Massimi e minimi relativi in R n

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Massimi e minimi relativi in R n"

Transcript

1 Massimi e minimi relativi in R n Si consideri una funzione f : A R, con A R n, e sia x A un punto interno ad A. Definizione: si dice che x è un punto di massimo relativo per f se B(x, r) A tale che f(y) f(x) y B(x, r). Si dice invece che x è un punto di minimo relativo per f se B(x, r) A tale che f(y) f(x) y B(x, r). Data una funzione, per trovare i punti di massimo e/o minimo relativo si può sfruttare il seguente Teorema. Teorema: se f : A R, con A R n aperto, è derivabile in un punto x A interno ad A e x è un punto di massimo o minimo relativo, allora f(x) = (0, 0,..., 0) Dunque in prima battuta, per cercare gli eventuali punti di massimo e minimo relativo di f, si calcolano le derivate parziali e risolve il sistema in cui tutte tali derivate si azzerano x 1 (x 1, x,..., x n ) = 0 x (x 1, x,..., x n ) = 0. x n (x 1, x,..., x n ) = 0 Esempio: calcolare massimi e minimi relativi delle seguenti funzioni R R così definite f(x, y) = x + y g(x, y) = 1 x y h(x, y) = y x f(x, y) = (x, y) f(x, y) = (0, 0) = x = y = 0 g(x, y) = x, y) g(x, y) = (0, 0) = x = y = 0 h(x, y) = ( x, y) h(x, y) = (0, 0) = x = y = 0 Quindi (0, 0) è un punto critico per le tre funzioni. f(x, y) = x + y 0 (x, y) R Perciò (0, 0) è un punto di minimo assoluto (quindi anche relativo) per f. g(x, y) = 1 (x + y ) 1 (x, y) R Dato che g(0, 0) = 1, allora (0, 0) è un punto di massimo assoluto (quindi anche relativo) per g. Per quanto riguarda h, la restrizione h(x, 0) = x equivale ad una parabola concava con vertice nell origine, per questo il punto (0, 0), relativamente a questa restrizione, rappresenterebbe un 1

2 massimo. Invece la restrizione h(0, y) = y rappresenta una parabola convessa con vertice nell origine, pertanto, relativamente a questa restrizione, il punto (0, 0) rappresenterebbe un minimo. Pertanto (0, 0) per h non è né un punto di massimo né un punto di minimo, ma è un punto di sella. Teorema di Fermat: sia f : A R, con A R n aperto e f C 1 (A), sia x A un punto interno ad A, e supponiamo inoltre che x sia un punto di massimo o minimo relativo. Allora f(x) = O, dove con O si intende il vettore nullo di R n. Definizione: i punti in cui il gradiente si annulla sono detti punti critici. Sia f definita come sopra, allora l insieme dei punti critici è dato da {x A : f(x) = O} Definizione: un punto critico che non è né un massimo né un minimo è un punto di sella. Più precisamente, se x è un punto critico, e in ogni intorno di x esistono due punti y e z tali che f(y) > f(x) e f(z) < f(x) allora x è un punto di sella. Quindi per capire se un punto critico x di f è un punto di massimo, di minimo o di sella si deve studiare la disequazione f(y) f(x) 0 per y appartenente ad un intorno di x. Esempio: trovare massimi e minimi relativi di f : R R : (x, y) x + y xy Dato che f C 1 ( R ) per il Teorema di Fermat i suoi eventuali punti di massimo e minimo relativo sono punti critici. (x, y) = x y x y (x, y) = y x f(x, y) = (x y, y x) { x y = 0 y x = 0 = { x = y 6y y = 0 = { x = y y(6y 1) = 0 Le soluzioni del sistema sono (x, y) = (0, 0) e (x, y) = ( 1 1, 1 6). Se (0, 0) fosse un punto di minimo, allora, per ogni (x, y) in un intorno di (0, 0), risulterebbe (osservando che f(0, 0) = 0) f(x, y) f(0, 0) 0 = x + y xy 0 Osserviamo come si comporta la f lungo la retta x = 0, studiamo cioè la restrizione f(0, y) = y, rappresentata in Figura 1. Tale restrizione è positiva per y > 0, negativa per f(0, y) < 0, così come evidenziato in Figura. Comunque si comporti ogni altra restrizione di f, esisteranno punti appartenenti all intorno di (0, 0) per cui f(x, y) > f(0, 0), altri appartenenti allo stesso intorno per cui f(x, y) < f(0, 0). Di conseguenza (0, 0) è un punto di sella. Consideriamo ora il punto ( 1 disequazione 1, 1 6 f(x, y) f ) (, osservando che f 1 1, 1 6 ) ( 1 1, = x + y xy ) = 1 4. Rimane ora da studiare la Come si può vedere, in questo caso il calcolo di massimo e minimo mediante l uso della definizione non è agevole. In generale, cerchiamo di studiare f(y) f(x) 0 nel caso in cui 1. f : A R, con A R n aperto e f C (A). x è un punto critico di f

3 Figura 1: Restrizione della f alla retta x = 0 Figura : Positività della restrizione f(0, y) Lo sviluppo di Taylor arrestato al ordine di f intorno x è f(y) = f(x) + f(x), (y x) + 1 (y x) Hf(x) (y x)t + o( y x ) Dato che x è un punto critico si osserva che f(x) = (0, 0,..., 0), pertanto lo sviluppo equivale a f(y) f(x) = 1 (y x)hf(x)(y x)t + o( y x ) Il segno di f(y) f(x), che poi è quello a cui siamo interessati, è intuibile dal segno di (y x)hf(x)(y x) T

