ACCURATEZZA. L accuratezza esprime la vicinanza del risultato al valore vero o accettato come tale. PRECISIONE

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ACCURATEZZA. L accuratezza esprime la vicinanza del risultato al valore vero o accettato come tale. PRECISIONE"

Transcript

1

2 2

3 ACCURATEZZA L accuratezza esprime la vicinanza del risultato al valore vero o accettato come tale. PRECISIONE La precisione descrive l accordo tra due o più misure replicate. 3

4 NOTAZIONE SCIENTIFICA I numeri vengono scritti come un prodotto di un numero compreso tra 1 e 9 e una opportuna potenza di 10. In pratica si deve: 1 - spostare la virgola decimale dopo la prima cifra diversa da zero 2 moltiplicare il numero ottenuto per 10 elevato ad un esponente uguale al numero di posizioni di cui era stata spostata la virgola Es: 5283 = 5,283 x , = 1,23 x

5 CRITERI DI ARROTONDAMENTO (arrotondare i sottostanti numeri alla terza cifra decimale) 1. se la cifra da scartare è minore di 5, la cifra che la precede viene mantenuta invariata -esempio: 3,5423 diventa 3, se la cifra da scartare è superiore a 5 o un 5 seguito da almeno una cifra diversa da zero, la cifra che precede va aumentata di una unità -esempio: 1,3437 diventa 1,344 2, diventa 2,378 4, diventa 4, se la cifra da scartare è 5 finale o seguito da tutti zeri, la cifra alla sinistra viene aumentata di una unità se è dispari, rimane invariata se è pari -esempio: 2,3775 diventa 2,378 4,6425 diventa 4,642 5

6 Cifre significative Il numero di cifre significative è rappresentato dal minimo numero di cifre necessarie per scrivere un dato valore in notazione scientifica senza alcuna perdita di accuratezza. 6

7

8 Come valutare lo zero 1 - Gli zeri compresi tra cifre diverse da zero contano sempre come cifre significative. 2 - Gli zeri che precedono la prima cifra significativa in un numero decimale non contano come cifre significative. 3 - Gli zeri alla fine di un numero decimale sono significativi. 4 - Gli zeri alla fine di un numero senza decimali sono ambigui. 8

9 Cifre significative Zeri: possono o meno essere significativi Cifre diverse da zero: sono sempre significative Zeri iniziali non sono MAI significativi Zeri finali in un numero decimale sono significativi, in un numero intero sono incerti Zeri interni Sono SEMPRE significativi 0,

10 Cifre significative in somme e sottrazioni Nel caso di somme e sottrazioni il risultato verrà dato con un numero di cifre significative che nella parte intera potrà essere superiore, uguale o inferiore a quelle dei dati e nella parte decimale sarà con un numero di cifre uguale a quelle del dato che ne contiene di meno. Se i dati sono in notazione scientifica, devono essere trasformati tutti con la stessa potenza del 10. 6,27 + 7,52 + 4,55 = 18,34 10,25-9,78 = 0,47 1,632x ,632 x ,107x ,04107 x ,984x10 6 = 9,84 x10 5 = 11,51307 x10 5 1,834x10 4,7x10-1 1,151x

11 Cifre significative in moltiplicazioni, divisioni, potenze Nel caso di moltiplicazioni, divisioni e potenze il risultato verrà dato con un numero di cifre uguale a quelle del dato col il minor numero di cifre significative. 1,27x10-2 x 7,52x10 x 4,513x10-1 x 1,1x10-3 = 0, ,7 x ,127 = 0, ,03x

12 12

13 13

14 Determinare il numero di cifre significative nei seguenti numeri 0,025 40, ,4 0,0081 0, ,042 5, , , , ,

15 Arrotondare i seguenti numeri a tre cifre significative ed esprimerli con la notazione scientifica 93,246 8,8726 0, ,25 21,35 21, , , , ,2 0, , , ,2 8,87 0, ,2 21,4 21, , ,582 0, ,3 0, , ,87 2, , , , , , , , , , , , , , , ,

16 Consideriamo la somma: 15.02g g+3.518g = g La somma ha incertezza ±0.1g Il calcolo non è limitato dalle cifre significative!!! Esistono due situazioni in cui una delle quantità coinvolte in un calcolo può essere esatta: Per definizione (cioè, per es., 1min = 60 s); In conseguenza ad un conteggio (per es. 2 atomi di idrogeno in una molecola d acqua)

17 Il risultato di una moltiplicazione e/o divisione può contenere solo il numero di cifre significative della quantità nota con la precisione più bassa presente nel calcolo Il risultato dell addizione e/o sottrazione deve essere espresso con lo stesso numero di decimali della quantità con il più basso numero di decimali

18

19 Densità L acciaio di una barra cilindrica di diametro in. ha densità 7.75 g/cm 3. Se volessimo 1.00 kg di questa sbarra, quanto lunga sarebbe la sezione da tagliare? Si vuole ottenere un campione di 75 g di NaCl per evaporazione a secco di una quantità di acqua di mare contenente il 3.5% in massa di NaCl. Quanti litri di acqua di mare devono essere utilizzati per raggiungere lo scopo? (d=1.03 g/ml). Quale frazione del volume di un blocco di legno (d= 0.68 g/cm 3 ) risulta sommersa quando esso galleggia sull acqua (d = 1 g/cm 3 )?

