Calcolo delle Probabilità 2013/14 Foglio di esercizi 3

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Calcolo delle Probabilità 2013/14 Foglio di esercizi 3"

Transcript

1 Calcolo delle Probabilità 203/4 Foglio di esercizi 3 Probabilità condizionale e indipendenza. Esercizio. Per rilevare la presenza di una certa malattia, si effettua un test. Se la persona sottoposta al test è malata, il test dà sempre esito positivo (non ci sono dunque falsi negativi ). Se invece la persona sottoposta al test è sana, il test dà (erroneamente) esito positivo con probabilità 0.0. Indichiamo con α (0, ) l incidenza della malattia nella popolazione (cioè la frazione di persone malate). Si determini, in funzione di α, la probabilità p α che una persona risultata positiva al test sia effettivamente malata. Si calcoli il valore trovato per α 0., 0.0, 0.00 e se ne descriva il comportamento asintotico per α 0. Esercizio 2. Ho una moneta A regolare e una moneta B truccata, per cui la probabilità di ottenere testa vale 3 4. Scelgo una moneta a caso, con uguale probabilità, e la lancio. Se esce testa, qual è la probabilità che la moneta scelta sia stata B? Esercizio 3. Durante la notte, un taxi ha causato un incidente. In città operano due compagnie di taxi, una con i taxi gialli (che sono l 85% del totale) l altra con i taxi bianchi. Un testimone ha dichiarato che il taxi coinvolto nell incidente era giallo. La probabilità che un testimone, di notte, identifichi correttamente il colore del taxi è pari a 0.8. (a) Sulla base di queste informazioni, qual è la probabilità che il taxi coinvolto nell incidente fosse in realtà bianco? (b) Supponiamo che un secondo testimone abbia dichiarato che il taxi era giallo, e che la correttezza dell identificazione del colore da parte di questo testimone sia indipendente da quella del primo. Sulla base di questa ulteriore informazione, qual è ora la probabilità che il taxi coinvolto nell incidente fosse in realtà bianco? Esercizio 4. Infilo in una busta tre carte: una ha entrambe le facce rosse, una le ha entrambe nere, una ha una faccia rossa e una nera. Con gli occhi chiusi, pesco una carta a caso e la depongo sul tavolo su una faccia a caso, quindi apro gli occhi. Se la faccia che vedo è rossa, qual è la probabilità che anche l altra faccia sia rossa? Esercizio 5. Una coppia ha due figli(e). Assumiamo che ciascun figlio possa essere maschio o femmina con la stessa probabilità, indipendentemente dal sesso dell altro figlio. (a) Sapendo che il primogenito è maschio, qual è la probabilità che anche il secondogenito lo sia? (b) Sapendo che il secondogenito è maschio, qual è la probabilità che anche il primogenito lo sia? (c) Sapendo che almeno un figlio è maschio, qual è la probabilità che anche l altro lo sia? Il sabato pomeriggio la madre esce a passeggio con uno dei due figli, mentre il padre resta a casa con l altro. Supponiamo che la madre scelga il figlio con cui uscire in modo casuale. (d) Se incontro la madre a passeggio con un figlio maschio, qual è la probabilità che anche l altro figlio sia maschio? Ultima modifica: 22 ottobre 203.

2 2 (e) Come cambia la risposta al quesito precedente se invece la madre avesse una particolare predilezione per i figli maschi e pertanto decidesse sempre di uscire con un figlio maschio (quando ne ha uno; altrimenti esce con una delle due figlie)? Esercizio 6. Da un urna contenente n palline di cui k rosse e n k verdi, con k n, si estrae una pallina e quindi, senza reimmetterla nell urna, si estrae una seconda pallina. Si calcoli la probabilità degli eventi A : la prima pallina estratta è rossa e A 2 : la seconda pallina estratta è rossa. Essi sono indipendenti? Esercizio 7. Quante volte n è necessario lanciare un dado regolare a N facce, affinchè la probabilità di ottenere almeno una volta il numero sia superiore al 90%? Si calcoli esplicitamente il valore di n per N 6, 00, 000. Esercizio 8. Ho a disposizione n N monete: la i-esima moneta dà testa con probabilità, per i n. Scelgo una moneta a caso e la lancio k N volte. i n (a) Qual è la probabilità p n,k che esca sempre testa nei k lanci? (b) Supponendo che sia effettivamente uscita sempre testa nei k lanci, qual è la probabilità (condizionata) q n,k che esca testa anche al lancio successivo? (c) Si calcoli il limite per n (con k fissato) dei risultati ottenuti. Esercizio 9. Siano assegnati tre numeri: α, α 2 [0, ] e β (0, ). (a) Si mostri che esiste uno spazio di probabilità contenente due eventi A, B tali che P(B) β, P(A B) α, P(A B c ) α 2. [Sugg. Si consideri Ω {ab, a b, āb, ā b} {a, ā} {b, b}, definendo A : {ab, a b}, B : {ab, āb} e mostrando che esiste un unica probabilità P su Ω che soddisfa le specifiche richieste.] (b) Si mostri che come spazio di probabilità per il punto precedente si può prendere (Ω (0, ), A B((0, )), P Leb), con B : (0, β) e definendo opportunamente A. Esercizio 0. Un commerciante acquista certe componenti elettriche in egual misura da due fornitori A e B. Viene a sapere che il 5% delle componenti provenienti da B è difettosa, cioè si rompono dopo poche ore di utilizzo, contro solo il 3% di quelle provenienti da A. Il commerciante è in procinto di mettere in vendita una confezione tali componenti, tutte provenienti dallo stesso fornitore, ma di cui non ha registrato la provenienza. Per conoscerne la provenienza ne testa 20, di cui 2 risultano difettose. Con quale grado di confidenza può ritenere che la partita gli sia stata fornita da B?

