementi) Algoritmi e Strutture Dati (Elemeti Esercizi sulle ricorreze Proff. Paola Boizzoi / Giacarlo Mauri / Claudio Zadro Ao Accademico 00/003 Apputi scritti da Alberto Leporati e Rosalba Zizza Esercizio 1 Posti

Dettagli

ALGEBRA I MODULO PROF. VERARDI - ESERCIZI. Sezione 1 NUMERI NATURALI E INTERI

ALGEBRA I MODULO PROF. VERARDI - ESERCIZI. Sezione 1 NUMERI NATURALI E INTERI ALGEBRA I MODULO PROF. VERARDI - ESERCIZI Sezioe 1 NUMERI NATURALI E INTERI 2 1.1. Si dimostri per iduzioe la formula: N, k 2 "1( * " 3 ) " 3k +1(. 3 1.2. A) Si dimostri che per ogi a,b N +, N +, se a

Dettagli

DETERMINANTI (SECONDA PARTE). NOTE DI ALGEBRA LINEARE

DETERMINANTI (SECONDA PARTE). NOTE DI ALGEBRA LINEARE DETERMINANTI (SECONDA PARTE). NOTE DI ALGEBRA LINEARE 2010-11 MARCO MANETTI: 21 DICEMBRE 2010 1. Sviluppi di Laplace Proposizioe 1.1. Sia A M, (K), allora per ogi idice i = 1,..., fissato vale lo sviluppo

Dettagli

Cosa vogliamo imparare?

Cosa vogliamo imparare? Cosa vogliamo imparare? risolvere i modo approssimato equazioi del tipo f()=0 che o solo risolubili i maiera esatta ed elemetare tramite formule risolutive. Esempio: log( ) 1= 0 Iterpretazioe grafica Come

Dettagli

Esercizi svolti. 1. Calcolare i seguenti limiti: log(1 + 3x) x 2 + 2x. x 2 + 3 sin 2x. l) lim. b) lim. x 0 sin x. 1 e x2 d) lim. c) lim.

Esercizi svolti. 1. Calcolare i seguenti limiti: log(1 + 3x) x 2 + 2x. x 2 + 3 sin 2x. l) lim. b) lim. x 0 sin x. 1 e x2 d) lim. c) lim. Esercizi svolti. Calcolare i segueti iti: a log + + c ± ta 5 + 5 si π e b + si si e d + f + 4 5 g + 6 4 6 h 4 + i + + + l ± + log + log 7 log 5 + 4 log m + + + o cos + si p + e q si s e ta cos e u siπ

Dettagli

Esercizi sulle successioni

Esercizi sulle successioni Esercizi sulle successioi 1 Verificare, attraverso la defiizioe, che la successioe coverge a 2 3. a := 2 + 3 3 7 2 Verificare, attraverso la defiizioe, che la successioe coverge a 0. a := 4 + 3 3 5 + 7

Dettagli

Lezione 4. Gruppi di permutazioni

Lezione 4. Gruppi di permutazioni Lezioe 4 Prerequisiti: Applicazioi tra isiemi Lezioi e Gruppi di permutazioi I questa lezioe itroduciamo ua classe ifiita di gruppi o abeliai Defiizioe 41 ia X u isieme o vuoto i dice permutazioe su X

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO 0. Itroduzioe Oggetto del calcolo combiatorio è quello di determiare il umero dei modi mediate i quali possoo essere associati, secodo prefissate regole, gli elemeti di uo stesso

Dettagli

Teoremi di immersione di Sobolev

Teoremi di immersione di Sobolev Teoremi di immersioe di Sobolev February 2, 2007 Teorema (Immersioi di Sobolev, caso base). (Sobolev, Gagliardo, Nireberg). Se < ; W ; (R ) L (R ) ; dove = ; e kukl c (; ) krukl : (Notare che è > ) 2.

Dettagli

IPSAA U. Patrizi Città di Castello (PG) Classe 5A Tecnico Agrario. Lezione di martedì 10 novembre 2015 (4 e 5 ora) Disciplina: MATEMATICA

IPSAA U. Patrizi Città di Castello (PG) Classe 5A Tecnico Agrario. Lezione di martedì 10 novembre 2015 (4 e 5 ora) Disciplina: MATEMATICA IPSAA U. Patrizi Città di Castello (PG) Classe A Tecico Agrario Lezioe di martedì 0 ovembre 0 (4 e ora) Disciplia: MATEMATICA La derivata della fuzioe composta Fuzioe composta Df(g())f (g())g () Questa

Dettagli

STUDIO DEL LANCIO DI 3 DADI

STUDIO DEL LANCIO DI 3 DADI Leoardo Latella STUDIO DEL LANCIO DI 3 DADI Il calcolo delle probabilità studia gli eveti casuali probabili, cioè quegli eveti che possoo o o possoo verificarsi e che dipedoo uicamete dal caso. Tale studio

Dettagli

Radicali. Esistenza delle radici n-esime: Se n è pari: ogni numero reale non negativo (cioè positivo o nullo) ha esattamente una radice n-esima in R.