ANALISI CHIMICO FARMACEUTICA I

ANALISI CHIMICO FARMACEUTICA I Prof. Gianluca Sbardella : 089 969770 : gsbardella@unisa.it L INCERTEZZA E LE CIFRE SIGNIFICATIVE Tutte le misure sono affette da un certo grado di incertezza la cui entità può dipendere sia dall operatore

Dettagli

Cifre significative delle misure di grandezze fisiche

Cifre significative delle misure di grandezze fisiche Cifre significative delle misure di grandezze fisiche Si definiscono grandezze fisiche tutte quelle entità con cui vengono descritti i fenomeni fisici e che sono suscettibili di una definizione quantitativa,

Dettagli

Le unità fondamentali SI. Corrente elettrica

Le unità fondamentali SI. Corrente elettrica ESERITAZIONE 1 1 Le unità fondamentali SI Grandezza fisica Massa Lunghezza Tempo Temperatura orrente elettrica Quantità di sostanza Intensità luminosa Nome dell unità chilogrammo metro secondo Kelvin ampere

Dettagli

Tutorato di Chimica Analitica 2016/2017

Tutorato di Chimica Analitica 2016/2017 Tutorato di Chimica Analitica 2016/2017 Friendly reminder La notazione scientifica Modo per indicare un risultato con numerose cifre decimali come prodotto di una potenza di 10 esempio Cifre significative

Dettagli

Alcune informazioni utili

Alcune informazioni utili Alcune informazioni utili DATE 12 incontri 10-17-24 ottobre 2016 7-14-21-28 novembre 2016 5-12-19 dicembre 2016 9-16 gennaio 2017 ogni lunedì ORARIO dalle 8.30 alle 10.30 Aula VM1 Dove trovarmi E-mail:

Dettagli

Rappresentazione di Numeri Reali. Rappresentazione in virgola fissa (fixed-point) Rappresentazione in virgola fissa (fixed-point)

Rappresentazione di Numeri Reali. Rappresentazione in virgola fissa (fixed-point) Rappresentazione in virgola fissa (fixed-point) Rappresentazione di Numeri Reali Un numero reale è una grandezza continua Può assumere infiniti valori In una rappresentazione di lunghezza limitata, deve di solito essere approssimato. Esistono due forme

Dettagli

Gli insiemi numerici RIPASSIAMO INSIEME OPERAZIONI FRA NUMERI RELATIVI INSIEME N INSIEME Z ELEVAMENTO A POTENZA

Gli insiemi numerici RIPASSIAMO INSIEME OPERAZIONI FRA NUMERI RELATIVI INSIEME N INSIEME Z ELEVAMENTO A POTENZA Gli insiemi numerici RIPASSIAMO INSIEME INSIEME N L insieme N (numeri naturali) è costituito dai numeri interi privi di segno: N {,,,,, } L insieme N presenta le seguenti caratteristiche: è un insieme

Dettagli

Unità aritmetica e logica

Unità aritmetica e logica Aritmetica del calcolatore Capitolo 9 Unità aritmetica e logica n Esegue le operazioni aritmetiche e logiche n Ogni altra componente nel calcolatore serve questa unità n Gestisce gli interi n Può gestire

Dettagli

3 Le grandezze fisiche

3 Le grandezze fisiche 3 Le grandezze fisiche Grandezze fondamentali e grandezze derivate Tra le grandezze fisiche è possibile individuarne alcune (fondamentali) dalle quali è possibile derivare tutte le altre (derivate) Le

Dettagli

Numeri reali. Notazione scientifica (decimale) Floating Point. Normalizzazione. Esempi. Aritmetica del calcolatore (virgola mobile)

Numeri reali. Notazione scientifica (decimale) Floating Point. Normalizzazione. Esempi. Aritmetica del calcolatore (virgola mobile) Numeri reali Aritmetica del calcolatore (virgola mobile) Capitolo 9 1 Numeri con frazioni Posso essere rappresentati anche in binario Es.: 1001.1010 = 2 4 + 2 0 +2-1 + 2-3 =9.625 Quante cifre dopo la virgola?

Dettagli

7 2 =7 2=3,5. Casi particolari. Definizione. propria se < impropria se > e non è multiplo di b. apparente se è un multiplo di. Esempi.

7 2 =7 2=3,5. Casi particolari. Definizione. propria se < impropria se > e non è multiplo di b. apparente se è un multiplo di. Esempi. NUMERI RAZIONALI Q Nell insieme dei numeri naturali e nell insieme dei numeri interi relativi non è sempre possibile effettuare l operazione di divisione. Infatti, eseguendo la divisione 7 2 si ottiene

Dettagli

Grandezze e unità di misura

Grandezze e unità di misura Grandezze e unità di misura La misura di una grandezza è costituita da un valore numerico e un appropriata unità di misura Esiste un sistema metrico denominato Sistema Internazionale di Unità (SI) basato

Dettagli

Notazione scientifica e inversione di formule

Notazione scientifica e inversione di formule Notazione scientifica e inversione di formule M. Spezziga Liceo Margherita di Castelvì Sassari Indice 1 Calcoli in notazione scientifica 2 1.1 Moltiplicazioni per potenze di dieci.......................................