3 3 Soluzione. Introducendo gli eventi A : l individuo è malato e B : il test dà esito positivo, si ha P(A) α, P(B A) e P(B A c ) 0.0. Per le formule di Bayes e delle probabilità totali si ha dunque p α P(A B) P(B A)P(A) P(B) P(B A)P(A) P(B A)P(A) + P(B A c )( P(A)) α α + 00 ( α) α + 99α 00α( 99α + O(α2 )). 00 Si ha dunque lim α 0 p α 0; per α 0., 0.0, 0.00 si ottiene p α 0.92, 0.50, Soluzione 2. Il problema è isomorfo a quello delle urne discusso a lezione. Introducendo gli eventi B : scelgo la moneta B e T : esce testa, si ha pertanto P(B T ) P(B) 2, P(T B) 3 4, P(T Bc ) 2, 3 P(T B)P(B) P(T B)P(B) + P(T B)P(B c ) Soluzione 3. (a) Consideriamo gli eventi: A il taxi coinvolto è bianco, B il testimone dichiara di aver visto un taxi giallo. Sappiamo che P(A) , P(B A) 0.2 5, P(B Ac ) Perciò, usando la Formula di Bayes, 7 P(B A)P(A) P(A B) P(B A)P(A) + P(B A c )P(A c ) (b) Sia C il secondo testimone dichiara di aver visto un taxi giallo. Per ipotesi P(B C A) P(B A)P(C A) (0.2) e, analogamente, P(B C Ac ) P(B A c )P(C A c ) (0.8) Allora P(B C A)P(A) P(A B C) P(B C A)P(A) + P(B C A c )P(A c ) Soluzione 4. Indichiamo le tre carte rispettivamente con α (rossa-rossa), β (nera-nera) e γ (rossa-nera). Uno spazio campionario per l esperimento è Ω {α, α2, β, β2, γ, γ2}, dove α significa che pesco la carta α e il lato scoperto è il primo (rosso), γ2 significa che pesco la carta γ e il lato scoperto è il secondo (nero), ecc. Come σ-algebra scegliamo naturalmente P(Ω), essendo Ω <. Mostriamo che la probabilità corretta su Ω per descrivere l esperimento è quella uniforme. Introduciamo gli eventi A : pesco la carta α {α, α2}, B : pesco la carta β {β, β2}, C : pesco la carta γ {γ, γ2}. Dato che la carta è scelta a caso si deve avere P(A) P(B) P(C) 3. Inoltre, dato che anche il lato su cui la carta è deposta è scelto a caso, si deve avere P({α} A) P(α2 A) 2, da cui si ottiene P({α}) P({α} A) P({α} A)P(A) Con analoghi argomenti si ottiene P({α2}) P({β}) P({β2})P({γ}) P({γ2}) 6, cioè P({ω}) 6 per ogni ω Ω. La probabilità P deve dunque essere quella uniforme. Introduciamo infine gli eventi R s : il lato scoperto è rosso {α, α2, γ} e R c : il lato coperto è rosso {α, α2, γ2}. Per definizione di speranza condizionale P(R c R s ) P(R c R s ) P(R s ) R c R s R s 2 3.

4 4 Soluzione 5. Consideriamo lo spazio di probabilità Ω {M M, M F, F M, F F } munito della probabilità uniforme. Introduciamo gli eventi A : il primogenito è maschio {MM, MF } e B : il secondogenito è maschio {MM, F M}. Allora dobbiamo calcolare: (a) P(A B A) P(A B) P(A) (b) P(A B B) P(A B) P(B) A B A 2 ; A B B 2 ; (c) P(A B A B) P((A B) (A B)) P(A B) P(A B) P(A B) A B A B 3. Per la seconda parte dell esercizio occorre ingrandire lo spazio campionario, in modo da descrivere con quale figlio esce la madre. Scegliamo dunque Ω : Ω {, 2} {MM, MM2, MF, MF 2, F M, F M2, F F, F F 2}. Si noti che gli eventi prima introdotti A : il primogenito è maschio e B : il secondogenito è maschio diventano ora A {MM, MM2, MF, MF 2} e B {MM, MM2, F M, F M2}. Inoltre è naturale richiedere che P({MM, MM2}) P({MF, MF 2}) P({F M, F M2}) P({F F, F F 2}) 4 (le probabilità dei sessi dei figli presenti nella famiglia sono le stesse di prima). Queste richieste non determinano P completamente. (d) Se il figlio con cui esce la madre è scelto a caso, si ha P({MM} {MM, MM2}) 2, da cui segue che P({MM}) P({MM, MM2})P({MM} {MM, MM2}) ; analogamente si mostra che P({ω}) 8 per ogni ω Ω. In altre parole, P è la probabilità uniforme su Ω. Introducendo infine il nuovo evento C : la madre esce a passeggio con un figlio maschio {MM, MM2, MF, F M2}, otteniamo P(A B C) A B C C A B C (e) In questo caso possiamo la probabilità da considerare non è più quella uniforme. In effetti si deve avere P({MF } {MF, MF 2}), P({MF 2} {MF, MF 2}) 0 e analogamente P({F M} {F M, F M2}) 0, P({F M2} {F M, F M2}) (quando i figli sono un maschio e una femmina, la madre esce sempre con il maschio), mentre quando i figli sono dello stesso sesso la scelta della madre è casuale: in altri termini P({MM} {MM, MM2}) P({MM2} {MM, MM2}) 2 e P({F F } {F F, F F 2}) P({F F 2} {F F, F F 2}) 2. Da ciò si ricava la probabilità: P({MM}) P({MM2}) P({F F }) P({F F 2}) 8, P({MF }) P({F M2}), P({F M}) P({MF 2}) 0. 4 Introducendo come nel punto precedente l evento C : la madre esce a passeggio con un figlio maschio {MM, MM2, MF, F M2}, otteniamo infine P(A B C) P(A B) ω A B P(A B C) P({ω}) P(C) P(C) ω C P({ω}) P({MM}) + P({MM2}) P({MM}) + P({MM2}) + P({MF }) + P({F M2}) /8 + /8 /8 + /8 + /4 + /4 3. Soluzione 6. Si deve avere P(A ) k n. Inoltre P(A 2 A ) k n mentre P(A 2 A c ) k n, da cui P(A 2 ) P(A 2 A )P(A ) + P(A 2 A c )P(Ac ) k k n n + k n ( k n ) k2 k+kn k 2 n(n ) k n. Dato che P(A 2 A ) P(A 2 ) gli eventi A e A 2 non sono indipendenti.

