Metodi Matematici per la Gestione del Rischio - Esercizi

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Metodi Matematici per la Gestione del Rischio - Esercizi"

Transcript

1 Metodi Matematici per la Gestione del Rischio - Esercizi. Considerare la seguente funzione di due variabili kxe y+x, per (x, y) [0, ] [0, + ), f(x, y) = 0, altrimenti. Determinare il valore della costante k per cui tale funzione rappresenta la densità di probabilità di un vettore aleatorio bivariato. Fissato tale valore per k, e un vettore aleatorio (X,Y) con tale densità, (a) individuare, nel piano (x,y), la regione dei valori effettivamente assunti da (X,Y); (b) trovare le distribuzioni di probabilità marginali di X e Y; (c) dire se X e Y sono indipendenti, giustificando la risposta; (d) determinare la probabilità condizionata P (X 0.5 Y ); (e) sia Z = 2Y, determinare VaR(Z) con soglia α = 0.0. (f) determinare la densità di probabilità della variabile aleatoria Z definita della trasformazione Z = 2Y Si consideri un mercato uniperiodale in cui sono presenti un titolo risk-free B, con B 0 = e B = 2, e un azione S che segua il modello S 0 = e S = 9; 2; con rispettive probabilità p u = p m = p d =. (a) Dire se il payoff aleatorio Y = ; 0; 0 è replicabile in funzione di (S;B). Derivarne conclusioni sulla completezza del mercato (S;B). (b) Determinare la strategia di hedging minimal variance per Y. (c) Dire se in mercato è privo di arbitraggi, motivando la risposta con considerazioni sui rendimenti di S e B. In caso affermativo determinare, con un opportuno sistema di equazioni e disequazioni, tutte le probabilità di martingala Q. (d) Trovare l intervallo dei prezzi equi per il payoff Y.

2 . Si consideri un titolo X la cui evoluzione di prezzi (nei tempi t = 0,, 2) segua il modello: X 0 =, X = 6; con rispettive probabilità,, 2 2 X 2 = 2; 2; con probabilità condizionali P (X 2 = 2 X = 6) = P (X 2 = 2 X = 6) = 2, P (X 2 = 2 X = ) = P (X 2 = X = ) = 2. (a) Si fornisca la rappresentazione ad albero di tale evoluzione di prezzi. (b) Dire se si tratta di un processo di guadagno binomiale additivo o moltiplicativo, giustificando la risposta (e fornendo i coefficienti additivi o moltiplicativi). (c) Determinare la probabilità P (X 2 < 0). (d) Determinare la media condizionale E[X 2 X ]. 4. Si consideri un titolo X la cui evoluzione di prezzi (nei tempi t = 0,, 2) segua il seguente modello: X 0 =, X = 4, 2, con rispettive probabilità /6, /, /2, X 2 = 6, 4,, 2 con probabilità condizionali P (X 2 = 6 X = 4) = P (X 2 = 4 X = 4) = /2, P (X 2 = 4 X = 2) = /, P (X 2 = X = 2) = 2/, P (X 2 = 2 X = ) =. (a) si fornisca la rappresentazione ad albero di tale evoluzione di prezzi; (b) determinare la probabilità P (X 2 4); (c) determinare il valore atteso condizionato E[X 2 X = 2]. 5. Siano X e Y variabili aleatorie indipendenti, con rispettive distribuzioni X exp() e Y U [,4]. (a) Trovare il valore atteso di X + Y. (b) Determinare la media condizionale E[X + 2Y Y ]. (c) Sia Z = Y. Determinare VaR(Z) in funzione di VaR(Y). 2

3 6. Sia X U [,4]. Detta Y = 2X 5, determinare: a) le probabilità P (Y < 5), P (Y 0); b) la densità di probabilità di Y (e disegnarla); c) il VaR(Y) con soglia α = Considerare la seguente funzione di due variabili (x 2 + ky), per (x, y) [0, ] [0, ], x f(x, y) =, per (x, y) [0, ] (, 2], 4 0, altrimenti. (a) Determinare il valore della costante k per cui tale funzione rappresenta la densità di probabilità di un vettore aleatorio bivariato. Fissato tale valore per k, e un vettore aleatorio (X,Y) con tale densità: (b) rappresentare, nel piano (x,y), la regione dei valori effettivamente assunti da (X,Y); (c) trovare le densità marginali di X e Y e rappresentarle graficamente; (d) dire se X e Y sono indipendenti, giustificando la risposta; (e) definita la variabile aleatoria Z = 2X +, dire qual è l intervallo dei valori effettivamente assunti da Z e calcolare la sua funzione densità. (f) calcolare le probabilità P ((X, Y ) (0, 0.5) (0, 0.5)) e P (Z > 2). 8. Considerare un mercato uniperiodale in cui sono presenti un titolo risk-free B, con B 0 = e B =.5, e un azione S che segua il modello S 0 = e S = 6; 4; con rispettive probabilità p u = /2, p m = /, p d = /6. (a) Dire se il payoff aleatorio Y = 0; 0; è replicabile in funzione di (S;B). Derivarne conclusioni sulla completezza del mercato (S;B).

4 (b) Determinare la strategia di hedging minimal variance per Y e il valore iniziale e finale del portafoglio cosi costituito. (Si ricordi che le quantità di S e B costituenti il portafoglio di HMV sono date da b = cov(y,s ) V ar(s ) b E[S /m].) e a = E[Y /m] (c) Dire se in mercato è privo di arbitraggi, motivando la risposta. In caso affermativo, determinare tutte le probabilità di martingala Q. (d) Dare la definizione di prezzo equo e trovare l intervallo dei prezzi equi per il payoff Y. (e) Nel mercato (S;B) esistono payoff replicabili? Se sì, dare un esempio di un payoff repilcabile in t = con costo nullo in t = Calcolare e reppresentare graficamente la Funzione di Ripartizione della variabile aleatoria X che assume i valori con rispettive probabilità x =, x 2 =, x = 5 p =, p 2 = 6, p = Considerare la seguente funzione di due variabili, per (x, y) [0, ] [0, 2], 4 x f(x, y) =, per (x, y) [2, ] [0, 2], 0 0, altrimenti. Dire se può rappresenare la densità di probabilità di un vettore aleatorio bivariato. In caso affermativo, detto (X,Y) un vettore aleatorio con tale densità, (a) individuare, nel piano (x,y), le zone dei valori effettivamente assunti da (X,Y); (b) trovare le densità di probabilità marginali di X e Y e rappresentarle graficamente (si riconosca la distribuzione di Y tra quelle note); (c) dire se X e Y sono indipendenti, giustificando la risposta; 4

