GRID - Tecniche di generazione di griglia. MOX. GRID - Tecniche di generazione di griglia p. 1/3

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "GRID - Tecniche di generazione di griglia. MOX. GRID - Tecniche di generazione di griglia p. 1/3"

Transcript

1 GRID - Tecniche di generazione di griglia MOX GRID - Tecniche di generazione di griglia p. 1/3

2 Contenuti della lezione Requisiti di base di una griglia computazionale Tipologie di griglie per elementi finiti. Griglie strutturate Griglie non strutturate Rassegna di tecniche di generazione di griglia Griglie strutturate Griglie non strutturate 1. Triangolazioni di Delaunay 2. Metodi di avanzamento del fronte 3. QuadTree/OctTree Tecniche per il controllo della dimensione degli elementi di griglia (cenni). GRID p. 2/3

3 # &! #! % $ " Processo di triangolazione del dominio (p.es. affine) poliedro mappa continua ed invertibile Ω Ω h Dominio Dominio Computazionale ( ) GRID p. 4/3

4 In sostanza, una mesh è data (in termini di strutture dati) da: un insieme (vettore) di coordinate di nodi; una tabella (o una legge) di connettività che stabilisce quali nodi costituiscono ciascun elemento; altre informazioni utili (lista di spigoli, lista di facce - in 3D -, codici numerici per l identificazione delle diverse parti di bordo,...). Definizione: Identifichiamo con: il diametro del cerchio (o sfera) circoscritto all elemento il diametro del cerchio (o sfera) inscritto all elemento ; (sfericità). h K h K ρ K ρ K Poniamo: il valore rappresentativo della taglia della griglia GRID p. 5/3

5 Requisiti (necessari e utili) di una triangolazione Una griglia deve descrivere correttamente il dominio fisico Deve rappresentare bene il bordo esterno o eventuali bordi interni (interfacce) L approssimazione di bordi curvi può essere fatta: 1. rettificandoli 2. usando elementi iso-parametrici (vd. IMPL.3) In termini formali: La reticolazione deve essere coerente ( dell elemento ): parte interna 1., 2.,, 3., con e, allora è un intero lato o un vertice della griglia (defi nizione univoca di ogni ente geometrico) GRID p. 6/3

6 Il requisito n. 3 impone che alle interfacce non ci siano crisi di identità : un punto o è parte di uno spigolo o è un vertice per tutti gli elementi sul cui bordo si trova quel punto. Sinistra:griglia conforme, destra: griglia non conforme Una griglia che soddisfa il vincolo n. 3 si dice conforme. Tutta l analisi vista in questo corso si riferisce a elementi finiti conformi. In effetti, è possibile definire il metodo degli elementi finiti per griglie non conformi. In generale, non è necessario lavorare con tali griglie, a parte casi specifici. (es.: problemi eterogenei risolti con griglie diverse). GRID p. 7/3

7 La dimensione deve essere scelta opportunamente. Questo è un aspetto delicato: la teoria dice che più è piccolo e più la soluzione è accurata... ma anche computazionalmente costosa. La scelta ottimale di è in realtà una funzione della soluzione e pertanto variabile localmente, in genere con una distribuzione non nota a priori. La mesh non è un dato, ma un incognita del problema (M. Fortin - vd. ADAPT.) Gli elementi devono essere round, cioè non troppo schiacciati. Formalmente, questo si traduce in un vincolo su (mesh regolare): Esempio: Questo evita che vi siano elementi troppo schiacciati, ove l accuratezza della soluzione possa essere compromessa. a H d y c P b Nel nodo. La derivata la soluzione ha un valore in sarà che dipende (nel caso di EF lineari) dai valori essendo l altezza del triangolo. Se non c è controllo su, il valore della derivata può essere arbitrariamente grande. Un eccezione è rappresentata da forme di anisotropia chirurgica, imposta per seguire meglio la soluzione. e GRID p. 8/3

8 Esempio di griglie 2D anisotrope Simulazione della concentrazione di Ossigeno nel sangue velocità concentraz. GRID p. 9/38

9 Griglia con adattazione anisotropa: L. Formaggia, S. Perotto and P. Zunino, Comput. Visual. Sci, 4: (2001) GRID p. 10/38

10 Tipi di griglie per elementi finiti Le griglie per elementi finiti si distinguono per: La geometria dell elemento di riferimento quadrato, tetraedro, esaedro, prisma,...); (triangolo, Il tipo di mappa adottata, per esempio affine, isoparametrica, transfinita. La topologia : griglie strutturate, non strutturate, ibride. GRID p. 11/3

11 Griglie strutturate Una griglia di elementi finiti si dice strutturata quando la numerazione dei nodi appartenenti a ciascun elemento può essere ottenuta attraverso semplici operazioni algebriche: i i+1 i i+n i+n+1 Vantaggi È possibile scrivere algoritmi più efficienti sfruttando l indirizzamento diretto alle variabili in memoria. Svantaggi È difficile generare griglie di buona qualità su configurazioni geometriche molto complesse. Non si prestano ad addensamenti locali di nodi di griglia (adattività di griglia). GRID p. 12/3

12 Esempio di griglia strutturata GRID p. 13/3

13 Griglie Strutturate Multiblocco Per rimediare in parte alle limitazioni geometriche delle griglie strutturate si ricorre talvolta a griglie strutturate a blocchi, o multiblocco, ottenute partizionando a priori il dominio in sottodominii (blocchi) di geometria più semplice e utilizzando una griglia strutturata in ciascun blocco. Svantaggi La gestione efficiente dei sottodominii e delle loro interconnessioni richiede strutture dati complesse. La suddivisione in blocchi è difficilmente automatizzabile. GRID p. 14/3

14 Esempi di griglie multiblocco GRID p. 15/3

15 Esempi di griglie multiblocco GRID p. 15/3

16 Griglie non strutturate L accesso ai dati associati ai nodi di un elemento richiede un indirizzamento indiretto, tramite la matrice delle connettività Matrice di.... k > i, j, l.. connettivita l k i j Vantaggi Alta flessibilità geometrica. Possibilità di addensare localmente i nodi di griglia. Elevata automatizzazione del processo di generazione. Svantaggi Maggiore utilizzo di memoria rispetto alle griglie strutturate, dovendo memorizzare la matrice delle connettività. Minore efficienza a causa degli indirizzamenti indiretti. GRID p. 16/38

17 Esempi di griglie non strutturate GRID p. 17/3

18 Griglie ibride Si parla di griglie ibride quando si usano contemporaneamente elementi di geometria diversa. GRID p. 18/3