Dettagli

Esercizi su Cifre Significative e Funzioni Matematiche

Esercizi su Cifre Significative e Funzioni Matematiche Insegnamento di Chimica Generale 083424 - CCS CHI e MAT A.A. 2015/2016 (I Semestre) Esercizi su Cifre Significative e Funzioni Matematiche Prof. Dipartimento CMIC Giulio Natta http://chimicaverde.vosi.org/citterio/it//

Dettagli

1 La frazione come numero razionale assoluto

1 La frazione come numero razionale assoluto 1 La frazione come numero razionale assoluto DEFINIZIONE. La frazione che dà origine ad un numero decimale si dice frazione generatrice. Consideriamo le frazioni e determiniamo i corrispondenti valori

Dettagli

LA NOTAZIONE SCIENTIFICA

LA NOTAZIONE SCIENTIFICA Revisione del 20/7/15 ISTITUTO TECNICO INDUSTRIALE V.E.MARZOTTO Valdagno (VI) Corso di Fisica prof. Nardon LA NOTAZIONE SCIENTIFICA Richiami di teoria La notazione scientifica è uno strumento utile per

Dettagli

Moltiplicazione. Divisione. Multipli e divisori

Moltiplicazione. Divisione. Multipli e divisori Addizione Sottrazione Potenze Moltiplicazione Divisione Multipli e divisori LE QUATTRO OPERAZIONI Una operazione aritmetica è quel procedimento che fa corrispondere ad una coppia ordinata di numeri (termini

Dettagli

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Quali sono le grandezze fisiche? La fisica si occupa solo delle grandezze misurabili. Misurare una grandezza significa trovare un numero che esprime quante

Dettagli

Strumenti Matematici per la Fisica

Strumenti Matematici per la Fisica Strumenti Matematici per la Fisica Strumenti Matematici per la Fisica Sistema Metrico Decimale Equivalenze Potenze di Notazione scientifica (o esponenziale) Ordine di Grandezza Approssimazioni Proporzioni

Dettagli

Le quattro operazioni fondamentali

Le quattro operazioni fondamentali Le quattro operazioni fondamentali ADDIZIONE Def: Si dice ADDIZIONE l operazione con la quale si calcola la somma; i numeri da addizionare si dicono ADDENDI e il risultato si dice SOMMA o TOTALE. Proprietà:

Dettagli

Argomenti della lezione. Criteri di divisibilità fattorizzazione m.c.m. e M.C.D. frazioni ed espressioni

Argomenti della lezione. Criteri di divisibilità fattorizzazione m.c.m. e M.C.D. frazioni ed espressioni Argomenti della lezione Criteri di divisibilità fattorizzazione m.c.m. e M.C.D. frazioni ed espressioni Quale cifra deve assumere la lettera c affinché i numeri 821c e 82c1 siano divisibili per 2? Un numero

Dettagli

Le tecniche di calcolo mentale rapido usano alcune proprietà delle operazioni. Le principali proprietà utilizzate sono: 3 + 2 = 2 + 3 3 2 = 2 3

Le tecniche di calcolo mentale rapido usano alcune proprietà delle operazioni. Le principali proprietà utilizzate sono: 3 + 2 = 2 + 3 3 2 = 2 3 Calcolo mentale rapido Proprietà delle operazioni Le tecniche di calcolo mentale rapido usano alcune proprietà delle operazioni. Le principali proprietà utilizzate sono: Proprietà commutativa dell addizione

Dettagli

Calcolatori Elettronici Parte III: Sistemi di Numerazione Binaria

Calcolatori Elettronici Parte III: Sistemi di Numerazione Binaria Anno Accademico 2001/2002 Calcolatori Elettronici Parte III: Sistemi di Numerazione Binaria Prof. Riccardo Torlone Università di Roma Tre Numeri e numerali! Numero: entità astratta! Numerale: stringa di

Dettagli

Nei laboratori scientifici si parla di misurare, calcolare, determinare, aggiungere, togliere, mescolare, prelevare, pesare, sperimentare, provare,

Nei laboratori scientifici si parla di misurare, calcolare, determinare, aggiungere, togliere, mescolare, prelevare, pesare, sperimentare, provare, 02.10.17 Nei laboratori scientifici si parla di misurare, calcolare, determinare, aggiungere, togliere, mescolare, prelevare, pesare, sperimentare, provare, si effettuano esperienze, si misurano grandezze,...

Dettagli

Misure e Unità di Misura

Misure e Unità di Misura 2. La Mole Misure e Unità di Misura L Incertezza delle Misure - come utilizzare le cifre significative nel calcolo Le Quantità Chimiche - la MOLE - la MASSA MOLARE - la misura dei composti La Determinazione

Dettagli

Il Sistema di numerazione decimale

Il Sistema di numerazione decimale Il Sistema di numerazione decimale Il NUMERO è un oggetto astratto, rappresentato da un simbolo (o cifra) ed è usato per contare e misurare. I numeri usati per contare, 0,1,2,3,4,5,. sono detti NUMERI

Dettagli

CONVERSIONE DA DECIMALE A BINARIO

CONVERSIONE DA DECIMALE A BINARIO CONVERSIONE DA DECIMALE A BINARIO Il procedimento per convertire in forma binaria un certo numero decimale n consiste nello scrivere, andando da destra verso sinistra, le cifre oppure seguendo delle determinate

Dettagli

= < < < < < Matematica 1

= < < < < < Matematica  1 NUMERI NATURALI N I numeri naturali sono: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,... L insieme dei numeri naturali è indicato con la lettera. Si ha cioè: N= 0,1,2,3,4,5,6,7,.... L insieme dei naturali privato

Dettagli

04 Aritmetica del calcolatore

04 Aritmetica del calcolatore Aritmetica del calcolatore Numeri a precisione finita - con un numero finito di cifre - non godono della proprietà di chiusura - le violazioni creano due situazioni distinte: - overflow - underflow Pagina

Dettagli

Rappresentazione di numeri relativi (interi con segno) Rappresentazione di numeri interi relativi (con N bit) Segno e Valore Assoluto