5 (d) determinare la probabilità P (Y < ); (e) determinare la media condizionale E[X + 2Y X]; (f) sia Z = Y, determinare VaR(Z) con soglia α = 0.0; (g) determinare la densità di probabilità della variabile aleatoria Z definita della trasformazione Z = 2X +.. Si consideri un mercato uniperiodale in cui sono presenti un titolo risk-free B, con B 0 = e B =.5, e un azione S che segua il modello S 0 =.5 e S = ;.5; 0.5 con rispettive probabilità p u = /2, p m = /, p d = /6. (a) Dire se il payoff aleatorio Y =, 0, 2 è replicabile in funzione di (S;B). Derivarne conclusioni sulla completezza del mercato (S;B). (b) Determinare la strategia di hedging minimal variance per Y e il valore iniziale e finale del portafoglio cosi costituito. (Si ricordi che le quantità di S e B costituenti il portafoglio di HMV sono date da b = cov(y,s ) V ar(s ) b E[S /m].) e a = E[Y /m] (c) Dire se il mercato è privo di arbitraggi, motivando la risposta. In caso affermativo, determinare tutte le probabilità di martingala Q. (d) Determinare l intervallo dei prezzi equi per il payoff Y. 2. Si consideri un mercato uniperiodale in cui sono presenti un titolo risk-free B, con B 0 = e B =.5, e un azione S che segua il modello S 0 = e S = 6; ; con rispettive probabilità p u = /6, p m = /, p d = /2. (a) Dire se il payoff aleatorio Y = (; 0; 0) è replicabile in funzione di S e B. Derivarne conclusioni sulla completezza del mercato (S,B). (b) Determinare la strategia di hedging minimal variance per Y e il valore iniziale e finale del portafoglio cosi costituito. (Si ricordi che le quantità di S e B costituenti il portafoglio di HMV sono date da b = Cov(Y,S ) V ar(s ) b E[S /m].) e a = E[Y /m] (c) Dire se il mercato è privo di arbitraggi, motivando la risposta. In caso affermativo, determinare tutte le probabilità di martingala Q. 5

6 (d) Determinare l intervallo dei prezzi equi per il payoff Y.. Considerare la seguente funzione di due variabili c(x + y 2 ), per (x, y) [0, ] [0, ], f(x, y) =, per (x, y) [0, ] [2, 5], 6 0, altrimenti. (a) Determinare il valore della costante c per cui tale funzione rappresenta la densità di probabilità di un vettore aleatorio bivariato. Fissato tale valore per c, e un vettore aleatorio (X,Y) con tale densità, (b) individuare, nel piano (x,y), la regione dei valori effettivamente assunti da (X,Y); (c) trovare le densità marginali di X e Y e rappresentarle graficamente; (d) dire se X e Y sono indipendenti, giustificando la risposta; (e) calcolare la probabilità P ((X, Y ) (0, 0.5) (0, 0.5)). 4. Si consideri un mercato uniperiodale in cui sono presenti un titolo risk-free B, con B 0 = e B = 2, e un azione S che segua il modello S 0 = e S = 6; 4; con rispettive probabilità p u = /6, p m = /, p d = /2. (a) Dire se il payoff aleatorio Y =, 0, 2 è replicabile in funzione di (S;B). Derivarne conclusioni sulla completezza del mercato (S;B). (b) Determinare la strategia di hedging minimal variance per Y e il valore iniziale e finale del portafoglio cosi costituito. (Si ricordi che le quantità di S e B costituenti il portafoglio di HMV sono date da b = cov(y,s ) V ar(s ) b E[S /m].) e a = E[Y /m] (c) Dire se in mercato è privo di arbitraggi, motivando la risposta. In caso affermativo, determinare tutte le probabilità di martingala Q. (d) Dare la definizione di prezzo equo e trovare l intervallo dei prezzi equi per il payoff Y. 6

7 (e) Nel mercato (S;B) esistono payoff replicabili? Se s, dare un esempio di payoff repilcabile. 5. Si consideri un mercato uniperiodale in cui sono presenti un titolo risk-free B, con B 0 = e B =.5, e un azione S che segua il modello S 0 = 2 e S = 5; 2; con rispettive probabilità p u = /4; p m = /2; p d = /4. (a) Dire se i payoff aleatori Y = ; ; 2 e Z = 4; ; 0 sono replicabili in funzione di S e B, e derivarne conclusioni sulla completezza del mercato (S,B). In caso di replicabilità, determinare la strategia replicante. (b) Dare la definizione di arbitraggio e dire se il mercato è privo di arbitraggi, motivando la risposta. In caso affermativo, determinare tutte le probabilità di martingala Q. (c) Trovare i prezzi equi per i payoff Y e Z rispettivamente. F (x) = 6. Dire quale tra le seguenti può rappresentare la funzione di ripartizione di una variabile aleatoria: 0, x, x +, x (, 0),, x [0, ], + ln(x) 6, x (, e 2 ), 2 x [e2, 0),, x [0, ). 0, x, x 2 +, x (, 0), F 2 (x) =, x [0, ),, x [, ). F (x) = 0, x, x +, x (, 0),, x [0, ],, x (, e],, x (e, ). Si giustifichi la risposta, ricordando le proprietà caratterizzanti le funzioni di ripartizione. Detta F X tale funzione e X una variabile aleatoria che la ammette come FdR, (a) individuare l insieme dei valori effettivamente assunti da X e rappresentare graficamente F X ; (b) dire se X è assolutamente continua, giustificando la risposta; (c) calcolare le probabilità P (X X 2) e P (X A), per A = {0, e, 0}; (d) determinare il quantile di X al livello α = 2. 7

8 7. Siano X e Y variabili aleatorie indipendenti, con distribuzioni X exp() e Y U [,4].. Determinare la media E[X + 2Y 2 ] e la media condizionale E[X + 2Y 2 Y ]. 2. Sia M = 2ln(5X). Dire quali sono i valori effettivamente assunti da M e determinare la densità di probabilità di M.. Sia Z = Y + 2 e α = Dire quali sono i valori effettivamente assunti da Z e scrivere V ar α (Z) in funzione di V ar α (Y ). 8

MATEMATICA FINANZIARIA RISCHI: RAPPRESENTAZIONE E GESTIONE (CENNI)

MATEMATICA FINANZIARIA RISCHI: RAPPRESENTAZIONE E GESTIONE (CENNI) Matematica Finanziaria, a.a. 2011/2012 p. 1/315 UNIVERSITA DEGLI STUDI DI PARMA FACOLTA DI ECONOMIA MATEMATICA FINANZIARIA RISCHI: RAPPRESENTAZIONE E GESTIONE (CENNI) ANNAMARIA OLIVIERI a.a. 2011/2012

Dettagli

Calcolo delle Probabilità 2

Calcolo delle Probabilità 2 Prova d esame di Calcolo delle Probabilità 2 Maggio 2006 Sia X una variabile aleatoria distribuita secondo la densità seguente ke x 1 x < 0 f X (x) = 1/2 0 x 1. 1. Determinare il valore del parametro reale