Radicali. Esistenza delle radici n-esime: Se n è pari: ogni numero reale non negativo (cioè positivo o nullo) ha esattamente una radice n-esima in R. Radicali Radici quadrate Si dice radice quadrata di u umero reale a, e si idica co a, il umero reale positivo o ullo (se esiste) che, elevato al quadrato, dà come risultato a. Esisteza delle radici quadrate:

Dettagli

PRINCIPIO D INDUZIONE E DIMOSTRAZIONE MATEMATICA. A. Induzione matematica: Introduzione

PRINCIPIO D INDUZIONE E DIMOSTRAZIONE MATEMATICA. A. Induzione matematica: Introduzione PRINCIPIO D INDUZIONE E DIMOSTRAZIONE MATEMATICA CHU WENCHANG A Iduzioe matematica: Itroduzioe La gra parte delle proposizioi della teoria dei umeri dà euciati che coivolgoo i umeri aturali; per esempio

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 3 Prova scritta del 6//3 Esercizio Suppoiamo che ua variabile aleatoria Y abbia la seguete desita : { hx e 3/x, x > f Y (y) =, x, co h opportua costate positiva.

Dettagli

RISOLUZIONE MODERNA DI PROBLEMI ANTICHI

RISOLUZIONE MODERNA DI PROBLEMI ANTICHI RISOLUZIONE MODERNA DI PROBLEMI ANTICHI L itelletto, duque, che o è la verità, o comprede mai la verità i modo così preciso da o poterla compredere (poi acora) più precisamete, all ifiito, perché sta alla

Dettagli

Precorso di Matematica, aa , (IV)

Precorso di Matematica, aa , (IV) Precorso di Matematica, aa 01-01, (IV) Poteze, Espoeziali e Logaritmi 1. Nel campo R dei umeri reali, il umero 1 e caratterizzato dalla proprieta che 1a = a, per ogi a R; per ogi umero a 0, l equazioe

Dettagli

Campionamento casuale da popolazione finita (caso senza reinserimento )

Campionamento casuale da popolazione finita (caso senza reinserimento ) Campioameto casuale da popolazioe fiita (caso seza reiserimeto ) Suppoiamo di avere ua popolazioe di idividui e di estrarre u campioe di uità (co < ) Suppoiamo di studiare il carattere X che assume i valori

Dettagli

1. DISUGUAGLIANZE GEOMETRICHE

1. DISUGUAGLIANZE GEOMETRICHE . DISUGUAGLIANZE GEOMETRICHE (SOLUZIONI) POTENZE E RADICI Siao m, N, a b 0, allora valgoo: a m b m, b m a m, e si ha l uguagliaza se e solo se a = b oppure m = 0. Esercizio. Dimostra che per ogi coppia

Dettagli

Programma (orientativo) secondo semestre 32 ore - 16 lezioni

Programma (orientativo) secondo semestre 32 ore - 16 lezioni Programma (orietativo) secodo semestre 32 ore - 6 lezioi 3 lezioi: successioi e serie 4 lezioi: itegrali 2-3 lezioi: equazioi differeziali 4 lezioi: sistemi di equazioi e calcolo vettoriale e matriciale

Dettagli

Richiami sulle potenze

Richiami sulle potenze Richiami sulle poteze Dopo le rette, le fuzioi più semplici soo le poteze: Distiguiamo tra: - poteze co espoete itero - poteze co espoete frazioario (razioale) - poteze co espoete reale = Domiio delle

Dettagli

Il postulato di Bertrand e la congettura di Legendre

Il postulato di Bertrand e la congettura di Legendre ig. Rosario Turco, rof. Maria Coloese Il ostulato di Bertrad e la cogettura di Legedre Itroduzioe I questo laoro discutiamo dei legami tra la cogettura di Legedre ed il ostulato di Bertrad, quest ultimo

Dettagli

Proposizione 1. Due sfere di R m hanno intersezione non vuota se e solo se la somma dei loro raggi e maggiore della distanza fra i loro centri.

Proposizione 1. Due sfere di R m hanno intersezione non vuota se e solo se la somma dei loro raggi e maggiore della distanza fra i loro centri. Laboratorio di Matematica, A.A. 009-010; I modulo; Lezioi II e III - schema. Limiti e isiemi aperti; SB, Cap. 1 Successioi di vettori; SB, Par. 1.1, pp. 3-6 Itori sferici aperti. Nell aalisi i ua variabile

Dettagli

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ LE DERIVATE. GENERALITÀ Defiizioe A) Ituitiva. La derivata, a livello ituitivo, è u operatore tale che: a) ad ua fuzioe f associa u altra fuzioe; b) obbedisce alle segueti regole di derivazioe: () D a