Rappresentazione di numeri relativi (interi con segno) Rappresentazione di numeri interi relativi (con N bit) Segno e Valore Assoluto Rappresentazione di numeri relativi (interi con segno) E possibile estendere in modo naturale la rappresentazione dei numeri naturali ai numeri relativi. I numeri relativi sono numeri naturali preceduti

Dettagli

Errori di misura Teoria

Errori di misura Teoria Errori di misura Teoria a misura operazione di misura di una grandezza fisica, anche se eseguita con uno strumento precisissimo e con tecniche e procedimenti accurati, è sempre affetta da errori. Gli errori

Dettagli

Informazione binaria: - rappresentazione dei numeri razionali -

Informazione binaria: - rappresentazione dei numeri razionali - Informazione binaria: - rappresentazione dei numeri razionali - Percorso di Preparazione agli Studi di Ingegneria Università degli Studi di Brescia Docente: Massimiliano Giacomin Nel seguito vedremo tipologie

Dettagli

Le quattro operazioni

Le quattro operazioni Le quattro operazioni L addizione Esegui le seguenti addizioni disponendo i numeri in colonna.. 25 þ 20 þ 543 ¼ 25þ 20þ 543¼ 869 307 þ 50 þ 22 ¼ 74 þ 209 þ 843 ¼ 2. 72 þ 8 þ 409 ¼ 79 þ 743 þ 394 ¼ 43 þ

Dettagli

Laboratorio di Chimica Generale ed Inorganica. Lezione 2. Misura della materia

Laboratorio di Chimica Generale ed Inorganica. Lezione 2. Misura della materia Laboratorio di Chimica Generale ed Inorganica Lezione 2 Misura della materia Dott.ssa Lorenza Marvelli Dipartimento di Scienze Chimiche e Farmaceutiche Laboratorio di Chimica Generale ed Inorganica UniFe

Dettagli

Sotto articolazione dell esperienza: misura della densità di una sostanza solida (pura) di forma irregolare

Sotto articolazione dell esperienza: misura della densità di una sostanza solida (pura) di forma irregolare Obiettivi: determinare la misura della densità di varie sostanze pure e non; imparare a redigere una relazione di laboratorio, acquisire dimestichezza con il concetto di misura, accuratezza e precisione,

Dettagli

Rappresentazione in virgola mobile Barbara Masucci

Rappresentazione in virgola mobile Barbara Masucci Architettura degli Elaboratori Rappresentazione in virgola mobile Barbara Masucci Punto della situazione Abbiamo visto le rappresentazioni dei numeri: Ø Sistema posizionale pesato per Ø Ø Interi positivi

Dettagli

Sistemi di Numerazione Binaria

Sistemi di Numerazione Binaria Sistemi di Numerazione Binaria BIN.1 Numeri e numerali Numero: entità astratta Numerale : stringa di caratteri che rappresenta un numero in un dato sistema di numerazione Lo stesso numero è rappresentato

Dettagli

Cifre significative. Andrea Bussani. 4 novembre 2012

Cifre significative. Andrea Bussani. 4 novembre 2012 Cifre significative Andrea Bussani 4 novembre 2012 Numero di cifre significative Valore misura Cifre significative Numero di cifre significative (evidenziate in rosso) 12 12 2 12,5 12,5 3 1,25 1,25 3 125

Dettagli

GRANDEZZE FISICHE STRUMENTI DI MISURA UNITA DI MISURA

GRANDEZZE FISICHE STRUMENTI DI MISURA UNITA DI MISURA GRANDEZZE FISICHE STRUMENTI DI MISURA UNITA DI MISURA GRANDEZZE FISICHE Grandezze fisiche Proprietà di un sistema che possono essere misurate Dirette Derivate Grandezze fisiche Proprietà di un sistema

Dettagli

Laboratorio di Fisica-Chimica

Laboratorio di Fisica-Chimica Laboratorio di Fisica-Chimica Lezione n.1. Che cos'è la Fisica? La Fisica è una scienza che si occupa dello studio dei fenomeni che avvengono in natura. Questo studio viene compiuto tramite la definizione

Dettagli

Strumenti Matematici per la Fisica.

Strumenti Matematici per la Fisica. Strumenti Matematici per la Fisica www.fisicaxscuola.altervista.org 2 Strumenti Matematici per la Fisica Potenze di Prefissi: Multipli e Sottomultipli Sistema Metrico Decimale Equivalenze Proporzioni e

Dettagli

24 : 3 = 8 con resto 0 26 : 4 = 6 con resto 2

24 : 3 = 8 con resto 0 26 : 4 = 6 con resto 2 Dati due numeri naturali a e b, diremo che a è divisibile per b se la divisione a : b è esatta, cioè con resto 0. In questo caso diremo anche che b è un divisore di a. 24 : 3 = 8 con resto 0 26 : 4 = 6

Dettagli

Le quattro operazioni fondamentali

Le quattro operazioni fondamentali 1. ADDIZIONE Le quattro operazioni fondamentali Def: Si dice ADDIZIONE l operazione con la quale si calcola la somma; i numeri da addizionare si dicono ADDENDI e il risultato si dice SOMMA o TOTALE. Proprietà:

Dettagli

Interi positivi e negativi

Interi positivi e negativi Definizioni: numerali e numeri Un numerale è solo una stringa di cifre Un numerale rappresenta un numero solo se si specifica un sistema di numerazione Lo stesso numerale rappresenta diversi numeri in