4 cioè dal segno di una quantità del tipo vhv T, con H matrice simmetrica n n, e v vettore appartenente a R n. Conviene a questo punto richiamare alcuni concetti di Algebra Lineare. Data una matrice M quadrata n n a coefficienti in K (che può essere R o C), dato un vettore v K n, indichiamo con O il vettore nullo di K n. Definizione: M si dice semidefinita positiva se vhv T 0 M si dice semidefinita negativa se vhv T 0 v K n v K n M si dice definita positiva se vhv T > 0 M si dice definita negativa se vhv T < 0 v K n \ {O} e vhv T = 0 v = O v K n \ {O} e vhv T = 0 v = O M si dice indefinita se esistono v 1, v K n tali che v 1 Hv T 1 < 0 e v Hv T > 0 Richiamiamo anche un altro concetto di Algebra Lineare. Definizione: data una matrice M quadrata a coefficienti in un dato campo K, si dice che λ K è un autovalore di M se e solo se det(m λi) = 0, dove I indica la matrice identità dello stesso ordine di M. Da questo si capisce che gli autovalori sono le radici in K del polinomio caratteristico della matrice. Le matrici Hessiane che considereremo sono tutte simmetriche a coefficienti reali. Si può dimostrare che una matrice simmetrica a coefficieni reali ha tutti gli autovalori reali. Per determinare se una matrice Hessiana considerata è definita positiva, definita negativa o indefinita, può essere utile considerare questo teorema. Teorema: sia H una matrice quadrata simmetrica a coefficienti reali. se H ha tutti gli autovalori positivi allora è definita positiva se H ha tutti gli autovalori negativi allora è definita negativa se H ha due autovalori di segno opposto allora è indefinita Per determinare la natura di un punto critico è importante sapere di che tipo è la matrice Hessiana, vale infatti il seguente Teorema. Teorema: sia f : A R, con A R n aperto, e supponiamo che f C (A). un punto critico per f (ovvero f(x) = (0, 0,..., 0)). Allora Sia x A 1. se Hf(x) è definita positiva allora x è un punto di minimo relativo. se Hf(x) è definita negativa allora x è un punto di massimo relativo. se Hf(x) è indefinita allora x è un punto di sella Non sono contemplati da questo teorema i casi in cui gli autovalori siano 0 o 0, in cui effettivamente qualcuno è nullo. In questi casi l Hessiano non può dare informazioni circa la natura del punto critico, ed è quindi necessario ricorrere alla definizione. Esempio: riprendiamo in considerazione l esempio precedente f : R R : (x, y) x + y xy 4

5 e determiniamo la natura del punto ( 1 1, 1 6). Le derivate prime parziali erano già state calcolate, calcoliamo ora le derivate seconde (x, y) = x f xy (x, y) = f (x, y) = 1 yx f (x, y) = 6y y Quindi la matrice Hessiana è pertanto ( ) 1 Hf(x, y) = 1 6y Hf ( 1 1, 1 ) ( 1 = Calcoliamo ora gli autovalori indicando, per semplicità notazionale, con H quest ultima matrice ( ) ( ) ( ) λ 1 H λi = λ = λ Il determinante di questa matrice, ovvero il polinomio caratteristico di H, vale p(λ) = λ λ + λ 1 = λ λ + 1 Risolvendo l equazione di secondo grado p(λ) = 0 si trovano queste due soluzioni, che poi sono gli autovalori di H λ 1 = 5 ) > 0 λ = + 5 Entrambi gli autovalori sono positivi (strettamente), quindi H è una matrice definita positiva, pertanto ( 1 1, 6) 1 è un punto di minimo relativo per f. Verifichiamo ora che (0, 0) è un punto di sella per f ( ) 1 Hf(0, 0) = 1 0 Sempre per semplicità notazionale, d ora in poi indichiamo questa matrice semplicemente con H. ( ) λ 1 H λi = 1 λ Il determinante di questa matrice vale p(λ) = λ λ 1, pertanto le radici di p(λ) sono > 0 λ 1 = 1 < 0 λ = 1 + > 0 dato che sono di segno opposto la matrice è indefinita e (0, 0) è un punto di sella per f. Regola di Cartesio Per determinare la natura dell Hessiano non è necessario determinare i suoi autovalori, ma è sufficiente conoscerne il segno. Per questo scopo può essere utile la regola di Cartesio, che permette di conoscere il segno delle radici di un polinomio osservando solo il segno dei coefficienti. Consideriamo questi due polinomi, ordinati dalla potenza maggiore alla potenza minore p(λ) = 10λ 4 7λ + 4λ + 6λ 1 q(λ) = 10λ 1 + λ 5 + 5λ 4 + λ Il polinomio p( ) è completo, invece q( ) no, perché ha dei coefficienti nulli. Se il polinomio considerato è completo, dopo averlo scritto con le potenze dalla maggiore alla 5

6 minore, si scrive la successione dei segni dei coefficienti, ad esempio, considerando il polinomio p( ) si ottiene V V P V Coppie successive di segni opposti sono variazioni, coppie successive di segno uguale sono permanenze. Ogni variazione corrisponde al fatto che il polinomio ha una radice positiva, ogni permanenza invece corrisponde al fatto che il polinomio ha una radice negativa. p( ) presenta tre variazioni e una permanenza, pertanto, se ha 4 radici reali, allora sono positive e una è negativa. Se invece il polinomio considerato non è completo, come q( ), si procede come segue: si raccoglie, se si può, una potenza di λ comune a tutti i termini, nel caso di q( ) q(λ) = λ ( 10λ 18 + λ + 5λ + 1) = λ r(λ) Quindi q( ) ammette una radice pari a 0 di molteplicità. ammette 0 come radice (il termine noto infatti non è nullo). Allo stesso tempo r( ) non A questo punto si passa ad analizzare r( ). Se r( ) è completo si procede come prima, altrimenti, se non è completo, ha almeno due radici di segno opposto. Esempio: trovare i massimi e minimi di f : R R : (x, y, z) x + y 4 + y + z xz Dato che f è un polinomio, allora f C ( R ), pertanto, per il Teorema di Fermat, i punti di massimo e minimo vanno cercati fra i punti critici. (x, y, z) = x z x y (x, y, z) = 4y + y z (x, y, z) = z x Risolvendo il sistema (i passaggi algebrici sono lasciati al lettore) si trovano queste due soluzioni ( (x, y, z) = (0, 0, 0) (x, y, z) =, 0, ) Calcoliamo le derivate seconde (per il Teorema di Schwarz le derivate seconde miste sono uguali, pertanto è sufficiente calcolare sei derivate, anziché nove) (x, y, z) = x f y (x, y, z) = 1y + (x, y, z) = 6z z Quindi la matrice Hessiana è xy (x, y, z) = f (x, y, z) = 0 yx xz (x, y, z) = f (x, y, z) = zx yz (x, y, z) = f (x, y, z) = 0 zy Hf(x, y, z) = 0 0 1y z da cui Hf(0, 0, 0) =