Dettagli

Corso di Laurea in Ingegneria Informatica Anno Accademico 2012/2013 Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Anno Accademico 2012/2013 Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Anno Accademico 2012/2013 Analisi Matematica 1 Nome... N. Matricola... Ancona, 12 gennaio 2013 1. Sono dati i numeri complessi z 1 = 1 + i; z 2 = 2 3 i; z 3 =

Dettagli

Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale a.a. 2016/17

Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale a.a. 2016/17 Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale aa 6/ Punteggi: : 3 + 6; : + + + ; 3: + Una scatola contiene monete; 8 di queste sono equilibrate, mentre le

Dettagli

Politecnico di Torino II Facoltà di Architettura - 5 Luglio 2011 Esercizio 1. Sono date le matrici 2 1, B = 1 4

Politecnico di Torino II Facoltà di Architettura - 5 Luglio 2011 Esercizio 1. Sono date le matrici 2 1, B = 1 4 A Politecnico di Torino II Facoltà di Architettura - 5 Luglio 20 Esercizio. Sono date le matrici A = ( ) 2, B = 4 ( ). 2 a) Calcolare la matrice A. b) Enunciare ed applicare la regola di Cramer per determinare

Dettagli

Tutorato di Complementi di Analisi Matematica e Statistica Parte di Analisi 6 e 10 aprile 2017

Tutorato di Complementi di Analisi Matematica e Statistica Parte di Analisi 6 e 10 aprile 2017 Tutorato di Complementi di Analisi Matematica e Statistica Parte di Analisi 6 e 10 aprile 2017 Esercizi: serie di potenze e serie di Taylor 1 Date le serie di potenze a.) n=2 ln(n) n 3 (x 5)n b.) n=2 ln(n)

Dettagli

Distribuzioni di due variabili aleatorie

Distribuzioni di due variabili aleatorie Statistica e analisi dei dati Data: 6 Maggio 206 Distribuzioni di due variabili aleatorie Docente: Prof. Giuseppe Boccignone Scriba: Noemi Tentori Distribuzioni congiunte e marginali Consideriamo due variabili

Dettagli

MATEMATICA GENERALE Prova d esame del 23 maggio FILA A

MATEMATICA GENERALE Prova d esame del 23 maggio FILA A MATEMATICA GENERALE Prova d esame del 23 maggio 2016 - FILA A Nome e cognome Matricola Gli studenti che hanno superato il test del Progetto Corda nel 2015 NON devono rispondere ai quesiti della I parte.

Dettagli

Analisi Matematica 2 Ingegneria Gestionale Docenti: B. Rubino e R. Sampalmieri L Aquila, 21 marzo 2005

Analisi Matematica 2 Ingegneria Gestionale Docenti: B. Rubino e R. Sampalmieri L Aquila, 21 marzo 2005 Analisi Matematica 2 Ingegneria Gestionale Docenti: B. Rubino e R. Sampalmieri L Aquila, 21 marzo 2005 Prova orale il: Docente: Determinare, se esistono, il massimo ed il minimo assoluto della funzione

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Esercitazione 6 maggio 04 Calcolo delle Probabilità Davide Petturiti e-mail: davide.petturiti@sbai.uniroma.it web: https://sites.google.com/site/davidepetturiti Esercizio. Siano X e Y due variabili aleatorie

Dettagli

ESERCIZI MATEMATICA GENERALE - Canale III Prof. A. Fabretti 1 A.A. 2009/2010

ESERCIZI MATEMATICA GENERALE - Canale III Prof. A. Fabretti 1 A.A. 2009/2010 ESERCIZI MATEMATICA GENERALE - Canale III Prof. A. Fabretti 1 A.A. 2009/2010 Individuare il dominio e i punti stazionari delle seguenti funzioni a due variabili 1) f(x, y) = x 3 + 8y 3 3xy 2) f(x, y) =

Dettagli

Variabili casuali multidimensionali

Variabili casuali multidimensionali Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi)

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi) Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006 Matematica 2 (Analisi) Nome:................................. N. matr.:.................................

Dettagli

Corso di Laurea in Chimica e Tecnologia Farmaceutiche Matematica con Elementi di Informatica COMPITO 19 Febbraio 2016

Corso di Laurea in Chimica e Tecnologia Farmaceutiche Matematica con Elementi di Informatica COMPITO 19 Febbraio 2016 Corso di Laurea in Chimica e Tecnologia Farmaceutiche Matematica con Elementi di Informatica COMPITO 19 Febbraio 2016 Nome Cognome Matricola Punteggi 10 cfu Teoria Ex.1 Ex.2 Ex.3 Ex. 4 Ex.5 /6 /5 /5 /5

Dettagli

Probabilità e Statistica per l Informatica Esercitazione 4

Probabilità e Statistica per l Informatica Esercitazione 4 Probabilità e Statistica per l Informatica Esercitazione 4 Esercizio : [Ispirato all Esercizio, compito del 7/9/ del IV appello di Statistica e Calcolo delle probabilità, professori Barchielli, Ladelli,

Dettagli

, mentre Y è una variabile geometrica di costante q = 1 2. (1 q) n = q (1 q) 3 1 q = (1 2 )3 = 1 8. n=0

, mentre Y è una variabile geometrica di costante q = 1 2. (1 q) n = q (1 q) 3 1 q = (1 2 )3 = 1 8. n=0 SOLUZIONI DEGLI ESERCIZI SULLE VARIABILI ALEATORIE DISCRETE Esercizio. Sono date due urne denominate rispettivamente A e B. A contiene palline bianche e 6 palline rosse, B contiene 8 palline bianche e

Dettagli

11. Sia g(y) la funzione inversa di f(x) = x 3 + x + 1. Calcolare. 14. Calcolare la somma della serie

11. Sia g(y) la funzione inversa di f(x) = x 3 + x + 1. Calcolare. 14. Calcolare la somma della serie Prova N. parti e : risposte Matematica e Statistica 0 gennaio 0 VARIANTE: 0 risposte: C A C B B B B D A B A C D C D B A C D A Ricordiamo che se Z ha distribuzione normale standard, si ha P (Z >.00) = %,

Dettagli

0 z < z < 2. 0 z < z 3

0 z < z < 2. 0 z < z 3 CALCOLO DELLE PROBABILITÀ o - 7 gennaio 004. Elettronica : 4; Nettuno: 3.. Data un urna di composizione incognita con palline bianche e nere, sia K = il numero di palline bianche nell urna è il doppio

Dettagli

PROCESSI STOCASTICI 1: ESERCIZI

PROCESSI STOCASTICI 1: ESERCIZI PROCESSI STOCASTICI 1: ESERCIZI (1) ESERCIZIO: Date P e Q matrici stocastiche, dimostrare che la matrice prodotto P Q è una matrice stocastica. Dedurre che la potenza P n e il prodotto P 1 P 2 P n sono