19 Griglie ibride Si parla di griglie ibride quando si usano contemporaneamente elementi di geometria diversa. GRID p. 18/3

20 Generazione di mesh strutturate Idea di base: Costruire una mappa fra il quadrato (o cubo) di riferimento ( ) e il dominio fisico. 1 0 Ω 1 Ω Attenzione: la mappa, in generale, non è unica: come costruirla? quale scegliere? la reticolazione mappata dal dominio di riferimento non è in generale ottimale nel dominio fisico si rischia di costruire elementi con lati curvi (se la mappa non è lineare): in pratica, la mappa è applicata solo ai vertici della reticolazione, non agli spigoli. GRID p. 19/3

21 Un esempio Primo passo: costruzione di 4 curve parametriche orientate bordo, ove l ascissa curvilinea varia fra 0 e 1. per descrivere il y^ (0,1) (1,1) 3 g 3 (s) ^ 4 Ω 2 g 4 (s) Ω g 2 (s) 1 (0,0) (1,0) ^x g 1 (s) Queste curve non devono necessariamente essere regolari, potendo in questo modo catturare gli spigoli poligonali (vd. spigolo indicato con ). GRID p. 20/3

22 Secondo passo: costruzione della mappa fra reticolo di riferimento e dominio fisico. Ad esempio, dette le coordinate del dominio fisico, si risolve: con le condizioni al bordo: g 3 (s) g 2 (s) g 4 (s) Ω g 1 (s) Accorgimenti specifici possono essere necessari per domini non convessi (modifica dell equazione per il calcolo della mappa, decomposizione dei domini, ecc.) GRID p. 21/38

23 Calcolo di mesh non strutturate (I) Per il momento, consideriamo il caso bidimensionale. Triangolazioni di Delaunay (triangoli) DEFINIZIONE: lo spigolo di una triangolazione è detto di Delaunay se esiste una circonferenza sulla quale stiano i due vertici dello spigolo e all interno della quale non cadano altri vertici; un triangolo di altri vertici di. è detto di Delaunay se la circonferenza circoscritta non contiene K P A sinistra, Griglia di Delaunay, a destra griglia NON Delaunay. Una griglia di tutti triangoli di Delaunay ha anche tutti spigoli di Delaunay e viceversa. Parleremo genericamente di griglie di Delaunay. GRID p. 22/3

24 PROPRIETÀ: dato un insieme di vertici, la griglia di Delaunay associata è unica (a meno di equivalenze); l unione dei triangoli di Delaunay è la figura convessa di area minima che racchiuda l insieme di punti dato; la triangolazione di Delaunay massimizza il minimo angolo dei triangoli della griglia (proprietà di regolarità max-min). OSSERVAZIONI: il calcolo della mesh di Delaunay è un problema ben posto (esistenza e unicità della soluzione); la proprietà di max-min ne motiva la ricerca per via della regolarità; nella pratica, l area che racchiude l insieme di punti dato è assegnata, essendo il dominio fisico; questo richiede l uso di opportune modifiche alle definizioni e metodi relativi a Delaunay, che tengano conto dei vincoli dati dai bordi esterni (Constrained Delaunay Triangulation). GRID p. 23/3

25 Un algoritmo semplice: FLIP (1) Assegnato un set di punti, si analizza ogni spigolo: (2) si verifica una condizione di Delaunay locale Locale significa che si verifica solo per i vertici dei triangoli che condividono lo spigolo. (3) se la condizione di Delaunay non è verificata, si procede al FLIP dello spigolo A B C D A C B D FLIP Si dimostra che: la creazione di una griglia in cui ogni spigolo è di Delaunay è un processo a terminazione finita (al max, operazioni, ove è il numero di nodi) una griglia in cui ogni spigolo è localmente di Delaunay, è globalmente di Delaunay. GRID p. 24/3

26 Il caso 3D Il caso 3D è più complicato: basti pensare che per un arbitrario set di punti nel piano è sempre possibile trovare una triangolazione. Nello spazio, non è detto che si possa costruire una tetraedralizzazione: può essere necessario introdurre nodi in più. In particolare: la definzione di triangolazione di Delaunay si estende anche ai tetraedri; la proprietà max min NON si estende al caso 3D: una reticolazione di Delaunay può avere elementi degeneri piatti (slivers); l algoritmo FLIP NON funziona in 3D; Nonostante la mancanza di garanzie, molta ricerca si è fatta per algoritmi per griglie di Delaunay in 3D. Fra gli altri, ricordiamo: 1. algoritmo di Lawson (una sorta di flip incrementale adattato al caso 3D) 2. algoritmi gift-wrapping 3. algoritmo di Bowyer/Watson GRID p. 25/3

27 Calcolo di mesh non strutturate (II) Metodi di Avanzamento del Fronte Si tratta di tecniche in 2D e 3D per griglie triangolari/tetraedriche o quadrilatere/prismatiche. Si basano su una griglia del bordo che fa da fronte iniziale. Iterativamente, l algoritmo procede come segue: 1. sceglie un lato sul quale far avanzare il fronte (in base alle richieste di finezza imposte dall utente). Fronte Nuovo Fronte Nuovo Nodo Lato scelto 2. decide se aggiungere un nuovo nodo o usare nodi precedenti. 3. sceglie i nodi per nuove connessioni (front advancing). OSSERVAZIONI: la ricerca dei nodi vicini va effettuata in modo furbo, altrimenti il costo computazionale cresce rapidamente il metodo può essere usato in combinazione con i metodi di Delaunay. GRID p. 27/3

28 Calcolo di mesh non strutturate (III) QuadTree/OctTree QUADTREE è una struttura dati per ricorrenza molto efficiente per memorizzare oggetti geometrici in 2D. In 3D, il suo equivalente si chiama OCTTREE. Si basa essenzialmente su una ripartizione cartesiana del piano: dalla struttura root (l intero dominio) si procede per bisezione. Esempio: Algoritmo di Bern: si parte da un insieme di punti e segmenti si esegue una ripartizione QuadTree che isola i segmenti si adatta la ripartizione QuadTree in modo che i vertici QuadTree coincidano con i vertici della griglia GRID p. 28/3

29 Tecniche di regolarizzazione Dopo avere generato la griglia, si possono usare tecniche di regolarizzazione per il suo miglioramento qualitativo. Si tratta di tecniche iterative essenzialmente basate su due approcci: 1. scambio delle diagonali: è lo stesso approccio dell algoritmo FLIP, che, infatti, garantiva regolarità in virtù del principio max-min; 2. spostamento locale dei nodi (baricentrizzazione): selezionato un patch di elementi, si sposta il vertice centrale nel baricentro (eventualmente pesato) del patch Sinistra: griglia non regolarizzata; Destra: griglia regolarizzata. GRID p. 29/3