5 5 Soluzione 7. La probabilità di ottenere almeno un successo in n prove ripetute e indipendenti con probabilità di singolo successo p è pari a p n : ( p) n, quindi p n > 9 0 ( p) n < 0 Nel problema in esame p N, pertanto log 0 n > n 0 : log N N n > n 0 :, log 0 log. p che per N 6, 00, 000 dà rispettivamente n 0 2, 229, 230. Si noti che log 0 n 0 log( + N ) log 0 (log 0)N, N ossia il valore di n 0 cresce all incirca linearmente con il numero di facce N del dado. Soluzione 8. (a) p n,k n n i ( i n )k ; (b) q n,k n (c) p n,k n i ( i n )k+. n n i ( i n )k n 0 xk dx k+ ; q n,k n 0 xk+ dx 0 xk dx k+ k+2. Soluzione 9. (a) Basta definire la densità discreta p(ω) : P({ω}). Se devono valere le relazioni P(B) β, P(A B) α, P(A B c ) α 2, (0.) si deve avere necessariamente p(ab) P({ab}) P(A B) P(B) P(A B) β α. Con analoghi calcoli, si ricavano tutti i valori di p: p(ab) α β, p(a b) α 2 ( β), p(āb) ( α )β, p(ā b) ( α 2 )( β). Dunque la densità discreta p è univocamente determinata dalle richieste del problema (0.). Viceversa, è immediato verificare che la funzione p definita come sopra è una densità discreta, ossia p(ω) 0 per ogni ω Ω e ω Ω p(ω), e valgono le proprietà richieste (0.). (b) Basta definire A (0, α β) [β, β + α 2 β), così che A B (0, α β) e A B c [β, β + α 2 β). Si verifica facilmente che le proprietà richieste (0.) sono soddisfatte. Soluzione 0. Si considerino gli eventi A la confezione proviene dal fornitore A, B la confezione proviene dal fornitore B A c e C di 20 pezzi testati 2 sono difettosi. Sappiamo che P(C A) ( ) 20 (0.5) 2 (0.85) , P(C B) 2 ( ) 20 (0.03) 2 (0.97) , 2 mentre P(A) P(B) /2. Per concludere basta applicare la formula di Bayes: P(B C) P(C B)P(B) P(C B)P(B) + P(C A)P(A) 0.30.

I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito.

I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. TEST DI AUTOVALUTAZIONE - SETTIMANA I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. Metodi statistici per la biologia 1 Parte A 1.1 Si considerino gli

Dettagli

UNIVERSITÀ di ROMA TOR VERGATA

UNIVERSITÀ di ROMA TOR VERGATA UNIVERSITÀ di ROMA TOR VERGATA Corso di Statistica, anno 00- P.Baldi Lista di esercizi. Corso di Laurea in Biotecnologie Esercizio Si sa che in una schedina del totocalcio i tre simboli, X, compaiono con

Dettagli

Matematica con elementi di statistica ESERCIZI: probabilità

Matematica con elementi di statistica ESERCIZI: probabilità Matematica con elementi di statistica ESERCIZI: probabilità Esercizi sulla Probabilità Esercizio 1. In un corso di laurea uno studente deve scegliere un esame fra 8 di matematica e un esame fra 5 di fisica.

Dettagli

Variabili casuali ad una dimensione Testi degli esercizi. Variabili casuali ad una dimensione a.a. 2012/2013 1

Variabili casuali ad una dimensione Testi degli esercizi. Variabili casuali ad una dimensione a.a. 2012/2013 1 Variabili casuali ad una dimensione Testi degli esercizi 1 Costruzione di variabile casuale discreta Esercizio 1. Sia data un urna contenente 3 biglie rosse, 2 biglie bianche ed una biglia nera. Ad ogni

Dettagli

TEST DI AUTOVALUTAZIONE PROBABILITÀ

TEST DI AUTOVALUTAZIONE PROBABILITÀ TEST DI AUTOVALUTAZIONE PROBABILITÀ Statistica 1 Parte A 1.1 Si considerino gli eventi A = nessuno studente ha superato l esame e B = nessuno studente maschio ha superato l esame. Allora A c B è uguale

Dettagli

ESERCIZI SULLA PROBABILITA

ESERCIZI SULLA PROBABILITA PROBABILITA CLASSICA ESERCIZI SULLA PROBABILITA 1) Si estrae una carta da un mazzo di 40 carte ; calcolare la probabilità che la carta sia: a. una figura; b. una carta di danari; c. un asso. 2) Un urna

Dettagli

PROBLEMI DI PROBABILITÀ

PROBLEMI DI PROBABILITÀ PROBLEMI DI PROBABILITÀ 1. Si dispongono a caso su uno scaffale sette libri, dei quali tre trattano di matematica. Qual è la probabilità che i tre libri di matematica si vengano a trovare l uno accanto

Dettagli

STATISTICA A K (63 ore) Marco Riani

STATISTICA A K (63 ore) Marco Riani STATISTICA A K (63 ore) Marco Riani mriani@unipr.it http://www.riani.it Esempio totocalcio Gioco la schedina mettendo a caso i segni 1 X 2 Qual è la prob. di fare 14? Esempio Gioco la schedina mettendo

Dettagli

Esercitazioni del Corso di Probabilitá e Statistica Lezione 2: Eventi disgiunti, eventi indipendenti e probabilitá condizionata

Esercitazioni del Corso di Probabilitá e Statistica Lezione 2: Eventi disgiunti, eventi indipendenti e probabilitá condizionata Esercitazioni del Corso di Probabilitá e Statistica Lezione 2: Eventi disgiunti, eventi indipendenti e probabilitá condizionata Stefano Patti 1 19 ottobre 2005 Definizione 1 Sia (Ω, F) uno spazio probabilizzabile.

Dettagli

La probabilità composta

La probabilità composta La probabilità composta DEFINIZIONE. Un evento E si dice composto se il suo verificarsi è legato al verificarsi contemporaneo (o in successione) degli eventi E 1, E 2 che lo compongono. Consideriamo il

Dettagli

Lo spazio degli eventi del lancio di un dado regolare a sei facce è l insieme U 1. 2. 3. U 4. 5. 6

Lo spazio degli eventi del lancio di un dado regolare a sei facce è l insieme U 1. 2. 3. U 4. 5. 6 EVENTI ALEATORI E LORO RAPPRESENTAZIONE Lo spazio degli eventi del lancio di un dado regolare a sei facce è l insieme U... U.. La definizione classica di probabilità dice che, se gli eventi che si considerano

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea in Economia e Finanza Statistica 1 A.A. 2015/2016 (8 CFU, corrispondenti a 48 ore di lezione frontale e 24 ore di esercitazione) Prof. Luigi Augugliaro 1 / 51 Introduzione Il Calcolo delle

Dettagli

ESERCIZI DI CALCOLO COMBINATORIO

ESERCIZI DI CALCOLO COMBINATORIO ESERCIZI DI CALCOLO COMBINATORIO (G.T.Bagni) Sintesi delle nozioni teoriche da utilizzare a) Dati n elementi e k n, si dicono disposizioni semplici di n elementi di classe k tutti i raggruppamenti ottenuti

Dettagli

Esercitazione # 3. Trovate la probabilita che in 5 lanci di un dado non truccato il 3 si presenti

Esercitazione # 3. Trovate la probabilita che in 5 lanci di un dado non truccato il 3 si presenti Statistica Matematica A Esercitazione # 3 Binomiale: Esercizio # 1 Trovate la probabilita che in 5 lanci di un dado non truccato il 3 si presenti 1. mai 2. almeno una volta 3. quattro volte Esercizio #