Dettagli

docente: J. Mortera/P. Vicard Nome

docente: J. Mortera/P. Vicard Nome A opportuni passaggi). Verrà accettato in consegna solo il presente plico. 2. [9] Una certa zona è servita da 4 compagnie telefoniche. Per ciascuna compagnia è stato rilevato il costo al minuto (in centesimi

Dettagli

ANALISI MATEMATICA 3. esercizi assegnati per la prova scritta del 31 gennaio 2011

ANALISI MATEMATICA 3. esercizi assegnati per la prova scritta del 31 gennaio 2011 esercizi assegnati per la prova scritta del 31 gennaio 2011 Esercizio 1. Per x > 0 e n N si ponga f n (x) = ln ( n 5 x ) a) Provare l integrabilità delle funzioni f n in (0, + ). 3 + n 4 x 2. b) Studiare

Dettagli

Lezione n. 1 (a cura di Irene Tibidò)

Lezione n. 1 (a cura di Irene Tibidò) Lezione n. 1 (a cura di Irene Tibidò) Richiami di statistica Variabile aleatoria (casuale) Dato uno spazio campionario Ω che contiene tutti i possibili esiti di un esperimento casuale, la variabile aleatoria

Dettagli

CALCOLO DELLE PROBABILITA - 14 Gennaio 2015 CdL in STAD, SIGAD

CALCOLO DELLE PROBABILITA - 14 Gennaio 2015 CdL in STAD, SIGAD Cognome e Nome:....................................... Matricola............. CdS............. CALCOLO DELLE PROBABILITA - 4 Gennaio 5 CdL in STAD, SIGAD Motivare dettagliatamente le risposte su fogli

Dettagli

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE.

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE. Corso di Laurea Triennale in Matematica Corso di Calcolo delle Probabilità 1 A. A. 4/5 a prova in itinere 8/6/5docenti G. Nappo, F. Spizzichino La prova scritta consiste nello svolgimento degli Esercizi

Dettagli

X Vincita (in euro) Tabella 1: Vincite

X Vincita (in euro) Tabella 1: Vincite Cognome e Nome:....................................... Matricola............. CdS............. CALCOLO DELLE PROBABILITA - 9 Giugno 1 CdS in STAD, SIGAD - docente: G. Sanfilippo Motivare dettagliatamente

Dettagli

Esercitazione del 06/03/2012 Istituzioni di Calcolo delle Probabilità

Esercitazione del 06/03/2012 Istituzioni di Calcolo delle Probabilità Esercitazione del 6/3/ Istituzioni di Calcolo delle Probabilità David Barbato barbato@math.unipd.it Esercizio. E la notte di San Lorenzo, Alessandra decide di andare a vedere le stelle cadenti. Osserverà

Dettagli

MATEMATICA PRIMO COMPITINO SOLUZIONE DI ALCUNI ESERCIZI PRIMA PARTE. Esercizio 1. (Testo B) Determina, motivando la risposta, se la funzione f : R R

MATEMATICA PRIMO COMPITINO SOLUZIONE DI ALCUNI ESERCIZI PRIMA PARTE. Esercizio 1. (Testo B) Determina, motivando la risposta, se la funzione f : R R ANNO ACCADEMICO 25 6 SCIENZE GEOLOGICHE E SCIENZE NATURALI E AMBIENTALI MATEMATICA PRIMO COMPITINO SOLUZIONE DI ALCUNI ESERCIZI PROFF MARCO ABATE E MARGHERITA LELLI-CHIESA PRIMA PARTE Esercizio (Testo

Dettagli

1 Esercizi tutorato 1/4

1 Esercizi tutorato 1/4 Esercizi tutorato 1/ 1 1 Esercizi tutorato 1/ Esercizio 11 Siano X e Y due va discrete indipendenti di distribuzione geometrica con parametro p [0, 1] (i) Si calcoli la legge di X + Y, è una legge nota?

Dettagli

ESERCIZI PROBABILITA I

ESERCIZI PROBABILITA I ESERCIZI PROBABILITA I ESERCIZIO 1 Il rendimento annuo di un titolo viene descritto mediante una distribuzione normale. I e III quartile del rendimento sono uguali a, rispettivamente, -0.1 e 0.3. Si calcoli

Dettagli

y (b) f(x, y) = y log x sin x (c) f(x, y) = tan y (d) f(x, y) = e x y (f) f(x, y) = cos(x 2 + y 2 )

y (b) f(x, y) = y log x sin x (c) f(x, y) = tan y (d) f(x, y) = e x y (f) f(x, y) = cos(x 2 + y 2 ) FUNZIONI DI PIÙ VARIABILI. Siano date le seguenti funzioni: (a) f(x, y) = 3x + y (c) h(x, y) = x y (b) g(x, y) = xy (d) k(x, y) = x + y Determinare e disegnare nel piano cartesiano il dominio delle funzioni

Dettagli

Applicazioni lineari tra spazi euclidei. Cambi di base.

Applicazioni lineari tra spazi euclidei. Cambi di base. pplicazioni lineari tra spazi euclidei. Cambi di base. Esercizio. Data la seguente applicazione lineare f : R R : f(x, y, z) = (x z, x + y, y + z), scrivere la matrice B, rappresentativa di f rispetto

Dettagli

MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A

MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A Nome e cognome Matricola I Parte OBBLIGATORIA (quesiti preliminari: 1 punto ciascuno). Riportare le soluzioni su questo foglio, mostrando i

Dettagli

Calcolare. 16. Calcolare la somma della serie. 17. Se

Calcolare. 16. Calcolare la somma della serie. 17. Se Prova N.: risposte Matematica e Statistica gennaio VARIANTE: risposte: C A C B B B D B A B A C D C D B A C D A Ricordiamo che se Z ha distribuzione normale standard, si ha P (Z >.) = %, P (Z >.) = %, P

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi proposti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi proposti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi proposti. Risolvere la disequazione x x +. è soddisfatta x IR ]. Disegnare i grafici di (a) y = x + x + 3 ; (b) y = x x

Dettagli

Università degli Studi Roma Tre Anno Accademico 2016/2017 ST410 Statistica 1

Università degli Studi Roma Tre Anno Accademico 2016/2017 ST410 Statistica 1 Università degli Studi Roma Tre Anno Accademico 2016/2017 ST410 Statistica 1 Lezione 1 - Mercoledì 28 Settembre 2016 Introduzione al corso. Richiami di probabilità: spazi di probabilità, variabili aleatorie,

Dettagli

Università degli studi di Udine - Sede di Pordenone

Università degli studi di Udine - Sede di Pordenone Università degli studi di Udine - Sede di Pordenone Facoltà di Scienze della Formazione - Corso di Corso di Matematica e Statistica Tema d esame AA2009/2010-27 gennaio 2010 Esercizio 1a Esplicitare la