7 Hf(0, 0, 0) λi = λ 0 0 λ 0 0 λ Calcolandone il determinante (usando lo sviluppo di Sarrus, visto che la matrice è di ordine ) si trova questo polinomio det (Hf(0, 0, 0) λi) = λ( λ) 4( λ) = λ + 4λ 4λ 8 + 4λ = λ + 4λ 8 Dato che la matrice Hessiana è simmetrica e a coefficienti reali allora tutti i suoi autovalori sono positivi, pertanto il polinomio caratteristico ha tutte le radici reali. Osservando che questo polinomio ha termine noto diverso da zero e non è completo si deduce che ha due radici di segno opposto, quindi Hf(0, 0, 0) è indefinita, pertanto (0, 0, 0) è un punto di sella. Considerando l altro punto critico si ottiene Hf Hf (, 0, ) = (, 0, ) λi = λ 0 0 λ 0 0 λ Sviluppando secondo la regola di Sarrus si ottiene ( ( det Hf, 0, ) ) λi = ( λ) (4 λ) 4( λ) = ( λ)(8 6λ+λ 4) = ( λ)(λ 6λ+4) Un autovalore è, gli altri due, osservando i segni dei coefficienti del polinomio di secondo grado e sfruttando la regola di Cartesio, sono di sicuro positivi. Dato che tutti gli autovalori sono positivi allora la matrice Hessiana considerata è definita positiva, e (, 0, ) è un punto di minimo relativo. Esempio: calcolare massimi e minimi della funzione f : R R : (x, y) y x y Dato che f C ( R ) i massimi e minimi vanno cercati fra i punti critici. (x, y) = xy x (x, y) = y x y Risolvendo il sistema in cui si pongono le derivate parziali uguali a zero si nota facilmente che l unica soluzione è (x, y) = (0, 0). Le derivate seconde valgono (x, y) = y x Dunque l Hessiano è ovvero f (x, y) = y ( ) y x Hf(x, y) = x ( ) 0 0 Hf(0, 0) = 0 f xy (x, y) = f (x, y) = x yx La matrice in questione è diagonale, pertanto i suoi autovalori coincidono con gli elementi sulla diagonale principale, e sono 0 e. Un autovalore è nullo, pertanto l Hessiano non può dare informazioni circa la natura di questo punto critico. L unica cosa che si può fare è ricorrere alla definizione, ovvero studiare il segno di f(x, y) f(0, 0) per (x, y) in un intorno dell origine. Consideriamo la disequazione f(x, y) f(0, 0) 0, che equivale a Segno di y: y 0, mostrato in Figura y x y 0 = y(y x ) 0 7

8 Figura : Segno di y Segno di y x : y x, mostrato in Figura 4 Figura 4: Segno di y x Da questo si capisce che il segno di y(y x ) è quello rappresentato in Figura 5 8

9 Figura 5: Segno di y(y x ) Il punto critico in questione è il vertice della parabola. In ogni intorno dell origine cascano punti che soddisfano la disequazione f(x, y) f(0, 0) < 0, ovvero f(x, y) < f(0, 0), sia altri che soddisfano f(x, y) f(0, 0) > 0, ovvero f(x, y) > f(0, 0). Pertanto (0, 0) non è un massimo né un minimo, ma un punto di sella. Questo articolo è stato realizzato grazie alla supervisione di Luca Lussardi. 9

Esercitazione n 6. Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (b)f(x, y) = 4y 4 16x 2 y + x

Esercitazione n 6. Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (b)f(x, y) = 4y 4 16x 2 y + x Esercitazione n 6 1 Massimi e minimi di funzioni di più variabili Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (a)f(x, y) = x 3 + y 3 + xy (b)f(x, y) = 4y 4 16x

Dettagli

Polinomio di Taylor del secondo ordine per funzioni di due variabili

Polinomio di Taylor del secondo ordine per funzioni di due variabili Esercitazioni del 15 aprile 2013 Polinomio di Taylor del secondo ordine per funzioni di due variabili Sia f : A R 2 R una funzione di classe C 2. Fissato un p unto (x 0, y 0 A consideriamo il seguente

Dettagli

Estremi liberi. (H x, x) x 2 (1) F (x) =

Estremi liberi. (H x, x) x 2 (1) F (x) = Estremi liberi Allo scopo di ottenere delle condizioni sufficienti affinchè un punto stazionario sia un estremante, premettiamo alcuni risultati riguardanti le proprietà delle forme quadratiche. Sia H

Dettagli

ESERCITAZIONE SUI PUNTI STAZIONARI DI FUNZIONI LIBERE E SULLE FUNZIONI OMOGENEE

ESERCITAZIONE SUI PUNTI STAZIONARI DI FUNZIONI LIBERE E SULLE FUNZIONI OMOGENEE ESERCITAZIONE SUI PUNTI STAZIONARI DI FUNZIONI LIBERE E SULLE FUNZIONI OMOGENEE 1 Funzioni libere I punti stazionari di una funzione libera di più variabili si ottengono risolvendo il sistema di equazioni

Dettagli

ESERCIZIO SVOLTO N 1 ESERCIZIO SVOLTO N 2. Determinare e rappresentare graficamente il dominio della funzione

ESERCIZIO SVOLTO N 1 ESERCIZIO SVOLTO N 2. Determinare e rappresentare graficamente il dominio della funzione ESERCIZIO SVOLTO N 1 Determinare e rappresentare graficamente il dominio della funzione f(x, y) = y 2 x 2 Trovare gli eventuali punti stazionari e gli estremi di f Il dominio della funzione è dato da dom

Dettagli

ESERCIZI DI METODI QUANTITATIVI PER L ECONOMIA DIP. DI ECONOMIA E MANAGEMENT DI FERRARA A.A. 2016/2017. Ottimizzazione libera

ESERCIZI DI METODI QUANTITATIVI PER L ECONOMIA DIP. DI ECONOMIA E MANAGEMENT DI FERRARA A.A. 2016/2017. Ottimizzazione libera ESERCIZI DI METODI QUANTITATIVI PER L ECONOMIA DIP. DI ECONOMIA E MANAGEMENT DI FERRARA A.A. 2016/2017 Ottimizzazione libera Esercizio 1. Si determinino, se esistono, gli estremi delle seguenti funzioni

Dettagli

Punti di massimo o di minimo per funzioni di n variabili reali

Punti di massimo o di minimo per funzioni di n variabili reali Punti di massimo o di minimo per funzioni di n variabili reali Dati f : A R n R ed X 0 A, X 0 si dice : punto di minimo assoluto se X A, f ( x ) f ( X 0 ) punto di massimo assoluto se X A, f ( x ) f (

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

Estremi. 5. Determinare le dimensioni di una scatola rettangolare di volume v assegnato, che abbia la superficie minima.

