Istogrammi ad intervalli
|
|
- Tito Miele
- 1 anni fa
- Visualizzazioni
Transcript
1 Istogrammi ad intrvalli Abbiamo visto com costruir un istogramma pr rapprsntar un insim di misur dlla stssa granda isica. S la snsibilità dllo strumnto di misura è alta, è probabil ch tra gli N valori trovati c n siano pochi distinti tra loro, allora è opportuno raggruppar valori vicini in intrvalli di rquna costruir un istogramma ad intrvalli. Dati N valori associati alla granda : { i} i, N dinisco sull ass M intrvalli con: ampia D (non ncssariamnt tutt uguali valor cntral { }, M n rquna assoluta associata al -simo intrvallo (numro di valori di ch cadono nll intrvallo F rquna rlativa: F = n / N dnsità di rquna rlativa: =F /D. Marta Calvi 00 Lion 4, pag.
2 M M n N F M M n N D somma dll rqun assolut N N M D F D somma dll rqun rlativ S pongo in ordinat la dnsità di rquna corrispondnt a ciascun intrvallo ottngo un istogramma di ara unitaria (normaliato: Ara M F Ara dll istogramma. Intrvallo -simo Valor cntral dll intrvallo D Ampia intrvallo D = F raion di misur ch cadono nll intrvallo di ampia D Marta Calvi 00 Lion 4, pag.
3 Funion dnsità di probabilità Supponiamo di avr a disposiion ininit misur, distribuit con continuità sull ass. In ogni intrvallo, la rquna rlativa dll misur F, pr N tnd alla probabilità p ch una misura cada in qull intrvallo. Al crscr di N posso prndr intrvalli smpr più piccoli, pr N di ampia ininitsima d. La dnsità di rquna tndrà allora alla dnsità di probabilità (= dp/d : N D 0 F = D F D p D dp = ( d dp d ( Dnsità di probabilità La raion di misur ch cadono nll intrvallo tra + d tnd alla probabilità dp di ottnr valori di nll intrvallo (, + d. Marta Calvi 00 Lion 4, pag. 3
4 ( Funion dnsità di probabilità ( d= dp probabilità di ottnr valori di nll intrvallo ininitsimo. S sommo su un intrvallo di ampia inita ottngo la probabilità di ottnr valori di nll intrvallo < < : Probabilità ( << = dp ( d ( È l ara sottsa dalla curva Marta Calvi 00 Lion 4, pag. 4
5 La condiion di normaliaion pr una union dnsità di probabilità è: ( d La probabilità pr l intro insim di risultati val Sarà smpr vro anch ( > 0 (la dnsità di probabilità è una union positiva. N sgu ch la union dnsità di probabilità all ininito dv tndr a ro : ( 0 pr. Un insim di N misur mi dinisc una distribuion di rqun. Pr N si individua la union dnsità di probabilità ch dscriv l misur (o in gnral la granda. Vicvrsa s conosco la union dnsità di probabilità corrispondnt ad una variabil posso calcolar la probabilità di ottnr valori in un dato intrvallo. Posso calcolar anch la mdia la variana: Marta Calvi 00 Lion 4, pag. 5
6 Mdia variana pr una variabil continua Data una union dnsità di probabilità (, dinisco: Mdia ( d Ricordo: M F Variana ( ( d Ricordo: M F ( Dviaion standard ( ( d Marta Calvi 00 Lion 4, pag. 6
7 Esmpio: union dnsità di probabilità uniorm Considro la union dnsità di probabilità (, dinita da: (= 0 <a, >b c Normaliaion: b ( d a b b ( d cd c c( b a a a b a b a d ( b a ( b a ( ( d... b a c b a ( b a a b a b ( b a c=/(b-a a b Marta Calvi 00 Lion 4, pag. 7
8 Funion di Gauss La union dnsità di probabilità ch dscriv misur att solo da rrori casuali dv avr carattristich bn prcis. Considriamo la union ch dscriv gli scarti dal valor vro ( -, ssa dv ssr: Simmtrica risptto il valor vro ( ugual probabilità di ottnr uno scarto positivo o ngativo Dcrsct al crscr dl valor assoluto dllo scarto ( è poco probabil ottnr scarti molto grandi Normaliata C.F.Gauss dimostrò ch tal union ha la sgunt orma analitica: ( ( union di Gauss o Gaussiana dnota il valor vro, è un paramtro di cui vdrmo il signiicato. Marta Calvi 00 Lion 4, pag. 8
9 Proprità dlla union di Gauss Vriichiamo innanitutto i tr rquisiti prcdnti: Simmtrica risptto il valor vro : ( = ( Dcrsct al crscr dllo scarto: lim ( = 0 (>0 pr <, (<0 pr > Normaliata: ( d Marta Calvi 00 Lion 4, pag. 9
10 Pr sguir i conti abbiamo bisogno di ar ririmnto all intgral di Gauss di cui riportiamo il risultato (si calcola passando al piano complsso: d da cui anch: d d d Marta Calvi 00 Lion 4, pag. 0
11 Proprità dlla union di Gauss Vriichiamo la normaliaion: ( d ( d Facciamo un cambio di variabil: d ( d d d d Calcoliamo la drivata prima: ( ( ( Marta Calvi 00 Lion 4, pag.