Dettagli

Esame di Statistica (10 o 12 CFU) CLEF 11 febbraio 2016

Esame di Statistica (10 o 12 CFU) CLEF 11 febbraio 2016 Esame di Statistica 0 o CFU) CLEF febbraio 06 Esercizio Si considerino i seguenti dati, relativi a 00 clienti di una banca a cui è stato concesso un prestito, classificati per età e per esito dell operazione

Dettagli

Probabilità 1, laurea triennale in Matematica I prova scritta sessione estiva a.a. 2008/09

Probabilità 1, laurea triennale in Matematica I prova scritta sessione estiva a.a. 2008/09 Probabilità, laurea triennale in Matematica I prova scritta sessione estiva a.a. 2008/09. Due roulette regolari vengono azionate più volte; sia T il numero di volte che occorre azionare la prima roulette

Dettagli

p k q n k = p n (k) = n 12 = 1 = 12 1 12 11 10 9 1 0,1208. q = 1 2 e si ha: p 12 (8) = 12 8 4

p k q n k = p n (k) = n 12 = 1 = 12 1 12 11 10 9 1 0,1208. q = 1 2 e si ha: p 12 (8) = 12 8 4 CAPITOLO QUARTO DISTRIBUZIONE BINOMIALE (O DI BERNOULLI) Molti degli esempi che abbiamo presentato nei capitoli precedenti possono essere pensati come casi particolari di uno schema generale di prove ripetute,

Dettagli

PROBABILITÀ SCHEDA N. 5 SOMMA E DIFFERENZA DI DUE VARIABILI ALEATORIE DISCRETE

PROBABILITÀ SCHEDA N. 5 SOMMA E DIFFERENZA DI DUE VARIABILI ALEATORIE DISCRETE PROBABILITÀ SCHEDA N. 5 SOMMA E DIFFERENZA DI DUE VARIABILI ALEATORIE DISCRETE 1. Distribuzione congiunta Ci sono situazioni in cui un esperimento casuale non si può modellare con una sola variabile casuale,

Dettagli

La PROBABILITA è un numero che si associa ad un evento E ed esprime il grado di aspettativa circa il suo verificarsi.

La PROBABILITA è un numero che si associa ad un evento E ed esprime il grado di aspettativa circa il suo verificarsi. La maggior parte dei fenomeni, ai quali assistiamo quotidianamente, può manifestarsi in vari modi, ma è quasi sempre impossibile stabilire a priori quale di essi si presenterà ogni volta. La PROBABILITA

Dettagli

Test di Matematica di base

Test di Matematica di base Test di Matematica di base Calcolo combinatorio e delle probabilitá Quanti oggetti possiamo differenziare con delle targhe di due simboli di cui il primo é una lettera dell alfabeto italiano e il secondo

Dettagli

Esercitazione 7 del corso di Statistica (parte 1)

Esercitazione 7 del corso di Statistica (parte 1) Esercitazione 7 del corso di Statistica (parte 1) Dott.ssa Paola Costantini 5 Marzo 011 Esercizio 1 Sullo spazio campionario: = 1,,,, 5,, 7,,, considerando l esperimento casuale estrazione di un numero,

Dettagli

PNI QUESITO 1 QUESITO 2

PNI QUESITO 1 QUESITO 2 www.matefilia.it PNI 0014 QUESITO 1 Per il teorema dei seni risulta: = da cui sen α = Quindi α = arcsen ( ) che porta alle due soluzioni: α 41,810 41 49 α 138 11 QUESITO I poliedri regolari (solidi platonici)

Dettagli

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino)

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino) Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino Prova di Mercoledì giugno 4 (tempo a disposizione: ore. Scrivere su ogni foglio NOME e COGNOME. Le

Dettagli

LE DISEQUAZIONI LINEARI

LE DISEQUAZIONI LINEARI Risolvi le seguenti disequazioni LE DISEQUAZIONI LINEARI x + ( x 5) < 7 x + 4 ( x + ) [ ( x ) < x( x 5) ( x )( x + ) + 4x [ impossibile ] ( 5x 1)( x ) + ( x 1) > ( x) 6x + ( x ) ( 1 x) ( x )( x ) + + 5

Dettagli

Esercizi con catene di Markov Pietro Caputo 12 dicembre 2006

Esercizi con catene di Markov Pietro Caputo 12 dicembre 2006 Esercizi con catene di Markov Pietro Caputo dicembre 006 Esercizio. Si considerino i lanci di un dado (6 facce equiprobabili). Sia X n il minimo tra i risultati ottenuti nei lanci,,..., n. Si calcoli la

Dettagli

Prova scritta di STATISTICA. CDL Biotecnologie. (Programma di Massimo Cristallo - A)

Prova scritta di STATISTICA. CDL Biotecnologie. (Programma di Massimo Cristallo - A) Prova scritta di STATISTICA CDL Biotecnologie (Programma di Massimo Cristallo - A) 1. Un associazione di consumatori, allo scopo di esaminare la qualità di tre diverse marche di batterie per automobili,

Dettagli

Modelli descrittivi, statistica e simulazione

Modelli descrittivi, statistica e simulazione Modelli descrittivi, statistica e simulazione Master per Smart Logistics specialist Roberto Cordone (roberto.cordone@unimi.it) Statistica inferenziale Cernusco S.N., giovedì 18 febbraio 2016 (9.00/13.00)

Dettagli

ESERCITAZIONE 20 : VARIABILI ALEATORIE DISCRETE

ESERCITAZIONE 20 : VARIABILI ALEATORIE DISCRETE ESERCITAZIONE 20 : VARIABILI ALEATORIE DISCRETE e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: su appuntamento Dipartimento di Matematica, piano terra, studio 114 30 Aprile 2013 Esercizio

Dettagli

ESERCITAZIONE: LEGGE DI HARDY-WEINBERG

ESERCITAZIONE: LEGGE DI HARDY-WEINBERG ESERCITAZIONE: LEGGE DI HARDY-WEINBERG e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Esercizio 1 Il colore degli occhi di una specie di pipistrelli della frutta è determinata geneticamente da

Dettagli

LEZIONE 4. { x + y + z = 1 x y + 2z = 3

LEZIONE 4. { x + y + z = 1 x y + 2z = 3 LEZIONE 4 4.. Operazioni elementari di riga. Abbiamo visto, nella precedente lezione, quanto sia semplice risolvere sistemi di equazioni lineari aventi matrice incompleta fortemente ridotta per righe.

Dettagli

Precorso di Matematica

Precorso di Matematica UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 4-10 Ottobre 2005 INDICE 1. ALGEBRA................................. 3 1.1 Equazioni

Dettagli

Note di probabilità. Mauro Saita Versione provvisoria, maggio 2014.