30 Controllo della spaziatura di griglia Un aspetto importante nella generazione ed adattazione di griglia è il controllo della densità dei nodi di griglia. Come detto, griglie non uniformi possono essere usate per addensare i nodi di griglia (e quindi i gradi di libertà) nelle zone dove si richiede una migliore risoluzione numerica. Esse possono anche essere il risultato della applicazione di tecniche di adattazione di griglia (lez. ADAPT). Ci proponiamo di fornire un framework concettuale per il controllo della spaziatura di una griglia, presentando in dettaglio il caso monodimensionale e limitandoci a fornire esempi per il più complesso caso multidimensionale. GRID p. 30/3

31 Controllo spaziatura griglia 1D (I) h K x 0 0 x K x K+1 L x Nh Sia data una partizione (griglia) di e sia,., di vertici, Definiamo la seguente funzione PROPRIETÀ : per tutti i nodi si ha l identità GRID p. 31/3

32 Controllo spaziatura griglia 1D (II) Vediamo come possiamo usare questa proprietà per controllare la distribuzione dei nodi di una griglia. Sia data una funzione, limitata (che chiameremo spaziatura) e sia (che chiameremo densità di griglia). Possiamo associare ad essa la griglia i cui vertici abbiano coordinate che soddisfino ( indica l intero positivo più vicino a ) con e Un algoritmo di generazione può essere il seguente. Calcolo e, usando una formula di quadratura per il calcolo dell integrale. Risolvo il problema differenziale ordinario per esempio usando la funzione ode45 di Matlab. Identifico, per esempio usando la funzione interp1 di Matlab, i punti per cui., GRID p. 32/3

33 Esempi di griglie 1D a spaziatura variabile Griglia generata in 60, con. 50 nodi densita 0.1+exp(x) GRID p. 33/3

34 Esempi di griglie 1D a spaziatura variabile Griglia generata in 11, con densita cos(πx) griglia GRID p. 34/3

35 Estensione al caso multidimensionale Il concetto di densità di griglia può essere esteso facilmente alla triangolazione di un dominio multidimensionale. Esempio: e. Griglia prodotta con il codice BAMG. Funzione di Spaziatura h GRID p. 35/38

36 Estensione al caso multidimensionale Nel caso multidimensionale può essere importante controllare non solo il diametro degli elementi, ma anche il loro fattore di forma, dando luogo alle cosidette griglie anisotrope. Questo si può fare introducendo il concetto di metrica di griglia, che generalizza quello, già introdotto, di spaziatura. L argomento esula da queste note, più dettagli sono reperibili, per esempio, in P. Frey, P.-L. George, Mesh Generation. Application to finite elements. λ 1,K K^ r TK K r 1,K r 2,K 1 λ 2,K GRID p. 36/3

37 Esempio di griglie 2D con spaziatura anisotropa Griglia a spaziatura variabile e con controllo dell aspetto di forma degli elementi (si è usato il codice BAMG). A destra è riprodotto un ingrandimento che mostra come sia possibile generare elementi allungati lungo direzioni predefinite. GRID p. 37/38

Triangolazione di Delaunay

Triangolazione di Delaunay Triangolazione di Delaunay Francesco Visentin Dottorato di Ricerca in Informatica - XXVIII Ciclo Università degli Studi di Verona 13 Maggio 2013 Triangolazione Presentazione Divisione di una superficie

Dettagli

Curve e lunghezza di una curva

Curve e lunghezza di una curva Curve e lunghezza di una curva Definizione 1 Si chiama curva il luogo geometrico dello spazio di equazioni parametriche descritto da punto p, chiuso e limitato. Definizione 2 Si dice che il luogo C è una

Dettagli

Introduzione al Metodo agli Elementi Finiti (FEM) (x, y) Γ Tale formulazione viene detta Formulazione forte del problema.

Introduzione al Metodo agli Elementi Finiti (FEM) (x, y) Γ Tale formulazione viene detta Formulazione forte del problema. Introduzione al Metodo agli Elementi Finiti (FEM) Consideriamo come problema test l equazione di Poisson 2 u x 2 + 2 u = f(x, y) u = f y2 definita su un dominio Ω R 2 avente come frontiera la curva Γ,

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dott.ssa M.C. De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Risoluzione di Equazioni Algebriche Le equazioni

Dettagli

Argomenti Capitolo 1 Richiami

Argomenti Capitolo 1 Richiami Argomenti Capitolo 1 Richiami L insieme dei numeri reali R si rappresenta geometricamente con l insieme dei punti di una retta orientata su cui sia stato fissato un punto 0 e un segmento unitario. L insieme

Dettagli

Modellizzazione di dati geografici

Modellizzazione di dati geografici Paolo Zatelli Dipartimento di Ingegneria Civile e Ambientale Università di Trento 1/51 Dato geografico aspetto spaziale (geometria/topologia) coordinate+primitive geometriche (sist. di rif.+proiez.+scala

Dettagli

Cenni sui metodi iterativi per sistemi lineari. Analisi Numerica Prof. M. Lucia Sampoli a.a. 2014/2015

Cenni sui metodi iterativi per sistemi lineari. Analisi Numerica Prof. M. Lucia Sampoli a.a. 2014/2015 Cenni sui metodi iterativi per sistemi lineari Analisi Numerica Prof. M. Lucia Sampoli a.a. 2014/2015 Metodi numerici per sistemi lineari Nei metodi diretti la presenza di eventuali elementi nulli nella

Dettagli

Generazione di una mesh rettangolare

Generazione di una mesh rettangolare Generazione di una mesh rettangolare asse y Lunghezza F2 (x0,y0) Lunghezza F1 asse x Sia dato un dominio rettangolare di base F1 e altezza F2, costruito a partire dal punto indicato come (X0, Y 0). 1 Vogliamo

Dettagli

Triangolazione di Delaunay. Confronto raster GRID - TIN. Applicazioni di un TIN

Triangolazione di Delaunay. Confronto raster GRID - TIN. Applicazioni di un TIN I N D I C E Il modello TIN Componenti di un TIN Triangolazione di Delaunay Confronto raster GRID - TIN Applicazioni di un TIN CdL Riassetto del Territorio e Tutela del Paesaggio Università degli Studi

Dettagli

Nucleo Fondante Competenze-Conoscenze-Abilità Contenuti Metodi Materiali - Strumenti Raccordi disciplinari