12 Marta Calvi 00 Lion 4, pag. 0 ( ( La drivata prima si annulla pr: Cioè pr: Prtanto la union ha un massimo pr =. Il valor dlla union in corrispondna dl punto di massimo è: d è: pr < mntr pr > 0 ( ( 0 ( ( ( ( La drivata sconda: ( ( 3 l ordinata di al ma. è invrsamnt proporional al paramtro 0 (
13 La drivata sconda si annulla pr: Cioè pr:, ( ( Prtanto la union ha du lssi pr = + pr = -. La distana tra i du punti di lsso è il paramtro è indicativo dlla largha dlla union. Il valor dlla union in corrispondna di lssi è circa il 60% dl valor nl punto di massimo: ( ( Marta Calvi 00 Lion 4, pag. 3
14 =, = =, = ( ( ( 0.4 ( 0.99 ( 0. Marta Calvi 00 Lion 4, pag. 4
15 ( ( Marta Calvi 00 Lion 4, pag. 5
16 Calcolo dlla mdia dlla union di Gauss Applichiamo la diniion di mdia data alla union dnsità di probabilità di Gauss: ( ( d d, ( d Facciamo il cambio di variabil:, d La mdia dlla union dnsità di probabilità di Gauss coincid con il paramtro ch compar nll sponnt dlla union ch rapprsnta il valor vro dlla granda. d d =0 d Marta Calvi 00 Lion 4, pag. 6
17 Marta Calvi 00 Lion 4, pag. 7 Variana dlla union di Gauss d d ( ( ( ( La variana dlla union dnsità di probabilità di Gauss coincid con il paramtro ch compar nll sponnt dlla union. Facciamo il cambio di variabil:, d d,... ( d d
18 Torma dl limit cntral Siano dat N variabili casuali, statisticamnt indipndnti tra loro y,y, y N ciascuna dll quali abbia dnsità di probabilità ignota, ma di cui sista inita la mdia, rispttivamnt,, N, la variana,, N. La variabil casual somma Y = y +y + +y N ha una union dnsità di probabilità ch, pr N è Gaussiana, con valor mdio variana dati da: Y N i i Y N i i Applicaion: S gli rrori casuali sono dovuti al concorrr simultano di numrosi tti, una misura atta da rrori casuali può considrarsi una variabil casual somma di tant variabili casuali. Prtanto una misura atta da rrori casuali ha union dnsità di probabilità Gaussiana. Marta Calvi 00 Lion 4, pag. 8
19 Intrprtaion probabilistica dlla dviaion standard Abbiamo visto ch, s è nota la union dnsità di probabilità ( pr la granda, possiamo calcolar la probabilità di trovar valori di in un dato intrvallo inito com: Probabilità ( < < = dp Marta Calvi 00 Lion 4, pag. 9 ( d Considriamo la union di Gauss l intrvallo di ampia attorno : Probabilità (- < < + = Misur att da rrori casuali hanno una probabilità dl 68% di cadr all intrno dll intrvallo di smi-ampia cntrato sul valor vro dlla granda misurata. ( d Calcolo numrico Il livllo di conidna corrispondnt all intrvallo di smiampia cntrato sul valor vro dlla granda misurata è dl 68%. La dviaion standard è la smi-ampia dll intrvallo cntrato nl valor vro dlla granda, ch contin circa il 68% dll misur.
20 Funion di Gauss standardiata La union di Gauss con: = 0, = è dtta union di Gauss standardiata (distribuion dgli scarti normaliati: ( Qualunqu union di Gauss può ssr ricondotta ad ssa, pur di ttuar il cambio di variabili: Sappiamo ch: ( ( d d Marta Calvi 00 Lion 4, pag. 0
21 Ci domandiamo ora quanto valgono gli intgrali di ( in intrvalli di ampia t qualunqu. Considriamo cioè la union intgral: t t d t t ( d r ( t Funion dgli rrori r (t = Probabilità (- t < < t ( r(t t 0 t La union dgli rrori è la union intgral dlla Gaussiana standardiata. t Marta Calvi 00 Lion 4, pag.
22 Il valor dgli intgrali dlla union di Gauss si può anch lggr da apposit tabll Marta Calvi 00 Lion 5, pag.
23 Poiché la union è normaliata, simmtrica risptto = 0, dai valori in tablla si possono ricavar l probabilità in intrvalli di diniion qualunqu. Esmpi: Probabilità ( <a, >a = Probabilità (a < <a = r(a Probabilità ( <a = ( Probabilità (a < <a / = ( r(a / Probabilità ( <+a = Probabilità (a < < a /= 0.5 r(a/ Marta Calvi 00 Lion 4, pag. 3
24 Esrciio: Si considri una granda la cui union dnsità di probabilità sia una Gaussiana con = 5 = 0.3. Qual è la probabilità ch sia minor di 4.6? ( t ( Probabilità ( <.33 = (Probabilità(-.33 < <.33 / =( r (.33 / ( 0.865/ = % Marta Calvi 00 Lion 4, pag. 4
25 Esrciio Un artigiano taglia a mano 6 cubtti di lgno uguali. Li psa raccogli i risultati nlla sgunt tablla: Massa [g] rquna Rapprsntar la distribuion di valori dlla massa con un istogramma Calcolar la mdia aritmtica dlla massa di cubtti, la dviaion standard la dviaion standard dlla mdia. Scrivr la union dnsità di probabilità più adatta a dscrivr qusto insim di dati conrontarla graicamnt con l istogramma. Marta Calvi 00 Lion 4, pag. 5
Distribuzione gaussiana
Appunti di Misur Elttric Distribuion gaussiana Funion dnsità di probabilità di Gauss... Calcolo dlla distribuion cumulativa pr una variabil di Gauss... Funion dnsità di probabilità congiunta...6 Funion
Soluzioni. a) Il dominio è dato da tutti i numeri reali tranne quelli che annullano il denominatore di (x+1)/x. Quindi D = R {0} = (-,0) (0,+ ).