Note di probabilità. Mauro Saita Versione provvisoria, maggio 2014. Note di probabilità Mauro Saita Versione provvisoria, maggio 2014. Indice 1 Note di probabilità. 2 1.1 Eventi elementari. Spazio degli eventi.............................. 2 1.2 Definizione assiomatica

Dettagli

Matematica II: Calcolo delle Probabilità e Statistica Matematica

Matematica II: Calcolo delle Probabilità e Statistica Matematica Matematica II: Calcolo delle Probabilità e Statistica Matematica ELT A-Z Docente: dott. F. Zucca Esercitazione # 3 1 Distribuzione di Bernoulli e Distribuzione Binomiale Esercizio 1 Sia n un intero maggiore

Dettagli

La probabilità matematica

La probabilità matematica 1 La probabilità matematica In generale parliamo di eventi probabili o improbabili quando non siamo sicuri se si verificheranno. DEFINIZIONE. Un evento (E) si dice casuale, o aleatorio, quando il suo verificarsi

Dettagli

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ. ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio

Dettagli

Prof.ssa Laura Pagnozzi Prof. Ivano Coccorullo. Calcolo Combinatorio

Prof.ssa Laura Pagnozzi Prof. Ivano Coccorullo. Calcolo Combinatorio Prof.ssa Laura Pagnozzi Prof. Ivano Coccorullo Calcolo Combinatorio Calcolo Combinatorio ü Molti dei problemi classici di calcolo delle probabilità si riducono al calcolo dei casi favorevoli e di quelli

Dettagli

Risoluzione dei triangoli rettangoli

Risoluzione dei triangoli rettangoli Risoluzione dei triangoli rettangoli In questa dispensa esamineremo il problema della risoluzione dei triangoli rettangoli. Riprendendo la definizione di seno e coseno, mostreremo come questi si possano

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Variabili casuali Prof. Livia De Giovanni statistica@dis.uniroma.it Esercizio Determinare se le funzioni seguenti: 0.0 se x < 0. se x = g(x) = 0.5 se x = 0.7 se x = 3 se x =

Dettagli

INSIEMI E LOGICA. 2527+2234+1846=6607 6607-6000 = 607 numero individui con entrambi gli antigeni

INSIEMI E LOGICA. 2527+2234+1846=6607 6607-6000 = 607 numero individui con entrambi gli antigeni In uno studio di gruppi sanguigni ABO, furono sottoposti ad analisi 6000 cinesi. 2527 avevano l antigene A, 2234 l antigene B e 1846 nessun antigene. Quanti individui avevano entrambi gli antigeni? 2527+2234+1846=6607

Dettagli

Anno 3. Funzioni esponenziali e logaritmi: le 4 operazioni

Anno 3. Funzioni esponenziali e logaritmi: le 4 operazioni Anno 3 Funzioni esponenziali e logaritmi: le 4 operazioni 1 Introduzione In questa lezione impareremo a conoscere le funzioni esponenziali e i logaritmi; ne descriveremo le principali caratteristiche e

Dettagli

Il campionamento e l inferenza. Il campionamento e l inferenza

Il campionamento e l inferenza. Il campionamento e l inferenza Il campionamento e l inferenza Popolazione Campione Dai dati osservati mediante scelta campionaria si giunge ad affermazioni che riguardano la popolazione da cui essi sono stati prescelti Il campionamento

Dettagli

Esercizi di Probabilità

Esercizi di Probabilità Esercizi di Probabilità Annalisa Cerquetti - Sandra Fortini Vai all indice Istituto di Metodi Quantitativi, Viale Isonzo, 25, 2033 Milano, Italy. E-mail: annalisa.cerquetti@unibocconi.it,sandra.fortini@unibocconi.it

Dettagli

0.1 Esercizi calcolo combinatorio

0.1 Esercizi calcolo combinatorio 0.1 Esercizi calcolo combinatorio Esercizio 1. Sia T l insieme dei primi 100 numeri naturali. Calcolare: 1. Il numero di sottoinsiemi A di T che contengono esattamente 8 pari.. Il numero di coppie (A,

Dettagli

Per capire qual è l altezza media degli italiani è stato intervistato un campione di 1523 cittadini. La media campionaria dell altezza risulta essere:

Per capire qual è l altezza media degli italiani è stato intervistato un campione di 1523 cittadini. La media campionaria dell altezza risulta essere: PROBABILITÀ E STATISTICA Per capire qual è l altezza media degli italiani è stato intervistato un campione di 1523 cittadini. La media campionaria dell altezza risulta essere: x = 172, 3 cm Possiamo affermare

Dettagli

ESERCIZI SVOLTI SUL CALCOLO INTEGRALE

ESERCIZI SVOLTI SUL CALCOLO INTEGRALE ESERCIZI SVOLTI SUL CALCOLO INTEGRALE * Tratti dagli appunti delle lezioni del corso di Matematica Generale Dipartimento di Economia - Università degli Studi di Foggia Prof. Luca Grilli Dott. Michele Bisceglia

Dettagli

E = P(A) N. Teoria della probabilità. E = = 160 (numero atteso di soggetti con l influenza) E = = 390

E = P(A) N. Teoria della probabilità. E = = 160 (numero atteso di soggetti con l influenza) E = = 390 Teoria della probabilità Definita la probabilità di un evento o di una qualsiasi combinazione di eventi, è immediato definire il numero di eventi attesi in una serie di prove ripetute in modo casuale.

Dettagli

Esempi di prove di verifica su calcolo combinatorio e delle probabilità Esempio 1 Esempio 2

Esempi di prove di verifica su calcolo combinatorio e delle probabilità Esempio 1 Esempio 2 Esempi di prove di verifica su calcolo combinatorio e delle probabilità Esempio 1 Il compito verte sui seguenti contenuti irrinunciabili: probabilità totale e composta Competenze essenziali interessate:

Dettagli

Funzioni Pari e Dispari

Funzioni Pari e Dispari Una funzione f : R R si dice Funzioni Pari e Dispari PARI: se f( ) = f() R In questo caso il grafico della funzione è simmetrico rispetto all asse DISPARI: se f( ) = f() R In questo caso il grafico della

Dettagli

La simulazione con DERIVE Marcello Pedone LE SIMULAZIONI DEL LANCIO DI DADI CON DERIVE

La simulazione con DERIVE Marcello Pedone  LE SIMULAZIONI DEL LANCIO DI DADI CON DERIVE LE SIMULAZIONI DEL LANCIO DI DADI CON DERIVE Premessa Abbiamo già visto la simulazione del lancio di dadi con excel Vedi: http:///statistica/prob_simu/index.htm Ci proponiamo di ottenere risultati analoghi

