R P R D V D2 V P2. m M R M R NMS. Psiche T p 4, 30 h m 2, K g ; m x. 4, K g ; d 213 K m

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "R P R D V D2 V P2. m M R M R NMS. Psiche T p 4, 30 h m 2, K g ; m x. 4, K g ; d 213 K m"

Transcript

1 Psiche T p 4, 0 h m, K g ; m x 4, K g ; d K m Giunone - T p 7, h m, K g ; m x 6, K g ; d 7 K m Davida T p 5, 7 h m, K g ; m x 5, K g ; d 60 K m Eros T p 5, 7 h m 9, K g ; m x!, K g ; d 8 K m 7 Marte : sono note le posizioni ed iperiodi di rivoluzione dei due satelliti. Phobos 974 K m ; T P 0, 89 g dim 6,, 4 8, 4 K m Deimos 458 K m ; T D, 644 g dim 0, 4, 5 K m Si ricavano i valori : V P V D 48 K m ; sec Il punto neutro risulta : m M K M 0, K g R NMS R M m S m M 956 K m 60

2 Se i due satelliti si trovano su " possibili " orbite stabili, dovrà essere : R n P R n D 974 K m 458 K m con R R NMS 956 K m Si ricava dunque : n P n D , 589 La coppia di valori che meglio approssima tale rapporto risulta 8 5 oppure 6 4 che però forniscono, entrambi, valori inaccettabili per R. Questo risultato ed altre considerazioni ci portano a pensare che i due satelliti non siano su orbite stabili. Ipotizziamo dunque che essi rappresentino un unico vecchio satellite spezzato in due partida un impatto schematizzabilecome in figura. 6

3 Le dimensioni dei satelliti fornite dall osservazione, lungo i tre assi, risultano praticamente complementari, precisamente : Phobos V P 6, 8, 6 8, 8 K m Deimos V D 0, 4, 5, 0 K m Essendo la spaccatura asimmetrica, il frammento più piccolo, Deimos, avrà una maggiore percentuale di elementi superficiali leggeri. Sarà ragionevole quindi pensare che abbia una minore densità media. Supponiamo che sia D 0, 85 P e che si possa trascurare il momento angolare del proiettile incidente rispetto al centro del pianeta Marte. Con queste ipotesi semplificative, indicando con V il volume dei satelliti e con x il satellite primordiale, il principio di conservazione del momento della quantità di moto impone che sia : m x V x m P V P m D V D che si può anche scrivere : m x m P m D semplificando si ottiene : m x m P m D sostituendo m V, si può scrivere : V P 0, 85 V D V P 0, 85 V D Sostituendo i valori numerici, si ricava : 6

4 089 K m utilizzando questo valore approssimato, ricaviamo il numero quantico associato all orbita. Dalla R NMS n X si ottiene : n x , 9754 Il numero quantico più prossimo accettabile risulta 4. Se si assume dunque n x primordiale dovrà essere : 4, la distanza corretta del satellite 956 K m 0797 K m Secondo questa dinamica, il satellite Deimos, durante l urto, ha acquisito energia e si è allontanato da Marte. L energia acquistata non è risultata tuttavia sufficiente per portarlo sull orbita stabile avente R n 49 K m quella che la precede con R n 80 K m. e quindi dovrà " cadere " su Il satellite Phobos invece "cade", lentamente, sul pianeta percorrendo una spirale. Utilizzando l osservazione secondo la quale oggi Phobos si avvicina a Marte con una velocità di circa m / 00 anni, se, in prima approssimazione, riteniamo che tale velocità non abbia subito variazioni nel tempo, possiamo datare l impatto con la relazione : t R X h m 00 a K m m 00 a anni Questo risultato potrebbe costituire una valida prova a favore della ipotesi che nella stessa epoca si sia verificata sulla Terra la caduta di 6 4

5 grandi asteroidi che hanno provocato l estinzione di un gran numero di specie animali. Possiamo, a questo punto, calcolare le caratteristiche orbitali dell intero sistema Marziano. V R 0, 575 K m sec T 4 R 6, 87 g Si avranno quindi le relazioni : R n 956 K m n m q ; T n 6, 87g n m q V n 0, 575 K m sec n m q lo schema orbitale completo risulta il seguente ,6 58,5 598, , 886, Calcoliamo, infine, il raggio della sfera rotante che sostiene il moto di rivoluzione del pianeta. r M0 m M m S R M 0,64904, , K m 7, 56 K m 96, K m 64 5

6 Marte presenta dunque un nucleo interno rotante su se stesso alla velocità : v V n K S R M,750 9 K m sec 7,940 6 K m 4, K m sec Pur essendo il nucleo di dimensioni modeste, la sua velocita di rotazione è molto elevata e quindi l energia termica che si sviluppa può essere sufficiente per generare in superficie fenomeni termici apprezzabili, anche se non vistosi. Bisogna infatti tenere presente che,a differenza diquanto accade sulla Terra, in questo caso, il nucleo chegenera l energia si trova al centro del pianeta e quindi i fenomeni superficiali che esso produce avranno tendenza ad essere più distribuiti con conseguente riduzione della loro intensità. A questo punto apriamo una piccola parentesi per fare una considerazione di carattere generale. Abbiamo visto che lo spazio rotante solare, per avere il pianeta in equilibrio sull orbita, impone alla massa planetaria m p la rotazione alla velocità V n ad una sfera di raggio r P

7 La massa m p, a seconda della densità, si realizzerà con una sfera di raggio r p che può assumere un valore qualsiasi,che difficilmente sarà coincidente, per caso, con r P0. Se risulta r p r P0, all interno della sfera planetaria si genera un andamento della velocità di rotazione decrescente verso l esterno in modo da produrre un momento angolare uguale e contrario a quello dei satelliti in orbita. In questo caso, l equilibrio viene raggiunto, con una sfera planetaria, solidale con il pianeta, avente un raggio minore del valore che si avrebbe in assenza di satelliti. La situazione è quella schematizzata in figura. Indicando con T n il periodo di rivoluzione, con T p quello di rotazione della sfera su se stessa, misurato sulla sua superficie, con c s la velocità periferica di rotazione della superficie del pianeta, si potrà scrivere : V n R n da cui si ricava : T n ; V n S T P ; T P r P c S R n T n S T P ; S V n r P c S e dunque il raggio della sfera planetaria in presenza di satelliti : S T P R n La sfera planetaria di Marte risulta : T n SM T P T n R M, g,88 a 7, K m 4079 K m 66 7