Nucleo Fondante Competenze-Conoscenze-Abilità Contenuti Metodi Materiali - Strumenti Raccordi disciplinari Nucleo Fondante Competenze-Conoscenze-Abilità Contenuti Metodi Materiali - Strumenti Raccordi disciplinari NUMERI Concetto di insieme e sua rappresentazione Operazioni con gli insiemi Eseguire le quattro

Dettagli

8 Metodi iterativi per la risoluzione di sistemi lineari

8 Metodi iterativi per la risoluzione di sistemi lineari 8 Metodi iterativi per la risoluzione di sistemi lineari È dato il sistema lineare Ax = b con A R n n e x, b R n, con deta 0 Si vogliono individuare dei metodi per determinarne su calcolatore la soluzione,

Dettagli

Fluidodinamica delle Macchine

Fluidodinamica delle Macchine Lucidi del corso di Fluidodinamica delle Macchine Capitolo II-1b: Discretizzazione del Dominio Fisico/Computazionale Griglie di tipo Ibrido (Non Strutturate) Prof. Simone Salvadori La discretizzazione

Dettagli

PROGRAMMAZIONE DI MATEMATICA 2016/2017

PROGRAMMAZIONE DI MATEMATICA 2016/2017 PROGRAMMAZIONE DI MATEMATICA 2016/2017 PRIMA CLASSE ARITMETICA Il sistema di numerazione decimale Leggere e scrivere i numeri interi e decimali Riconoscere il valore posizionale delle cifre in un numero

Dettagli

Discretizzazione in ambito CFD. Corso Macchine per fonti rinnovabili

Discretizzazione in ambito CFD. Corso Macchine per fonti rinnovabili Discretizzazione in ambito CFD Corso Macchine per fonti rinnovabili Equazioni del moto fluido v x i i 0 v v p i i v F j i t v v j i Euler; Principia motus fluidorum, 1755...in queste equazioni e nella

Dettagli

Problemi di massimo e minimo

Problemi di massimo e minimo Problemi di massimo e minimo Supponiamo di avere una funzione continua in Per il teorema di Weierstrass esistono il massimo assoluto M e il minimo assoluto m I problemi di massimo e minimo sono problemi

Dettagli

ISTITUTO TECNICO INDUSTRIALE G. FERRARIS

ISTITUTO TECNICO INDUSTRIALE G. FERRARIS ISTITUTO TECNICO INDUSTRIALE G. FERRARIS EMPOLI PIANO DI LAVORO PROF. BICCI ANDREA CONSIGLIO DI CLASSE 3 SEZ. B Informatica INDIRIZZO INFORMATICO ANNO SCOLASTICO 2015-2016 MATERIE MATEMATICA (tre ore settimanali)

Dettagli

I teoremi della funzione inversa e della funzione implicita

I teoremi della funzione inversa e della funzione implicita I teoremi della funzione inversa e della funzione implicita Appunti per il corso di Analisi Matematica 4 G. Mauceri Indice 1 Il teorema della funzione inversa 1 Il teorema della funzione implicita 3 1

Dettagli

FemCode: libreria Matlab per FEM

FemCode: libreria Matlab per FEM FemCode: libreria Matlab per FEM F. Zama Caratteristiche generali Codici matlab per gli esempi trattati in: Understanding and Implementing the Finite Element Method by Mark S. Gockenbach (SIAM, 2006) Nel

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

Geometria euclidea. Alessio del Vigna

Geometria euclidea. Alessio del Vigna Geometria euclidea Alessio del Vigna La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione sono il punto,

Dettagli

Soluzione facsimile 2 d esame di geometria - Ingegneria gestionale - a.a ISTRUZIONI

Soluzione facsimile 2 d esame di geometria - Ingegneria gestionale - a.a ISTRUZIONI Soluzione facsimile d esame di geometria - Ingegneria gestionale - a.a. 00-004 COGNOME......................................... NOME......................................... N. MATRICOLA................

Dettagli

1 Schemi alle differenze finite per funzioni di una variabile

1 Schemi alle differenze finite per funzioni di una variabile Introduzione In questa dispensa vengono forniti alcuni elementi di base per la soluzione di equazioni alle derivate parziali che governano problemi al contorno. A questo scopo si introducono, in forma

Dettagli

DIEDRI. Un diedro è convesso se è una figura convessa, concavo se non lo è.

DIEDRI. Un diedro è convesso se è una figura convessa, concavo se non lo è. DIEDRI Si definisce diedro ciascuna delle due parti di spazio delimitate da due semipiani che hanno la stessa origine, compresi i semipiani stessi. I due semipiani prendono il nome di facce del diedro

Dettagli

Esercizi di geometria analitica negli spazi affini Giorgio Ottaviani

Esercizi di geometria analitica negli spazi affini Giorgio Ottaviani Esercizi di geometria analitica negli spazi affini Giorgio Ottaviani Percorse a cavallo duemila chilometri di steppa russa, superó gli Urali, entró in Siberia, viaggió per quaranta giorni fino a raggiungere

Dettagli

CURRICOLO DI ISTITUTO AREA MATEMATICA: MISURE, DATI, PREVISIONI SCUOLA SECONDARIA CLASSE I

CURRICOLO DI ISTITUTO AREA MATEMATICA: MISURE, DATI, PREVISIONI SCUOLA SECONDARIA CLASSE I CURRICOLO DI ISTITUTO AREA MATEMATICA: MISURE, DATI, PREVISIONI SCUOLA SECONDARIA CLASSE I Leggere e interpretare dati e Leggere e interpretare semplici rappresentazioni Elementi di statistica e rappresentazioni

Dettagli

COMPETENZE U.D.A. ABILITA CONTENUTI _ Saper operare con il sistema di numerazione decimale.

COMPETENZE U.D.A. ABILITA CONTENUTI _ Saper operare con il sistema di numerazione decimale. SCUOLA SECONDARIA DI 1 GRADO TOVINI CURRICOLO DI SCIENZE MATEMATICHE PER LA CLASSE PRIMA COMPETENZE U.D.A. ABILITA CONTENUTI _ Saper operare con il sistema di numerazione decimale. _Il concetto di insieme.