Dettagli

Appunti complementari per il Corso di Statistica

Appunti complementari per il Corso di Statistica Apputi complemetari per il Corso di Statistica Corsi di Laurea i Igegeria Edile e Tessile Ilia Negri 24 settembre 2002 1 Schemi di campioameto Co il termie campioameto si itede l operazioe di estrazioe

Dettagli

3.1 Rappresentazione dello stato tensionale nel piano di Mohr: circoli di Mohr.

3.1 Rappresentazione dello stato tensionale nel piano di Mohr: circoli di Mohr. DIDATTICA DI PROGETTAZIONE DELLE COSTRUZIONI PROF. CARMELO MAJORANA MODULO TRE I CONCETTI FONDAMENTALI NELL ANALISI DELLA TENSIONE PARTE B) MODULO PER LO SPECIALIZZANDO Modulo. Rappresetazioe dello stato

Dettagli

CALCOLO COMBINATORIO

CALCOLO COMBINATORIO CALCOLO COMBINATORIO Che cosa sigifica cotare Tutti coosciamo la successioe dei umeri iteri Naturali N = {0, 1,,, } si tratta di ua struttura metale fodametale, chiaramete presete alla ostra ituizioe che

Dettagli

Appendice A. Elementi di Algebra Matriciale

Appendice A. Elementi di Algebra Matriciale ppedice. Elemeti di lgebra Matriciale... 2. Defiizioi... 2.. Matrice quadrata... 2..2 Matrice diagoale... 2..3 Matrice triagolare... 3..4 Matrice riga e matrice coloa... 3..5 Matrice simmetrica e emisimmetrica...

Dettagli

Serie numeriche e di funzioni - Esercizi svolti

Serie numeriche e di funzioni - Esercizi svolti Serie umeriche e di fuzioi - Esercizi svolti Serie umeriche Esercizio. Discutere la covergeza delle serie segueti a) 3, b) 5, c) 4! (4), d) ( ) e. Esercizio. Calcolare la somma delle serie segueti a) (

Dettagli

Diottro sferico. Capitolo 2

Diottro sferico. Capitolo 2 Capitolo 2 Diottro sferico Si idica co il termie diottro sferico ua calotta sferica che separa due mezzi co idice di rifrazioe diverso. La cogiugete il cetro di curvatura C della calotta co il vertice

Dettagli

a) la funzione costante k. Sia k un numero reale e consideriamo la funzione che ad ogni numero reale x associa k: x R k

a) la funzione costante k. Sia k un numero reale e consideriamo la funzione che ad ogni numero reale x associa k: x R k ALCUNE FUNZIONI ELEMENTARI ( E NON) E LORO GRAFICI (*) a) la fuzioe costate k. Sia k u umero reale e cosideriamo la fuzioe che ad ogi umero reale x associa k: x R k Tale fuzioe è detta fuzioe costate k;

Dettagli

Qual è il numero delle bandiere tricolori a righe verticali che si possono formare con i 7 colori dell iride?

Qual è il numero delle bandiere tricolori a righe verticali che si possono formare con i 7 colori dell iride? Calcolo combiatorio sempi Qual è il umero delle badiere tricolori a righe verticali che si possoo formare co i 7 colori dell iride? Dobbiamo calcolare il umero delle disposizioi semplici di 7 oggetti di

Dettagli

min z wz sub F(z) = y (3.1)

min z wz sub F(z) = y (3.1) 37 LA FUNZIONE DI COSTO 3.1 Miimizzazioe dei costi Riprediamo il problema della massimizzazioe dei profitti del capitolo precedete e suppoiamo ora che l'impresa coosca il livello di output che deve produrre;

Dettagli

Diagramma polare e logaritmico

Diagramma polare e logaritmico Diagramma polare e aritmico ariatori discotiui del moto di taglio Dalla relazioe π D c si ota che la velocità di taglio dipede, oltre che dal umero di giri del madrio, ache dal diametro dell elemeto rotate

Dettagli

Approfondimento 2.1 Scaling degli stimoli mediante il metodo del confronto a coppie

Approfondimento 2.1 Scaling degli stimoli mediante il metodo del confronto a coppie Approfodimeto 2.1 Scalig degli stimoli mediate il metodo del cofroto a coppie Il metodo del cofroto a coppie di Thurstoe (Thurstoe, 1927) si basa sull assuzioe che la valutazioe di u oggetto o di uo stimolo

Dettagli

Successioni di numeri reali

Successioni di numeri reali CAPITOLO Successioi di umeri reali. Defiizioi ed esempi. Limite di ua successioe. Nell ultimo paragrafo del capitolo precedete abbiamo itrodotto alcue fuzioi elemetari da sottoisiemi di) R a valori i R,

Dettagli

La base naturale dell esponenziale

La base naturale dell esponenziale La base aturale dell espoeziale Beiamio Bortelli 7 aprile 007 Il problema I matematica, ci è stato detto, la base aturale della fuzioe espoeziale è il umero irrazioale: e =, 7888... Restao, però, da chiarire