Dettagli

Prof.ssa Laura Pagnozzi Prof. Ivano Coccorullo. Calcolo Combinatorio

Prof.ssa Laura Pagnozzi Prof. Ivano Coccorullo. Calcolo Combinatorio Prof.ssa Laura Pagnozzi Prof. Ivano Coccorullo Calcolo Combinatorio Calcolo Combinatorio ü Molti dei problemi classici di calcolo delle probabilità si riducono al calcolo dei casi favorevoli e di quelli

Dettagli

Correzione primo compitino, testo A

Correzione primo compitino, testo A Correzione primo compitino, testo A Parte Esercizio Facciamo riferimento alle pagine 22 e 2 del libro di testo Quando si ha a che fare con la moltiplicazione o la divisione di misure bisogna fare attenzione,

Dettagli

9 = Soluzione. Soluzione

9 = Soluzione. Soluzione Esercizio 1 Un'urna contiene 6 palline rosse, 4 nere, 8 bianche. Si estrae una pallina; calcolare la probabilità di avere a) una pallina bianca; b) una pallina nera; e) una pallina non bianca; d) una pallina

Dettagli

Metodo dei minimi quadrati e matrice pseudoinversa

Metodo dei minimi quadrati e matrice pseudoinversa Scuola universitaria professionale della Svizzera italiana Dipartimento Tecnologie Innovative Metodo dei minimi quadrati e matrice pseudoinversa Algebra Lineare Semestre Estivo 2006 Metodo dei minimi quadrati

Dettagli

Statistica - metodologie per le scienze economiche e sociali /2e S. Borra, A. Di Ciaccio - McGraw Hill

Statistica - metodologie per le scienze economiche e sociali /2e S. Borra, A. Di Ciaccio - McGraw Hill Statistica - metodologie per le scienze economiche e sociali /e S. Borra A. Di Ciaccio - McGraw Hill s. 9. Soluzione degli esercizi del capitolo 9 In base agli arrotondamenti effettuati nei calcoli si

Dettagli

Modelli matematici di fenomeni aleatori Variabilità e casualità

Modelli matematici di fenomeni aleatori Variabilità e casualità Modelli matematici di fenomeni aleatori Variabilità e casualità La casualità è alla base della scelta degli individui che compongono un campione ai fini di un indagine statistica. La casualità è alla base

Dettagli

Analisi. Calcolo Combinatorio. Ing. Ivano Coccorullo

Analisi. Calcolo Combinatorio. Ing. Ivano Coccorullo Analisi Ing. Ivano Coccorullo Prof. Ivano Coccorullo ü Molti dei problemi classici di calcolo delle probabilità si riducono al calcolo dei casi favorevoli e di quelli possibili. Quando le situazioni diventano

Dettagli

RADICALI QUADRATICI E NON Applicazione geometrica 1 (lato di un quadrato)

RADICALI QUADRATICI E NON Applicazione geometrica 1 (lato di un quadrato) RADICALI QUADRATICI E NON Applicazione geometrica 1 (lato di un quadrato) Se un quadrato ha l'area di 25 mq, qual è la misura del suo perimetro? E se l'area vale 30 mq? Table 1 Risoluzione 1 Poichè l'area

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

CORSO DI LAUREA IN MATEMATICA

CORSO DI LAUREA IN MATEMATICA CORSO DI LAUREA IN MATEMATICA ESERCITAZIONI DI ANALISI MATEMATICA I BREVI RICHIAMI DELLA TEORIA DEI LIMITI. Confronto di infinitesimi. Sia A sottoinsieme di R, sia 0 punto di accumulazione di A nella topologia

Dettagli

Tema d esame del 15/02/12

Tema d esame del 15/02/12 Tema d esame del 15/0/1 Volendo aprire un nuovo locale, una catena di ristoranti chiede ad un consulente di valutare la posizione geografica ideale all interno di un centro abitato. A questo scopo, avvalendosi

Dettagli

ESERCIZI PROBABILITA E CALCOLO COMBINATORIO CON RISULTATI 1. P che estraendo a caso 1 carta da un mazzo di 52 sia una regina?

ESERCIZI PROBABILITA E CALCOLO COMBINATORIO CON RISULTATI 1. P che estraendo a caso 1 carta da un mazzo di 52 sia una regina? ESERCIZI PROBABILITA E CALCOLO COMBINATORIO CON RISULTATI 1. P che estraendo a caso 1 carta da un mazzo di 52 sia una regina? [4/52] 2. Estratta una Q, P che ad una seconda estrazione si presenti ancora

Dettagli

Sol. Dati del problema: P(M)=0.51 P(F)=1-0.51= 0.49 = P(non M) P(G M)=0.01 P(G F)=0.005

Sol. Dati del problema: P(M)=0.51 P(F)=1-0.51= 0.49 = P(non M) P(G M)=0.01 P(G F)=0.005 ES 1 La probabilità di una certa malattia genetica (G) è dell 1% nei neonati maschi (M) e dello 0.5% nelle neonate femmine (F). E noto che la probabilità che un neonato sia maschio è pari a 51%. Qual è

Dettagli

Campo di Variazione Costituisce la misura di

Campo di Variazione Costituisce la misura di Statistica2 22/09/2015 I Parametri di dispersione Campo di Variazione Costituisce la misura di PESO ALLA NASCITA DEI BOVINI matricola PESO SESSO 7 38,00 F 8 38,00 F 1 40,00 F 2 40,00 F 5 40,00 F 10 42,00

Dettagli

Esercizi svolti. risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale

Esercizi svolti. risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale Esercizi svolti 1. Matrici e operazioni fra matrici 1.1 Date le matrici 1 2 1 6 A = B = 5 2 9 15 6 risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale Osservazione iniziale: qualunque

Dettagli

a) Usando i seguenti livelli di significatività, procedere alla verifica di ipotesi, usando come ipotesi alternativa un'ipotesi unidirezionale:

a) Usando i seguenti livelli di significatività, procedere alla verifica di ipotesi, usando come ipotesi alternativa un'ipotesi unidirezionale: ESERCIZIO 1 Da studi precedenti, il responsabile del rischio di una grande banca sa che l'ammontare medio di denaro che deve essere corrisposto dai correntisti che hanno il conto scoperto è pari a 240.