8 Verifichiamo, infine, la stabilità dei satelliti sulle orbite. M r M D r D numericamente si ottiene :,94,7 96, K m 6, K m 997 K m 458 K m Deimos, nella posizione attuale, perde continuamente massa dalla superficie rivolta verso Marte. Per Phobos si ricava R F 8000 K m 974 K m massa dalla superficie. e quindi anch esso perde Entrambi i satelliti sono dunque destinati a frantumarsi, formando una spirale di polvere e detriti vari diretti verso la superficie di Marte. 8 Sistema Terra Luna : in questo caso sono noti con precisione : m T 5, K g ; m L 0, 0 m T ; T L 7, 66 g si ricavano gli spazi rotanti : K T m T K m sec ; K L 4904, 7 K m sec Il raggio dell orbita lunare, considerata circolare, vale : R L K T T L K m 7,66 g sec 4 8 K m Durante il moto di rivoluzione del sistema,l azione dello spazio rotante solare 67 8

Verifichiamo, infine, la stabilità dei satelliti sulle orbite. r M. r D K m K m

Verifichiamo, infine, la stabilità dei satelliti sulle orbite. r M. r D K m K m Verifichiamo, infine, la stabilità dei satelliti sulle orbite. R D M r M D r D numericamente si ottiene : R D,94,7 96, K m 6, K m 997 K m 458 K m Deimos, nella posizione attuale, perde continuamente massa

Dettagli

580, K m 255, K m

580, K m 255, K m Himalia 480 0, 5798 9 Pasihiphae 500 0, 78 04 Ananke 00 0, 687 0596 Lysithea 70 0, 07 586 Leda 094 0, 476 085 6 Fascia degli asteroidi : Abbiamo visto che tale fascia occupa la regione dello spazio rotante

Dettagli

Le relazioni che abbiamo ricavato verranno utilizzate per poter descrivere le situazioni realmente presenti sulle singole orbite.

Le relazioni che abbiamo ricavato verranno utilizzate per poter descrivere le situazioni realmente presenti sulle singole orbite. Caratteristiche orbitali teoriche del Sistema Solare n m q C n 0 0 C s 0 0 R n 0 6 R 0 6 R s 0 6 T g R N 0 6 R maxa 0 6,706,706 556 5900 5900 907 0,9 8,,7,5 5 5 96,5 5 9, 5,09 vuota,967,97 768 775 869,6

Dettagli

m s m s. 3, K g

m s m s. 3, K g Le osservazioni hanno permesso una stima della massa pari a : Grande Nube : 0 0 9 m s Piccola Nube : assumendo i valori : m PM 6 0 9 m s, 978 0 0 K g R GM 60 6800 al 5060 al, il punto neutro della Grande

Dettagli

R V. m S. m V K m K m d VM. In questa posizione il sistema non sarebbe assolutamente stabile.

R V. m S. m V K m K m d VM. In questa posizione il sistema non sarebbe assolutamente stabile. R NVS R V m S m V 08,0 6 K m,9890 0 K g 4,8690 4 K g 690 K m 4585 K m d VM In questa posizione il sistema non sarebbe assolutamente stabile. Mercurio potrebbe aver abbandonato Venere gradualmente oppure,

Dettagli

F 9, N w. m p. r p 2 n

F 9, N w. m p. r p 2 n campo magnetico planetario nel Sistema Solare Sostituendo i valori numerici nella espressione della forza giroscopica, per la Terra si ottiene : F 9,44 0 5 N w valore assolutamente trascurabile rispetto

Dettagli

Giapeto, che si muove sulla stessa orbita con la velocità di equilibrio V Gi

Giapeto, che si muove sulla stessa orbita con la velocità di equilibrio V Gi Giapeto, che si muove sulla stessa orbita con la velocità di equilibrio V Gi, in un tempo più o meno breve, raggiunge la nube di materiali leggeri in orbita, che si deposita così sull emisfero anteriore

Dettagli

K S K P 2 R P. e dunque conservano, nel tempo, un orientamento costante rispetto al punto P.

K S K P 2 R P. e dunque conservano, nel tempo, un orientamento costante rispetto al punto P. La rotazione sincrona è condizione necessaria per avere l equilibrio stabile dei satelliti del Sistema Solare L espressione dell accelerazioneche la sfera planetaria esercita sui punti B e D dello spazio

Dettagli

Se prendiamo in considerazione una sfera rotante su se stessa con velocità periferica C p

Se prendiamo in considerazione una sfera rotante su se stessa con velocità periferica C p Effetti giroscopici su una sfera rotante, teoria dell effetto Magnus, massa longitudinale e massa trasversale, Abbiamo visto che la presenza di materia può essere rilevata ( e dunque la materia esiste)

Dettagli

L EQUILIBRIO UNIVERSALE dalla meccanica celeste alla fisica nucleare

L EQUILIBRIO UNIVERSALE dalla meccanica celeste alla fisica nucleare L EQUILIBRIO UNIVERSALE dalla meccanica celeste alla fisica nucleare Cap.7 Caratteristiche del sistema stellare locale Caratteristiche del Sistema Stellare Locale e calcolo delle distanze delle stelle

Dettagli

valori di alcune costanti calcolate teoricamente

valori di alcune costanti calcolate teoricamente valori di alcune costanti calcolate teoricamente pag. 33 raggio dell universo osservabile attuale R ua 4,475 0 9 al 33 età dell universo attuale T ua 3,88 0 9 a 33 valore massimo della velocità di espansione

Dettagli

viene definito dall equatore della sfera cosmica, possiamo costruire un modello di universo su grande scala.

viene definito dall equatore della sfera cosmica, possiamo costruire un modello di universo su grande scala. Origine teorica della contrazione ed espansione del nostro universo osservabile e valutazione della sua massa inerziale Se utilizziamo lo schema orbitale universale, partendo dallo spazio rotante polare,