Dettagli

BOLLETTINO UNIONE MATEMATICA ITALIANA

BOLLETTINO UNIONE MATEMATICA ITALIANA BOLLETTINO UNIONE MATEMATICA ITALIANA Emilio Gagliardo Le fuzioi simmetriche semplici delle radici -esime primitive dell uità. Bollettio dell Uioe Matematica Italiaa, Serie 3, Vol. 8 (1953),.3, p. 269

Dettagli

Progetto Matematica in Rete - Numeri naturali - I numeri naturali

Progetto Matematica in Rete - Numeri naturali - I numeri naturali I umeri aturali Quali soo i umeri aturali? I umeri aturali soo : 0,1,,3,4,5,6,7,8,9,,11 I umeri aturali hao u ordie cioè dati due umeri aturali distiti a e b si può sempre stabilire qual è il loro ordie

Dettagli

Cenni di topologia di R

Cenni di topologia di R Cei di topologia di R. Sottoisiemi dei umeri reali Studieremo le proprietà dei sottoisiemi dei umeri reali, R, che hao ad esempio la forma: = (, ) (,) 6 8 = [,] { ;6;8} { } = (, ) (,) [, + ) Defiizioe:

Dettagli

Università di Milano Bicocca Esercitazione 4 di Matematica per la Finanza 24 Aprile 2015

Università di Milano Bicocca Esercitazione 4 di Matematica per la Finanza 24 Aprile 2015 Uiversità di Milao Bicocca Esercitazioe 4 di Matematica per la Fiaza 24 Aprile 205 Esercizio Completare il seguete piao di ammortameto: 000 2 3 234 3 6 369 Osserviamo iazitutto che, per il vicolo di chiusura

Dettagli

15 - Successioni Numeriche e di Funzioni

15 - Successioni Numeriche e di Funzioni Uiversità degli Studi di Palermo Facoltà di Ecoomia CdS Statistica per l Aalisi dei Dati Apputi del corso di Matematica 15 - Successioi Numeriche e di Fuzioi Ao Accademico 2013/2014 M Tummiello, V Lacagia,

Dettagli

Probabilità 1, laurea triennale in Matematica II prova scritta sessione estiva a.a. 2008/09

Probabilità 1, laurea triennale in Matematica II prova scritta sessione estiva a.a. 2008/09 Probabilità, laurea trieale i Matematica II prova scritta sessioe estiva a.a. 8/9. U ura cotiee dadi di cui la metà soo equilibrati, metre gli altri soo stati maipolati i modo che, per ciascuo di essi,

Dettagli

CENNI SULLE PROGRESSIONI, LE SERIE, LE RELAZIONI DI RICORRENZA E I NUMERI DECIMALI.

CENNI SULLE PROGRESSIONI, LE SERIE, LE RELAZIONI DI RICORRENZA E I NUMERI DECIMALI. CENNI SULLE PROGRESSIONI, LE SERIE, LE RELAZIONI DI RICORRENZA E I NUMERI DECIMALI. Ua progressioe (o successioe) è u isieme iþito di umeri reali P = {a co =,,...} = {a,a,...}. La somma dei primi termii

Dettagli

Corso di Informatica

Corso di Informatica Corso di Iformatica Codifica dell Iformazioe Sistemi Numerici Per rappresetare ua certo quatità di oggetti è ecessaria ua covezioe o sistema umerico che faccia corrispodere ad ua sequeza di ua o più cifre,

Dettagli

LA RADICE QUADRATA NELLA SCUOLA MEDIA E.BARONE

LA RADICE QUADRATA NELLA SCUOLA MEDIA E.BARONE LA RADICE QUADRATA NELLA SCUOLA MEDIA E.BARONE 1. Itroduzioe. La radice quadrata di solito e' itrodotta gia'ella.scuola media iferiore, quado i! cocetto di umero reale o e' stato acora dato e solitamete

Dettagli

Serie numeriche. Paola Rubbioni. 1 Denizione, serie notevoli e primi risultati. i=0 a i, e si indica con il simbolo +1X.

Serie numeriche. Paola Rubbioni. 1 Denizione, serie notevoli e primi risultati. i=0 a i, e si indica con il simbolo +1X. Serie umeriche Paola Rubbioi Deizioe, serie otevoli e primi risultati Deizioe.. Data ua successioe di umeri reali (a ) 2N, si dice serie umerica la successioe delle somme parziali (S ) 2N, ove S = a +

Dettagli

Materiale didattico relativo al corso di Matematica generale Prof. G. Rotundo a.a.2009/10

Materiale didattico relativo al corso di Matematica generale Prof. G. Rotundo a.a.2009/10 Materiale didattico relativo al corso di Matematica geerale Prof. G. Rotudo a.a.2009/10 ATTENZIONE: questo materiale cotiee i lucidi utilizzati per le lezioi. NON sostituisce il libro, che deve essere