Estremi. 5. Determinare le dimensioni di una scatola rettangolare di volume v assegnato, che abbia la superficie minima. Estremi 1. Determinare gli estremi relativi di f(x, y) = e x (x 1)(y 1) + (y 1).. Determinare gli estremi relativi di f(x, y) = y (y + 1) cos x. 3. Determinare gli estremi relativi di f(x, y) = xye x +y..

Dettagli

Funzioni implicite - Esercizi svolti

Funzioni implicite - Esercizi svolti Funzioni implicite - Esercizi svolti Esercizio. È data la funzione di due variabili F (x, y) = y(e y + x) log x. Verificare che esiste un intorno I in R del punto di ascissa x 0 = sul quale è definita

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

Similitudine (ortogonale) e congruenza (ortogonale) di matrici.

Similitudine (ortogonale) e congruenza (ortogonale) di matrici. Lezione del 4 giugno. Il riferimento principale di questa lezione e costituito da parti di: 2 Forme bilineari, quadratiche e matrici simmetriche associate, 3 Congruenza di matrici simmetriche, 5 Forme

Dettagli

ANALISI B alcuni esercizi proposti

ANALISI B alcuni esercizi proposti ANALISI B alcuni esercizi proposti G.P. Leonardi Parte II 1 Limiti e continuità per funzioni di 2 variabili Esercizio 1.1 Calcolare xy log(1 + x ) lim (x,y) (0,0) 2x 2 + 5y 2 Esercizio 1.2 Studiare la

Dettagli

Massimi e minimi assoluti vincolati: esercizi svolti

Massimi e minimi assoluti vincolati: esercizi svolti Massimi e minimi assoluti vincolati: esercizi svolti Gli esercizi contrassegnati con il simbolo * presentano un grado di difficoltà maggiore. Esercizio 1. Determinare i punti di massimo e minimo assoluti

Dettagli

Svolgimento. f y (x, y) = 8 y 2 x. 1 x 2 y = 0. y 2 x = 0. (si poteva anche ricavare la x dalla seconda equazione e sostituire nella prima)

Svolgimento. f y (x, y) = 8 y 2 x. 1 x 2 y = 0. y 2 x = 0. (si poteva anche ricavare la x dalla seconda equazione e sostituire nella prima) Università degli Studi della Basilicata Corsi di Laurea in Chimica / Scienze Geologiche Matematica II A. A. 2013-2014 (dott.ssa Vita Leonessa) Esercizi svolti: Ricerca di massimi e minimi di funzioni a

Dettagli

1 Il polinomio minimo.

1 Il polinomio minimo. Abstract Il polinomio minimo, così come il polinomio caratterisico, è un importante invariante per le matrici quadrate. La forma canonica di Jordan è un approssimazione della diagonalizzazione, e viene

Dettagli

MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE

MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE DIAGONALIZZAZIONE 1 MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE Matrici ortogonali e loro proprietà. Autovalori ed autospazi di matrici simmetriche reali. Diagonalizzazione mediante matrici

Dettagli

Teorema delle Funzioni Implicite

Teorema delle Funzioni Implicite Teorema delle Funzioni Implicite Sia F una funzione di due variabili definita in un opportuno dominio D di R 2. Consideriamo l equazione F (x, y) = 0, questa avrà come soluzioni coppie di valori (x, y)

Dettagli

DERIVATE SUCCESSIVE E MATRICE HESSIANA

DERIVATE SUCCESSIVE E MATRICE HESSIANA FUNZIONI DI DUE VARIABILI 1 DERIVATE SUCCESSIVE E MATRICE HESSIANA Derivate parziali seconde e matrice hessiana. Sviluppo di Taylor del secondo ordine. Punti stazionari. Punti di massimo o minimo (locale

Dettagli

Alcune nozioni di calcolo differenziale

Alcune nozioni di calcolo differenziale Alcune nozioni di calcolo differenziale G. Mastroeni, M. Pappalardo 1 Limiti per funzioni di piu variabili Supporremo noti i principali concetti algebrici e topologici relativi alla struttura dello spazio

Dettagli

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [;

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [; ESERCIZIO - Data la funzione f (x) + x2 2x x 2 5x + 6, si chiede di: a) calcolare il dominio di f ; (2 punti) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire se f ha asintoti

Dettagli

Secondo parziale di Matematica per l Economia (esempio)

Secondo parziale di Matematica per l Economia (esempio) Corso di Laurea in Economia e Management Secondo parziale di Matematica per l Economia (esempio) lettere E-Z, a.a. 206 207 prof. Gianluca Amato Regole generali Si svolga il primo esercizio e, a scelta

Dettagli

Corso di Laurea in Informatica/Informatica Multimediale Esercizi Analisi Matematica 2

Corso di Laurea in Informatica/Informatica Multimediale Esercizi Analisi Matematica 2 a.a 2005/06 Corso di Laurea in Informatica/Informatica Multimediale Esercizi Analisi Matematica 2 Funzioni di due variabili a cura di Roberto Pagliarini Vediamo prima di tutto degli esercizi sugli insiemi

Dettagli

Ottimizzazione libera

Ottimizzazione libera Capitolo 1 Ottimizzazione libera Sia f una funzione a valori reali definita sull intervallo E R n. Diciamo che f ha in a E un massimo relativo se B r (a) : x E B r (a), f(x) f(a) In particolare ci occuperemo

Dettagli

0.1 Condizione sufficiente di diagonalizzabilità

0.1 Condizione sufficiente di diagonalizzabilità 0.1. CONDIZIONE SUFFICIENTE DI DIAGONALIZZABILITÀ 1 0.1 Condizione sufficiente di diagonalizzabilità È naturale porsi il problema di sapere se ogni matrice sia o meno diagonalizzabile. Abbiamo due potenziali

Dettagli

Richiami di algebra delle matrici a valori reali

Richiami di algebra delle matrici a valori reali Richiami di algebra delle matrici a valori reali Vettore v n = v 1 v 2. v n Vettore trasposto v n = (v 1, v 2,..., v n ) v n = (v 1, v 2,..., v n ) A. Pollice - Statistica Multivariata Vettore nullo o

Dettagli

Corsi di laurea in ingegneria aerospaziale e ingegneria meccanica Prova scritta di Fondamenti di Analisi Matematica II. Padova, 19.9.