Dettagli

Notiamo che, per una massa che rotorivoluisca sull orbita senza scorrimento, per la componente giroscopica, con V n. v p

Notiamo che, per una massa che rotorivoluisca sull orbita senza scorrimento, per la componente giroscopica, con V n. v p Natura fisica ed espressione della forza di Lorentz, calcolo del campo magnetico nucleare Abbiamo visto che, se applichiamo il principio di conservazione del momento angolare nello spazio, se la massa

Dettagli

V 2 R V 2 R T 2 K 2. ; T eq. n 2 ; V eq

V 2 R V 2 R T 2 K 2. ; T eq. n 2 ; V eq alcolo teorico delle orbite ellittiche dei pianeti del Sistema Solare e loro evoluzione nel tempo Se,su un orbita,prendiamo in considerazione un intero periodo di rivoluzione T, possiamo assumere una velocità

Dettagli

Terza legge di Keplero, teoria e significato fisico della costante di Planck. m V p2

Terza legge di Keplero, teoria e significato fisico della costante di Planck. m V p2 estratto da : L EQUILIBRIO UNIVERSALE dalla meccanica celeste alla fisica nucleare Terza legge di Keplero, teoria e significato fisico della costante di Planck La relazione E p h p p ci dice che all energia

Dettagli

origine dei pianeti e sistemi satellitari Analizzeremo ora gli scenari più probabili dopo l esplosione, con l aiuto della figura seguente.

origine dei pianeti e sistemi satellitari Analizzeremo ora gli scenari più probabili dopo l esplosione, con l aiuto della figura seguente. origine dei pianeti e sistemi satellitari Analizzeremo ora gli scenari più probabili dopo l esplosione, con l aiuto della figura seguente In figura a si ha m m e quindi, in base al risultato che abbiamo

Dettagli

27, 11 al 256, K m ; T 0S. 988, 7 K m

27, 11 al 256, K m ; T 0S. 988, 7 K m Moto di precessione del sistema solare, del perielio e degli equinozi Nel paragrafo precedente è stato dimostrato che il Sole si trova in equilibrio sull orbita del sistema stellare locale associata al

Dettagli

. Esprimere il risultato in km, anni luce, parsec, unità astronomiche e raggi solari.

. Esprimere il risultato in km, anni luce, parsec, unità astronomiche e raggi solari. Olimpiadi Italiane di Astronomia 018, INAF - Osservatorio Astrofisico di Catania Corso di preparazione alla Finale Nazionale - Incontro 1: arzo 018 A cura di: Giuseppe Cutispoto e ariachiara Falco 8. KA

Dettagli

rettilinei ", che mettono in evidenza una dipendenza del tipo :

rettilinei , che mettono in evidenza una dipendenza del tipo : Livelli neutronici teorici nel nucleo atomico Se riportiamo su assi cartesiani l energia per strato sperimentale, N, in funzione del numero di neutroni presenti nei nuclei, otteniamo una curva che mette

Dettagli

Iniziamo, a questo punto, lo studio del nucleo atomico con la determinazione delle caratteristiche orbitali dei protoni.

Iniziamo, a questo punto, lo studio del nucleo atomico con la determinazione delle caratteristiche orbitali dei protoni. Espressione teorica delle forze nucleari e caratteristiche di moto dei nucleoni. Nell Art. 5 abbiamo visto che il nucleo atomico, per poter fornire incrementi dell energia di legame, per aggiunta di un

Dettagli

Sistema Solare e meccanica quantistica

Sistema Solare e meccanica quantistica estratto da : L EQ. UNIVERSALE dalla meccanica celeste alla fisica nucleare Sistema Solare e meccanica quantistica Nella premessa abbiamo visto che la esistenza dei diversi punti dello spazio fisico può

Dettagli

Corso di CHIMICA LEZIONE 2

Corso di CHIMICA LEZIONE 2 Corso di CHIMICA LEZIONE 2 MODELLO ATOMICO DI THOMSON 1904 L atomo è formato da una sfera carica positivamente in cui gli elettroni con carica negativa, distribuiti uniformemente all interno, neutralizzano

Dettagli

CAPITOLO 10. Importanza delle collisioni nel Sistema Solare Craterizzazione Frammentazione

CAPITOLO 10. Importanza delle collisioni nel Sistema Solare Craterizzazione Frammentazione CAPITOLO 10 Importanza delle collisioni nel Sistema Solare Craterizzazione Frammentazione Fenomeni fisici coinvolti nella formazione ed evoluzione di un sistema planetario. 1) Processi dinamici Risonanze

Dettagli

CAPITOLO 7: ESEMPI PRATICI: 7.1 Esempi di dinamica.

CAPITOLO 7: ESEMPI PRATICI: 7.1 Esempi di dinamica. CAPITOLO 7: ESEMPI PRATICI: 7.1 Esempi di dinamica. Questo capitolo vuole fornire una serie di esempi pratici dei concetti illustrati nei capitoli precedenti con qualche approfondimento. Vediamo subito

Dettagli

Energia nucleare per livello ( valori corretti ), per l uso del sistema periodico dei nuclidi

Energia nucleare per livello ( valori corretti ), per l uso del sistema periodico dei nuclidi Energia nucleare per livello ( valori corretti ), per l uso del sistema periodico dei nuclidi Trattando la teoria generale degli spazi rotanti atomico e nucleare, abbiamo ricavato l espressione teorica

Dettagli

m p 6, j m 1 2 m e 3, j m 1 2 5, m 2 82, N w

m p 6, j m 1 2 m e 3, j m 1 2 5, m 2 82, N w Teoria della carica elettrica e calcolo del valore teorico Questa relazione è stata ricavata senza porre alcuna ipotesi restrittiva e dunque risulta di validità universale, applicabile in ogni circostanza

Dettagli

CAPITOLO 9: LA GRAVITAZIONE. 9.1 Introduzione.

CAPITOLO 9: LA GRAVITAZIONE. 9.1 Introduzione. CAPITOLO 9: LA GRAVITAZIONE 9.1 Introduzione. Un altro tipo di forza piuttosto importante è la forza gravitazionale. Innanzitutto, è risaputo che nel nostro sistema di pianeti chiamato sistema solare il

Dettagli

POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a I a prova in itinere, 10 maggio 2013

POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a I a prova in itinere, 10 maggio 2013 POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a. 2012-13 I a prova in itinere, 10 maggio 2013 Giustificare le risposte e scrivere in modo chiaro e leggibile.