Dettagli

Rette e piani in R 3

Rette e piani in R 3 Rette e piani in R 3 In questa dispensa vogliamo introdurre in modo elementare rette e piani nello spazio R 3 (si faccia riferimento anche al testo Algebra Lineare di S. Lang). 1 Rette in R 3 Vogliamo

Dettagli

Metodi iterativi per sistemi lineari

Metodi iterativi per sistemi lineari Generare una successione di vettori Metodi iterativi per sistemi lineari convergente alla soluzione del sistema Convergenza in norma Costruzione di un metodo iterativo Per una qualche norma vettoriale

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Cover inequalities

Metodi e Modelli per l Ottimizzazione Combinatoria Cover inequalities Metodi e Modelli per l Ottimizzazione Combinatoria Cover inequalities L. De Giovanni M. Di Summa In questa lezione introdurremo una classe di disuguaglianze, dette cover inequalities, che permettono di

Dettagli

Geometria della programmazione lineare

Geometria della programmazione lineare Geometria della programmazione lineare poliedri punti estremi, vertici, soluzioni di base esistenza di punti estremi rif. Fi 3.1; BT 2.1, 2.2, 2.5 Iperpiani, semispazi Definizione Sia a un vettore non

Dettagli

Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre

Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre Geometria euclidea Alessio del Vigna Lunedì 15 settembre La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione

Dettagli

Teorema di Thevenin generalizzato

Teorema di Thevenin generalizzato Teorema di Thevenin generalizzato Si considerino due reti elettriche lineari, A e B, aventi rispettivamente N A e N B nodi interni. Esse si interfacciano attraverso n (n 3) fili di collegamento, in cui

Dettagli

Problema ( ) = 0,!

Problema ( ) = 0,! Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI Barlow Points In teoria potremmo valutare tensioni e deformazioni, o i gradienti per altri tipi di analisi, in qualsiasi punto interno all elemento. Tuttavia le tensioni e le deformazioni previste dal

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 3 - PROBLEMI DI INTERPOLAZIONE Introduzione Problemi di interpolazione Supponiamo di avere un insieme di dati che rappresentano misurazioni

Dettagli

Funzioni vettoriali di variabile scalare

Funzioni vettoriali di variabile scalare Capitolo 11 Funzioni vettoriali di variabile scalare 11.1 Curve in R n Abbiamo visto (capitolo 2) come la posizione di un punto in uno spazio R n sia individuata mediante le n coordinate di quel punto.

Dettagli

Superfici. V. Tibullo, rev.1, 04/04/2006.

Superfici. V. Tibullo, rev.1, 04/04/2006. uperfici. Tibullo, rev.1, 04/04/2006. 1 Integrali di superficie Consideriamo una superficie nello spazio tridimensionale R 3. Il concetto di superficie è noto dalla geometria elementare e non se ne darà

Dettagli

LA GEOMETRIA DELLO SPAZIO: CENNI DI TEORIA ED ESERCIZI

LA GEOMETRIA DELLO SPAZIO: CENNI DI TEORIA ED ESERCIZI LA GEOMETRIA DELLO SPAZIO: CENNI DI TEORIA ED ESERCIZI SPAZIO: l insieme di tutti i punti. PUNTI ALLINEATI: punti che appartengono alla stessa retta PUNTI COMPLANARI: punti che appartengono allo stesso

Dettagli

Geometria della programmazione lineare

Geometria della programmazione lineare Geometria della programmazione lineare poliedri punti estremi, vertici, soluzioni di base esistenza di punti estremi rif. Fi 3.1; BT 2.1, 2.2, 2.5 Iperpiani, semispazi Definizione Sia a un vettore non

Dettagli

PROGRAMMA DI MATEMATICA PER LA CLASSE 2^A DEL LICEO SCIENTIFICO MALPIGHI SEZIONE ASSOCIATA I.I.S

PROGRAMMA DI MATEMATICA PER LA CLASSE 2^A DEL LICEO SCIENTIFICO MALPIGHI SEZIONE ASSOCIATA I.I.S PROGRAMMA DI MATEMATICA PER LA CLASSE 2^A DEL LICEO SCIENTIFICO MALPIGHI SEZIONE ASSOCIATA I.I.S. VIA SILVESTRI ANNO SCOLASTICO 2015-2016 INSEGNANTE: MASCI ORNELLA ALGEBRA - Equazioni letterali fratte

Dettagli

Il Branch & Bound. Definizione 1. Sia S R n. La famiglia S = {S 1, S 2,..., S k S} tale che S 1 S 2 S k = S viene detta suddivisione di S.

Il Branch & Bound. Definizione 1. Sia S R n. La famiglia S = {S 1, S 2,..., S k S} tale che S 1 S 2 S k = S viene detta suddivisione di S. Il Branch & Bound Il metodo Branch & Bound è una tecnica che permette di risolvere all ottimo un generico problema di Programmazione Lineare Intera. Tale metodo si basa su due concetti cardine: quello

Dettagli

PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2013/2014 CLASSE 2ALS MATERIA: MATEMATICA

PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2013/2014 CLASSE 2ALS MATERIA: MATEMATICA PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2013/2014 CLASSE 2ALS MATERIA: MATEMATICA Strategie didattiche: Le lezioni frontali saranno associate a delle esperienze di laboratorio per accompagnare

Dettagli

Programmazione Lineare Intera: Piani di Taglio

Programmazione Lineare Intera: Piani di Taglio Programmazione Lineare Intera: Piani di Taglio Andrea Scozzari a.a. 2014-2015 April 22, 2015 Andrea Scozzari (a.a. 2014-2015) Programmazione Lineare Intera: Piani di Taglio April 22, 2015 1 / 23 Programmazione

Dettagli

Geometria euclidea dello spazio Presentazione n. 5 Poliedri Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia

Geometria euclidea dello spazio Presentazione n. 5 Poliedri Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia Geometria euclidea dello spazio Presentazione n. 5 Poliedri Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia Poliedri Un poliedro è un solido delimitato da una superficie formata da

Dettagli

Coverage. Visto che il coverage si basa su aree dell ambiente che vengono monitorate non è

Coverage. Visto che il coverage si basa su aree dell ambiente che vengono monitorate non è L. Pallottino, Sistemi Robotici Distribuiti - Versione del 10 Dicembre 2015 393 Coverage Si consideri ora il problema di coordinare una squadra di robot con dei sensori omnidirezionali in modo da garantire

Dettagli

CURRICOLO VERTICALE PER COMPETENZE DISCIPLINARI. Scuola Secondaria di Primo Grado Matematica -

CURRICOLO VERTICALE PER COMPETENZE DISCIPLINARI. Scuola Secondaria di Primo Grado Matematica - CURRICOLO VERTICALE PER COMPETENZE DISCIPLINARI Scuola Secondaria di Primo Grado Matematica - Classe Prima COMPETENZA CHIAVE EUROPEA: COMPETENZA MATEMATICA Profilo dello studente al termine del Primo ciclo