Soluzioni Data la unzion a trova il dominio di b indica quali sono gli intrvalli in cui risulta positiva qulli in cui risulta ngativa c dtrmina l vntuali intrszioni con gli assi d studia il comportamnto
Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y).
Esrcizi di conomtria: sri 4 Esrcizio Siano, Z variabili casuali distribuit scondo la lgg multinomial di paramtri n, p, p, p p p.. Calcolar la Covarianza tra l variabili d. Soluzion Dat du variabili dinit
0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene:
0.1. CIRCONFERENZA 1 0.1 Circonfrnza Considriamo una circonfrnza di cntro P 0 (x 0, y 0 ) raggio r, cioè il luogo di punti dl piano P (x, y) pr i quali si vrifica la rlazion: 0.1.1. P 0 P = r. La 0.1.1,
DERIVATE. h Geometricamente è il coefficiente angolare della retta secante congiungente i punti della curva di ascissa x. y = in un punto x.
DERIVATE OBIETTIVI MINIMI: Conoscr la dinizion di drivata d il suo siniicato omtrico Sapr calcolar smplici drivat applicando la dinizion Conoscr l drivat dll unzioni lmntari Conoscr l rol di drivazion
Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le
Pro. Frnando D Anglo. class 5DS. a.s. 007/008. Nll pagin sgunti trovrt una simulazion di sconda prova su cui lavorrmo dopo l vacanz di Pasqua. Pr mrcoldì 6/03/08 guardat il problma 4 i qusiti 1 8 9-10.
Appunti sulle disequazioni frazionarie
ppunti sull disquazioni frazionari Sono utili l sgunti dfinizioni Una disquazion fratta o frazionaria è una disquazion nlla qual l incognita compar in qualch suo dnominator. Una disquazion razional è una
Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica 1
LA ERVATA UNA FUNZONE Toria l problma dlla tangnt Uno di problmi classici c portano al conctto di drivata è qullo dlla dtrminazion dlla rtta tangnt a una curva in un punto. La tangnt ad una circonfrnza
ESERCIZI PARTE I SOLUZIONI
UNIVR Facoltà di Economia Corso di Matmatica finanziaria 008/09 ESERCIZI PARTE I SOLUZIONI Domini di funzioni di du variabili Esrcizio a f, = log +. L unica condizion di sistnza è data dalla disquazion
Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale.
Capitolo 2 Toria dll intgrazion scondo Rimann pr funzioni rali di una variabil ral Esistono vari tori dll intgrazion; tutt hanno com comun antnato il mtodo di saustion utilizzato dai Grci pr calcolar l
Misurazione del valore medio di una tensione tramite l uso di un voltmetro numerico
Misurazion dl valor mdio di una tnsion tramit l uso di un voltmtro numrico La zion si conduc slzionando la funzion dc dllo strumnto collgando i trminali dllo strumnto al gnrator sotto zion: tnndo conto
Tecniche per la ricerca delle primitive delle funzioni continue
Capitolo 4 Tcnich pr la ricrca dll primitiv dll funzioni continu Nl paragrafo.7 abbiamo dato la dfinizion di primitiva di una funzion f avnt pr dominio un intrvallo I; abbiamo visto ch s F 0 è una primitiva
= l. x 0. In realtà può aversi una casistica più amplia potendo sia x che f ( x) tendere ad un elemento dell insieme
LIMITI DI FUNZINI. CNCETT DI LIMITE Esula dallo scopo di qusto libro la trattazion dlla toria sui iti. Tuttavia, pnsando di far cosa gradita allo studnt, ch dv possdr qusta nozion com background, ritniamo
Esercizi sullo studio di funzione
Esrcizi sullo studio di funzion Prima part Pr potr dscrivr una curva, data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: 1) Dtrminar l insim di sistnza dlla f () ) Dtrminar
Modi dominanti. L evoluzione libera del sistema lineare. x(k + 1) = Ax(k) a partire dalla condizione iniziale x(0) = x 0 è:
Capitolo. INTRODUZIONE. L voluzion libra dl sistma linar Modi dominanti ẋ(t) = Ax(t), x(k + ) = Ax(k) a partir dalla condizion inizial x() = x è: x(t) = At x, x(k) = A k x Al tndr di t [di k all infinito,
EQUAZIONI DIFFERENZIALI. Saper integrare equazioni differenziali del primo ordine lineari e a variabili separabili.
EQUAZIONI DIFFERENZIALI OBIETTIVI MINIMI Sapr riconoscr classificar l quazioni diffrnziali. Sapr intgrar quazioni diffrnziali dl primo ordin linari a variabili sparabili. Sapr intgrar quazioni diffrnziali
Calcolo delle Probabilità e Statistica. Prova scritta del III appello - 7/6/2006
Corso di Laura in Informatica - a.a. 25/6 Calcolo dll Probabilità Statistica Prova scritta dl III appllo - 7/6/26 Il candidato risolva i problmi proposti, motivando opportunamnt l propri rispost.. Sia
Calcolo di integrali. max. min. Laboratorio di Calcolo B 42
Calcolo di intgrali Supponiamo di dovr calcolar l intgral di una funzion in un intrvallo limitato [ min, ma ], di conoscr il massimo d il minimo dlla funzion in tal intrvallo. S gnriamo n punti uniformmnt
x 1 x 2 Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.4
Edutcnica.it Studio di funzioni Studiar disgnar il grafico dll sgunti funzioni Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. y 5 y Esrcizio no. Soluzion a pag.6 Esrcizio no. Soluzion a pag.8
Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U.