Dettagli

Stima puntuale di parametri

Stima puntuale di parametri Probabilità e Statistica Esercitazioni a.a. 006/007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

Prova scritta di Analisi Matematica T-B, Ingegneria Meccanica, 17/06/2014

Prova scritta di Analisi Matematica T-B, Ingegneria Meccanica, 17/06/2014 Prova scritta di Analisi Matematica T-B, Ingegneria Meccanica, 17/06/2014 MATRICOLA:...NOME e COGNOME:............................................. Desidero sostenere la prova orale al prossimo appello

Dettagli

Probabilità e Processi stocastici. Ingegneria Robotica e dell Automazione. Prova scritta del giorno 15/12/14

Probabilità e Processi stocastici. Ingegneria Robotica e dell Automazione. Prova scritta del giorno 15/12/14 Probabilità e Processi stocastici. Ingegneria Robotica e dell Automazione. Prova scritta del giorno 15/12/14 In ingegneria un sistema formato da n componenti è detto k su n se funziona quando almeno k

Dettagli

UNIVERSITÁ DI FOGGIA DIPARTIMENTO DI ECONOMIA CORSO DI MATEMATICA FINANZIARIA A-L PROF. ANDREA DI LIDDO TEMI ASSEGNATI DURANTE LE PROVE SCRITTE DA

UNIVERSITÁ DI FOGGIA DIPARTIMENTO DI ECONOMIA CORSO DI MATEMATICA FINANZIARIA A-L PROF. ANDREA DI LIDDO TEMI ASSEGNATI DURANTE LE PROVE SCRITTE DA UNIVERSITÁ DI FOGGIA DIPARTIMENTO DI ECONOMIA CORSO DI MATEMATICA FINANZIARIA A-L PROF ANDREA DI LIDDO TEMI ASSEGNATI DURANTE LE PROVE SCRITTE DA DICEMBRE 2016 aa 2016-2017-6 GIUGNO 2017 NUMERO DI CFU

Dettagli

Analisi Matematica 2. Prove d Esame A.A. 2012/2015

Analisi Matematica 2. Prove d Esame A.A. 2012/2015 Analisi 2 Polo di Savona Analisi Matematica 2 Prove d Esame A.A. 2012/2015 1- PrAmT.TEX [] Analisi 2 Polo di Savona Prima Prova parziale 23/11/2011 Prima Prova parziale 23/11/2011 { f(x, y) = x y 3 x y

Dettagli

I VETTORI GAUSSIANI E. DI NARDO

I VETTORI GAUSSIANI E. DI NARDO I VETTOI GAUSSIANI E. DI NADO. L importanza della distribuzione gaussiana I vettori di v.a. gaussiane sono senza dubbio uno degli strumenti più utili in statistica. Nell analisi multivariata, per esempio,

Dettagli

Esame di AM2 & EAP (270/04) a.a. 2009/10

Esame di AM2 & EAP (270/04) a.a. 2009/10 Quarto appello del 16 Luglio 2010 1. Un urna contiene delle palline numerate e distribuite in seguente maniera: Vengono estratte due palline senza rimpiazzo e siano X e Y rispettivamente il numero della

Dettagli

Esercizi Svolti. 2. Costruire la distribuzione delle frequenze cumulate del tempo di attesa

Esercizi Svolti. 2. Costruire la distribuzione delle frequenze cumulate del tempo di attesa Esercizi Svolti Esercizio 1 Per una certa linea urbana di autobus sono state effettuate una serie di rilevazioni sui tempi di attesa ad una determinata fermata; la corrispondente distribuzione di frequenza

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 2013/2014. I Esonero - 29 Ottobre Tot.

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 2013/2014. I Esonero - 29 Ottobre Tot. UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 2013/2014 I Esonero - 29 Ottobre 2013 1 2 3 4 5 6 7 8 Tot. Avvertenza: Svolgere ogni esercizio nello spazio assegnato,

Dettagli

TEST n La funzione di ripartizione di una variabile aleatoria:

TEST n La funzione di ripartizione di una variabile aleatoria: TEST n. 1 1. Un esperimento consiste nell estrarre successivamente, con reimmissione nel mazzo, due carte da un mazzo di 52 carte. Individuare la probabilità di estrarre due assi. A 0.0059 B 0.0044 C 0.0045

Dettagli

Nozioni preliminari... 1 Notazioni... 1 Alcunirichiamidianalisimatematica... 3 Sommeinfinite... 3

Nozioni preliminari... 1 Notazioni... 1 Alcunirichiamidianalisimatematica... 3 Sommeinfinite... 3 Indice Nozioni preliminari... 1 Notazioni... 1 Alcunirichiamidianalisimatematica... 3 Sommeinfinite... 3 1 Spazi di probabilità discreti: teoria... 7 1.1 Modelli probabilistici discreti..... 7 1.1.1 Considerazioni

Dettagli

Probabilità 1, laurea triennale in Matematica I prova scritta sessione estiva a.a. 2008/09

Probabilità 1, laurea triennale in Matematica I prova scritta sessione estiva a.a. 2008/09 Probabilità, laurea triennale in Matematica I prova scritta sessione estiva a.a. 2008/09. Due roulette regolari vengono azionate più volte; sia T il numero di volte che occorre azionare la prima roulette

Dettagli

Esercizi di Calcolo delle Probabilità

Esercizi di Calcolo delle Probabilità Esercizi di Calcolo delle Probabilità Versione del 1/05/005 Corso di Statistica Anno Accademico 00/05 Antonio Giannitrapani, Simone Paoletti Calcolo delle probabilità Esercizio 1. Un dado viene lanciato

Dettagli

STATISTICA DESCRITTIVA BIVARIATA

STATISTICA DESCRITTIVA BIVARIATA STATISTICA DESCRITTIVA BIVARIATA Si parla di Analisi Multivariata quando su ogni unità statistica, appartenente ad una determinata popolazione, si rileva un certo numero s di caratteri X, X 2,,X s. Si

Dettagli

Esercizi settimana 5. Esercizi applicati. Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 2 3

Esercizi settimana 5. Esercizi applicati. Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 2 3 1 Esercizi settimana 5 Esercizi applicati Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 3 di ottenere testa. Se scegliete la prima moneta vincete 10 punti se esce testa e punti

Dettagli

ESERCITAZIONE 21 : VARIABILI ALEATORIE CONTINUE

ESERCITAZIONE 21 : VARIABILI ALEATORIE CONTINUE ESERCITAZIONE 21 : VARIABILI ALEATORIE CONTINUE e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: su appuntamento Dipartimento di Matematica, piano terra, studio 114 7 Maggio 2013 Esercizio