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 9 - EQUAZIONI DIFFERENZIALI ORDINARIE valori iniziali Valori iniziali Ci occuperemo della soluzione numerica di equazioni del prim ordine

Dettagli

Volumi in spazi euclidei 12 dicembre 2014

Volumi in spazi euclidei 12 dicembre 2014 Volumi in spazi euclidei 12 dicembre 2014 1 Definizioni In uno spazio euclideo reale V di dimensione n siano dati k n vettori linearmente indipendenti e sia Π := Π(v 1 v 2... v k ) il parallelepipedo generato

Dettagli

Corso di Informatica di Base

Corso di Informatica di Base Corso di Informatica di Base A.A. 2011/2012 Algoritmi e diagrammi di flusso Luca Tornatore Cos è l informatica? Calcolatore: esecutore di ordini o automa Programma: insieme di istruzioni che possono essere

Dettagli

Liceo Scientifico Statale Leonardo da Vinci Reggio Calabria. PROGRAMMA DI MATEMATICA Per la classe IV sez.d Anno scolastico 2012/13

Liceo Scientifico Statale Leonardo da Vinci Reggio Calabria. PROGRAMMA DI MATEMATICA Per la classe IV sez.d Anno scolastico 2012/13 Liceo Scientifico Statale Leonardo da Vinci Reggio Calabria PROGRAMMA DI MATEMATICA Per la classe IV sez.d Anno scolastico 2012/13 Modulo 1: Le coniche Geometria elementare retta e circonferenza nel piano

Dettagli

Massimo Bergamini, Graziella Barozzi - Matematica multimediale.azzurro con Tutor, Zanichelli

Massimo Bergamini, Graziella Barozzi - Matematica multimediale.azzurro con Tutor, Zanichelli Programma di Matematica Classe 1^ B/LL Anno scolastico 2016/2017 Testo Massimo Bergamini, Graziella Barozzi - Matematica multimediale.azzurro con Tutor, Zanichelli CAPITOLO 1: NUMERI NATURALI ORDINAMENTO

Dettagli

PROGRAMMAZIONE LINEARE E DUALITA'

PROGRAMMAZIONE LINEARE E DUALITA' PROGRAMMAZIONE LINEARE E DUALITA' 1) Dati i punti di R 2 (1, 2), (1, 4), (2, 3), (3, 5), (4, 1), (4, 2), (5, 5), (6, 2), (6, 5). Determinare graficamente: A - L'involucro convesso di tali punti. B - Quali

Dettagli

Istituto Tecnico Nautico San Giorgio - Genova - Anno scolastico PROGRAMMA SVOLTO DI MATEMATICA

Istituto Tecnico Nautico San Giorgio - Genova - Anno scolastico PROGRAMMA SVOLTO DI MATEMATICA Classe: 1 a C Libro di testo: Bergamini Trifone Barozzi Matematica verde vol. 1 ed. Zanichelli Insiemi Definizione di insieme, rappresentazione grafica, tabulare, caratteristica di un insieme Gli insiemi

Dettagli

Programmazione Lineare Intera

Programmazione Lineare Intera Programmazione Lineare Intera Andrea Scozzari a.a. 2012-2013 May 10, 2013 Andrea Scozzari (a.a. 2012-2013) Programmazione Lineare Intera May 10, 2013 1 / 16 Programmazione Lineare Intera: Metodo dei Piani

Dettagli

Poliedri regolari. - Le condizioni (a), (b) e (c) della definizione data non sono sovrabbondanti: Riferimenti bibliografici: (a) e (c) non (b)

Poliedri regolari. - Le condizioni (a), (b) e (c) della definizione data non sono sovrabbondanti: Riferimenti bibliografici: (a) e (c) non (b) Riferimenti bibliografici: Poliedri regolari - Forme Maria Dedò Ed. Zanichelli - Le condizioni (a), (b) e (c) della definizione data non sono sovrabbondanti: (a) e (c) non (b) Definizione: Un poliedro

Dettagli

Forme differenziali lineari e loro integrazione

Forme differenziali lineari e loro integrazione Forme differenziali lineari e loro integrazione Integrazione di una forma differenziale in due variabili Siano L(, ) e ( ) consideriamo l espressione M, due funzioni definite e continue in un insieme connesso

Dettagli

Il metodo di Galerkin Elementi Finiti Lineari

Il metodo di Galerkin Elementi Finiti Lineari Il metodo di Galerkin Elementi Finiti Lineari Si consideri il problema: u(x) = f(x), x (, ), u() = 0, u() = 0. Se ne fornisca la corrispondente formulazione debole. Si costruiscano inoltre la matrice di

Dettagli

CONVITTO NAZIONALE CARLO ALBERTO Scuole annesse: Primaria Secondaria I grado Liceo Scientifico

CONVITTO NAZIONALE CARLO ALBERTO Scuole annesse: Primaria Secondaria I grado Liceo Scientifico CONVITTO NAZIONALE CARLO ALBERTO Scuole annesse: Primaria Secondaria I grado Liceo Scientifico Baluardo Partigiani n 6 28100 - Novara Tel. 0321/620047 - Fax. 0321/620622 Email: novc010008@istruzione.it

Dettagli

ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI. (Visione 3D)

ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI. (Visione 3D) ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI () Calibrazione intrinseca Spesso risulta utile calibrare la sola componente intrinseca di un sistema di visione (matrice K), e non si dispone di oggetti di forma

Dettagli

I N F I N I T I T R I A N G O L I. (Tk) D I T A R T A G L I A. (possibili applicazioni in geometria (k + 2) - dimensionale)

I N F I N I T I T R I A N G O L I. (Tk) D I T A R T A G L I A. (possibili applicazioni in geometria (k + 2) - dimensionale) I N F I N I T I T R I A N G O L I (Tk) D I T A R T A G L I A (possibili applicazioni in geometria (k + 2) - dimensionale) Gruppo B. Riemann * Francesco Di Noto, Michele Nardelli *Gruppo amatoriale per

Dettagli

Metodi di Iterazione Funzionale

Metodi di Iterazione Funzionale Appunti di Matematica Computazionale Lezione Metodi di Iterazione Funzionale Il problema di calcolare il valore per cui F() = si può sempre trasformare in quello di trovare il punto fisso di una funzione

Dettagli

Corso di elettrotecnica Materiale didattico: i grafi

Corso di elettrotecnica Materiale didattico: i grafi Corso di elettrotecnica Materiale didattico: i grafi A. Laudani 12 ottobre 2005 I grafi costituiscono uno strumento matematico che permette di descrivere e schematizzare una grande varietà di problemi