Dettagli

Allegato 2 I PUNTI DI LAGRANGE L 4 L 5

Allegato 2 I PUNTI DI LAGRANGE L 4 L 5 Allegato 2 I PUNTI DI LAGRANGE L 4 L 5 Più volte nel corso dei seminari che hanno preceduto il mioabbiamo sentito parlare di PUNTI LAGRANGIANI. Cosa sono? Perché sono attuali? Nel 1772 il Lagrange, nel

Dettagli

OLIMPIADI ITALIANE DI ASTRONOMIA 2015 FINALE NAZIONALE 19 Aprile Prova pratica - Categoria Senior

OLIMPIADI ITALIANE DI ASTRONOMIA 2015 FINALE NAZIONALE 19 Aprile Prova pratica - Categoria Senior OLIMPIADI ITALIANE DI ASTRONOMIA 2015 FINALE NAZIONALE 19 Aprile Prova pratica - Categoria Senior Variabili Cefeidi Le Cefeidi sono stelle variabili ( m ~ 1) di massa M > 5 M ed aventi periodo 1 < P

Dettagli

Soluzioni della prova scritta di Fisica Generale

Soluzioni della prova scritta di Fisica Generale Scienze e Tecnologie dell Ambiente Soluzioni della prova scritta di Fisica Generale 1 Febbraio 2011 Parte 1 Esercizio 1 Un punto parte dall origine dell asse x con velocità v 0 positiva. Il punto viaggia

Dettagli

OLIMPIADI ITALIANE DI ASTRONOMIA 2015 FINALE NAZIONALE 19 Aprile Prova Teorica - Categoria Junior

OLIMPIADI ITALIANE DI ASTRONOMIA 2015 FINALE NAZIONALE 19 Aprile Prova Teorica - Categoria Junior OLIMPIADI ITALIANE DI ASTRONOMIA 2015 FINALE NAZIONALE 19 Aprile Prova Teorica - Categoria Junior 1. Vero o falso? Quale delle seguenti affermazioni può essere vera? Giustificate in dettaglio la vostra

Dettagli

Tra le soluzioni pervenute pubblichiamo, con le dovute correzioni e precisazioni, quella inviata da Raffaele Campanile, perché ritenuta la più

Tra le soluzioni pervenute pubblichiamo, con le dovute correzioni e precisazioni, quella inviata da Raffaele Campanile, perché ritenuta la più Tra le soluzioni pervenute pubblichiamo, con le dovute correzioni e precisazioni, quella inviata da Raffaele Campanile, perché ritenuta la più completa. I dati forniti permettevano di arrivare alla soluzione

Dettagli

A: L = 2.5 m; M = 0.1 kg; v 0 = 15 m/s; n = 2 B: L = 2 m; M = 0.5 kg; v 0 = 9 m/s ; n = 1

A: L = 2.5 m; M = 0.1 kg; v 0 = 15 m/s; n = 2 B: L = 2 m; M = 0.5 kg; v 0 = 9 m/s ; n = 1 Esercizio 1 Un asta di lunghezza L e massa trascurabile, ai cui estremi sono fissati due corpi uguali di massa M (si veda la figura) giace ferma su un piano orizzontale privo di attrito. Un corpo di dimensioni

Dettagli

L EQUILIBRIO UNIVERSALE dalla meccanica celeste alla fisica nucleare

L EQUILIBRIO UNIVERSALE dalla meccanica celeste alla fisica nucleare estratto da: L EQUILIBRIO UNIVERSALE dalla meccanica celeste alla fisica nucleare origine del Sistema Solare Essendo il problema della formazione e dell evoluzione dei sistemi planetari diestremo interesse

Dettagli

In questa zona siamo molto lontani dal Sole quindi qui l attrazione gravitazionale del Sole sarà molto più debole, e così anche il vento solare.

In questa zona siamo molto lontani dal Sole quindi qui l attrazione gravitazionale del Sole sarà molto più debole, e così anche il vento solare. Ciao! Ti ricordi la cipolla di cui abbiamo parlato all inizio e che rappresentava il Sistema Solare? Abbiamo descritto finora solo la parte più interna, cioè la parte fino a Plutone. Se un passo è la distanza

Dettagli

al valore di equilibrio R.

al valore di equilibrio R. inerzia e massa inerziale come caratteristiche dello spazio fisico E importante tenere presente che la velocità V non viene imposta alla sfera esploratrice dall esterno, ma si ottiene come risultato del

Dettagli

estratto da : L EQ. UNIVERSALE dalla meccanica celeste alla fisica nucleare

estratto da : L EQ. UNIVERSALE dalla meccanica celeste alla fisica nucleare estratto da : L EQ. UNIVESALE dalla meccanica celeste alla fisica nucleare schiacciamento polare dei pianeti del Sistema Solare Osserviamo innanzitutto che,se pure iniziamo a descrivere l evoluzione dello

Dettagli

L EQ. UNIVERSALE dalla meccanica celeste alla fisica nucleare. schiacciamento polare dei pianeti del Sistema Solare

L EQ. UNIVERSALE dalla meccanica celeste alla fisica nucleare. schiacciamento polare dei pianeti del Sistema Solare L EQ. UNIVESALE dalla meccanica celeste alla fisica nucleare schiacciamento polare dei pianeti del Sistema Solare estratto da : Osserviamo innanzitutto che,se pure iniziamo a descrivere l evoluzione dello

Dettagli

Le leggi di Keplero modello geocentrico modello eliocentrico

Le leggi di Keplero modello geocentrico modello eliocentrico Le leggi di Keplero Fino al 1600 si credeva che: la Terra fosse al centro dell'universo, con il Sole e i pianeti orbitanti attorno (modello geocentrico) (Esempio: modello aristotetelico-tolemaico); i corpi