APPUNTI d ESERCIZI PER CASA di GEOMETRIA pr il Corso di Laura in Chimica, Facoltà di Scinz MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rnd, 3 April 2 Sottospazi di uno spazio vttorial, sistmi di gnratori, basi
Il campione. Il campionamento. Il campionamento. Il campionamento. Il campionamento
Il campion I mtodi di campionamnto d accnno all dimnsioni di uno studio Raramnt in uno studio pidmiologico è possibil saminar ogni singolo soggtto di una popolazion sia pr difficoltà oggttiv di indagin
PROGRAMMA DI RIPASSO ESTIVO
ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO
ANALISI 2 ESERCITAZIONE DEL 06/12/2010 PUNTI CRITICI
ANALISI ESERCITAZIONE DEL 06//00 PUNTI CRITICI Un punto critico è un punto in cui la funzion è diffrnziabil il piano tangnt al grafico è orizzontal Riconosciamo qusti punti prché il gradint è il vttor
Esame di stato di istruzione secondaria superiore Indirizzi: Scientifico Comunicazione Opzione Sportiva Tema di matematica
wwwmatmaticamntit Nicola D Rosa maturità Esam di stato di istruzion scondaria suprior Indirizzi: Scintifico Comunicazion Opzion Sportiva Tma di matmatica Il candidato risolva uno di du problmi risponda
Studio di funzione. R.Argiolas
Studio di unzion R.Argiolas Introduzion Prsntiamo lo studio dl graico di alcun unzioni svolt durant l srcitazioni dl corso di analisi matmatica I assgnat nll prov scritt. Ringrazio anticipatamnt tutti
Test di autovalutazione
UNITÀ FUNZINI E LR RAPPRESENTAZINE Tst di autovalutazion 0 0 0 0 0 50 60 70 80 90 00 n Il mio puntggio, in cntsimi, è n Rispondi a ogni qusito sgnando una sola dll 5 altrnativ. n Confronta l tu rispost
γ : y = 1 + 2t 1 + t 2 z = 1 + t t2
Politcnico di Milano Inggnria Industrial Analisi Gomtria Esrcizi sull curv. Si considri la curva x t + t : y 6 + 4t t t t R. z t t (a) Stabilir s la curva piana. (b) Stabilir s la curva smplic. (c) Stabilir
METODO DEGLI ELEMENTI FINITI
Dal libro di tsto Zinkiwicz Taylor, Capitolo 14 pag. 398 Il mtodo dgli lmnti finiti fornisc una soluzion approssimata dl problma lastico; tal approssimazion driva non dall avr discrtizzato il dominio in
Risoluzione dei problemi
Risoluzion di problmi a) f rapprsnta un fascio di funzioni omografich, al variar dl paramtro a in R, s si vrifica la condizion: a$ (- a) +! 0 " a!! S a!! il grafico rapprsnta iprboli quilatr di asintoti
POTENZE NECESSARIE E DISPONIBILI
POTENZE NECESSARIE E DISPONIBILI In qusto capitolo ci proponiamo di dtrminar l curv dll potnz ncssari pr l vari condizioni di volo. Tali curv dipndranno da divrsi fattori com il pso dl vlivolo, la quota,
Franco Ferraris Marco Parvis Generalità sulle Misure di Grandezze Fisiche. Testi consigliati
Gnralità sull Misur di Grandzz Fisich - Misurazioni dirtt 1 Tsti consigliati Norma UNI 4546 - Misur Misurazioni; trmini dfinizioni fondamntali - Milano - 1984 Norma UNI-I 9 - Guida all sprssion dll incrtzza
1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8
UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica 1 Funzioni Indic 1 Il conctto di funzion 1 Funzion composta 4 3 Funzion invrsa 6 4 Rstrizion prolungamnto di una funzion 8 5 Soluzioni dgli srcizi
CONOSCENZE. 1. La derivata di una funzione y = f (x)
ESAME D STATO ESEMP D QUEST D MATEMATCA PER LA TERZA PROVA CONOSCENZE. La drivata di una funzion y f (), in un punto intrno al suo dominio, : il it, s sist d è finito, dl rapporto incrmntal pr h, f ( h)
Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y)
Campi Vttoriali Form iffrnziali-sconda Part Torma (sconda condizion sufficint pr i campi consrvativi piani): Sia F (, y) un campo vttorial piano dfinito in un aprto A di R, si supponga ultriormnt = y ;
Ulteriori esercizi svolti
Ultriori srcizi svolti Effttuar uno studio qualitativo dll sgunti funzioni ) 4 f ( ) ) ( + ) f ( ) + 3) f ( ) con particolar rifrimnto ai sgunti asptti: a) trova il dominio di f b) indica quali sono gli
[ ] ( ) ( ) ( e ) jωn. [ ] [ [ n. [ n] = T [ ] [ ] [ ] [ ]
Sistmi Linari Tmpo Invarianti (LTI) a Tmpo Discrto Dfiniamo il sistma tramit una trasformaion T []. La proprità di linarità implica ch [ α 1x1[ n] + α2x2[ n ] α1t x1[ n] + α2t x La proprità di tmpo invariana
PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.
Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.
Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011
Compito di Fisica Gnral I (Mod A) Corsi di studio in Fisica d Astronomia 4 april 2011 Problma 1 Du blocchi A B di massa rispttivamnt m A d m B poggiano su un piano orizzontal scabro sono uniti da un filo
INDICE. Studio di funzione. Scaricabile su: TEORIA. Campo di esistenza. Intersezione con gli assi
P r o f. Gu i d of r a n c h i n i Antprima Antprima Antprima www. l z i o n i. j i md o. c o m Scaricabil su: http://lzioni.jimdo.com/ Studio di funzion INDICE TEORIA Campo di sistnza Intrszion con gli
ESERCIZI DI CALCOLO NUMERICO
ESERCIZI DI CALCOLO NUMERICO Mawll Equazioni non linari: problma di punto fisso Esrcizio : Si vogliono approssimar l soluzioni dll quazion non linar. Dtrminar il numro di radici dll quazion localizzarl.
PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.
Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.
Numeri complessi - svolgimento degli esercizi
Numri complssi - svolgimnto dgli srcizi ) Qusto srcizio richid di calcolar la potnza n-sima (n 45) di un numro complsso. Scriviamo z nlla forma sponnzial z ρ iθ dov ) ( ) ρ ( + θ π 6 dato ch sin θ cos
Svolgimento di alcuni esercizi
Svolgimnto di alcuni srcizi Si ha ch dal momnto ch / tnd a pr ch tnd a (la frazion formata da un numro, in qusto caso il numro, fratto una quantità ch tnd a ±, in qusto caso, tnd smpr a ) S facciamo tndr
Ing. Gestionale Ing. Informatica Ing. Meccanica Ing. Tessile. Cognome Nome Matricola
Ing Gstional Ing Informatica Ing Mccanica Ing Tssil Cognom Nom Matricola Univrsità dgli Studi di Brgamo Scondo Compitino di Matmatica II ) Si considri la matric 2 3 3 2 Si calcolino gli autovalori gli
Spettro roto-vibrazionale di HCl (H 35 Cl, H 37 Cl )
Spttro roto-vibrazional di HCl (H 5 Cl, H 7 Cl ) SCOPO: Misurar l nrgi dll transizioni vibro-rotazionali dll acido cloridrico gassoso utilizzar qust nrgi pr calcolar alcuni paramtri molcolari spttroscopici.
Ministero dell Istruzione, dell Università e della Ricerca
Pag. 1/5 Sssion straordinaria 2017 I043 ESAME DI STATO DI ISTRUZIONE SECONDARIA SUPERIORE Indirizzi: LI02, EA02 SCIENTIFICO LI03 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE (Tsto valvol anch pr la corrispondnt
LE FRAZIONI LE FRAZIONI. La frazione è un operatore che opera su una qualsiasi grandezza e che da come risultato una grandezza omogenea a quella data.
LE FRAZIONI La frazion è un oprator ch opra su una qualsiasi grandzza ch da com risultato una grandzza omogna a qulla data. AB (Il sgmnto AB è stato diviso i tr parti sono stat prs du) Una frazion è scritta
Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1
Lzion 5. nalisi a tmpo discrto di sistmi ibridi F. Prvidi - Controlli utomatici - Lz. 5 Schma dlla lzion. Introduzion 2. nalisi a tmpo discrto di sistmi ibridi 3. utovalori di un sistma a sgnali campionati
Le coniche e la loro equazione comune
L conich la loro quazion comun L conich com ombra di una sra Una sra ch tocca il piano π nl punto F è illuminata da una sorgnt puntiorm S. Nl caso dlla igura l'ombra dll sra risulta una suprici dlimitata
1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8
UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica Drivat dll funzioni di più variabili Indic Drivat parziali Rgol di drivazion 5 3 Drivabilità continuità 7 4 Diffrnziabilità 7 5 Drivat scond torma
METODO DI NEWTON Esempio di non convergenza
METODO DI NEWTON S F(x) è C 2 si sa ch (x R k ) F(x+h) = F(x) + F(x) t h + 1/2 h t H(x)h +o( h 3 ) d una stima possibil dl punto di minimo è data da x# = x - H(x) -1 F(x) dov H(x) è la matric hssiana in
TIPI TIPI DI DI DECADIMENTO RADIOATTIVO --ALFA
TIPI TIPI DI DI DECDIMENTO RDIOTTIVO --LF LF Dcadimnto alfa: il nuclo instabil mtt una particlla alfa (), ch è composta da du protoni du nutroni (un nuclo di 4 H), quindi una particlla carica positivamnt.
ESERCIZI SULLA DEMODULAZIONE INCOERENTE
Esrcitazioni dl corso di trasmissioni numrich - Lzion 4 6 Fbbraio 8 ESERCIZI SULLA DEMODULAZIONE INCOERENE I du sgnali passa basso di figura sono utilizzati pr la trasmission di simboli binari quiprobabili
Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1
Analisi di Sistmi Soluzion dl compito dl 26 Giugno 23 Esrcizio. Pr i du sistmi dscritti dai modlli sgunti, individuar l proprità strutturali ch li carattrizzano: linar o non linar, stazionario o tmpovariant,
Alla temperatura di 300K è ragionevole ritenere che tutto il drogante sia attivato, cioè che ad ogni atomo accettore corrisponda una lacuna, per cui
1 1. Una ftta di silicio è drogata con una concntrazion N A = 10 16 atm/cm 3 di atomi accttori, si valuti la concntrazion di portatori maggioritari minoritari alla tmpratura T = 300K. Alla tmpratura di
Forza d interesse. Università degli Studi di Catania Facoltà di Economia D.E.M.Q.