Dettagli

Esercizi svolti sulla parabola

Esercizi svolti sulla parabola Liceo Classico Galilei Pisa - Classe a A - Prof. Francesco Daddi - 19 dicembre 011 Esercizi svolti sulla parabola Esercizio 1. Determinare l equazione della parabola avente fuoco in F(1, 1) e per direttrice

Dettagli

Errori cognitivi, probabilità e decisioni mediche nella diagnostica di laboratorio. M. Besozzi - IRCCS Istituto Auxologico Italiano

Errori cognitivi, probabilità e decisioni mediche nella diagnostica di laboratorio. M. Besozzi - IRCCS Istituto Auxologico Italiano Errori cognitivi, probabilità e decisioni mediche nella diagnostica di laboratorio M. Besozzi - IRCCS Istituto Auxologico Italiano L argomento... Errori cognitivi Il problema gnoseologico Dati, informazione

Dettagli

LEZIONI DI STATISTICA MEDICA

LEZIONI DI STATISTICA MEDICA LEZIONI DI STATISTICA MEDICA A.A. 2010/2011 - Distribuzione binomiale - Distribuzione Normale Sezione di Epidemiologia & Statistica Medica Università degli Studi di Verona DISTRIBUZIONI TEORICHE DI PROBABILITA

Dettagli

Esercizi sui sistemi di equazioni lineari.

Esercizi sui sistemi di equazioni lineari. Esercizi sui sistemi di equazioni lineari Risolvere il sistema di equazioni lineari x y + z 6 x + y z x y z Si tratta di un sistema di tre equazioni lineari nelle tre incognite x, y e z Poichè m n, la

Dettagli

Teorema del limite centrale TCL

Teorema del limite centrale TCL Teorema del limite centrale TCL Questo importante teorema della statistica inferenziale si applica a qualsiasi variabile aleatoria che sia combinazione lineare di N variabili aleatorie le cui funzioni

Dettagli

Anno 2. Sistemi di equazioni di secondo grado

Anno 2. Sistemi di equazioni di secondo grado Anno 2 Sistemi di equazioni di secondo grado 1 Introduzione In questa lezione verrà data una definizione di sistema di equazioni di secondo grado, verrà illustrata la loro risoluzione e le applicazioni.

Dettagli

Scopo della trigonometria è la risoluzione di un triangolo a partire da un numero minimo di informazioni sul triangolo steso che come sappiamo è 3.

Scopo della trigonometria è la risoluzione di un triangolo a partire da un numero minimo di informazioni sul triangolo steso che come sappiamo è 3. MODULO 3 LEZIONE 3 parte 2 Trigonometria: La risoluzione dei triangoli. Scopo della trigonometria è la risoluzione di un triangolo a partire da un numero minimo di informazioni sul triangolo steso che

Dettagli

Vettori e matrici. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Vettori e matrici. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Vettori e matrici Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utentiunifeit/lorenzopareschi/ lorenzopareschi@unifeit Lorenzo Pareschi Univ Ferrara

Dettagli

Anno 3 Equazione dell'ellisse

Anno 3 Equazione dell'ellisse Anno Equazione dell'ellisse 1 Introduzione In questa lezione affronteremo una serie di problemi che ci chiederanno di determinare l equazione di un ellisse sotto certe condizioni. Al termine della lezione

Dettagli

ESPONENZIALI E LOGARITMI. chiameremo logaritmica (e si legge il logaritmo in base a di c è uguale a b ).

ESPONENZIALI E LOGARITMI. chiameremo logaritmica (e si legge il logaritmo in base a di c è uguale a b ). ESPONENZIALI E LOGARITMI Data una espressione del tipo a b = c, che chiameremo notazione esponenziale (e dove a>0), stabiliamo di scriverla anche in un modo diverso: log a c = b che chiameremo logaritmica

Dettagli

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI Assumiamo come primitivo il concetto di insieme e quello di appartenenza di un elemento a un insieme. La notazione x A indica

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. 5.5 esercizi 9 Per trovare la seconda equazione ragioniamo così: la parte espropriata del primo terreno è x/00, la parte espropriata del secondo è y/00 e in totale sono stati espropriati 000 m, quindi

Dettagli

Esercitazioni di Statistica Matematica A Lezioni 4-5. Calcolo combinatorio

Esercitazioni di Statistica Matematica A Lezioni 4-5. Calcolo combinatorio Esercitazioni di Statistica Matematica A Lezioni -5 Calcolo combinatorio 1.1) Un treno ha n carrozze, sulla banchina della stazione vi sono r passeggeri (r n). Se i passeggeri scelgono a caso ed indipendentemente

Dettagli

Corsi di Laurea in Matematica Probabilità I Anno Accademico 2012-2013 5 giugno 2013

Corsi di Laurea in Matematica Probabilità I Anno Accademico 2012-2013 5 giugno 2013 Corsi di Laurea in Matematica Probabilità I Anno Accademico 2012-201 5 giugno 201 L uso di calcolatrici o testi non è consentito. Motivare chiaramente i procedimenti e i risultati proposti. Rispondere

Dettagli

GIOCHI, STRATEGIE DOMINATE e CONOSCENZA COMUNE

GIOCHI, STRATEGIE DOMINATE e CONOSCENZA COMUNE GIOCHI, STRATEGIE DOMINATE e CONOSCENZA COMUNE C è un modo ovvio per predire come saranno giocati i seguenti giochi? Example 1 D E F A 4 3 5 1 6 B 1 8 4 3 6 C 3 0 9 6 8 Fissiamo la nostra attenzione sul

Dettagli

Rilevazione degli apprendimenti

Rilevazione degli apprendimenti Rilevazione degli apprendimenti Anno Scolastico 00-0 PROVA DI MATEMATICA Scuola secondaria di II grado Classe... Studente... Simulazioni di prove costruite secondo il Quadro di riferimento Invalsi pubblicato

Dettagli

x 2 + (x+4) 2 = 20 Alle equazioni di secondo grado si possono applicare i PRINCIPI di EQUIVALENZA utilizzati per le EQUAZIONI di PRIMO GRADO.

x 2 + (x+4) 2 = 20 Alle equazioni di secondo grado si possono applicare i PRINCIPI di EQUIVALENZA utilizzati per le EQUAZIONI di PRIMO GRADO. EQUAZIONI DI SECONDO GRADO Un'equazione del tipo x 2 + (x+4) 2 = 20 è un'equazione DI SECONDO GRADO IN UNA INCOGNITA. Alle equazioni di secondo grado si possono applicare i PRINCIPI di EQUIVALENZA utilizzati

Dettagli

Esercizio assegnato in data 28 novembre

Esercizio assegnato in data 28 novembre Esercizio assegnato in data 28 novembre Un commerciante all ingrosso acquista articoli da regalo a 10 al pezzo. Su tutta la merce acquistata, ottiene uno sconto del 10% sul prezzo d acquisto, se ordina