Dettagli

Dati caratteristici. La Luna ed i suoi movimenti

Dati caratteristici. La Luna ed i suoi movimenti La Luna ed i suoi movimenti Dati caratteristici Raggio medio: 1738 km Volume: 22 109 km 3 Massa: 7,35 1022 kg Densità: 3,34 g/cm 3 Dato che ha una massa che è circa 1/81 di quella della Terra, la sua gravità

Dettagli

Ciao a tutti! Gli asteroidi

Ciao a tutti! Gli asteroidi Ciao a tutti! Abbiamo finora descritto le proprietà dei corpi più interni del Sistema Solare, cioè i pianeti ed i loro satelliti. Prendendo come misura l Unità Astronomica (UA, la distanza media della

Dettagli

1. In giostra intorno al Sole 2. Il Sole, la nostra stella 3. Pianeti rocciosi e pianeti gassosi 4. Asteroidi e comete 5. Il moto dei pianeti: le

1. In giostra intorno al Sole 2. Il Sole, la nostra stella 3. Pianeti rocciosi e pianeti gassosi 4. Asteroidi e comete 5. Il moto dei pianeti: le 1. In giostra intorno al Sole 2. Il Sole, la nostra stella 3. Pianeti rocciosi e pianeti gassosi 4. Asteroidi e comete 5. Il moto dei pianeti: le leggi di Keplero Il Sistema solare le orbite dei pianeti

Dettagli

In questa zona siamo molto lontani dal Sole quindi qui l attrazione gravitazionale del Sole sarà molto più debole, e così anche il vento solare.

In questa zona siamo molto lontani dal Sole quindi qui l attrazione gravitazionale del Sole sarà molto più debole, e così anche il vento solare. Ciao! Ti ricordi la cipolla di cui abbiamo parlato all inizio e che rappresentava il Sistema Solare? Abbiamo descritto finora solo la parte più interna, cioè la parte fino a Plutone. Se un passo è la distanza

Dettagli

Problemi di Fisica. La Gravitazione

Problemi di Fisica. La Gravitazione Problemi di Fisica La Gravitazione Calcolare la forza che agisce sulla Luna per effetto dell interazione gravitazionale con la erra e il Sole. I dati sono: massa Sole M S =1,9810 30 kg; massa erra M =5,9810

Dettagli

OLIMPIADI ITALIANE DI ASTRONOMIA 2013 FINALE NAZIONALE Prova Teorica - Categoria Junior

OLIMPIADI ITALIANE DI ASTRONOMIA 2013 FINALE NAZIONALE Prova Teorica - Categoria Junior OLIMPIADI ITALIANE DI ASTRONOMIA 2013 FINALE NAZIONALE Prova Teorica - Categoria Junior 1. L ora a Oriente A un certo istante osserviamo una stella che si trova esattamente sull orizzonte in direzione

Dettagli

Il problema dei due corpi La dinamica planetaria

Il problema dei due corpi La dinamica planetaria Il problema dei due corpi La dinamica planetaria La Meccanica Classica Lagrange Hamilton Jacobi Vettori Per rendere conto della 3-dimensionalità in fisica, e in matematica, si usano delle grandezze più

Dettagli

S1 - Lezioni del 28 e 30 Settembre 2016 (23 Settembre 2016: Presentazione del corso)

S1 - Lezioni del 28 e 30 Settembre 2016 (23 Settembre 2016: Presentazione del corso) a.a. 2016-2017: foto alla lavagna di tutte le lezioni e sommario degli argomenti principali trattati in ogni lezione S1 - Lezioni del 28 e 30 Settembre 2016 (23 Settembre 2016: Presentazione del corso)

Dettagli

Introduzione alla Fisica Moderna - a.a

Introduzione alla Fisica Moderna - a.a Introduzione alla Fisica Moderna - a.a. 2016-17 18/12/2017 Nome Cognome Matricola: 1) Si consideri il sistema dinamico nonlineare ẋ = y x 2, ẏ = x + y 2, Si determinino i punti di equilibrio, si caratterizzi

Dettagli

OLIMPIADI ITALIANE DI ASTRONOMIA 2018 Gara Interregionale 19 febbraio Categoria Senior

OLIMPIADI ITALIANE DI ASTRONOMIA 2018 Gara Interregionale 19 febbraio Categoria Senior OLIMPIADI IALIANE DI ASRONOMIA 018 Gara Interregionale 19 febbraio Categoria Senior 1. Pippo va su Marte Pippo è stato selezionato per il programma spaziale Mandiamoli su Marte della ASA (opolinia Space

Dettagli

SIMULAZIONE - 29 APRILE QUESITI

SIMULAZIONE - 29 APRILE QUESITI www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione

Dettagli

OLIMPIADI ITALIANE DI ASTRONOMIA 2015 FINALE NAZIONALE 19 Aprile Prova Teorica - Categoria Senior

OLIMPIADI ITALIANE DI ASTRONOMIA 2015 FINALE NAZIONALE 19 Aprile Prova Teorica - Categoria Senior OLIMPIADI ITALIANE DI ASTRONOMIA 2015 FINALE NAZIONALE 19 Aprile Prova Teorica - Categoria Senior 1. Vero o falso? Quale delle seguenti affermazioni può essere vera? Giustificate in dettaglio la vostra

Dettagli

OLIMPIADI ITALIANE DI ASTRONOMIA 2015 FINALE NAZIONALE 19 Aprile Prova Teorica - Categoria Senior

OLIMPIADI ITALIANE DI ASTRONOMIA 2015 FINALE NAZIONALE 19 Aprile Prova Teorica - Categoria Senior OLIMPIADI ITALIANE DI ASTRONOMIA 2015 FINALE NAZIONALE 19 Aprile Prova Teorica - Categoria Senior 1. Vero o falso? Quale delle seguenti affermazioni può essere vera? Giustificate in dettaglio la vostra

Dettagli

Il Sistema Solare. Che cos è?