Fora d intrss Univrsità dgli Studi di Catania Facoltà di Economia D.E.M.Q. Fora d intrss Lgg di capitaliaion a du variabili Opraion finaniaria : -C + C C+ Intrss prodotto in [ + ] da un capital C invstito
Statistica multivariata Donata Rodi 04/11/2016
Statistica multivariata Donata Rodi 4//6 La rgrssion logistica Costruzion di un modllo ch intrprti la dipndnza di una variabil catgorial dicotomica da un insim di variabili splicativ Trasformazioni da
INTEGRALI DOPPI Esercizi svolti
INTEGRLI OPPI Esrcizi svolti. Calcolar i sgunti intgrali doppi: a b c d f g h i j k y d dy, {, y :, y }; d dy, {, y :, y }; + y + y d dy, {, y :, y }; y d dy, {, y :, y }; y d dy, {, y :, y + }; + y d
Funzione esponenziale e logaritmo. Proprietà di esponenziale e logaritmo.
Funzion sponnzil ritmo. Proprità di sponnzil ritmo. 6. Funzion sponnzil ritmo. Proprità di sponnzil ritmo. Funzion sponnzil f ( ) fissto f : ( + ) è l bs dll funzion sponnzil d è fisst è l sponnt dll funzion
( ) ( ) ( ) [ ] 2 ( ) 18 9) DERIVATA DI UNA FUNZIONE COMPOSTA
8 9 DERIVATA DI UNA FUNZIONE COMPOSTA La drivata di una funion composta ( funion di funion si ottin (dim all pagin 0 : a drivando la funion principal ( qulla ch si applica pr ultima risptto al suo argomnto
Funzioni lineari e affini. Funzioni lineari e affini /2
Funzioni linari aini In du variabili l unzioni linari sono dl tipo a b l unzioni aini sono dl tipo a b c Il graico di una unzion linar è un piano passant pr l origin il graico di una unzion ain è un piano.
0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y.
INTRODUZIONE Ossrviamo, in primo luogo, ch l funzioni sponnziali sono dlla forma a con a costant positiva divrsa da (il caso a è banal pr cui non sarà oggtto dl nostro studio). Si possono allora vrificar
Nozioni di base sulle coniche (ellisse (x^2/a^2)+(y^2/b^2)=1, iperbole(x^2/a^2)-(y^2/b^2)=1, parabola e circonferenza):
Nozioni di bas sull conich (lliss (x^2/a^2)+(y^2/b^2)=1, iprbol(x^2/a^2)-(y^2/b^2)=1, parabola circonfrnza): Dlta =0, significa un solo punto di intrszion tra fascio di rtt conica Dlta >=0, significa 2
Capitolo 1 Richiami di probabilità
Appunti di Rti di Tlcomunicazioni Capitolo Richiami di probabilità Conctti prliminari di probabilità... 3 Introduzion alla probabilità... 3 Dinizion di spazio dgli vnti... 3 Dinizion di vnto... 4 Esmpio...
Equazioni di Secondo Grado in Una Variabile, x Complete, Pure e Spurie. Tecniche per risolverle ed Esempi svolti
Equazioni di Scondo Grado in Una Variabil, x Complt, Pur Spuri. Tcnich pr risolvrl d Esmpi svolti Francsco Zumbo www.francscozumbo.it http://it.gocitis.com/zumbof/ Qusti appunti vogliono ssr un ultrior
Prova scritta di Algebra 23 settembre 2016
Prova scritta di Algbra 23 sttmbr 2016 1. Si considri la sgunt applicazion: { Z21 Z ϕ : 3 Z 7 [x] 21 ([2x] 3, [x] 7 ) a) Vrificar ch ϕ è bn dfinita. b) Dir s ([1] 3, [5] 7 ) Imϕ in tal caso trovarn la
Fisica Generale VI Scheda n. 1 esercizi di riepilogo dei contenuti di base necessari. 1.) Dimostrare le seguenti identità vettoriali:
Fisica Gnral VI Schda n. 1 srcizi di ripilogo di contnuti di bas ncssari 1.) Dimostrar l sgunti idntità vttoriali:. A (B C) = B (A C) C (A B) (A B) = ( A) B ( B) A ( A) = ( A) 2 A. suggrimnto: è important
TAVOLA DEI DEI NUCLIDI. Numero di protoni Z. Numero di neutroni N.
TVOL DEI DEI UCLIDI umro di protoni Z www.nndc.bnl.gov umro di nutroni TVOL DEI DEI UCLIDI www.nndc.bnl.gov TVOL DEI DEI UCLIDI Con il trmin nuclid si indicano tutti gli isotopi conosciuti di lmnti chimici
La Formazione in Bilancio delle Unità Previsionali di Base
La Formazion in Bilancio dll Unità Prvisionali di Bas Con la Lgg 3 april 1997, n. 94 sono stat introdott l Unità Prvisionali di Bas (di sguito anch solo UPB), ch rapprsntano un di aggrgazion di capitoli
Corso di Laurea in Economia Matematica per le applicazioni economiche e finanziarie. Esercizi 4
Corso di Laura in Economia Matmatica pr l applicazioni conomich finanziari Esrcizi 4 Vrificar s l sgunti funzioni, nll intrvallo chiuso indicato, soddisfano l ipotsi dl torma di Roll, in caso affrmativo,
CURVE DI PROBABILITÀ PLUVIOMETRICA Le curve di probabilità pluviometrica esprimono la relazione fra le altezze di precipitazione h e la loro durata
CURVE DI PROBABILITÀ PLUVIOMETRICA L curv di probabilità pluviomtrica sprimono la rlazion fra l altzz di prcipitazion h la loro durata t, pr un assgnato valor dl priodo di ritorno T. Tal rlazion vin spsso
I criteri di resistenza (o teorie della rottura) definiscono un legame tra lo stato tensionale e la sua pericolosità.