Dettagli

L'ALGORITMO DI STURM Michele Impedovo, Simone Pavanelli

L'ALGORITMO DI STURM Michele Impedovo, Simone Pavanelli L'ALGORITMO DI STURM Michele Impedovo, Simoe Pavaelli Lettera P.RI.ST.EM, 10, dicembre 1993 Questo lavoro asce dalla collaborazioe tra u isegate e uo studete; lo studete ha curato iteramete la costruzioe

Dettagli

Stima della media di una variabile X definita su una popolazione finita

Stima della media di una variabile X definita su una popolazione finita Stima della media di ua variabile X defiita su ua popolazioe fiita otazioi: popolazioe, campioe e strati Popolazioe. umerosità popolazioe; Ω {ω,..., ω } popolazioe X variabile aleatoria defiita sulla popolazioe

Dettagli

ORDINAMENTO 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1

ORDINAMENTO 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 www.matefilia.it ORDINAMENTO 1 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Due osservatori si trovao ai lati opposti di u grattacielo, a livello del suolo. La cima dell edificio dista 16 metri dal primo

Dettagli

Calcolo differenziale e integrale

Calcolo differenziale e integrale Calcolo differeziale e itegrale fuzioi di ua variabile reale Gabriele H. Greco Dipartimeto di Matematica Uiversità di Treto 385 POVO Treto Italia www.sciece.uit.it/ greco a.a. 5-6: Apputi del corso di

Dettagli

STIME E LORO AFFIDABILITA

STIME E LORO AFFIDABILITA TIME E LORO AFFIDABILITA L idea chiave su cui si basa l aalisi statistica è che si ossoo eseguire osservaioi su u camioe di soggetti e che da questo si ossoo comiere iferee sulla oolaioe raresetata da

Dettagli

RAPPRESENTAZIONE ANALITICA DEI PUNTALI OGIVALI PER PROIETTILI

RAPPRESENTAZIONE ANALITICA DEI PUNTALI OGIVALI PER PROIETTILI M. G. BUSATO RAPPRESENTAZIONE ANALITIA DEI PUNTALI OGIVALI PER PROIETTILI mgbstudio.et SOMMARIO I umerose applicazioi balistiche, ed i particolare per calcolare la resisteza aerodiamica di u proiettile,

Dettagli

Problema di Natale 1 Corso di Geometria per la Laurea in Fisica Andrea Sambusetti 19 Dicembre 2008

Problema di Natale 1 Corso di Geometria per la Laurea in Fisica Andrea Sambusetti 19 Dicembre 2008 Problema di Natale 1 Corso di Geometria per la Laurea i Fisica Adrea Sambusetti 19 Dicembre 28 La particella Mxyzptlk. 2 La particella Mxyzptlk vive i u uiverso euclideo -dimesioale. È costituita da u

Dettagli

q V C dipende solo dalla geometria dei piatti e ci dice quanta carica serve ad un dato condensatore per portarlo ad una DV fissata.

q V C dipende solo dalla geometria dei piatti e ci dice quanta carica serve ad un dato condensatore per portarlo ad una DV fissata. I codesatori codesatore è u dispositivo i grado di immagazziare eergia, sottoforma di eergia poteziale, i u campo elettrico Ogi volta che abbiamo a che fare co due coduttori di forma arbitraria detti piatti

Dettagli

Sintassi dello studio di funzione

Sintassi dello studio di funzione Sitassi dello studio di fuzioe Lavoriamo a perfezioare quato sapete siora. D ora iazi pretederò che i risultati che otteete li SCRIVIATE i forma corretta dal puto di vista grammaticale. N( x) Data la fuzioe:

Dettagli

GLI INSIEMI NUMERICI

GLI INSIEMI NUMERICI GLI INSIEMI NUMERICI R π, _ -,8,89 Q Z N - 8-8 -8 _,,66 - e, - -,6 _ -,6 6 R Numeri Reli Q Numeri Rzioli Z Numeri Iteri Reltivi N Numeri Nturli Dl digrmm di Eulero-Ve ovvio è che : N è u sottoisieme rorio

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagia Giovaa Patri Percorsi di matematica per il ripasso e il recupero 2 per la Scuola secodaria di secodo grado UNITÀ CAMPIONE Edizioi del Quadrifoglio à t i U 2 Radicali I questa Uità affrotiamo

Dettagli

Lo studio della relazione lineare tra due variabili

Lo studio della relazione lineare tra due variabili Lo studio della relazioe lieare tra due variabili X e caratteri etrambi quatitativi X variabile idipedete variabile dipedete * f ( ) f(): espressioe fuzioale che descrive la legge di dipedeza di da X 1

Dettagli

Scheda n.6: legame tra due variabili; correlazione e regressione

Scheda n.6: legame tra due variabili; correlazione e regressione Scheda.6: legame tra due variabili; correlazioe e regressioe October 26, 2008 Covariaza e coefficiete di correlazioe Date due v.a. X ed Y, chiamiamo covariaza il umero Cov (X, Y ) = E [(X E [X]) (Y E [Y