Dettagli

Corso di Chimica Dott.ssa Fioravanti

Corso di Chimica Dott.ssa Fioravanti Unità di Misura Unità di misura LA MISURA "La misura è la determinazione delle dimensioni, della capacità, della quantità o dell estensione di qualcosa" NUMERI ESATTI E APPROSSIMATI Un numero esatto ha

Dettagli

L errore percentuale di una misura è l errore relativo moltiplicato per 100 ed espresso in percentuale. Si indica con e p e risulta: e ( e 100)%

L errore percentuale di una misura è l errore relativo moltiplicato per 100 ed espresso in percentuale. Si indica con e p e risulta: e ( e 100)% UNITÀ L ELBORZIONE DEI DTI IN FISIC 1. Gli errori di misura.. Errori di sensibilità, errori casuali, errori sistematici. 3. La stima dell errore. 4. La media, la semidispersione e lo scarto quadratico

Dettagli

Precisione e accuratezza

Precisione e accuratezza Precisione e accuratezza Ogni misura comporta una stima! Accuratezza: quanto la misura è prossima al valore corretto Precisione: quanto le singole misure sono in accordo tra loro Le cifre significative

Dettagli

GLI ERRORI DI MISURA

GLI ERRORI DI MISURA Revisione del 26/10/15 ISTITUTO TECNICO INDUSTRIALE V.E.MARZOTTO Valdagno (VI) Corso di Fisica prof. Nardon GLI ERRORI DI MISURA Richiami di teoria Caratteristiche degli strumenti di misura Portata: massimo

Dettagli

N= a i b i. Numeri e numerali. Sistemi di Numerazione Binaria. Sistemi posizionali. Numeri a precisione finita

N= a i b i. Numeri e numerali. Sistemi di Numerazione Binaria. Sistemi posizionali. Numeri a precisione finita Numeri e numerali Numero: entità astratta Numerale : stringa di caratteri che rappresenta un numero in un dato sistema di numerazione Sistemi di Numerazione Binaria Lo stesso numero è rappresentato da

Dettagli

Esercizi sugli errori di misura

Esercizi sugli errori di misura Esercizi sugli errori di misura Autore: Enrico Campanelli Prima stesura: Settembre 2013 Ultima revisione: Settembre 2013 Per segnalare errori o per osservazioni e suggerimenti di qualsiasi tipo, potete

Dettagli

Calcolatori Elettronici Parte II: Sistemi di Numerazione Binaria. Prof. Riccardo Torlone Università di Roma Tre

Calcolatori Elettronici Parte II: Sistemi di Numerazione Binaria. Prof. Riccardo Torlone Università di Roma Tre Calcolatori Elettronici Parte II: Sistemi di Numerazione Binaria Prof. Riccardo Torlone Università di Roma Tre Unità di misura Attenzione però, se stiamo parlando di memoria: 1Byte = 8 bit 1K (KiB: KibiByte)

Dettagli

Ampliamento di N: le frazioni

Ampliamento di N: le frazioni L insieme dei numeri Razionali ITIS Feltrinelli anno scolastico 2007-2008 R. Folgieri 2007-2008 1 Ampliamento di N: le frazioni Nell insieme N non possiamo fare operazioni quali 13:5 perché il risultato

Dettagli

Numeri in virgola mobile

Numeri in virgola mobile Numeri in virgola mobile PH. 3.6 1 Motivazioni virgola mobile Rappresentazione in virgola fissa per rappresentare numeri frazionari fissando la posizione della virgola su una posizione prestabilita Le

Dettagli

Conversione di base. Conversione decimale binario. Si calcolano i resti delle divisioni per due

Conversione di base. Conversione decimale binario. Si calcolano i resti delle divisioni per due Conversione di base Dato N>0 intero convertirlo in base b dividiamo N per b, otteniamo un quoto Q 0 ed un resto R 0 dividiamo Q 0 per b, otteniamo un quoto Q 1 ed un resto R 1 ripetiamo finché Q n < b

Dettagli

Calcolo numerico e programmazione Rappresentazione dei numeri

Calcolo numerico e programmazione Rappresentazione dei numeri Calcolo numerico e programmazione Rappresentazione dei numeri Tullio Facchinetti 16 marzo 2012 10:54 http://robot.unipv.it/toolleeo Rappresentazione dei numeri nei calcolatori

Dettagli

Calcolatori Elettronici Parte II: Sistemi di Numerazione Binaria. Prof. Riccardo Torlone Università di Roma Tre

Calcolatori Elettronici Parte II: Sistemi di Numerazione Binaria. Prof. Riccardo Torlone Università di Roma Tre Calcolatori Elettronici Parte II: Sistemi di Numerazione Binaria Prof. Riccardo Torlone Università di Roma Tre Unità di misura Attenzione però, se stiamo parlando di memoria: n 1Byte = 8 bit n 1K (KiB:

Dettagli

Decimale, binaria,esadecimale

Decimale, binaria,esadecimale Decimale, binaria,esadecimale Introduzione Tutti i sistemi di numerazione sono posizionali nel senso che le cifre assumono un determinato valore a seconda della posizione occupata all interno del numero

Dettagli

ESERCIZIARIO DI MATEMATICA

ESERCIZIARIO DI MATEMATICA Dipartimento di rete matematica ESERCIZIARIO DI MATEMATICA PER PREPARARSI ALLA SCUOLA SUPERIORE progetto Continuità SCUOLA SECONDARIA DI I GRADO Istituti comprensivi: Riva Riva Arco Dro Valle dei Laghi