6-0 6- I critri di rsistnza (o tori dlla rottura) dfiniscono un lgam tra lo stato tnsional la sua pricolosità. Ogni stato tnsional può ssr rapprsntato da una funzion scalar dll tnsioni principali ch può
IV-3 Derivate delle funzioni di più variabili
DERIVATE PARZIALI IV-3 Drivat dll funzioni di più variabili Indic Drivat parziali Rgol di drivazion 5 3 Drivabilità continuità 7 4 Diffrnziabilità 7 5 Drivat scond torma di Schwarz 8 6 Soluzioni dgli srcizi
Calore Specifico
6.08 - Calor Spcifico 6.08.a) Lgg Fondamntal dlla Trmologia Un modo pr far aumntar la Tmpratura di un Corpo è qullo di cdr ad sso dl Calor, pr smpio mttndolo in Contatto Trmico con un Corpo a Tmpratura
w(r)=w max (1-r 2 /R 2 ) completamente sviluppato in un tubo circolare è dato da wmax R w max = = max
16-1 Copyright 009 Th McGraw-Hill Companis srl RISOLUZIONI CAP. 16 16.1 Nl flusso laminar compltamnt sviluppato all intrno di un tubo circolar vin misurata la vlocità a r R/. Si dv dtrminar la vlocità
Problema 3: CAPACITA ELETTRICA E CONDENSATORI
Problma 3: CAPACITA ELETTRICA E CONDENSATORI Prmssa Il problma composto da qusiti di carattr torico da una succssiva part applicativa costituisc un validissimo smpio di quilibrio tra l divrs signz ch convrgono
Il Rgistro E-PRTR (Europan Pollutant Rlas and Transfr Rgistr) Attuazion dl Rgolamnto (CE) n. 166/06 LA DICHIARAZIONE PRTR Dlgs 46/2014 (rcpimnto IED), con l art. 30 introduc pr la prima volta l sanzioni
1. Dati i tensori: { L = 3ex e y + 2e y e z + 3e z e x
1 Univrsità di Pavia Facoltà di Inggnria Corso di Laura in Inggnria Edil/Architttura Corrzion prova scritta Esam di Mccanica Razional 30 gnnaio 01 1. Dati i tnsori: { L = 3x y + y z + 3 z x M = x x y y
Soluzione. Un punto generico ha coordinate ( x, y) Per cui. Le coordinate del centro sono allora
Sssion suppltiva LS_ORD 7 Soluzion di D Rosa Nicola Soluzion Un punto gnrico ha coordinat, pr cui si ha: PO PA Pr cui PO PA [ ] L coordinat dl cntro sono allora O,, è R. C, d il raggio, visto ch la circonfrnza
+ V in - + V out - V(z) z=l (sezione di carico) z=0 (sezione di generatore)
Appunti di ompatibilità Elttromagntica ERDITE DI OTENZA NEI AI Il calcolo dll prdit di potna ni cavi di intrconnssion ha grand importana, data la prsna di cavi in tutti i sistmi di misura. r introdurr
Facoltà di Ingegneria Università degli Studi di Bologna
Facoltà di Inggnria Univrsità dgli tudi di Bologna Dipartimnto di Inggnria Industrial Marco Gntilini Valutazioni tcnico conomich sullinsrzion di uno scambiator intrmdio ngli impianti frigorifri a spansion
Esercizi sugli studi di funzione
Esrcizi sugli studi di funzion Studiar l andamnto tracciar il grafico dll sgunti funzioni di : (a) ; (b) 4 3 + ; (c) cos sin ; (d) 3 ; () log 3 ; (f) arctg + ; (g) ( + ) log ; (h) sin ; (i) tg ; (j) +
Corso di Automi e Linguaggi Formali Parte 3
Esmpio Sdo il pumping lmm sist tl ch ogni prol di tin un sottostring non vuot ch puo ssr pompt o tglit rpprsntrl com Invc non in dv ssr in posso Corso di Automi Linguggi Formli Gnnio-Mrzo 2002 p.3/22 Corso
La popolazione in età da 0 a 2 anni residente nel comune di Bologna
Sttor Programmazion, Controlli La popolazion in tà da 0 a 2 anni rsidnt nl comun di Bologna Maggio 2007 La prsnt nota è stata ralizzata da un gruppo di dirignti funzionari dl Sttor Programmazion, Controlli
2. Richiami di calcolo delle probabilità
. Richiai di calcolo dll probabilità L analisi sposta, consistnt nll ipotizzar la crisi in fas plastica, coporta, indubbiant, vantaggi risptto al todo lastico-linar, a non può considrarsi pinant accttabil
Circolare n. 1 Prot. n. 758 Roma 29/01/2015
Ministro dll Istruzion, dll Univrsità dlla Ricrca Dipartimnto pr il sistma ducativo di istruzion formazion Dirzion Gnral pr gli ordinamnti scolastici la valutazion dl sistma nazional di istruzion Circolar
APPUNTI DI CALCOLO NUMERICO