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Variabili casuali Prof. Livia De Giovanni statistica@dis.uniroma.it Esercizio Determinare se le funzioni seguenti: 0.0 se x < 0. se x = g(x) = 0.5 se x = 0.7 se x = 3 se x =

Dettagli

Scritto d esame di Analisi Matematica I

Scritto d esame di Analisi Matematica I Capitolo 2: Scritti d esame 07 Pisa, 8 Gennaio 999. Studiare il comportamento della serie al variare del parametro α > /2. ( ) n n sin α n 2α 2. Sia ( ) f(x) = log + sin3 x. 2 (a) Determinare la derivata

Dettagli

Comunicazioni Elettriche anno accademico Esercitazione 1

Comunicazioni Elettriche anno accademico Esercitazione 1 Comunicazioni Elettriche anno accademico 003-004 Esercitazione Esercizio Un processo aleatorio a tempo discreto X(n) è definito nel seguente modo: Viene lanciata una moneta. Se il risultato è testa X(n)=

Dettagli

Esame di Statistica (10 o 12 CFU) CLEF 11 febbraio 2016

Esame di Statistica (10 o 12 CFU) CLEF 11 febbraio 2016 Esame di Statistica 0 o CFU) CLEF febbraio 06 Esercizio Si considerino i seguenti dati, relativi a 00 clienti di una banca a cui è stato concesso un prestito, classificati per età e per esito dell operazione

Dettagli

Correzione. Classe 5Ccm Recupero di Matematica 1 Novembre Cognome e nome: Es. Punti % Errori Altro

Correzione. Classe 5Ccm Recupero di Matematica 1 Novembre Cognome e nome: Es. Punti % Errori Altro Classe 5Ccm Recupero di Matematica 1 Novembre 015 Cognome e nome: Voto: Correzione 1. Si risolvano i seguenti integrali indefiniti. (a) ( /3 punti) arcsen xdx Es. Punti % Errori Altro 1 /13 c s p f d i

Dettagli

I appello di calcolo delle probabilità e statistica

I appello di calcolo delle probabilità e statistica I appello di calcolo delle probabilità e statistica A.Barchielli, L. Ladelli, G. Posta 8 Febbraio 13 Nome: Cognome: Matricola: Docente: I diritti d autore sono riservati. Ogni sfruttamento commerciale

Dettagli

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE.

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE. Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino) Prova di giovedi febbraio 2005 (tempo a disposizione: 3 ore). consegna compiti e inizio orale Lunedì

Dettagli

Esame di Teoria dei Segnali A Ing. Informatica, Elettronica e Telecomunicazioni. 12 luglio 2004

Esame di Teoria dei Segnali A Ing. Informatica, Elettronica e Telecomunicazioni. 12 luglio 2004 Esame di Teoria dei Segnali A Ing. Informatica, Elettronica e Telecomunicazioni luglio 4 Esercizio Un sacchetto A contiene caramelle ai gusti fragola, limone e lampone. Un sacchetto B contiene caramelle

Dettagli

COMPLEMENTI DI ANALISI MATEMATICA DI BASE. Prova scritta del 26 gennaio 2005

COMPLEMENTI DI ANALISI MATEMATICA DI BASE. Prova scritta del 26 gennaio 2005 Prova scritta del 26 gennaio 2005 Esercizio 1. Posto B = x R 2 : x 2 2}, sia f n } una successione di funzioni (misurabili e) integrabili in B tali che f n f q.o. in B e, per ogni n N, f n (x) 2 x 3 per

Dettagli

Statistica Matematica e Trattamento Informatico dei Dati. Analisi Matematica 3. Esercizi svolti nelle lezioni. V. Del Prete

Statistica Matematica e Trattamento Informatico dei Dati. Analisi Matematica 3. Esercizi svolti nelle lezioni. V. Del Prete Statistica Matematica e Trattamento Informatico dei Dati A.A.00-0 Analisi Matematica 3 Esercizi svolti nelle lezioni V. Del Prete Numeri complessi Argomenti ed esercizi svolti nelle lezioni 30.09.00 e

Dettagli

Indici di posizione e dispersione per distribuzioni di variabili aleatorie

Indici di posizione e dispersione per distribuzioni di variabili aleatorie Indici di posizione e dispersione per distribuzioni di variabili aleatorie 12 maggio 2017 Consideriamo i principali indici statistici che caratterizzano una distribuzione: indici di posizione, che forniscono

Dettagli

Anno scolastico 2015/2016 PROGRAMMA SVOLTO. Docente: Catini Romina. Materie: Matematica. Classe : 4 L Indirizzo Scientifico Scienze Applicate

Anno scolastico 2015/2016 PROGRAMMA SVOLTO. Docente: Catini Romina. Materie: Matematica. Classe : 4 L Indirizzo Scientifico Scienze Applicate Anno scolastico 2015/2016 PROGRAMMA SVOLTO Docente: Catini Romina Materie: Matematica Classe : 4 L Indirizzo Scientifico Scienze Applicate UNITA DIDATTICA FORMATIVA 1: Statistica Rilevazione dei dati Rappresentazioni

Dettagli

ESERCIZI sui VETTORI

ESERCIZI sui VETTORI ESERCIZI sui VETTORI 1. Calcolare la somma di v 1 (2, 3) e v 2 (1, 4). 2. Calcolare la somma di v 1 (1, 5, 4) e v 2 (6, 8, 2). 3. Calcolare il prodotto di α = 2 e v 1 (1, 4). 4. Calcolare il prodotto di

Dettagli

0 se y c 1 (y)) se c < y < d. 1 se y d

0 se y c 1 (y)) se c < y < d. 1 se y d Capitolo. Parte IX Exercise.. Sia X una variabile aleatoria reale assolutamente continua e sia (a,b) un intervallo aperto (limitato o illimitato) di R, tale che P(X (a,b)) =. Sia ϕ : (a,b) R una funzione

Dettagli

COGNOME... NOME... Matricola... Corso Prof... Esame di ANALISI MATEMATICA II - 25 Giugno 2007

COGNOME... NOME... Matricola... Corso Prof... Esame di ANALISI MATEMATICA II - 25 Giugno 2007 COGNOME... NOME... Matricola... Corso Prof.... Esame di ANALISI MATEMATICA II - 25 Giugno 2007 A ESERCIZIO 1. (6 punti) Data la funzione reale di due variabili reali f(x, y) = ln x 3y + 3y x 1 (a) determinare

Dettagli

MATEMATICA CORSO A IV APPELLO PROVA SCRITTA DEL 18/01/2012 SCIENZE BIOLOGICHE

MATEMATICA CORSO A IV APPELLO PROVA SCRITTA DEL 18/01/2012 SCIENZE BIOLOGICHE MATEMATICA CORSO A IV APPELLO PROVA SCRITTA DEL 18/01/2012 SCIENZE BIOLOGICHE 1-(Vale 4 punti) Per procedere all acquisto on line di un biglietto aereo è necessaria una password composta da 4 simboli che