Dettagli

NUMERO RELATIVO. È caratterizzato da: segno positivo (+) o negativo (-) parte numerica che è detta valore assoluto

NUMERO RELATIVO. È caratterizzato da: segno positivo (+) o negativo (-) parte numerica che è detta valore assoluto NUMERI RELATIVI NUMERO RELATIVO È caratterizzato da: segno positivo (+) o negativo (-) 2 3 2 parte numerica che è detta valore assoluto 3 NUMERI RELATIVI Numeri interi relativi (N) Numeri razionali relativi

Dettagli

4 + 7 = 11. Possiamo quindi dire che:

4 + 7 = 11. Possiamo quindi dire che: Consideriamo due numeri naturali, per esempio 4 e 7. Contando successivamente, dopo le unità del primo, le unità del secondo si esegue l operazione aritmetica detta addizione, il cui simbolo è + ; 4 +

Dettagli

Sistemi di Numerazione Binaria

Sistemi di Numerazione Binaria Sistemi di Numerazione Binaria NB.1 Numeri e numerali Numero: entità astratta Numerale : stringa di caratteri che rappresenta un numero in un dato sistema di numerazione Lo stesso numero è rappresentato

Dettagli

Informazione binaria: notazione binaria

Informazione binaria: notazione binaria Informazione binaria: notazione binaria Ingegneria Meccanica e dei Materiali Università degli Studi di Brescia Prof. Massimiliano Giacomin Perché contiamo in base 10 - moltiplicare e dividere per 10 -

Dettagli

La Rappresentazione dell Informazione

La Rappresentazione dell Informazione La Rappresentazione dell Informazione Maurizio Palesi Sommario In questo documento sarà trattato il modo in cui, in un calcolatore, vengono rappresentati i vari generi di informazione (testi, numeri interi,

Dettagli

Sistemi di Numerazione Binaria

Sistemi di Numerazione Binaria Sistemi di Numerazione Binaria NB.1 Numeri e numerali Numero: entità astratta Numerale : stringa di caratteri che rappresenta un numero in un dato sistema di numerazione Lo stesso numero è rappresentato

Dettagli

Firmware Division & Floating pointer adder

Firmware Division & Floating pointer adder Firmware Division & Floating pointer adder Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@di.unimi.it Università degli Studi di Milano Riferimenti sul Patterson: 3.4, 3.5 1/47

Dettagli

CONVERSIONE BINARIO DECIMALE NB: Convertire in decimale il numero binario N = N =

CONVERSIONE BINARIO DECIMALE NB: Convertire in decimale il numero binario N = N = NOTAZIONE BINARIA, OTTALE, ESADECIMALE CODIFICA DI NUMERI INTERI RELATIVI 1 CONVERSIONE BINARIO DECIMALE Convertire in decimale il numero binario N = 101011.1011 2 N = 1 2 5 + 0 2 4 + 1 2 3 + 0 2 2 + 1

Dettagli

L INSIEME DEI NUMERI RELATIVI (prova di verifica delle conoscenze)

L INSIEME DEI NUMERI RELATIVI (prova di verifica delle conoscenze) Scegli il completamento corretto. L INSIEME DEI NUMERI RELATIVI (prova di verifica delle conoscenze). L insieme dei numeri reali R si indica con : a. R = Q I b. R = Q I c. R = Q Z I. L insieme Z: a. è

Dettagli

FRAZIONI E NUMERI DECIMALI Conoscenze

FRAZIONI E NUMERI DECIMALI Conoscenze FRAZIONI E NUMERI DECIMALI Conoscenze 1. Rispondi: a. Che tipo di numero si ottiene dividendo numeratore e denominatore di una frazione apparente? un numero naturale b. Quali numeri decimali si possono

Dettagli

Dispensa del corso di Informatica

Dispensa del corso di Informatica Operazioni aritmetiche in base 2 ispensa del corso di Informatica Il sistema in base 2 ha solo due cifre: e. on due cifre è possibile rappresentare tutti i numeri. In qualsiasi sistema di numerazionee

Dettagli

Approssimazioni. π= Approssimazione per troncamento alla quarta cifra decimale del numero π π

Approssimazioni. π= Approssimazione per troncamento alla quarta cifra decimale del numero π π Approssimazioni π=3.14159265358979323846... Approssimazione per troncamento alla quarta cifra decimale del numero π π 3.1415 Approssimazione per arrotondamento alla quarta cifra decimale del numero π π

Dettagli

Esercitazione del 2/3/2010- Numeri binari e conversione

Esercitazione del 2/3/2010- Numeri binari e conversione Esercitazione del 2/3/2010- Numeri binari e conversione 1. Conversione binario decimale a. 1101 2? 10 1 1 2 Base 2 La posizione della cifra all interno del numero indica il peso della cifra stessa, cioè

Dettagli

CORSO DI TIROCINIO FORMATIVO ATTIVO (TFA) CLASSE DI CONCORSO A033 ANNO ACCADEMICO 2014/15 PROF. GIUSEPPE NATALE

CORSO DI TIROCINIO FORMATIVO ATTIVO (TFA) CLASSE DI CONCORSO A033 ANNO ACCADEMICO 2014/15 PROF. GIUSEPPE NATALE CORSO DI TIROCINIO FORMATIVO ATTIVO (TFA) CLASSE DI CONCORSO A033 METODOLOGIE DIDATTICHE PER L INSEGNAMENTO DELLA TECNOLOGIA ANNO ACCADEMICO 2014/15 PROF. GIUSEPPE NATALE La misura delle grandezze fisiche

Dettagli

SISTEMI DI NUMERAZIONE

SISTEMI DI NUMERAZIONE Rev.20/10/2014 Pag.n. 1 Indice SISTEMI DI NUMERAZIONE IL SISTEMA DECIMALE SISTEMI POSIZIONALI NUMERAZIONE BINARIA CONVERSIONE BINARIO-DECIMALE (Metodo del polinomio) CONVERSIONE DECIMALE-BINARIO (Metodo

Dettagli

FRAZIONI E NUMERI DECIMALI (prova di verifica delle conoscenze) Cognome. Nome. Classe. Data.