APPUNTI DI CALCOLO NUMERICO Mawll Equazioni non linari: probla di punto isso Sisti di quazioni non linari Introduzion Il probla di punto isso è un probla ch si prsnta spsso in oltissi applicazioni Esso
Matematica. Indice lezione. (Esercitazioni) dott. Francesco Giannino dott. Valeria Monetti. Funzione esponenziale
Mtmtic (Esrcitzioni) Equzioni Disquzioni sponnzili - ritmich dott. Frncsco Ginnino dott. Vlri Montti Indic lzion Funzion sponnzil Equzioni disquzioni sponnzili Funzion ritmo Equzioni disquzioni ritmich
II-1 Funzioni. 1 Il concetto di funzione 1. 2 Funzione composta 5. 3 Funzione inversa 7. 4 Restrizione e prolungamento di una funzione 9
1 IL CONCETTO DI FUNZIONE 1 II-1 Funzioni Indic 1 Il conctto di funzion 1 Funzion composta 5 3 Funzion invrsa 7 4 Rstrizion prolungamnto di una funzion 9 5 Soluzioni dgli srcizi 9 In qusta dispnsa affrontiamo
SIMT-POS 042 GESTIONE INDICATORI E MIGLIORAMENTO CONTINUO SIMT
1 Prima Stsura Data: 14-08-2014 Rdattori: Gasbarri, Rizzo SIMT-POS 042 GESTIONE INDICATORI E MIGLIORAMENTO CONTINUO SIMT Indic 1 SCOPO... 2 2 CAMPO D APPLICAZIONE... 2 3 DOCUMENTI DI RIFERIMENTO... 2 4
AGENZIA GOVERNATIVA REGIONALE OSSERVATORIO ECONOMICO CONGIUNTURA TURISTICA REGIONALE
CONGIUNTURA TURISTICA REGIONALE Turismo in Sardgna: stagion stiva 2010 in calo, ma il sttor albrghiro tin nonostant la crisi intrnazional (+1,2% l prsnz fra giugno sttmbr). Ngli ultimi msi si è assistito
ESERCIZI SULLA CONVEZIONE
Giorgia Mrli matr. 97 Lzion dl 4//0 ora 0:0-:0 ESECIZI SULLA CONVEZIONE Esrcizio n Considriamo un tubo d acciaio analizziamo lo scambio trmico complto, ossia qullo ch avvin sia all intrno sia all strno
TRAVE ELASTICA SU SUOLO ELASTICO (MODELLO ALLA WINKLER) Collana Calcolo di edifici in muratura (www.edificiinmuratura.it)
RAVE EASIA SU SUOO EASIO (MODEO AA WINKER) ollana alcolo di difici in muratura (www.dificiinmuratura.it) Articolo 7 uglio 5 rav lastica su suolo lastico (modllo alla Winlr) In qusta trattaion la trav
Corso di laurea in Scienze internazionali e diplomatiche. corso di POLITICA ECONOMICA
Corso di laura in Scinz intrnazionali diplomatich corso di OLITICA ECONOMICA SAVERIA CAELLARI Curva di offrta aggrgata di brv priodo; quilibrio domanda offrta aggrgata nl brv nl lungo priodo Aspttativ
LA DISTRIBUZIONE NORMALE
LA DISTRIBUZIOE ORMALE Prma Principali carattritich dlla curva normal La curva normal tandardizzata Prma Un tipo molto important di ditribuzion di frqunza è qulla normal. Quta ditribuzion è particolarmnt
Gazzetta ufficiale dell'unione europea
L 68/4 Gazztta ufficial dll'union uropa 15.3.2016 REGOLAMENTO DELEGATO (UE) 2016/364 DELLA COMMISSIONE dal 1 o luglio 2015 rlativo alla classificazion dlla prstazion di prodotti da costruzion in rlazion
PROGRAMMAZIONE IV Geometri. ORGANIZZAZIONE MODULARE (Divisa in unità didattiche) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algebra 15
PROGRAMMAZIONE IV Gomtri ORGANIZZAZIONE MODULARE (Divisa in unità didattich) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algbra 15 B Rcupro di trigonomtria C Funzioni rali a variabil ral 12 D Limiti
RISOLUZIONI cap (a) La resistenza termica totale dello scambiatore di calore, riferita all'unità di lunghezza, è
"Trmodinamica trasmission dl calor 3/d" 1 - Yunus A. Çngl RISOLUZIONI cap.19 19.1 (a) La rsistnza trmica total dllo scambiator di calor, rifrita all'unità di lunghzza, è (b) Il cofficint global di scambio
Esercizio 3. Determinare la dimensione, la codimensione, una base, equazioni cartesiane, equazioni parametriche ed un complemento per U R 3, dove
Sapinza Univrsità di Roma Corso di laura in Inggnria Enrgtica Gomtria - A.A. 2015-2016 Foglio n.10 Somma intrszion di sottospazi vttoriali prof. Cigliola Esrcizio 1. Sono dati i vttori v 1 = ( 1, 0, 0),
Calcoli di energia libera
Calcoli di nrgia libra Fdrico Fogolari Dipartimnto Scintifico Tcnologico Univrsita di Vrona Ca Vignal 1, Strada L Grazi 15 37134 Vrona, Italy tl. ++39-045-8027906 fax. ++39-045-8027929 mail: fogolari@sci.univr.it