Dettagli

COPPIE DI VARIABILI ALEATORIE

COPPIE DI VARIABILI ALEATORIE COPPIE DI VAIABILI ALEATOIE E DI NADO 1 Funzioni di ripartizione congiunte e marginali Definizione 11 Siano X, Y va definite su uno stesso spazio di probabilità (Ω, F, P La coppia (X, Y viene detta va

Dettagli

MATEMATICA GENERALE Prova d esame del 23 giugno FILA A

MATEMATICA GENERALE Prova d esame del 23 giugno FILA A MATEMATICA GENERALE Prova d esame del 2 giugno 206 - FILA A Nome e cognome Matricola Gli studenti che hanno superato il test del progetto Corda nel 205 NON devono rispondere ai quesiti della I parte Test

Dettagli

Esercizi Matematica 3

Esercizi Matematica 3 Esercizi Matematica 3 Dipartimento di Matematica ITIS V.Volterra San Donà di Piave Versione [1/13] Introduzione Gli esercizi presentati in questo volume, seguono la stessa struttura capitolo, sezione,

Dettagli

Esame di Probabilità e Statistica del 23 agosto 2010 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova).

Esame di Probabilità e Statistica del 23 agosto 2010 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Esame di Probabilità e Statistica del 3 agosto 00 Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Cognome Nome Matricola Es. Es. Es. 3 Es. 4 Somma Voto finale Attenzione: si

Dettagli

L assegnazione è coerente? SÌ NO. A e B sono stocasticamente indipendenti? SÌ NO

L assegnazione è coerente? SÌ NO. A e B sono stocasticamente indipendenti? SÌ NO CALCOLO DELLE PROBABILITÀ - gennaio 00 Scrivere le risposte negli appositi spazi Motivare dettagliatamente le risposte su fogli allegati Nuovo Ordinamento esercizi -4. Vecchio Ordinamento esercizi -6..

Dettagli

Mutue posizioni della parabola con gli assi cartesiani

Mutue posizioni della parabola con gli assi cartesiani Mutue posizioni della parabola con gli assi cartesiani L equazione di una parabola generica è data da: Consideriamo l equazione che definisce i punti di intersezione della parabola con l asse delle ascisse

Dettagli

SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1

SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1 www.matefilia.it SESSIONE SUPPLETIVA 015 - QUESTIONARIO x QUESITO 1 Data la funzione integrale ln(t) dt, determinare per quali valori di x il suo grafico 1 incontra la retta di equazione y = x + 1. Calcoliamo

Dettagli

Modelli probabilistici variabili casuali

Modelli probabilistici variabili casuali Modelli probabilistici variabili casuali Le variabili casuali costituiscono il legame tra il calcolo della probabilità e gli strumenti di statistica descrittiva visti fino ad ora. Idea: pensiamo al ripetersi

Dettagli

Scritto d esame di Analisi Matematica

Scritto d esame di Analisi Matematica 116 Prove d Esame di Analisi Matematica Versione 2006 Pisa, 15 Gennaio 2000 x 0 sin x 4 x 4 (arctan x x) 4. 2. eterminare, al variare del parametro λ R, il numero di soluzioni dell equazione 2x 2 = λe

Dettagli

CALCOLO DELLE PROBABILITÀ - 9 giugno 1998 Scrivere le risposte negli appositi spazi Motivare dettagliatamente le risposte su fogli allegati

CALCOLO DELLE PROBABILITÀ - 9 giugno 1998 Scrivere le risposte negli appositi spazi Motivare dettagliatamente le risposte su fogli allegati CALCOLO DELLE PROBABILITÀ - 9 giugno 1998 1. Dati gli eventi A,B,C, ognuno dei quali implica il successivo, e tali che P (A) è metà della probabilità di B, che a sua volta ha probabilità metà di quella

Dettagli

Nuovo Ordinamento Esame di Statistica 20 Giugno 2003 docente: P. Vicard Nome

Nuovo Ordinamento Esame di Statistica 20 Giugno 2003 docente: P. Vicard Nome Nuovo Ordinamento Esame di Statistica 20 Giugno 2003 Cognome docente: P. Vicard Nome Al termine di ogni esercizio è lasciato lo spazio per scrivere la soluzione (corredata degli opportuni passaggi). La

Dettagli

Esercizi svolti di statistica. Gianpaolo Gabutti

Esercizi svolti di statistica. Gianpaolo Gabutti Esercizi svolti di statistica Gianpaolo Gabutti (gabuttig@hotmail.com) 1 Introduzione Questo breve documento contiene lo svolgimento di alcuni esercizi di statistica da me svolti durante la preparazione

Dettagli

Traccia della soluzione degli esercizi del Capitolo 3

Traccia della soluzione degli esercizi del Capitolo 3 Traccia della soluzione degli esercizi del Capitolo 3 Esercizio 68 Sia X una v.c. uniformenente distribuita nell intervallo ( π, π, cioè f X ( = π ( π, π (. Posto Y = cos(x, trovare la distribuzione di

Dettagli

VIII Indice 2.6 Esperimenti Dicotomici Ripetuti: Binomiale ed Ipergeometrica Processi Stocastici: Bernoul

VIII Indice 2.6 Esperimenti Dicotomici Ripetuti: Binomiale ed Ipergeometrica Processi Stocastici: Bernoul 1 Introduzione alla Teoria della Probabilità... 1 1.1 Introduzione........................................ 1 1.2 Spazio dei Campioni ed Eventi Aleatori................ 2 1.3 Misura di Probabilità... 5

Dettagli

PROBABILITÀ SCHEDA N. 5 SOMMA E DIFFERENZA DI DUE VARIABILI ALEATORIE DISCRETE

PROBABILITÀ SCHEDA N. 5 SOMMA E DIFFERENZA DI DUE VARIABILI ALEATORIE DISCRETE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) PROBABILITÀ SCHEDA

Dettagli

Compito di Analisi Matematica 1 per Ingegneria Elettronica a delle Telecomunicazioni COGNOME: NOME: MATR.: 1. x n

Compito di Analisi Matematica 1 per Ingegneria Elettronica a delle Telecomunicazioni COGNOME: NOME: MATR.: 1. x n Compito di Analisi Matematica 1 per Ingegneria Elettronica a delle Telecomunicazioni 17 gennaio 2017 COGNOME: NOME: MATR.: Esercizio 1. Sia f : R R definita da f(x) = 1 4 x x + 1 2. a) Disegnare grafico

Dettagli

EQUAZIONI, DISEQUAZIONI E SISTEMI

EQUAZIONI, DISEQUAZIONI E SISTEMI EQUAZIONI, DISEQUAZIONI E SISTEMI RICHIAMI DI TEORIA Definizione: sia f una funzione reale di variabile reale. Gli elementi del dominio di f su cui la funzione assume valore nullo costituiscono l' insieme

Dettagli

STATISTICA A K (63 ore) Marco Riani

STATISTICA A K (63 ore) Marco Riani STATISTICA A K (63 ore) Marco Riani mriani@unipr.it http://www.riani.it Esempio totocalcio Gioco la schedina mettendo a caso i segni 1 X 2 Qual è la prob. di fare 14? Esempio Gioco la schedina mettendo

Dettagli

ESERCIZI SU FUNZIONI. La funzione f è una corrispondenza biunivoca? La funzione f è continua e derivabile in x=0?(motivare le risposte).