Dettagli

ESERCITAZIONI PRATICHE LABORATORIO 111

ESERCITAZIONI PRATICHE LABORATORIO 111 ESERCITZIONI PRTICHE LORTORIO 111 MODULO ELETTRONIC DIGITLE SCLE DI INTEGRZIONE I CIRCUITI INTEGRTI Tutte le fuzioi logiche, soo dispoibili i commercio sotto forma di circuiti itegrati. U circuito itegrato

Dettagli

C2. Congruenza. C2.1 Figure congruenti. C2.2 Relazione di equivalenza. C2.3 Esempi di relazioni di equivalenza

C2. Congruenza. C2.1 Figure congruenti. C2.2 Relazione di equivalenza. C2.3 Esempi di relazioni di equivalenza 2. ogrueza 2.1 igure cogrueti ue figure geometriche soo cogrueti se soo sovrappoibili perfettamete. Il simbolo di cogrueza è. cco alcui esempi di figure cogrueti: ue quadrati co i lati della stessa lughezza

Dettagli

5 ELEMENTI DI MEMORIA

5 ELEMENTI DI MEMORIA 5.1 5 ELEMENTI DI MEMORIA 5.1 Fuzioi sequeziali Cosideriamo il circuito di fig. 5.1.1. Figura 5.1.1 Costruiamoe la tavola della verità, tabella 5.1.1, el modo usuale usato per le fuzioi combiatorie. Tabella

Dettagli

V Tutorato 6 Novembre 2014

V Tutorato 6 Novembre 2014 1. Data la successioe V Tutorato 6 Novembre 01 determiare il lim b. Data la successioe b = a = + 1 + 1 8 6 + 1 80 + 18 se 0 se < 0 scrivere i termii a 0, a 1, a, a 0 e determiare lim a. Data la successioe

Dettagli

Il candidato risolva uno dei due problemi e 4 quesiti del questionario. la sua primitiva tale che ( 1) f ( 1)

Il candidato risolva uno dei due problemi e 4 quesiti del questionario. la sua primitiva tale che ( 1) f ( 1) Sessioe ordiaria all estero caledario australe 005 MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ E DELLA RICERCA SCUOLE ITALIANE ALL ESTERO ESAMI DI STATO DI LICEO SCIENTIFICO Sessioe Ordiaria 005 Caledario

Dettagli

SUCCESSIONI E SERIE NUMERICHE

SUCCESSIONI E SERIE NUMERICHE SUCCESSIONI E SERIE NUMERICHE. Successioi umeriche a. Defiizioi: successioi aritmetiche e geometriche Cosideriamo ua sequeza di umeri quale ad esempio:,5,8,,4,7,... Tale sequeza è costituita mediate ua

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del 5.02.2013 TEMA 1. f(x) = arcsin 1 2 log 2 x.

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del 5.02.2013 TEMA 1. f(x) = arcsin 1 2 log 2 x. ANALISI MATEMATICA Area dell Igegeria dell Iformazioe Appello del 5.0.0 TEMA Esercizio Si cosideri la fuzioe f(x = arcsi log x. Determiare il domiio di f e discutere il sego. Discutere brevemete la cotiuità

Dettagli

Esercitazione parte 1 Medie e medie per dati raggruppati. Esercitazione parte 2 - Medie per dati raggruppati

Esercitazione parte 1 Medie e medie per dati raggruppati. Esercitazione parte 2 - Medie per dati raggruppati Esercitazioe parte Medie e medie per dati raggruppati el file dati0.xls soo coteute alcue distribuzioi di dati. Calcolare di ogua. Media aritmetica o Mostrare, co u calcolo automatico, che la somma degli

Dettagli

Studio di funzione. Rappresentazione grafica di una funzione: applicazioni

Studio di funzione. Rappresentazione grafica di una funzione: applicazioni Studio di fuzioe Tipi di fuzioi Le fuzioi si possoo raggruppare i alcue tipologie di base: Razioali: se le operazioi che vi si effettuao soo addizioe, sottrazioe, prodotto, divisioe ed elevameto a poteza

Dettagli

Calcolo delle Probabilità 2012/13 Foglio di esercizi 3

Calcolo delle Probabilità 2012/13 Foglio di esercizi 3 Calcolo delle Probabilità 01/13 Foglio di esercizi 3 Probabilità codizioale e idipedeza. Esercizio 1. Sia B u eveto fissato di uo spazio di probabilità (Ω, A, P), co P(B) > 0. Si mostri che P( B) è l uica

Dettagli

La dinamica dei sistemi - intro

La dinamica dei sistemi - intro La diamica dei sistemi - itro Il puto materiale rappreseta ua schematizzazioe utile o solo per descrivere situazioi di iteresse diretto ma è ache il ecessario presupposto alla meccaica dei sistemi materiali

Dettagli

Esercizi di Probabilità e Statistica della 2 a settimana (Corso di Laurea in Matematica, Università degli Studi di Padova).