Corsi di laurea in ingegneria aerospaziale e ingegneria meccanica Prova scritta di Fondamenti di Analisi Matematica II. Padova, 19.9. Corsi di laurea in ingegneria aerospaziale e ingegneria meccanica Prova scritta di Fondamenti di Analisi Matematica II Padova, 19.9.2016 Si svolgano i seguenti esercizi facendo attenzione a giustificare

Dettagli

Formulario sui Prodotti Hermitiani Marcello Mamino Pisa, 24 v 2010

Formulario sui Prodotti Hermitiani Marcello Mamino Pisa, 24 v 2010 Formulario sui Prodotti Hermitiani Marcello Mamino Pisa, 24 v 2010 In quetsa dispensa: V è uno spazio vettoriale di dimensione d sul campo complesso C generato dai vettori v 1,..., v d. Le variabili m,

Dettagli

2 2 2 A = Il Det(A) = 2 quindi la conica è non degenere, di rango 3.

2 2 2 A = Il Det(A) = 2 quindi la conica è non degenere, di rango 3. Studio delle coniche Ellisse Studiare la conica di equazione 2x 2 + 4xy + y 2 4x 2y + 2 = 0. Per prima cosa dobbiamo classificarla. La matrice associata alla conica è: 2 2 2 A = 2 2 2 Il DetA = 2 quindi

Dettagli

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 18 febbraio 2010 Tema A

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 18 febbraio 2010 Tema A Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 18 febbraio 21 Tema A Tempo a disposizione: 2 ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio va iniziato all inizio

Dettagli

1 Forme quadratiche 1. 2 Segno di una forma quadratica Il metodo dei minori principali Soluzioni degli esercizi 7.

1 Forme quadratiche 1. 2 Segno di una forma quadratica Il metodo dei minori principali Soluzioni degli esercizi 7. 1 FORME QUADRATICHE 1 Forme quadratiche Indice 1 Forme quadratiche 1 2 Segno di una forma quadratica 2 2.1 Il metodo dei minori principali........................................ 3 3 Soluzioni degli esercizi

Dettagli

Soluzione di Adriana Lanza

Soluzione di Adriana Lanza Soluzione Dimostriamo che f(x) è una funzione dispari Osserviamo che in quanto in quanto x è una funzione dispari è una funzione dispari in quanto prodotto di una funzione dispari per una pari Pertanto

Dettagli

Alcuni esercizi sulla diagonalizzazione di matrici. campo dei reali. Se lo è calcolare una base spettrale e la relativa forma diagonale di A.

Alcuni esercizi sulla diagonalizzazione di matrici. campo dei reali. Se lo è calcolare una base spettrale e la relativa forma diagonale di A. Alcuni esercii sulla diagonaliaione di matrici Eserciio Dire se la matrice A 4 8 è diagonaliabile sul 3 3 campo dei reali Se lo è calcolare una base spettrale e la relativa forma diagonale di A Svolgimento

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = e (x3 +x) y

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = e (x3 +x) y Analisi Matematica II Corso di Ingegneria Gestionale Compito del 8--7 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Matrici simili. Matrici diagonalizzabili.

Matrici simili. Matrici diagonalizzabili. Matrici simili. Matrici diagonalizzabili. Definizione (Matrici simili) Due matrici quadrate A, B si dicono simili se esiste una matrice invertibile P tale che B = P A P. () interpretazione: cambio di base.

Dettagli

LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2010/2011

LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2010/2011 LUISS Laurea specialistica in Economia e Finanza Anno Accademico 1/11 Corso di Metodi Matematici per la Finanza Prof. Fausto Gozzi, Dr. Davide Vergni Soluzioni esercizi 4,5,6 esame scritto del 13/9/11

Dettagli

1. Richiami. v = x 2 + y 2.

1. Richiami. v = x 2 + y 2. Gli elementi del prodotto cartesiano 1 Richiami R 2 = x, y R} sono detti vettori Ogni vettore v è una coppia ordinata ed i numeri reali x e y sono detti le componenti di v In particolare si denota con

Dettagli

Funzioni elementari: funzioni potenza

Funzioni elementari: funzioni potenza Funzioni elementari: funzioni potenza Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Funzioni elementari: funzioni potenza 1 / 36 Funzioni lineari Come abbiamo già visto,

Dettagli

1. Funzioni implicite

1. Funzioni implicite 1. Funzioni implicite 1.1 Il caso scalare Sia X R 2 e sia f : X R. Una funzione y : (a, b) R si dice definita implicitamente dall equazione f(x, y) = 0 in (a, b) quando: 1. (x, y(x)) X x (a, b); 2. f(x,

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I

TEMI D ESAME DI ANALISI MATEMATICA I TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare

Dettagli

Metodi per la risoluzione di sistemi lineari

Metodi per la risoluzione di sistemi lineari Metodi per la risoluzione di sistemi lineari Sistemi di equazioni lineari. Rango di matrici Come è noto (vedi [] sez.0.8), ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante

Dettagli

Esercizi sui sistemi di equazioni lineari.