Il Sistema Solare. Che cos è? L ITTE G. Galilei in collaborazione con Lora Stefano e l Associazione Celi Perduti -Astronomia Alto Vicentino- presenta il Progetto: Alla riscoperta dell Astronomia 1 lezione: Il Sistema Solare 2 lezione:

Dettagli

La Misura del Mondo. 4 Le distanze nel sistema solare. Bruno Marano Dipartimento di Astronomia Università di Bologna

La Misura del Mondo. 4 Le distanze nel sistema solare. Bruno Marano Dipartimento di Astronomia Università di Bologna La Misura del Mondo 4 Le distanze nel sistema solare Dipartimento di Astronomia Università di Bologna La triangolazione tra la Torre degli Asinelli, Porta S.Felice, il ponte sul Reno e il Colle della Guardia

Dettagli

LA GRAVITAZIONE. Legge di Gravitazione Universale 08/04/2015 =6, /

LA GRAVITAZIONE. Legge di Gravitazione Universale 08/04/2015 =6, / LA GRAVITAZIONE Definizione (forza di attrazione gravitazionale) Due corpi puntiformi di massa e si attraggono vicendevolmente con una forza (forza che il corpo A esercita sul corpo B), o (forza che il

Dettagli

DINAMICA DEL PUNTO MATERIALE

DINAMICA DEL PUNTO MATERIALE DINAMICA DEL PUNTO MATERIALE DOWNLOAD Il pdf di questa lezione (0308a.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/scamb/ 08/03/2012 I 3 PRINCIPI DELLA DINAMICA PRIMO PRINCIPIO Esiste una

Dettagli

realizzata simultaneamente a quella del nucleo ".

realizzata simultaneamente a quella del nucleo . l origine dei neutroni nucleari Ci poniamo dunque, a questo punto,il problema di capire quale possa essere la provenienza dei neutroniin eccesso,presenti nel nucleo, i quali non possono derivare dal processo

Dettagli

Meccanica dei sistemi di punti materiali

Meccanica dei sistemi di punti materiali Meccanica dei sistemi di punti materiali Centro di massa Conservazione della quantità di moto Teorema del momento angolare Conservazione del momento angolare Teoremi di König Urti Antonio Pierro @antonio_pierro_

Dettagli

τ (O) r F è semplicemente l intensità della forza F dal polo O: = r F sinθ = bf

τ (O) r F è semplicemente l intensità della forza F dal polo O: = r F sinθ = bf 5. Momenti, forze centrali e gravitazione Definizione di momento di una forza Si definisce momento della forza F rispetto al polo O la quantità data dal prodotto vettoriale τ (O) r F il cui modulo si misura

Dettagli

Prova scritta di Fisica Scienze e Tecnologie dell Ambiente

Prova scritta di Fisica Scienze e Tecnologie dell Ambiente Prova scritta di Fisica Scienze e Tecnologie dell Ambiente 24 maggio 2007 Istruzioni: Eseguire prima i calcoli in maniera simbolica, scrivere ed incorniciare con un riquadro l espressione simbolica della

Dettagli

OLIMPIADI ITALIANE DI ASTRONOMIA 2017 Finale Nazionale - 5 Aprile Prova Teorica - Categoria Senior

OLIMPIADI ITALIANE DI ASTRONOMIA 2017 Finale Nazionale - 5 Aprile Prova Teorica - Categoria Senior OLIMPIADI ITALIANE DI ASTRONOMIA 2017 Finale Nazionale - 5 Aprile Prova Teorica - Categoria Senior 1. Le stelle di Cassiopea Nella seguente tabella trovate la magnitudine (m) visuale e la distanza (D)

Dettagli

OLIMPIADI ITALIANE DI ASTRONOMIA GARA INTERREGIONALE - Categoria Senior. Problemi con soluzioni

OLIMPIADI ITALIANE DI ASTRONOMIA GARA INTERREGIONALE - Categoria Senior. Problemi con soluzioni OLIMPIADI ITALIANE DI ASTRONOMIA 2012 GARA INTERREGIONALE - Categoria Senior Problemi con soluzioni Problema 1. Un sistema binario visuale si trova ad una distanza D=42 anni-luce dalla Terra. Le due stelle

Dettagli

OLIMPIADI ITALIANE DI ASTRONOMIA 2016 Gara Interregionale - 22 Febbraio Categoria Junior

OLIMPIADI ITALIANE DI ASTRONOMIA 2016 Gara Interregionale - 22 Febbraio Categoria Junior OLIMPIADI ITALIANE DI ASTRONOMIA 2016 Gara Interregionale - 22 Febbraio Categoria Junior 1. Giove e la Luna Osservate il pianeta Giove sapendo che si trova all opposizione e notate che la Luna è molto

Dettagli

x : p x,i = 2 MV 0 = MV 3 cosθ MV 4 cosθ 4 = p x,f y : p y,i = 0 = MV 3 sinθ 3 3 MV 4 sinθ 4 = p x,f

x : p x,i = 2 MV 0 = MV 3 cosθ MV 4 cosθ 4 = p x,f y : p y,i = 0 = MV 3 sinθ 3 3 MV 4 sinθ 4 = p x,f Esercizio 1 Il corpo 1 e il corpo 2, entrambi considerabili come puntiformi, si trovano su un piano orizzontale xy privo di attrito. Inizialmente, rispetto al sistema di riferimento inerziale x y, il corpo

Dettagli

Teoria del magnetismo solare e dei pianeti

Teoria del magnetismo solare e dei pianeti estratto da : L EQUILIBRIO UNIVERSALE dalla meccanica celeste alla fisica nucleare Teoria del magnetismo solare e dei pianeti Abbiamo finora preso in considerazione le condizionidi equilibrio deisistemi

Dettagli

OLIMPIADI ITALIANE DI ASTRONOMIA 2012 FINALE NAZIONALE Prova Teorica - Categoria Senior

OLIMPIADI ITALIANE DI ASTRONOMIA 2012 FINALE NAZIONALE Prova Teorica - Categoria Senior OLIMPIADI ITALIANE DI ASTRONOMIA 2012 FINALE NAZIONALE Prova Teorica - Categoria Senior 1. L atmosfera terrestre. Assumendo che al di sopra dei 30 km di altezza l aria divenga talmente rarefatta da non

Dettagli

Esercizio 1. Compito B (Dati): M =0.9 kg, D =0.5 m, µ S =0.8, = 35, v = 1 m/s, k = 80 N/m, L =0.07 m. L =0.12 m