FRAZIONI E NUMERI DECIMALI (prova di verifica delle conoscenze) Cognome. Nome. Classe. Data. FRAZIONI E NUMERI DECIMALI (prova di verifica delle conoscenze) Cognome. Nome. Classe. Data. 1. Rispondi: a. Che tipo di numero si ottiene dividendo numeratore e denominatore di una frazione apparente?

Dettagli

Equivalenze. Prof. A. Spagnolo IMS P. Villari - Napoli

Equivalenze. Prof. A. Spagnolo IMS P. Villari - Napoli Equivalenze 12dm 2...mm 2 ; 14037cm 2...m 2 ; 12kg...cg; 12hm 2...m 2 ; 3km/h...m/s; 12,8m/s...km/h; 5,5km/min...m/s; 6700m/h...m/s; 34m/s...m/h; 3,75m/s...km/min; 350kg/m 3...g/cm 3 ; 14,4g/cm 3...kg/m

Dettagli

Grandezze e Misure.

Grandezze e Misure. Grandezze e Misure www.fisicaxscuola.altervista.org Grandezze e Misure Introduzione Il Metodo Sperimentale Unità di Misura Grandezze Fondamentali e Derivate Massa e Densità Strumenti di misura Misure dirette

Dettagli

Somma di numeri floating point. Algoritmi di moltiplicazione e divisione per numeri interi

Somma di numeri floating point. Algoritmi di moltiplicazione e divisione per numeri interi Somma di numeri floating point Algoritmi di moltiplicazione e divisione per numeri interi Standard IEEE754 " Standard IEEE754: Singola precisione (32 bit) si riescono a rappresentare numeri 2.0 10 2-38

Dettagli

Rappresentazione di numeri interi

Rappresentazione di numeri interi Corso di Calcolatori Elettronici I Esercizi Rappresentazione di numeri interi ing. Alessandro Cilardo Corso di Laurea in Ingegneria Biomedica Interi senza segno Qual è l intervallo di rappresentazione

Dettagli

Chimica Generale ed Inorganica

Chimica Generale ed Inorganica Dipartimento di Ecologia e Biologia Chimica Generale ed Inorganica Prof.ssa Giorgia Botta Contatti Tel: 0761-357314 Dipartimento DEB Facoltà di Agraria, lab 08 e-mail: botta.giorgia@gmail.com Proprietà,

Dettagli

Potenziamento formativo, Infermieristica, M. Ruspa Esempi di operazioni con monomi

Potenziamento formativo, Infermieristica, M. Ruspa Esempi di operazioni con monomi Esempi di operazioni con monomi Esempi di operazioni con polinomi POTENZE DI 10 Che cosa vuol dire 10 n? Che cosa vuol dire 10 -n? POTENZE DI 10 Che cosa vuol dire 10 n? 10000..00000 n zeri Che cosa vuol

Dettagli

Parte Seconda. Prova di selezione culturale

Parte Seconda. Prova di selezione culturale Parte Seconda Prova di selezione culturale TEORIA DEGLI INSIEMI MATEMATICA ARITMETICA Insieme = gruppo di elementi di cui si può stabilire inequivocabilmente almeno una caratteristica in comune. Esempi:

Dettagli

Codifica binaria. Rappresentazioni medianti basi diverse

Codifica binaria. Rappresentazioni medianti basi diverse Codifica binaria Rappresentazione di numeri Notazione di tipo posizionale (come la notazione decimale). Ogni numero è rappresentato da una sequenza di simboli Il valore del numero dipende non solo dalla

Dettagli

LE RADICI QUADRATE 9=3. è il simbolo dell operazione e prende il nome di segno di radice

LE RADICI QUADRATE 9=3. è il simbolo dell operazione e prende il nome di segno di radice LE RADICI QUADRATE L ESTRAZIONE DI RADICE È L OPERAZIONE INVERSA DELL OPERAZIONE DI ELEVAMENTO A POTENZA INDICE 9=3 RADICE QUADRATA SEGNO DI RADICE RADICANDO 9 è il numero di cui vogliamo calcolare la

Dettagli

Numeri relativi: numeri il cui valore dipende dal segno che li precede.