Esercizi sui sistemi di equazioni lineari. Esercizi sui sistemi di equazioni lineari Risolvere il sistema di equazioni lineari x y + z 6 x + y z x y z Si tratta di un sistema di tre equazioni lineari nelle tre incognite x, y e z Poichè m n, la

Dettagli

I teoremi della funzione inversa e della funzione implicita

I teoremi della funzione inversa e della funzione implicita I teoremi della funzione inversa e della funzione implicita Appunti per il corso di Analisi Matematica 4 G. Mauceri Indice 1 Il teorema della funzione inversa 1 Il teorema della funzione implicita 3 1

Dettagli

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni Corso di Geometria Ing. Informatica e Automatica Test : soluzioni k Esercizio Data la matrice A = k dipendente dal parametro k, si consideri il k sistema lineare omogeneo AX =, con X = x x. Determinare

Dettagli

IV-2 Forme quadratiche

IV-2 Forme quadratiche 1 FORME QUADRATICHE 1 IV-2 Forme quadratiche Indice 1 Forme quadratiche 1 2 Segno di una forma quadratica 2 2.1 Il metodo dei minori principali........................................ 3 3 Soluzioni degli

Dettagli

Esercitazioni di Geometria A: curve algebriche

Esercitazioni di Geometria A: curve algebriche Esercitazioni di Geometria A: curve algebriche 24-25 maggio 2016 Esercizio 1 Sia P 2 il piano proiettivo complesso munito delle coordinate proiettive (x 0 : x 1 : x 2 ). Sia r la retta proiettiva di equazione

Dettagli

Esercizi su massimi e minimi locali

Esercizi su massimi e minimi locali Esercizi su massimi e minimi locali Determinare i punti di massimo locale, di minimo locale o di sella delle seguenti funzioni: 1. f(x, y = (x 1 2 + y 2 2. f(x, y = (x 1 2 y 2 3. f(x, y = x 2 + xy + y

Dettagli

Massimi e minimi vincolati

Massimi e minimi vincolati Massimi e minimi vincolati Vedremo tra breve un metodo per studiare il problema di trovare il minimo e il massimo di una funzione su di un sottoinsieme dello spazio ambiente che non sia un aperto. Abbiamo

Dettagli

AUTOVALORI, AUTOVETTORI, AUTOSPAZI

AUTOVALORI, AUTOVETTORI, AUTOSPAZI AUTOVALORI, AUTOVETTORI, AUTOSPAZI. Esercizi Esercizio. Sia f : R 3 R 3 l endomorfismo definito da f(x, y, z) = (x+y, y +z, x+z). Calcolare gli autovalori ed una base per ogni autospazio di f. Dire se

Dettagli

Metodi per la risoluzione di sistemi lineari

Metodi per la risoluzione di sistemi lineari Metodi per la risoluzione di sistemi lineari 1 Sistemi di equazioni lineari 1.1 Determinante di matrici quadrate Ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante della matrice

Dettagli

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ. ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del A

Analisi Matematica II Corso di Ingegneria Gestionale Compito del A Analisi Matematica II Corso di Ingegneria Gestionale Compito del -7-5 - A Esercizio ( punti Data la funzione f(x, y = x + y + 4xy 8x 4y + 4 i trovare tutti i punti critici e, se possibile, caratterizzarli

Dettagli

Esercizi sulle coniche (prof.ssa C. Carrara)

Esercizi sulle coniche (prof.ssa C. Carrara) Esercizi sulle coniche prof.ssa C. Carrara Alcune parti di un esercizio possono ritrovarsi in un altro esercizio, insieme a parti diverse. È un occasione per affrontarle da un altra angolazione.. Determinare

Dettagli

4.11 Massimi e minimi relativi per funzioni di più variabili

4.11 Massimi e minimi relativi per funzioni di più variabili 5. Determinare, al variare del parametro a R, la natura delle seguenti forme quadratiche: (i) Φ(x, y, z) = x 2 + 2axy + y 2 + 2axz + z 2, (ii) Φ(x, y, z, t) = 2x 2 + ay 2 z 2 t 2 + 2xz + 4yt + 2azt. 4.11

Dettagli

Limiti e continuità. Teoremi sui limiti. Teorema di unicità del limite Teorema di permanenza del segno Teoremi del confronto Algebra dei limiti

Limiti e continuità. Teoremi sui limiti. Teorema di unicità del limite Teorema di permanenza del segno Teoremi del confronto Algebra dei limiti Limiti e continuità Teorema di unicità del ite Teorema di permanenza del segno Teoremi del confronto Algebra dei iti 2 2006 Politecnico di Torino 1 Se f(x) =` ` è unico Per assurdo, siano ` 6= `0 con f(x)

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

(a) Le derivate parziali f x. f y = x2 + 2xy + 3 si annullano contemporaneamente in (1, 2) e ( 1, 2). Le derivate seconde di f valgono.

(a) Le derivate parziali f x. f y = x2 + 2xy + 3 si annullano contemporaneamente in (1, 2) e ( 1, 2). Le derivate seconde di f valgono. Esercizio 1 Si consideri la funzione f(x, y) = x 2 y + xy 2 + y (a) Determinare i punti di massimo e minimo relativo e di sella del grafico di f. (b) Determinare i punti di massimo e minimo assoluto di

Dettagli

R. Capone Analisi Matematica Calcolo Differenziale Funzioni di due variabili

R. Capone Analisi Matematica Calcolo Differenziale Funzioni di due variabili Richiami teorici Sia una funzione di due variabili definita in un insieme A e sia un punto interno ad A. Se R è un dominio regolare di centro e di dimensioni e la funzione della sola variabile x, risulta

Dettagli

ESAME DI MATEMATICA I parte Vicenza, 05/06/2017. x log 2 x?

ESAME DI MATEMATICA I parte Vicenza, 05/06/2017. x log 2 x? A. Peretti Svolgimento dei temi d esame di Matematica A.A. 6/7 ESAME DI MATEMATICA I parte Vicenza, 5/6/7 log? Domanda. Per quali valori di è definita l espressione L espressione è definita se l argomento

Dettagli

Esercizi sulle coniche (prof.ssa C. Carrara)

Esercizi sulle coniche (prof.ssa C. Carrara) Esercizi sulle coniche prof.ssa C. Carrara Alcune parti di un esercizio possono ritrovarsi in un altro esercizio, insieme a parti diverse. È un occasione per affrontarle più volte.. Stabilire il tipo di

Dettagli

CAPITOLO 14. Quadriche. Alcuni esercizi di questo capitolo sono ripetuti in quanto risolti in maniera differente.

CAPITOLO 14. Quadriche. Alcuni esercizi di questo capitolo sono ripetuti in quanto risolti in maniera differente. CAPITOLO 4 Quadriche Alcuni esercizi di questo capitolo sono ripetuti in quanto risolti in maniera differente. Esercizio 4.. Stabilire il tipo di quadrica corrispondente alle seguenti equazioni. Se si

Dettagli

Tempo a disposizione. 120 minuti. 1 Sia dato l endomorfismo f : R 3 R 3 la cui matrice rispetto alla base canonica di R 3 è.