Esercizio 1. Compito B (Dati): M =0.9 kg, D =0.5 m, µ S =0.8, = 35, v = 1 m/s, k = 80 N/m, L =0.07 m. L =0.12 m Esercizio 1 Un corpo di massa, assimilabile ad un punto materiale, viene lanciato con velocità ~v 0 incognita, non parallela agli assi cartesiani. Quando il suo spostamento in direzione x rispetto alla

Dettagli

Collisioni cosmiche. Civico Planetario di Milano Ulrico Hoepli 12 febbraio 2013

Collisioni cosmiche. Civico Planetario di Milano Ulrico Hoepli 12 febbraio 2013 Collisioni cosmiche Civico Planetario di Milano Ulrico Hoepli 12 febbraio 2013 Sommario L incontro ravvicinato con 2012 DA14 Gli asteroidi: che cosa sono, dove sono Orbite e determinazione orbitale Incontri

Dettagli

QUANTITA DI MOTO Corso di Fisica per Farmacia, Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2006

QUANTITA DI MOTO Corso di Fisica per Farmacia, Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2006 QUANTITA DI MOTO DEFINIZIONE(1) m v Si chiama quantità di moto di un punto materiale il prodotto della sua massa per la sua velocità p = m v La quantità di moto è una grandezza vettoriale La dimensione

Dettagli

Le leggi di Keplero modello geocentrico modello eliocentrico

Le leggi di Keplero modello geocentrico modello eliocentrico Le leggi di Keplero Fino al 1600 si credeva che: la Terra fosse al centro dell'universo, con il Sole e i pianeti orbitanti attorno (modello geocentrico) (Esempio: modello aristotetelico-tolemaico); i corpi

Dettagli

ESERCIZI PER L ATTIVITA DI RECUPERO CLASSE III FISICA

ESERCIZI PER L ATTIVITA DI RECUPERO CLASSE III FISICA ESERCIZI PER L ATTIVITA DI RECUPERO CLASSE III FISICA 1) Descrivi, per quanto possibile, il moto rappresentato in ciascuno dei seguenti grafici: s a v t t t S(m) 2) Il moto di un punto è rappresentato

Dettagli

L ATOMO SECONDO LA MECCANICA ONDULATORIA IL DUALISMO ONDA-PARTICELLA. (Plank Einstein)

L ATOMO SECONDO LA MECCANICA ONDULATORIA IL DUALISMO ONDA-PARTICELLA. (Plank Einstein) L ATOMO SECONDO LA MECCANICA ONDULATORIA IL DUALISMO ONDA-PARTICELLA POSTULATO DI DE BROGLIÈ Se alla luce, che è un fenomeno ondulatorio, sono associate anche le caratteristiche corpuscolari della materia

Dettagli

La legge di gravità. La mela

La legge di gravità. La mela La legge di gravità La caduta dei gravi La legge di Newton Il moto dei pianeti (Kepler) La misura della costante G (Cavendish) Masse estese Masse sferiche Verso il centro della terra... Il concetto di

Dettagli

L ORIGINE DELLA LUNA

L ORIGINE DELLA LUNA LA LUNA L ORIGINE DELLA LUNA La luna è l unico satellite naturale della Terra: un corpo celeste che ruota attorno alla Terra Appare molto più grande delle altre stelle ed anche più vicina L origine della

Dettagli

M p. θ max. P v P. Esercizi di Meccanica (M6) Consegna: giovedì 3 giugno.

M p. θ max. P v P. Esercizi di Meccanica (M6) Consegna: giovedì 3 giugno. Esercizi di Meccanica (M6) Consegna: giovedì 3 giugno. Problema 1: Si consideri un corpo rigido formato da una sfera omogenea di raggio R e massa M 1 e da una sbarretta omogenea di lunghezza L, massa M

Dettagli

R 1 n 2 ; V eq. ed R n 1. non è possibile trovare alcuna orbita circolare di equilibrio stabile.

R 1 n 2 ; V eq. ed R n 1. non è possibile trovare alcuna orbita circolare di equilibrio stabile. Origine della meccanica quantistica. Trattando la teoria generale degli spazi rotanti, abbiamo visto che, quando le masse planetarie sono trascurabili rispetto a quella centrale, che genera lo spazio rotante,

Dettagli

Esercizi di Fisica: lavoro ed energia classe 3 BS

Esercizi di Fisica: lavoro ed energia classe 3 BS Esercizi di Fisica: lavoro ed energia classe 3 BS Esercizio 1 Un automobile di massa 1500 kg parte da ferma e accelera per 5 s percorrendo 75 m. Calcola: la forza esercitata dal motore dell auto; [9 10

Dettagli

Ciao a tutti! Gli asteroidi

Ciao a tutti! Gli asteroidi Ciao a tutti! Abbiamo finora descritto le proprietà dei corpi più interni del Sistema Solare, cioè i pianeti ed i loro satelliti. Prendendo come misura l Unità Astronomica (UA, la distanza media della

Dettagli

Esercizio (tratto dal problema 7.36 del Mazzoldi 2)

Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Un disco di massa m D = 2.4 Kg e raggio R = 6 cm ruota attorno all asse verticale passante per il centro con velocità angolare costante ω = 0 s. ll istante

Dettagli

Relativita speciale. A. Palano. Testo di riferimento: P.J. Nolan, Complementi di Fisica, fisica moderna, Zanichelli

Relativita speciale. A. Palano. Testo di riferimento: P.J. Nolan, Complementi di Fisica, fisica moderna, Zanichelli Relativita speciale A. Palano Testo di riferimento: P.J. Nolan, Complementi di Fisica, fisica moderna, Zanichelli Sistemi di riferimento in moto relativo. Moti relativi S: Assoluto, S : relativo, Moto

Dettagli

ESERCIZIO SOLUZIONE T U E 1. iniziale. finale 0. 2 mv2 o 1. 2 mv kx2 1. o 2 kx2 o

ESERCIZIO SOLUZIONE T U E 1. iniziale. finale 0. 2 mv2 o 1. 2 mv kx2 1. o 2 kx2 o ESERCIZIO Sia dato un corpo di massa m = 0 kg e velocità v o = 0 m/s che impatta sull estremo libero di una molla di costante elastica k = 000 N/m in modo da provocarne la compressione. Si consideri dapprima