Esercizi di Probabilità e Statistica della 2 a settimana (Corso di Laurea in Matematica, Università degli Studi di Padova). Esercizi di Probabilità e Statistica della 2 a settimaa (Corso di Laurea i Matematica, Uiversità degli Studi di Padova). Esercizio. Sia (Ω, A, P) uo spazio probabilizzato e B A o trascurabile. Dimostrare

Dettagli

Foglio di esercizi N. 1 - Soluzioni

Foglio di esercizi N. 1 - Soluzioni Foglio di esercizi N. - Soluzioi. Determiare il domiio della fuzioe f) = log 3 + log 3 3)). Deve essere + log 3 3) > 0, ovvero log 3 3) >, ovvero prededo l espoeziale i base 3 di etrambi i membri) 3 >

Dettagli

Lezione 10 - Tensioni principali e direzioni principali

Lezione 10 - Tensioni principali e direzioni principali Lezioe 10 - Tesioi pricipali e direzioi pricipali ü [A.a. 2011-2012 : ultima revisioe 23 agosto 2011] I questa lezioe si studiera' cio' che avviee alla compoete ormale di tesioe s, al variare del piao

Dettagli

229. La solitudine dei numeri primi (gemelli)

229. La solitudine dei numeri primi (gemelli) Numero 25 Ottobre 205 229. La solitudie dei umeri rimi (gemelli) Matteo Vegliati Sommario Il seguete articolo arla di famiglie di umeri aturali: doo aver defiito il grado di solitudie di ua famiglia di

Dettagli

ESERCIZI SULLE SERIE

ESERCIZI SULLE SERIE ESERCIZI SULLE SERIE Studiare la atura delle segueti serie. ) cos 4 + ; ) + si ; ) + ()! 4) ( ) 5) ( ) + + 6) ( ) + + + 7) ( log ) 8) ( ) + 9) log! 0)! Studiare al variare di x i R la atura delle segueti

Dettagli

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere Eserciio 1 7 puti. Dato il campo vettoriale v, + 1,, i si determii ua fuioe f > i modo tale che il campo vettoriale f v sia irrotaioale, cioè abbia le derivate icrociate uguali; ii si spieghi se i risultati

Dettagli

NUOVI CRITERI DI DIVISIBILITÀ

NUOVI CRITERI DI DIVISIBILITÀ NUOVI CRITERI DI DIVISIBILITÀ BRUNO BIZZARRI, FRANCO EUGENI, DANIELA TONDINI 1 1. Su tutti i testi scolastici di Scuola Media, oostate siao riportati i criteri di divisibilità per i umeri, 3, 4, 5, 6,

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea i Ecoomia e Fiaza Statistica 1 A.A. 2015/2016 (8 CFU, corrispodeti a 48 ore di lezioe frotale e 24 ore di esercitazioe) Prof. Luigi Augugliaro 1 / 21 Misura della dipedeza di u carattere

Dettagli

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni A Alcui cocetti di statistica: medie, variaze, covariaze e regressioi Esistoo svariati modi per presetare gradi quatità di dati. Ua possibilità è presetare la cosiddetta distribuzioe, raggruppare cioè

Dettagli

Esercizi proposti - Gruppo 7

Esercizi proposti - Gruppo 7 Argomenti di Matematica er l Ingegneria - Volume I - Esercizi roosti Esercizi roosti - Gruo 7 1) Verificare che ognuina delle seguenti coie di numeri razionali ( ) r + 1, r + 1, r Q {0} r ha la rorietà

Dettagli

Elettronica I Il diodo a giunzione

Elettronica I Il diodo a giunzione Elettroica I Il diodo a giuzioe Valetio Liberali Diartimeto di Tecologie dell Iformazioe Uiversità di Milao, 26013 Crema email: liberali@dti.uimi.it htt://www.dti.uimi.it/ liberali 18 arile 2008 Elettroica

Dettagli

TEST STATISTICI. indica l ipotesi che il parametro della distribuzione di una variabile assume il valore 0

TEST STATISTICI. indica l ipotesi che il parametro della distribuzione di una variabile assume il valore 0 TEST STATISTICI I dati campioari possoo essere utilizzati per verificare se ua certa ipotesi su ua caratteristica della popolazioe può essere riteuta verosimile o meo. Co il termie ipotesi statistica si

Dettagli

Successioni. Grafico di una successione

Successioni. Grafico di una successione Successioi Ua successioe di umeri reali è semplicemete ua sequeza di ifiiti umeri reali:, 2, 3,...,,... dove co idichiamo il termie geerale della successioe. Ad esempio, discutedo il sigificato fiaziario