Tempo a disposizione. 120 minuti. 1 Sia dato l endomorfismo f : R 3 R 3 la cui matrice rispetto alla base canonica di R 3 è. Dipartimento di Matematica e Informatica Anno Accademico 2015-2016 Corso di Laurea in Informatica (L-31) Prova in itinere di Matematica Discreta (12 CFU) 13 Giugno 2016 B2 Tempo a disposizione. 120 minuti

Dettagli

Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Bacchelli - a.a. 2010/2011.

Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Bacchelli - a.a. 2010/2011. Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Baccelli - a.a. 2010/2011. 06 - Derivate, differenziabilità, piano tangente, derivate di ordine superiore. Riferimenti: R.Adams, Calcolo

Dettagli

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE. Esercizi Esercizio. In R calcolare il modulo dei vettori,, ),,, ) ed il loro angolo. Esercizio. Calcolare una base ortonormale del sottospazio

Dettagli

Corso di Matematica II Anno Accademico Esercizi di Algebra Lineare. Calcolo di autovalori ed autovettori

Corso di Matematica II Anno Accademico Esercizi di Algebra Lineare. Calcolo di autovalori ed autovettori Esercizio 1 Corso di Matematica II Anno Accademico 29 21. Esercizi di Algebra Lineare. Calcolo di autovalori ed autovettori May 7, 21 Commenti e correzioni sono benvenuti. Mi scuso se ci fosse qualche

Dettagli

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi)

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi) Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006 Matematica 2 (Analisi) Nome:................................. N. matr.:.................................

Dettagli

Esercizi proposti 4 (capitolo 8)

Esercizi proposti 4 (capitolo 8) Esercizi proposti 4 capitolo 8). [8., #5 p. 9] Calcolare i possibili punti di estremo di gx) = x ln x, per x 0, + ). Soluzione. Ricordiamo che un punto di estremo è un punto del dominio della funzione

Dettagli

Mutue posizioni della parabola con gli assi cartesiani

Mutue posizioni della parabola con gli assi cartesiani Mutue posizioni della parabola con gli assi cartesiani L equazione di una parabola generica è data da: Consideriamo l equazione che definisce i punti di intersezione della parabola con l asse delle ascisse

Dettagli

Esercizi di Geometria - 1

Esercizi di Geometria - 1 Esercizi di Geometria - Samuele Mongodi - smongodi@snsit Di seguito si trovano alcuni esercizi assai simili a quelli che vi troverete ad affrontare nei test e negli scritti dell esame Non è detto che vi

Dettagli

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari Sistemi differenziali : esercizi svolti 1 Sistemi lineari Stabilità nei sistemi lineari 14 1 Sistemi differenziali : esercizi svolti 1 Sistemi lineari Gli esercizi contrassegnati con il simbolo * presentano

Dettagli

Massimi e minimi vincolati

Massimi e minimi vincolati Massimi e minimi vincolati Data una funzione G C 1 (D), dove D è un aperto di R 2, sappiamo bene dove andare a cercare gli eventuali punti di massimo e minimo relativi. Una condizione necessaria affinché

Dettagli

CLASSIFICAZIONE DELLE CONICHE AFFINI

CLASSIFICAZIONE DELLE CONICHE AFFINI CLASSIFICAZIONE DELLE CONICHE AFFINI Pre-requisiti necessari. Elementi di geometria analitica punti e rette nel piano cartesiano, conoscenza delle coniche in forma canonica). Risoluzione di equazioni e

Dettagli

Autovettori e autovalori

Autovettori e autovalori Autovettori e autovalori Definizione 1 Sia A Mat(n, n), matrice a coefficienti reali. Si dice autovalore di A un numero λ R tale che v 0 R n Av = λv. Ogni vettore non nullo v che soddisfa questa relazione

Dettagli

Noi ci occuperemo esclusivamente dei casi n = 2 e n = 3. Se n = 2, la quadrica Q p sarà detta conica di equazione p, e indicata con C p.

Noi ci occuperemo esclusivamente dei casi n = 2 e n = 3. Se n = 2, la quadrica Q p sarà detta conica di equazione p, e indicata con C p. Durante il corso abbiamo studiato insiemi (rette e piani) che possono essere descritti come luogo di zeri di equazioni (o sistemi) di primo grado. Adesso vedremo come applicare quanto visto per studiare

Dettagli

Ingegneria Gestionale - Corso di Algebra lineare e Analisi II anno accademico 2009/2010 ESERCITAZIONE 4.4

Ingegneria Gestionale - Corso di Algebra lineare e Analisi II anno accademico 2009/2010 ESERCITAZIONE 4.4 Ingegneria Gestionale - Corso di Algebra lineare e Analisi II anno accademico 9/ ESERCITAZIONE. (Cognome) (Nome) (Numero di matricola) Proposizione Vera Falsa Per due punti distinti di R passa un unica

Dettagli

Parte 7. Autovettori e autovalori

Parte 7. Autovettori e autovalori Parte 7. Autovettori e autovalori A. Savo Appunti del Corso di Geometria 23-4 Indice delle sezioni Endomorfismi, 2 Cambiamento di base, 3 3 Matrici simili, 6 4 Endomorfismi diagonalizzabili, 7 5 Autovettori

Dettagli

Appunti su Indipendenza Lineare di Vettori

Appunti su Indipendenza Lineare di Vettori Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

Soluzione. Il dominio E consiste nella parte di spazio contenuta nella sfera ma esterna al cono rappresentata in Figura 1. Infatti

Soluzione. Il dominio E consiste nella parte di spazio contenuta nella sfera ma esterna al cono rappresentata in Figura 1. Infatti Esercizio 1 (G. Ziglio). (6 punti) Calcolare il volume della porzione di spazio E interna alla sfera di equazione x 2 + y 2 + z 2 = 1 ed esterna al cono di equazione z 2 = x 2 + y 2 E = (x, y, z) R x 2

Dettagli

Soluzione di Adriana Lanza

Soluzione di Adriana Lanza Soluzione Dimostriamo che f(x) è una funzione dispari Osserviamo che in quanto in quanto x è una funzione dispari è una funzione dispari in quanto prodotto di una funzione dispari per una pari Pertanto

Dettagli

Endomorfismi e matrici simmetriche

Endomorfismi e matrici simmetriche CAPITOLO Endomorfismi e matrici simmetriche Esercizio.. [Esercizio 5) cap. 9 del testo Geometria e algebra lineare di Manara, Perotti, Scapellato] Calcolare una base ortonormale di R 3 formata da autovettori

Dettagli

Esercizi di ripasso: geometria e algebra lineare.