Dettagli

Potenze - Monomi - Polinomi - Operazioni tra Polinomi - Quadrato e Cubo del Binomio - Quadrato del Trinomio

Potenze - Monomi - Polinomi - Operazioni tra Polinomi - Quadrato e Cubo del Binomio - Quadrato del Trinomio Potenze - Monomi - Polinomi - Operazioni tra Polinomi - Quadrato e Cubo del Binomio - Quadrato del Trinomio Francesco Zumbo www.francescozumbo.it http://it.geocities.com/zumbof/ Questi appunti vogliono

Dettagli

Disequazioni - ulteriori esercizi proposti 1

Disequazioni - ulteriori esercizi proposti 1 Disequazioni - ulteriori esercizi proposti Trovare le soluzioni delle seguenti disequazioni o sistemi di disequazioni:. 5 4 >. 4. < 4. 4 9 5. 9 > 6. > 7. < 8. 5 4 9. > > 4. < 4. < > 9 4 Non esitate a comunicarmi

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle probabilità Il calcolo delle probabilità è presupposto essenziale per il processo di inferenza statistica. In realtà il calcolo delle probabilità è una disciplina a sé stante: inizialmente

Dettagli

Lezioni da Matematica I Calcolo differenziale, Algebra lineare, Probabilità e statistica G. Aletti & G. Naldi & L. Pareschi

Lezioni da Matematica I Calcolo differenziale, Algebra lineare, Probabilità e statistica G. Aletti & G. Naldi & L. Pareschi Lezioni da Matematica I Calcolo differenziale, Algebra lineare, Probabilità e statistica G. Aletti & G. Naldi & L. Pareschi http://www.ateneonline.it/naldi matematica McGraw-Hill Capitolo 12, Modelli Probabilistici

Dettagli

Anno 2. Risoluzione di sistemi di primo grado in due incognite

Anno 2. Risoluzione di sistemi di primo grado in due incognite Anno Risoluzione di sistemi di primo grado in due incognite Introduzione In questa lezione impareremo alcuni metodi per risolvere un sistema di due equazioni in due incognite. Al termine di questa lezione

Dettagli

04 - Numeri Complessi

04 - Numeri Complessi Università degli Studi di Palermo Scuola Politecnica Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2015/2016 M. Tumminello,

Dettagli

ha come obiettivo quello di costruire a partire da A una matrice U, m n, che abbia il

ha come obiettivo quello di costruire a partire da A una matrice U, m n, che abbia il Facoltà di Scienze Statistiche, Algebra Lineare 1 A, G.Parmeggiani LEZIONE 6 Eliminazione di Gauss con scambi di righe Sia A O una matrice m n. Abbiamo illustrato nella Lezione 5 un algoritmo che ha come

Dettagli

(b) m è pari oppure n è pari (c) m è pari e n è dispari oppure, viceversa, m è dispari e n è pari (d) m è dispari oppure n è dispari

(b) m è pari oppure n è pari (c) m è pari e n è dispari oppure, viceversa, m è dispari e n è pari (d) m è dispari oppure n è dispari (1) Quante soluzioni reali ha l equazione 5 2x = 4(5 x 1)? (a) una (b) due (c) infinite (d) nessuna (e) non si può dire (2) Da un urna contenente 90 palline numerate se ne estraggono due, ed escono i numeri

Dettagli

COMPLETAMENTO DI SPAZI METRICI

COMPLETAMENTO DI SPAZI METRICI COMPLETAMENTO DI SPAZI METRICI 1. Successioni di Cauchy e spazi metrici completi Definizione 1.1. Una successione x n n N a valori in uno spazio metrico X, d si dice di Cauchy se, per ogni ε > 0 esiste

Dettagli

ESERCITAZIONE 3 : PERCENTUALI

ESERCITAZIONE 3 : PERCENTUALI ESERCITAZIONE 3 : PERCENTUALI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: Lunedi 14-17 Dipartimento di Matematica, piano terra, studio 114 22 Ottobre 2013 Esercizio 1 Nel 2006,

Dettagli

In molte applicazioni sorge il problema di sapere in quanti modi possibili si può presentare un certo fenomeno.

In molte applicazioni sorge il problema di sapere in quanti modi possibili si può presentare un certo fenomeno. Definizione Oggetto del calcolo combinatorio è quello di determinare il numero dei modi mediante i quali possono essere associati, secondo prefissate regole, gli elementi di uno stesso insieme o di più

Dettagli

Capitolo 9. Esercizio 9.1. Esercizio 9.2

Capitolo 9. Esercizio 9.1. Esercizio 9.2 Capitolo 9 Esercizio 9.1 Considerare lo relazione in figura 9.19 e individuare le proprietà della corrispondente applicazione. Individuare inoltre eventuali ridondanze e anomalie nella relazione. Docente

Dettagli

( x) Definizione: si definisce dominio (o campo di esistenza) di una funzione f ( x) l insieme dei valori

( x) Definizione: si definisce dominio (o campo di esistenza) di una funzione f ( x) l insieme dei valori Definizione: si definisce dominio (o campo di esistenza) di una funzione f ( ) l insieme dei valori che la variabile può assumere affinché la funzione f ( ) abbia significato. Vediamo di individuare alcune

Dettagli

Statistica. Esercitazione 10. Alfonso Iodice D Enza iodicede@unicas.it. Università degli studi di Cassino. Statistica. A. Iodice. V.C.

Statistica. Esercitazione 10. Alfonso Iodice D Enza iodicede@unicas.it. Università degli studi di Cassino. Statistica. A. Iodice. V.C. uniforme Bernoulli binomiale di Esercitazione 10 Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () 1 / 55 Outline uniforme Bernoulli binomiale di 1 uniforme 2 Bernoulli 3 4

Dettagli

C I R C O N F E R E N Z A...

C I R C O N F E R E N Z A... C I R C O N F E R E N Z A... ESERCITAZIONI SVOLTE 3 Equazione della circonferenza di noto centro C e raggio r... 3 Equazione della circonferenza di centro C passante per un punto A... 3 Equazione della

Dettagli

1 Relazione di congruenza in Z

1 Relazione di congruenza in Z 1 Relazione di congruenza in Z Diamo ora un esempio importante di relazione di equivalenza: la relazione di congruenza modn in Z. Definizione 1 Sia X = Z, a,b Z ed n un intero n > 1. Si dice a congruo

Dettagli

Triangolo rettangolo

Triangolo rettangolo Dato il triangolo rettangolo Possiamo perciò utilizzare angoli). Progetto Matematica in Rete Triangolo rettangolo OPA sappiamo che: PA cateto sen OP cos tg OA cateto OP PA cateto OA cateto opposto ad ipotenusa

Dettagli