Dettagli

LE FORZE E IL MOTO. Il moto lungo un piano inclinato

LE FORZE E IL MOTO. Il moto lungo un piano inclinato LE FORZE E IL MOTO Il moto lungo un piano inclinato Il moto di caduta lungo un piano inclinato un moto uniformemente accelerato in cui l accelerazione è diretta parallelamente al piano (verso il basso)

Dettagli

Istituto Statale d Arte - Classe 3A. Appunti sulla lezione del 16/11/06

Istituto Statale d Arte - Classe 3A. Appunti sulla lezione del 16/11/06 Istituto Statale d Arte - Classe A Appunti sulla lezione del 16/11/06 Due fidanzati abitano a 20 Km l uno dall altra; decidono di incontrarsi lungo la strada che collega le due case, dirigendosi uno verso

Dettagli

Prova parziale di recupero di Fisica Data: 7 Febbraio Fisica. 7 Febbraio Test a risposta singola

Prova parziale di recupero di Fisica Data: 7 Febbraio Fisica. 7 Febbraio Test a risposta singola Fisica 7 Febbraio 2012 Test a risposta singola ˆ Una grandezza fisica vale.2 ara tonn giorno 1. Sapendo che un ara è un quadrato di 10 m di lato, la stessa grandezza in unità del SI vale: 276.5 10 6 m

Dettagli

Il transito di Venere (i transiti planetari)

Il transito di Venere (i transiti planetari) La scuola adotta un esperimento per Esperienza InSegna 2012 Il transito di Venere (i transiti planetari) Luigi Scelsi & Antonio Maggio Scuole partecipanti N studenti Liceo Scientifico E. Basile Palermo

Dettagli

Fisica 1 Anno Accademico 2011/2012

Fisica 1 Anno Accademico 2011/2012 Matteo Luca Ruggiero DISAT@Politecnico di Torino Anno Accademico 2011/2012 (16 Aprile - 20 Aprile 2012) 1 ESERCIZI SVOLTI AD ESERCITAZIONE Sintesi Abbiamo studiato le equazioni che determinano il moto

Dettagli

I pianeti del Sistema solare - tabelle

I pianeti del Sistema solare - tabelle I pianeti del Sistema solare - tabelle Primo Levi-Roberto Bedogni INAF Osservatorio Astronomico di Bologna via Ranzani, 1 40127 - Bologna - Italia Tel, 051-2095721 Fax, 051-2095700 http://www.bo.astro.it/~bedogni/primolevi

Dettagli

sfera omogenea di massa M e raggio R il momento d inerzia rispetto ad un asse passante per il suo centro di massa vale I = 2 5 MR2 ).

sfera omogenea di massa M e raggio R il momento d inerzia rispetto ad un asse passante per il suo centro di massa vale I = 2 5 MR2 ). ESERCIZI 1) Un razzo viene lanciato verticalmente dalla Terra e sale con accelerazione a = 20 m/s 2. Dopo 100 s il combustibile si esaurisce e il razzo continua a salire fino ad un altezza massima h. a)

Dettagli

Compito di Fisica Generale (Meccanica) 25/01/2011

Compito di Fisica Generale (Meccanica) 25/01/2011 Compito di Fisica Generale (Meccanica) 25/01/2011 1) Un punto materiale di massa m è vincolato a muoversi su di una guida orizzontale. Il punto è attaccato ad una molla di costante elastica k. La guida

Dettagli

2 m 2u 2 2 u 2 = x = m/s L urto è elastico dunque si conserva sia la quantità di moto che l energia. Possiamo dunque scrivere: u 2

2 m 2u 2 2 u 2 = x = m/s L urto è elastico dunque si conserva sia la quantità di moto che l energia. Possiamo dunque scrivere: u 2 1 Problema 1 Un blocchetto di massa m 1 = 5 kg si muove su un piano orizzontale privo di attrito ed urta elasticamente un blocchetto di massa m 2 = 2 kg, inizialmente fermo. Dopo l urto, il blocchetto

Dettagli

Moti relativi. Cenni. Dott.ssa Elisabetta Bissaldi

Moti relativi. Cenni. Dott.ssa Elisabetta Bissaldi Moti relativi Cenni Dott.ssa Elisabetta Bissaldi Elisabetta Bissaldi (Politecnico di Bari) A.A. 2018-2019 2 In generale, la descrizione del moto dipende dal sistema di riferimento scelto Si consideri un

Dettagli

Corso di Fisica della Terra e dell Atmosfera Gaetano Festa

Corso di Fisica della Terra e dell Atmosfera Gaetano Festa Corso di Fisica della Terra e dell Atmosfera Gaetano Festa Obiettivi del corso Come è fatta la Terra (solida e fluida)? Quali sono i meccanismi che ne determinano la dinamica? Comprendere ed applicare

Dettagli

Terza prova parziale di Fisica Data: 15 Dicembre Fisica. 15 Dicembre Test a risposta singola

Terza prova parziale di Fisica Data: 15 Dicembre Fisica. 15 Dicembre Test a risposta singola Fisica 15 Dicembre 2011 Test a risposta singola ˆ Una forza si dice conservativa quando: Il lavoro compiuto dalla forza su un qualsiasi cammino chiuso è nullo Il lavoro compiuto dalla forza su un qualsiasi

Dettagli

Obiettivo C - Migliorare i livelli di conoscenza e competenza dei giovani : - Azione1 - Interventi per lo sviluppo delle competenze chiave nelle

Obiettivo C - Migliorare i livelli di conoscenza e competenza dei giovani : - Azione1 - Interventi per lo sviluppo delle competenze chiave nelle Obiettivo C - Migliorare i livelli di conoscenza e competenza dei giovani : - Azione1 - Interventi per lo sviluppo delle competenze chiave nelle scienze PON C1-Codice: C-1-FSE-2013-2614 - Lezioni di astronomia

Dettagli

Dinamica del corpo rigido

Dinamica del corpo rigido Dinamica del corpo rigido Antonio Pierro Definizione di corpo rigido Moto di un corpo rigido Densità Momento angolare Momento d'inerzia Per consigli, suggerimenti, eventuali errori o altro potete scrivere

Dettagli