Dettagli

SCUOLA PRIMARIA MATEMATICA (Classe 1ª)

SCUOLA PRIMARIA MATEMATICA (Classe 1ª) SCUOLA PRIMARIA MATEMATICA (Classe 1ª) Operare con i numeri nel calcolo scritto e mentale Leggere e scrivere numeri naturali in cifre e lettere. Contare in senso progressivo e regressivo. Raggruppare,

Dettagli

3.6 Metodi basati sui piani di taglio

3.6 Metodi basati sui piani di taglio 3.6 Metodi basati sui piani di taglio Problema generale di Programmazione Lineare Intera (PLI) con A matrice m n e b vettore n 1 razionali min{ c t x : x X = {x Z n + : Ax b} } Sappiamo che esiste una

Dettagli

3.3 FORMULAZIONE DEL MODELLO E CONDIZIONI DI

3.3 FORMULAZIONE DEL MODELLO E CONDIZIONI DI 3.3 FORMULAZIONE DEL MODELLO E CONDIZIONI DI ESISTENZA DI UN PUNTO DI OTTIMO VINCOLATO Il problema di ottimizzazione vincolata introdotto nel paragrafo precedente può essere formulato nel modo seguente:

Dettagli

Problemi, istanze, soluzioni

Problemi, istanze, soluzioni lgoritmi e Strutture di Dati II 2 Problemi, istanze, soluzioni Un problema specifica una relazione matematica tra dati di ingresso e dati di uscita. Una istanza di un problema è formata dai dati di un

Dettagli

Introduzione. Al termine della lezione sarai in grado di:

Introduzione. Al termine della lezione sarai in grado di: Anno 4 Prismi 1 Introduzione In questa lezione parleremo di un particolare poliedro detto prisma. Ne daremo una definizione generale e poi soffermeremo la nostra attenzione su alcuni prismi particolari.

Dettagli

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 12

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 12 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 12 PARTE SECONDA GEOMETRIA SOLIDA UNA PREMESSA Diversi esperti di Didattica della Matematica ritengono che l approccio migliore, per la

Dettagli

LE EQUAZIONI DIFFERENZIALI. che, insieme alle loro derivate, soddisfano un equazione differenziale.

LE EQUAZIONI DIFFERENZIALI. che, insieme alle loro derivate, soddisfano un equazione differenziale. LE EQUAZIONI DIFFERENZIALI I problemi incontrati fin ora nel corso di studi di matematica erano tutti di tipo numerico, cioè la loro risoluzione ha sempre portato alla determinazione di uno o più numeri

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

Geometria e Topologia I (U1-4) 2006-mag-10 61

Geometria e Topologia I (U1-4) 2006-mag-10 61 Geometria e Topologia I (U1-4) 2006-mag-10 61 (15.9) Teorema. Consideriamo il piano affine. Se A A 2 (K) è un punto e r una retta che non passa per A, allora esiste unica la retta per A che non interseca

Dettagli

PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2015/2016 CLASSE 2ALS MATERIA: MATEMATICA

PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2015/2016 CLASSE 2ALS MATERIA: MATEMATICA PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2015/2016 CLASSE 2ALS MATERIA: MATEMATICA Strategie didattiche: Le lezioni frontali saranno associate a delle esperienze di laboratorio per accompagnare

Dettagli

RUOLO DELLA MODELLAZIONE GEOMETRICA PARTE IN QUESTA LEZIONE E LIVELLI DI MODELLAZIONE. Prof. Daniele Regazzoni

RUOLO DELLA MODELLAZIONE GEOMETRICA PARTE IN QUESTA LEZIONE E LIVELLI DI MODELLAZIONE. Prof. Daniele Regazzoni RUOLO DELLA MODELLAZIONE GEOMETRICA E LIVELLI DI MODELLAZIONE PARTE 2 Prof. Daniele Regazzoni... IN QUESTA LEZIONE Modelli 2D/3D Modelli 3D/3D Dimensione delle primitive di modellazione Dimensione dell

Dettagli

LEZIONE 12. v = α 1 v α n v n =

LEZIONE 12. v = α 1 v α n v n = LEZIONE 12 12.1. Combinazioni lineari. Definizione 12.1.1. Sia V uno spazio vettoriale su k = R, C e v 1,..., v n V vettori fissati. Un vettore v V si dice combinazione lineare di v 1,..., v n se esistono

Dettagli

Programmazione lineare: basi e soluzioni di base

Programmazione lineare: basi e soluzioni di base Programmazione lineare:basi e soluzioni di base p. 1/33 Programmazione lineare: basi e soluzioni di base Mariantonia Cotronei Facoltà di Ingegneria Università degli Studi Mediterranea di Reggio Calabria

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Risoluzione di Equazioni Algebriche Le equazioni algebriche sono equazioni del tipo P(x) = 0 dove P è un polinomio di grado n cioé P(x) = a 1 x n + a 2 x n

Dettagli

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1. Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero

Dettagli

Inversa di una matrice

Inversa di una matrice Geometria Lingotto. LeLing: La matrice inversa. Ārgomenti svolti: Inversa di una matrice. Unicita e calcolo della inversa. La inversa di una matrice. Il gruppo delle matrici invertibili. Ēsercizi consigliati:

Dettagli

2. Coordinate omogenee e trasformazioni del piano

2. Coordinate omogenee e trasformazioni del piano . Coordinate omogenee e trasformazioni del piano Nella prima sezione si è visto come la composizione di applicazioni lineari e di traslazioni porta ad una scomoda combinazione di prodotti matriciali e

Dettagli

2.6 Calcolo degli equilibri di Nash

2.6 Calcolo degli equilibri di Nash 92 2 Giochi non Cooperativi Per queste estensioni di giochi non finiti si possono provare risultati analoghi a quelli visti per i giochi finiti. Rimandiamo alla bibliografia per uno studio più approfondito

Dettagli

(P x) (P y) = x P t (P y) = x (P t P )y = x y.