Esercizi di ripasso: geometria e algebra lineare. Esercizi di ripasso: geometria e algebra lineare. Esercizio. Sia r la retta passante per i punti A(2,, 3) e B(,, 2) in R 3. a. Scrivere l equazione cartesiana del piano Π passante per A e perpendicolare

Dettagli

Funzioni reali di variabile reale

Funzioni reali di variabile reale Funzioni reali di variabile reale Equazioni e disequazioni. In questa parte ricordiamo per completezza le prime nozioni e i primi principi sulle equazioni e disequazioni: sono le stesse nozioni e principi

Dettagli

Calcolo differenziale per funzioni in più variabili.

Calcolo differenziale per funzioni in più variabili. Calcolo differenziale per funzioni in più variabili. Paola Mannucci e Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica 14 dicembre 2014 Paola Mannucci e Alvise Sommariva Calcolo

Dettagli

Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti)

Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti) Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti) April 14, 2011 (alcune note non complete sugli argomenti trattati: eventuali completamenti saranno aggiunti)

Dettagli

Curve n d. f(x, y)=l. x,yda,b

Curve n d. f(x, y)=l. x,yda,b Curve n d Linee di livello: curva che si ottiene sezionando il grafico di una funzione n d con dei piani del tipo z=k, e quindi paralleli al piano xy e perpendicolari all asse z. Matematicamente si ottengono

Dettagli

Soluzione di Adriana Lanza

Soluzione di Adriana Lanza Soluzione Dimostriamo che f(x) è una funzione dispari Osserviamo che in quanto in quanto x è una funzione dispari è una funzione dispari in quanto prodotto di una funzione dispari per una pari Pertanto

Dettagli

Esercitazione 6 - Soluzione

Esercitazione 6 - Soluzione Anno Accademico 28-29 Corso di Algebra Lineare e Calcolo Numerico per Ingegneria Meccanica Esercitazione 6 - Soluzione Immagine, nucleo. Teorema di Rouché-Capelli. Esercizio Sia L : R 3 R 3 l applicazione

Dettagli

Risoluzione di sistemi lineari sparsi e di grandi dimensioni

Risoluzione di sistemi lineari sparsi e di grandi dimensioni Risoluzione di sistemi lineari sparsi e di grandi dimensioni Un sistema lineare Ax = b con A R n n, b R n, è sparso quando il numero di elementi della matrice A diversi da zero è αn, con n α. Una caratteristica

Dettagli

Analisi Matematica 1+2

Analisi Matematica 1+2 Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-700 Savona Tel. +39 09 264555 - Fax +39 09 264558 Ingegneria Gestionale Analisi Matematica +2 A.A 998/99 - Prove parziali

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Totale. Analisi e Geometria 2 Docente: 12 settembre 2013

Es. 1 Es. 2 Es. 3 Es. 4 Totale. Analisi e Geometria 2 Docente: 12 settembre 2013 Es. 1 Es. 2 Es. 3 Es. 4 Totale Analisi e Geometria 2 Docente: 12 settembre 213 Cognome: Nome: Matricola: Ogni risposta dev essere giustificata. Gli esercizi vanno svolti su questi fogli, nello spazio sotto

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni Corso di Geometria 2- BIAR, BSIR Esercizi 2: soluzioni Esercizio Calcolare il determinante della matrice 2 3 : 3 2 a) con lo sviluppo lungo la prima riga, b) con lo sviluppo lungo la terza colonna, c)

Dettagli

Criterio di Monotonia

Criterio di Monotonia Criterio di Monotonia Criterio di monotonia: se f è una funzione derivabile in (a,b), si ha: f (x) 0 x (a,b) f è debolmente crescente in (a,b) f (x) 0 x (a,b) f è debolmente decrescente in (a,b) Nota:

Dettagli

Applicazioni lineari e diagonalizzazione. Esercizi svolti

Applicazioni lineari e diagonalizzazione. Esercizi svolti . Applicazioni lineari Esercizi svolti. Si consideri l applicazione f : K -> K definita da f(x,y) = x + y e si stabilisca se è lineare. Non è lineare. Possibile verifica: f(,) = 4; f(,4) = 6; quindi f(,4)

Dettagli

Classificazione delle coniche.

Classificazione delle coniche. Classificazione delle coniche Ora si vogliono studiare i luoghi geometrici rappresentati da equazioni di secondo grado In generale, non è facile riconoscere a prima vista di che cosa si tratta, soprattutto

Dettagli

Esercizi di ottimizzazione vincolata

Esercizi di ottimizzazione vincolata Esercizi di ottimizzazione vincolata A. Agnetis, P. Detti Esercizi svolti 1 Dato il seguente problema di ottimizzazione vincolata max x 1 + x 2 x 1 4x 2 3 x 1 + x 2 2 0 x 1 0 studiare l esistenza di punti

Dettagli

La molteplicità di intersezione delle curve algebriche e il Teorema di Bezout

La molteplicità di intersezione delle curve algebriche e il Teorema di Bezout La molteplicità di intersezione delle curve algebriche e il Teorema di Bezout Relatore: Prof. Giorgio Ottaviani Candidato: Alessia Innocenti Università degli Studi di Firenze 4 Marzo 2015 Alessia Innocenti

Dettagli

0.1. MATRICI SIMILI 1

0.1. MATRICI SIMILI 1 0.1. MATRICI SIMILI 1 0.1 Matrici simili Definizione 0.1.1. Due matrici A, B di ordine n si dicono simili se esiste una matrice invertibile P con la proprietà che P 1 AP = B. Con questa terminologia dunque

Dettagli

ESERCIZI SULLO STUDIO DI FUNZIONI

ESERCIZI SULLO STUDIO DI FUNZIONI ESERCIZI SULLO STUDIO DI FUNZIONI 0 novembre 206 Esercizi Esercizio n. Si consideri la funzione f(x) = 7 x 2 + 3 Dominio: R Intersezioni con gli assi: Intersezioni con l asse x: { y = 0 y = 7 x 2 + 3.

Dettagli