Dettagli

Analisi Matematica I

Analisi Matematica I Aalisi Matematica I Apputi delle lezioi teute dal Prof. A. Foda Uiversità di Trieste, CdL Fisica e Matematica, a.a. 016/017 Lezioe 1 del 03/10/016: I umeri aturali e il pricipio di iduzioe Descriviamo

Dettagli

Esercitazioni di Statistica Dott.ssa Cristina Mollica cristina.mollica@uniroma1.it

Esercitazioni di Statistica Dott.ssa Cristina Mollica cristina.mollica@uniroma1.it Esercitazioi di Statistica Dott.ssa Cristia Mollica cristia.mollica@uiroma1.it Cocetrazioe Esercizio 1. Nell'ultima settimaa ua baca ha erogato i segueti importi (i migliaia di euro) per prestiti a imprese:

Dettagli

Cenni di Calcolo Combinatorio

Cenni di Calcolo Combinatorio Cei di Calcolo Combiatorio 28 marzo 2011 AVVISO: I preseti apputi possoo coteere (azi sicuramete coterrao) errori e/o ripetizioi. Essi soo ifatti opera di vari collage e, per ovvie questioi di tempo, o

Dettagli

Università degli Studi di Cassino, Anno accademico Corso di Statistica 2, Prof. M. Furno

Università degli Studi di Cassino, Anno accademico Corso di Statistica 2, Prof. M. Furno Uiversità degli Studi di Cassio, Ao accademico 004-005 Corso di Statistica, Prof.. uro Esercitazioe del 01/03/005 dott. Claudio Coversao Esercizio 1 Si cosideri il seguete campioe casuale semplice estratto

Dettagli

Semiconduttori Concentrazione dei portatori Drogaggio Ele-A-1

Semiconduttori Concentrazione dei portatori Drogaggio Ele-A-1 Semicoduttori Cocetrazioe dei ortatori rogaggio Ele-A-1 Elettroica I - A.A. 009/0010 CONCETTO I BARRIERA I ENERGIA POTENZIALE Ua carica uitaria i u camo elettrico E è soggetta ad ua forza f = E. Si defiisce

Dettagli

maturità 2015

maturità 2015 wwwmatematicameteit matuità QUETIONIO Detemiae l esessioe aalitica della fuzioe =f saedo ce la etta =-+ è tagete al gafico di f el secodo quadate e ce f =- + Dimostae ce il volume del toco di coo è esesso

Dettagli

CALCOLO COMBINATORIO

CALCOLO COMBINATORIO Pricipio fodametale del calcolo combiatorio Se u eveto E si può presetare i modi e u secodo eveto E 2 si può maifestare i 2 modi, allora l eveto composto E E 2 si può presetare i modi. 2 ORDINE/ RIPETIZIONE

Dettagli

Mole e Numero di Avogadro

Mole e Numero di Avogadro Mole e Numero di Avogadro La mole È ua uatità i grammi di ua sostaza che cotiee u umero preciso e be determiato di particelle (atomi o molecole) Numero di Avogadro Ua mole di ua sostaza cotiee u umero

Dettagli

Titolo della lezione. Campionamento e Distribuzioni Campionarie

Titolo della lezione. Campionamento e Distribuzioni Campionarie Titolo della lezioe Campioameto e Distribuzioi Campioarie Itroduzioe Itrodurre le idagii campioarie Aalizzare il le teciche di costruzioe dei campioi e di rilevazioe Sviluppare il cocetto di distribuzioe

Dettagli

Trasporto nei Semiconduttori: deriva

Trasporto nei Semiconduttori: deriva isositivi Elettroici rasorto ei Semicoduttori rasorto ei Semicoduttori: deriva Gli elettroi di u SC sottoosti ad u camo elettrico, si muovoo come articelle libere dotate di massa ierziale ari alla massa

Dettagli

MEDIE STATISTICHE. Media aritmetica, Media quadratica, Media Geometrica, Media Armonica

MEDIE STATISTICHE. Media aritmetica, Media quadratica, Media Geometrica, Media Armonica MEDIE STATISTICHE La raccolta dei dati e la successiva loro elaborazioe permettoo di trarre alcue coclusioi su u dato feomeo oggetto di studio. A questo fie si assume che u valore calcolato a partire dai

Dettagli

1. LEGGE DI SNELL. β<α FIBRE OTTICHE. se n 2 >n 1. sin. quindi 1 se n 1 >n 2 β>α. Pag. - 1 -

1. LEGGE DI SNELL. β<α FIBRE OTTICHE. se n 2 >n 1. sin. quindi 1 se n 1 >n 2 β>α. Pag. - 1 - ISTITUTO TECNICO INDUSTRIALE STATALE G. Marcoi PONTEDERA Prof. Pierluigi D Amico - Apputi su FIBRE OTTICHE - Classi QUARTE LICEO TECNICO A.S. 005/006 - Pagia. 1 di 5 1. LEGGE DI SNELL FIBRE OTTICHE si

Dettagli