ESERCIZI SU FUNZIONI. La funzione f è una corrispondenza biunivoca? La funzione f è continua e derivabile in x=0?(motivare le risposte). ESERCIZI SU FUNZIONI. 1) Disegnare il grafico della funzione f : R R così definita y = f(x)= x +1 se x 0 -x 2 +1 se x < 0. La funzione f è una corrispondenza biunivoca? La funzione f è continua e derivabile

Dettagli

Esercizi di GEOMETRIA I - Algebra Lineare B = , calcolare A A t A + I

Esercizi di GEOMETRIA I - Algebra Lineare B = , calcolare A A t A + I Esercizi di GEOMETRIA I - Algebra Lineare. Tra le seguenti matrici, eseguire tutti i prodotti possibili: 2 ( ) A = 0 3 4 B = 2 0 0 2 D = ( 0 ) E = ( ) 4 4 2 C = 2 0 5 F = 4 2 6 2. Data la matrice A = 0

Dettagli

Corso di Laurea in Ingegneria Gestionale - Sede di Fermo Anno Accademico 2009/2010 Matematica 2 Esercizi d esame

Corso di Laurea in Ingegneria Gestionale - Sede di Fermo Anno Accademico 2009/2010 Matematica 2 Esercizi d esame Corso di Laurea in Ingegneria Gestionale - ede di Fermo Anno Accademico 2009/2010 Matematica 2 Esercizi d esame Nome... N. Matricola... Fermo, gg/mm/aaaa 1. tabilire l ordine di ciascuna delle seguenti

Dettagli

CALCOLO DELLE PROBABILITA - 24 Giugno 2015 CdL in STAD, SIGAD Compito intero Seconda prova in itinere: esercizi 4,5,6.

CALCOLO DELLE PROBABILITA - 24 Giugno 2015 CdL in STAD, SIGAD Compito intero Seconda prova in itinere: esercizi 4,5,6. Cognome e Nome: Matricola CdS CALCOLO DELLE PROBABILITA - 4 Giugno 5 CdL in STAD, SIGAD Compito intero Seconda prova in itinere: esercizi 4,5, Motivare dettagliatamente le risposte su fogli allegati e

Dettagli

Scheda n.3: densità gaussiana e Beta

Scheda n.3: densità gaussiana e Beta Scheda n.3: densità gaussiana e Beta October 10, 2008 1 Definizioni generali Chiamiamo densità di probabilità (pdf ) ogni funzione integrabile f (x) definita per x R tale che i) f (x) 0 per ogni x R ii)

Dettagli

Esercizi di Programmazione Lineare - Dualità

Esercizi di Programmazione Lineare - Dualità Esercizi di Programmazione Lineare - Dualità Esercizio n1 Dato il seguente problema 3 + 3 2 2 + a scriverne il duale; b risolvere il duale (anche geometricamente indicando cosa da esso si può dedurre sul

Dettagli

Appunti di matematica per le Scienze Sociali Parte 1

Appunti di matematica per le Scienze Sociali Parte 1 Appunti di matematica per le Scienze Sociali Parte 1 1 Equazioni 1.1 Definizioni preliminari 1.1.1 Monomi Si definisce monomio ogni prodotto indicato di fattori qualsiasi, cioè uguali o diseguali, numerici

Dettagli

Estremi vincolati, Teorema del Dini.

Estremi vincolati, Teorema del Dini. Estremi vincolati, Teorema del Dini. 1. Da un cartone di 1m si deve ricavare una scatola rettangolare senza coperchio. Trovare il massimo volume possibile della scatola.. Trovare gli estremi assoluti di

Dettagli

ESERCIZIO SVOLTO N 1 ESERCIZIO SVOLTO N 2. Determinare e rappresentare graficamente il dominio della funzione

ESERCIZIO SVOLTO N 1 ESERCIZIO SVOLTO N 2. Determinare e rappresentare graficamente il dominio della funzione ESERCIZIO SVOLTO N 1 Determinare e rappresentare graficamente il dominio della funzione f(x, y) = y 2 x 2 Trovare gli eventuali punti stazionari e gli estremi di f Il dominio della funzione è dato da dom

Dettagli

Variabili aleatorie continue: la normale. Giovanni M. Marchetti Statistica Capitolo 6 Corso di Laurea in Economia

Variabili aleatorie continue: la normale. Giovanni M. Marchetti Statistica Capitolo 6 Corso di Laurea in Economia Variabili aleatorie continue: la normale Giovanni M. Marchetti Statistica Capitolo 6 Corso di Laurea in Economia 2015-16 1 / 40 Distinzione Le variabili aleatorie possono essere 1 discrete 2 continue 2

Dettagli

Domande ed Esercizi Corso di Istituzioni di Economia Politica

Domande ed Esercizi Corso di Istituzioni di Economia Politica Domande ed Esercizi Corso di Istituzioni di Economia Politica Simone D Alessandro Ottobre 2009 Indice 1 Teoria del Consumatore 1 1.1 Esercizi.............................. 1 2 Teoria della Produzione 3

Dettagli

Variabile Casuale Normale

Variabile Casuale Normale Variabile Casuale Normale Variabile Casuale Normale o Gaussiana E una variabile casuale continua che assume tutti i numeri reali, è definita dalla seguente funzione di densità: 1 f( x) = e σ 2 π ( x µ

Dettagli

1 Eventi. Operazioni tra eventi. Insiemi ed eventi. Insieme dei casi elementari. Definizione di probabilità.

1 Eventi. Operazioni tra eventi. Insiemi ed eventi. Insieme dei casi elementari. Definizione di probabilità. Quella che segue e la versione compatta delle slides usate a lezioni. NON sono appunti. Come testo di riferimento si può leggere Elementi di calcolo delle probabilità e statistica Rita Giuliano. Ed ETS

Dettagli

SCHEDA DIDATTICA N 7

SCHEDA DIDATTICA N 7 FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA CIVILE CORSO DI IDROLOGIA PROF. PASQUALE VERSACE SCHEDA DIDATTICA N 7 LA DISTRIBUZIONE NORMALE A.A. 01-13 La distribuzione NORMALE Uno dei più importanti

Dettagli