(P x) (P y) = x P t (P y) = x (P t P )y = x y. Matrici ortogonali Se P è una matrice reale n n, allora (P x) y x (P t y) per ogni x,y R n (colonne) Dim (P x) y (P x) t y (x t P t )y x t (P t y) x (P t y), CVD Ulteriori caratterizzazioni delle matrici

Dettagli

Insiemi uguali? biiezione : A B bambino i libro i bambino ii libro ii bambino iii libro iii bambino iv libro iv

Insiemi uguali? biiezione : A B bambino i libro i bambino ii libro ii bambino iii libro iii bambino iv libro iv Insiemi uguali? Vogliamo occuparci del confronto di insiemi, in particolare di insiemi infiniti. Prima di potere parlare di confronto di insiemi è necessario però fare alcune precisazioni a riguardo della

Dettagli

Derivazione numerica. Introduzione al calcolo numerico. Derivazione numerica (II) Derivazione numerica (III)

Derivazione numerica. Introduzione al calcolo numerico. Derivazione numerica (II) Derivazione numerica (III) Derivazione numerica Introduzione al calcolo numerico Il calcolo della derivata di una funzione in un punto implica un processo al limite che può solo essere approssimato da un calcolatore. Supponiamo

Dettagli

MATEMATICA: competenza 1 e 4 - TERZO BIENNIO. classe V scuola primaria e classe I scuola secondaria. COMPETENZE ABILITÀ CONOSCENZE Il numero

MATEMATICA: competenza 1 e 4 - TERZO BIENNIO. classe V scuola primaria e classe I scuola secondaria. COMPETENZE ABILITÀ CONOSCENZE Il numero MATEMATICA: competenza 1 e 4 - TERZO BIENNIO classe V scuola primaria e classe I scuola secondaria COMPETENZE ABILITÀ CONOSCENZE Il numero Utilizzare con sicurezza le tecniche e le procedure del calcolo

Dettagli

Introduzione al Calcolo Scientifico - A.A

Introduzione al Calcolo Scientifico - A.A Introduzione al Calcolo Scientifico - A.A. 2009-2010 Discretizzazione di un problema ai limiti Si consideri il seguente problema ai limiti del secondo ordine (problema dell elasticità 1D in regime di piccole

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di 3 - PROBLEMI DI INTERPOLAZIONE Lucio Demeio Dipartimento di Scienze Matematiche 1 Interpolazione: Polinomio di Lagrange 2 3 Introduzione Problemi di interpolazione

Dettagli

PROGRAMMI EFFETTIVAMENTE SVOLTI DI FISICA della classe 1 F a.s. 2016/17 _ prof.ssa Stefania SCALI

PROGRAMMI EFFETTIVAMENTE SVOLTI DI FISICA della classe 1 F a.s. 2016/17 _ prof.ssa Stefania SCALI PROGRAMMI EFFETTIVAMENTE SVOLTI DI FISICA della classe 1 F CAPITOLO 1 LE GRANDEZZE FISICHE LE GRANDEZZE FISICHE La fisica e le leggi della natura Di che cosa si occupa la fisica Le grandezze fisiche Le

Dettagli

GEOMETRIA /2009 II

GEOMETRIA /2009 II Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA Edile e Edile-Architettura - a.a. 008/009 II Emisemestre - Settimana - Foglio 0 Docente: Prof. F. Flamini - Tutore:

Dettagli

Esame di Stato di Liceo Scientifico Corso di Ordinamento

Esame di Stato di Liceo Scientifico Corso di Ordinamento Corso di Ordinamento Soluzione dei Temi di Matematica proposti nella Sessione Ordinaria 006 Sessione Ordinaria 006 Corso di Ordinamento Sommario Problema Punto a) Punto b) Punto c) Punto Finale 4 Problema

Dettagli

Il Metodo di Newton, o delle Tangenti Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Il Metodo di Newton, o delle Tangenti Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it Il Metodo di Newton, o delle Tangenti 6 Novembre 2016 Indice 1 Metodo di Newton, o delle tangenti 2 1.1

Dettagli

PROBABILITÀ - SCHEDA N. 3 VARIABILI ALEATORIE CONTINUE E SIMULAZIONE

PROBABILITÀ - SCHEDA N. 3 VARIABILI ALEATORIE CONTINUE E SIMULAZIONE PROBABILITÀ - SCHEDA N. 3 VARIABILI ALEATORIE CONTINUE E SIMULAZIONE (da un idea di M. Impedovo Variabili aleatorie continue e simulazione Progetto Alice n. 15, ) 1. La simulazione Nelle schede precedenti

Dettagli

LEZIONE 9. k, tenendo conto delle formule che permettono di calcolare il prodotto scalare ed il prodotto vettoriale, otteniamo

LEZIONE 9. k, tenendo conto delle formule che permettono di calcolare il prodotto scalare ed il prodotto vettoriale, otteniamo LEZIONE 9 9.1. Prodotto misto. Siano dati i tre vettori geometrici u, v, w V 3 (O) definiamo prodotto misto di u, v e w il numero u, v w. Fissiamo un sistema di riferimento O ı j k in S 3. Se u = u x ı

Dettagli

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2

Dettagli

Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di

Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di DEFINIZIONE Espressione algebrica costituita dal prodotto tra una parte numerica (coefficiente) e una o più variabili e/o costanti (parte letterale). Variabili e costanti possono comparire elevate a potenza

Dettagli

Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà Prof. Adolfo Santini - Dinamica delle Strutture 1 Vibrazioni libere non smorzate 1/6 Le equazioni del moto di un sistema

Dettagli

EQUAZIONE DELLA RETTA

EQUAZIONE DELLA RETTA EQUAZIONE DELLA RETTA EQUAZIONE DEGLI ASSI L equazione dell asse x è 0. L equazione dell asse y è 0. EQUAZIONE DELLE RETTE PARALLELE AGLI ASSI L equazione di una retta r parallela all asse x è cioè è uguale

Dettagli

A.A. 2014/2015 Corso di Algebra Lineare

A.A. 2014/2015 Corso di Algebra Lineare A.A. 2014/2015 Corso di Algebra Lineare Stampato integrale delle lezioni Massimo Gobbino Indice Lezione 01: Vettori geometrici nel piano cartesiano. Operazioni tra vettori: somma, prodotto per un numero,

Dettagli

A Analisi Matematica 2 (Corso di Laurea in Informatica) Simulazione compito d esame

A Analisi Matematica 2 (Corso di Laurea in Informatica) Simulazione compito d esame COGNOME NOME Matr. Firma dello studente A Analisi Matematica (Corso di Laurea in Informatica) Simulazione compito Tempo: ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni

Dettagli

(Prof.ssa Dessì Annalisa)

(Prof.ssa Dessì Annalisa) LICEO SCIENTIFICO PITAGORA - SELARGIUS CLASSE 1 SEZ. E - ANNO SCOLASTICO 2014 / 2015 PROGRAMMA DI MATEMATICA Libro di testo: Bergamini Barozzi Matematica multimediale.blu con tutor, vol. 1 Zanichelli L

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I)

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I) Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I) Luigi De Giovanni Giacomo Zambelli 1 Problemi di programmazione lineare Un problema

Dettagli