Numeri relativi: numeri il cui valore dipende dal segno che li precede. . Definizioni e proprietà Numeri relativi: numeri il cui valore dipende dal segno che li precede. + 4 è un numero positivo, cioè maggiore di 0, perché preceduto dal segno + (il segno + davanti ai numeri

Dettagli

Laboratorio del 21/10/2010- Numeri binari e conversione

Laboratorio del 21/10/2010- Numeri binari e conversione Laboratorio del 21/10/2010- Numeri binari e conversione 1. Conversione binario decimale a. 1101 2? 10 1 1 2 Base 2 La posizione della cifra all interno del numero indica il peso della cifra stessa, cioè

Dettagli

Rappresentazione. Notazione in complemento a 2. Complemento a due su 3 e 4 bit Complemento a due

Rappresentazione. Notazione in complemento a 2. Complemento a due su 3 e 4 bit Complemento a due Rappresentazione degli interi Notazione in complemento a 2 n bit per la notazione Nella realta n=32 Per comodita noi supponiamo n=4 Numeri positivi 0 si rappresenta con 4 zeri 0000 1 0001, 2 0010 e cosi

Dettagli

Liceo scientifico Pascal Manerbio Esercizi di matematica per le vacanze estive

Liceo scientifico Pascal Manerbio Esercizi di matematica per le vacanze estive Di alcuni esercizi non verranno riportati i risultati perché renderebbero inutile lo svolgimento degli stessi. Gli esercizi seguenti risulteranno utili se i calcoli saranno eseguiti mentalmente applicando

Dettagli

Richiami di aritmetica(2)

Richiami di aritmetica(2) Richiami di aritmetica() Frazioni definizioni, operazioni, espressioni Numeri decimali Rapporti e proporzioni Percentuali Materia Matematica Autore Mario De Leo Le frazioni La frazione è un operatore che

Dettagli

Codifica. Rappresentazione di numeri in memoria

Codifica. Rappresentazione di numeri in memoria Codifica Rappresentazione di numeri in memoria Rappresentazione polinomiale dei numeri Un numero decimale si rappresenta in notazione polinomiale moltiplicando ciascuna cifra a sinistra della virgola per

Dettagli

FRAZIONI E NUMERI DECIMALI

FRAZIONI E NUMERI DECIMALI FRAZIONI E NUMERI DECIMALI 1. Rispondi: a. Che tipo di numero si ottiene dividendo numeratore e denominatore di una frazione apparente? b. Quali numeri decimali si possono ottenere dividendo numeratore

Dettagli

Esercitazione del 09/03/ Soluzioni

Esercitazione del 09/03/ Soluzioni Esercitazione del 09/03/2006 - Soluzioni. Conversione binario decimale ( Rappresentazione dell Informazione Conversione in e da un numero binario, slide 0) a. 0 2? 0 2 Base 2 Si cominciano a contare le

Dettagli

OPERAZIONI IN Q = + = = = =

OPERAZIONI IN Q = + = = = = OPERAZIONI IN Q A proposito delle operazioni tra numeri razionali, affinché il passaggio da N a vero e proprio ampliamento è necessario che avvengano tre cose: Q risulti un ) le proprietà di ciascuna operazione

Dettagli

Algebra. I numeri relativi

Algebra. I numeri relativi I numeri relativi I numeri relativi sono quelli preceduti dal segno > o dal segno . I numeri positivi sono quelli preceduti dal segno + (zero escluso). I numeri negativi sono quelli preceduti

Dettagli

CONOSCENZE 1. i numeri decimali finiti o illimitati

CONOSCENZE 1. i numeri decimali finiti o illimitati ARITMETICA PREREQUISITI l l l conoscere le proprietaá delle quattro operazioni e saper operare con esse conoscere il sistema di numerazione decimale svolgere calcoli con le frazioni CONOSCENZE 1. i numeri

Dettagli

Unità di misura. Grandezze fisiche. Unità di Misura. Grandezza fisica: qualsiasi proprietà della materia che può essere misurata

Unità di misura. Grandezze fisiche. Unità di Misura. Grandezza fisica: qualsiasi proprietà della materia che può essere misurata Unità di misura Grandezze fisiche Grandezza fisica: qualsiasi proprietà della materia che può essere misurata Grandezze estensive: dipendono dalle quantità di materia ADDITIVE Es: volume, massa, calore

Dettagli

LABORATORIO Costruzione di un ipertesto. Studio delle varie specie di numeri dai numeri naturali ai numeri reali

LABORATORIO Costruzione di un ipertesto. Studio delle varie specie di numeri dai numeri naturali ai numeri reali LABORATORIO Costruzione di un ipertesto Studio delle varie specie di numeri dai numeri naturali ai numeri reali Ideato dal corsista prof. Gerardo Mazzeo Nocera Inferiore - 27/04/2002 SCHEMA DI LAVORO PREMESSA

Dettagli

Firmware Division & Floating gpointer adder

Firmware Division & Floating gpointer adder Firmware Division & Floating gpointer adder Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@di.unimi.it it Università degli Studi di Milano Riferimenti sul Patterson: 3.4, 3.5

Dettagli

L insieme dei numeri naturali N Prof. Walter Pugliese

L insieme dei numeri naturali N Prof. Walter Pugliese L insieme dei numeri naturali N Prof. Walter Pugliese Che cosa sono i numeri naturali I numeri naturali sono: 0,1,2,3,4,5,6,7,8,9,10, Sono chiamati così perché sono stati i primi numeri che abbiamo conosciuto,

Dettagli

Frazioni e numeri decimali

Frazioni e numeri decimali Frazioni e numeri decimali Sappiamo che uno stesso numero razionale può essere rappresentato sia sotto forma di frazione (in infiniti modi tra loro equivalenti) che sotto forma di numero decimale. Precisiamo

Dettagli

Esercitazioni su rappresentazione dei numeri e aritmetica. Interi unsigned in base 2

Esercitazioni su rappresentazione dei numeri e aritmetica. Interi unsigned in base 2 Esercitazioni su rappresentazione dei numeri e aritmetica Salvatore Orlando & Marta Simeoni Interi unsigned in base 2 Si utilizza un alfabeto binario A = {0,1}, dove 0 corrisponde al numero zero, e 1 corrisponde

Dettagli